
The Annals of Applied Probability
2010, Vol. 20, No. 3, 1098–1125
DOI: 10.1214/09-AAP653
© Institute of Mathematical Statistics, 2010

A MARKOVIAN SLOT MACHINE AND PARRONDO’S PARADOX

BY S. N. ETHIER AND JIYEON LEE1

University of Utah and Yeungnam University

The antique Mills Futurity slot machine has two unusual features. First,
if a player loses 10 times in a row, the 10 lost coins are returned. Second,
the payout distribution varies from coup to coup in a manner that is nonran-
dom and periodic with period 10. It follows that the machine is driven by a
100-state irreducible period-10 Markov chain. Here, we evaluate the station-
ary distribution of the Markov chain, and this leads to a strong law of large
numbers and a central limit theorem for the sequence of payouts. Following a
suggestion of Pyke [In Mathematical Statistics and Applications: Festschrift
for Constance van Eeden (2003) 185–216 Institute of Mathematical Statis-
tics], we address the question of whether there exists a two-armed version
of this “one-armed bandit” that obeys Parrondo’s paradox. More precisely, is
there such a machine with the property that the casino can honestly advertise
that both arms are fair, yet when players alternate arms in certain random or
nonrandom ways, the casino makes money in the long run? The answer is a
qualified yes. Although this “history-dependent” game is conceptually sim-
pler than the original such games of Parrondo, Harmer and Abbott [Phys. Rev.
Lett. (2000) 85 5226–5229], it is nearly as complicated analytically, and open
problems remain.

1. Introduction. The Futurity slot machine, a 1936 design of Mills Novelty
Company of Chicago, has two unusual features, one readily apparent and the other
less so. The readily apparent feature is that, if the player loses 10 times in a row,
the 10 lost coins are returned. At the top of the machine is a pointer that indicates
the number of consecutive losses incurred. It advances by 1 after each loss, and
resets at 0 after a win or after 10 consecutive losses. The less apparent feature is
that there are 20 symbols on each of the three reels but only the ones in even-
numbered positions can appear on the payline if the machine is in mode E, while
only the ones in odd-numbered positions can appear on the payline if the machine
is in mode O. The mode is nonrandom and is determined by a cam that rotates
through 10 positions, advancing one position with each coup and resulting in a
specific mode pattern of length 10, EEEEEOEEEO, which is repeated ad infinitum.
(Note that we could substitute any cyclic permutation of this mode pattern, such
as EEEOEEEEEO, without effect.) When in mode E, the machine is extremely
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“tight” (i.e., the mean payout from a one-coin bet is much less than 1). When in
mode O, it is extremely “loose.”

There are several questions that might be asked. Does the sequence of payouts
obey the strong law of large numbers and the central limit theorem, as it would for
a traditional slot machine for which the sequence can be assumed independent and
identically distributed? If so, what are the mean and variance parameters? What is
the asymptotic probability of a nonzero payout? How frequently does the player
lose 10 times in a row, thereby receiving the so-called Futurity award? Are there
advantageous opportunities depending on the information available to the player
about the state of the machine?

Notice that the machine is driven by a Markov chain with state space � :=
{0,1, . . . ,9} × {0,1, . . . ,9} interpreted as follows. The machine is in state (i, j) if
the cam position is i and the pointer position is j . (If the cam position is 5 or 9, the
machine is in mode O; if the cam position is 0–4 or 6–8, the machine is in mode E.)
If we kept track of the mode (E or O) instead of the cam position (0–9), we would
lose the Markov property. There is also a pointer position 10, but from that position
the pointer instantly moves to position 0, so we can ignore pointer position 10. By
evaluating the stationary distribution of this Markov chain, we can infer the long-
term behavior of the slot machine. Specifically, we can establish a strong law of
large numbers and a central limit theorem for the sequence of payouts.

The Futurity came to our attention via articles of Geddes (1980) and Geddes and
Saul (1980) that appeared in Loose Change, a magazine for collectors of antique
slot machines (published 1977–1998 and archived at the UNLV Lied Library).
Geddes and Saul used Monte Carlo simulation to study the Futurity, claiming that
an analytical solution “falls somewhere between formidable and monumental on a
relative scale of mathematical difficulty.” As we will see, the claim is untrue.

Parrondo’s paradox can be regarded as the observation that there exist two fair
games that can be combined, by either random mixture or nonrandom alternation,
to create an unfair game. See the survey articles by Harmer and Abbott (2002),
Parrondo and Dinís (2004), Epstein (2007) and Abbott (2009). To motivate his
discussion of the paradox, Pyke (2003) raised the following question without pro-
viding an explicit answer.

You are about to play a two-armed slot machine. The casino that owns this two-armed
bandit advertises that both arms on their two-armed machines are “fair” in the sense
that any player who plays either of the arms is assured that the average cost per play
approaches zero as the number of plays increases. However, the casino does not con-
strain you to stay with one arm; you are allowed to use either arm on every play. [ . . . ]
The question of interest in this context would be whether it is possible for the casino to
still make money using only “fair” games.

Our aim here is to formulate a two-armed version of the Mills Futurity that
answers Pyke’s question affirmatively. The feature of the Futurity that permits
Parrondian behavior is the Futurity award (the return of the 10 lost coins after
10 consecutive losses); the periodicity of the payout distribution is not important.
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This “history-dependent” bonus feature makes our hypothetical two-armed slot
machine not unlike the history-dependent games introduced by Parrondo, Harmer
and Abbott (2000). In fact, it has some advantages over the original such games:
It is conceptually simpler and less contrived. On the other hand, it is nearly as
complicated analytically.

Actually, our answer to Pyke’s question must be qualified. It is an unqualified
yes for the random-mixture strategies. It is a qualified yes for the nonrandom-
alternation strategies because certain assumptions are needed and our conclusions
rely on an unproved conjecture. And the answer is simply no if the player’s strat-
egy is completely unrestricted because there exist strategies that actually give the
player an advantage. In particular, our two-armed version of the Futurity is not
ready for casino play.

We should clarify how it works. The player can pull either arm at each coup.
After 10 consecutive losses, regardless of the order of play of the two arms, the
10 lost coins are returned to the player. On the other hand, each arm has its own
cam mechanism, each with 10 positions, hence its own periodic pattern of payout
distributions (though the payout distribution need not vary). The cam position for
an arm advances only when that arm is pulled. Indeed, if this were not the case and
both cam positions advanced when either arm was pulled, astute players would
simply pull the arm with the higher mean payout, and the casino would be beaten
at its own game. Of course, there is nothing special about the number 10 in this
context, so we replace it throughout by the integer J ≥ 2.

The question of whether Parrondo’s paradox can appear in the casino setting
was raised by Harmer and Abbott (2002), Section 2.3.3. Our example shows that
the potential exists, even though it will not likely be realized. However, in our case
the winning game created from two fair games is winning for the casino, not for
the player. If it were the other way around, the casino would likely discontinue the
game or change the rules.

In a previous paper [Ethier and Lee (2009)], the authors formulated a general
version of Parrondo’s games. The results of that paper do not immediately apply
here because the present underlying irreducible Markov chain is periodic. Even if
that issue could be overcome, the Markov chain here is rather complicated relative
to the three- and four-state chains that were studied in the previous paper. It is
therefore preferable to use a different approach here that avoids having to evaluate
the fundamental matrix and spectral representation associated with the one-step
transition matrix of the Markov chain.

2. The Markov chain at equilibrium. We will analyze a generalized (one-
armed) version of the Futurity, dependent on several parameters. In Section 5, we
will substitute the actual numbers.

We assume that the cam controlling the payout distribution has I positions,
denoted by 0,1, . . . , I − 1. When in cam position i, the probability of a nonzero
payout is pi , the mean payout is μi and the variance of the payout is σ 2

i ; none of



A MARKOVIAN SLOT MACHINE 1101

these parameters takes the Futurity award into account. As for the Futurity award,
we assume that, if the player loses J times in a row, the J lost coins are returned.
A pointer that indicates the number of consecutive losses advances by 1 after each
loss, and resets at 0 after a win or after J consecutive losses.

If we were interested solely in the Futurity, we would take I = J and simplify
matters considerably. However, in studying Parrondo’s paradox for a two-armed
version of the Futurity, it will be necessary to allow I in the generalized one-
armed machine to be an integer multiple of J , say I = dJ for a positive integer d .
Of course, the case d = 1 is included and is in fact of primary interest.

The Markov chain {(Xn,Yn)}n≥0 that drives (or controls) the generalized (one-
armed) Futurity has state space � := {0,1, . . . , I − 1} × {0,1, . . . , J − 1}. It is in
state (i, j) at time n if the cam position is i and the pointer position is j following
the nth coup. The transition probabilities have a very simple form:

P((i, j), (k, l)) := P
(
(Xn+1, Yn+1) = (k, l) | (Xn,Yn) = (i, j)

)

=
⎧⎪⎨
⎪⎩

pi if (k, l) = (
i + 1 (mod I ),0

)
and j ≤ J − 2,

qi if (k, l) = (
i + 1 (mod I ), j + 1

)
and j ≤ J − 2,

1 if (k, l) = (
i + 1 (mod I ),0

)
and j = J − 1,

where 0 < pi < 1 and qi := 1 − pi for i = 0,1, . . . , I − 1. We notice that the
one-step transition matrix P is irreducible and periodic with period I .

THEOREM 1. The unique stationary distribution π for the Markov chain in �

with one-step transition matrix P is given recursively by

π(i,0)
(1)

= pi−1 + qi−1 · · ·qi−J pi−J−1 + · · · + qi−1 · · ·qi−(d−1)J pi−(d−1)J−1

I (1 − Q)

for i = 0,1, . . . , I − 1,

π(i,1) = qi−1π(i − 1,0), i = 0,1, . . . , I − 1,(2)

π(i,2) = qi−1π(i − 1,1), i = 0,1, . . . , I − 1,(3)

...

π(i, J − 1) = qi−1π(i − 1, J − 2), i = 0,1, . . . , I − 1,(4)

where Q := q0q1 · · ·qI−1, p−i := pI−i and q−i := qI−i for i = 1,2, . . . , I , and
π(−1, j) := π(I − 1, j) for j = 0,1, . . . , J − 1. Furthermore,

π(i,0) + π(i,1) + · · · + π(i, J − 1) = 1

I
, i = 0,1, . . . , I − 1.(5)
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REMARK. In the special case I = J (i.e., d = 1), (1) and (4) simplify to

π(i,0) = pi−1

J (1 − Q)
, π(i, J − 1) = piQ

qiJ (1 − Q)
.

PROOF OF THEOREM 1. The stationary distribution is the unique probability
(row) vector π satisfying

π = πP.(6)

Equations (2)–(4) are immediate from this. This reduces the problem to a system of
I linear equations in I variables, π(i,0), i = 0,1, . . . , I −1. The system is a rather
complicated one, so we take a different approach, noticing that these probabilities
can be obtained probabilistically.

If the Markov chain has the stationary distribution as its initial distribution, it is
a stationary process, and we can extend its time parameter to the set of all integers.
Intuitively, we can assume that the machine has been operating forever. What is
the probability that, at a particular time, the Markov chain is in state (i,0)? First
the cam position must be i, the probability of which is 1/I . Second, either the last
coup resulted in a win (conditional probability pi−1) or the last coup completed a
string of J or 2J or 3J or . . . consecutive losses, causing the pointer to reset at 0
and the Futurity award to be paid. Thus, the conditional probability that the pointer
position is 0, given that the cam position is i, is

pi−1 + qi−1 · · ·qi−J pi−J−1 + qi−1 · · ·qi−2J pi−2J−1 + · · ·
+ qi−1 · · ·qi−dJ pi−dJ−1 + qi−1 · · ·qi−(d+1)J pi−(d+1)J−1 + · · ·

= pi−1(1 + Q + Q2 + · · ·) + qi−1 · · ·qi−J pi−J−1(1 + Q + Q2 + · · ·) + · · ·
+ qi−1 · · ·qi−(d−1)J pi−(d−1)J−1(1 + Q + Q2 + · · ·)

= (
pi−1 + qi−1 · · ·qi−J pi−J−1 + · · ·
+ qi−1 · · ·qi−(d−1)J pi−(d−1)J−1

)
/(1 − Q),

where pi−mI := pi for all i ∈ {0,1, . . . , I − 1} and m ≥ 1, and similarly for com-
plementary probabilities qi−mI . This implies (1).

This argument is a bit heuristic [since we essentially assumed (5), one of the
conclusions of the theorem], but now we can make it rigorous. First, we verify
that π , given by (1)–(4), is a probability vector by proving (5). Using (2)–(4) and
then (1), the left-hand side of (5) is equal to

π(i,0) + qi−1π(i − 1,0) + qi−1qi−2π(i − 2,0) + · · ·
+ qi−1 · · ·qi−J+1π(i − J + 1,0)

= [
pi−1 + qi−1 · · ·qi−J pi−J−1 + · · ·
+ qi−1 · · ·qi−(d−1)J pi−(d−1)J−1
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+ qi−1
(
pi−2 + qi−2 · · ·qi−J−1pi−J−2 + · · ·
+ qi−2 · · ·qi−(d−1)J−1pi−(d−1)J−2

) + · · ·
+ qi−1 · · ·qi−J+1(pi−J + qi−J · · ·qi−2J+1pi−2J + · · ·

+ qi−J · · ·qi−dJ+1pi−dJ )
]
/[I (1 − Q)]

= pi−1 + qi−1pi−2 + qi−1qi−2pi−3 + · · · + qi−1 · · ·qi−dJ+1pi−dJ

I (1 − Q)

= 1 − qi−1 · · ·qi−dJ

I (1 − Q)
= 1

I
,

where the second equality amounts to a rearrangement of terms, and the third
equality is an algebraic identity.

Next, for (6) it will suffice to show, for i = 0,1, . . . , I − 1, that

π(i,0) = pi−1[π(i − 1,0) + · · · + π(i − 1, J − 2)] + π(i − 1, J − 1).

This can be rewritten, using (5) and (2)–(4), as

π(i,0) = pi−1[π(i − 1,0) + · · · + π(i − 1, J − 1)] + qi−1π(i − 1, J − 1)

= pi−1

I
+ qi−1 · · ·qi−J π(i − J,0).

Fix i and substitute (1). It is enough that

pi−1 + qi−1 · · ·qi−J pi−J−1 + · · · + qi−1 · · ·qi−(d−1)J pi−(d−1)J−1

= (1 − Q)pi−1 + qi−1 · · ·qi−J (pi−J−1 + qi−J−1 · · ·qi−2J pi−2J−1 + · · ·
+ qi−J−1 · · ·qi−dJ pi−dJ−1).

Canceling like terms, this reduces to pi−1 = (1 − Q)pi−1 + Qpi−1, which proves
that π , defined by (1)–(4), is the stationary distribution for P. �

At equilibrium, what is the probability p◦ that, at a particular coup, the player
wins the J -coin Futurity award by losing for the J th (or 2J th or 3J th or . . . )
consecutive time? This happens if and only if the Markov chain is in state (i, J −1)

for some i ∈ {0,1, . . . , I − 1} just before the specified coup and that coup results
in a loss. Using (1)–(4), the probability is

p◦ =
I−1∑
i=0

π(i, J − 1)qi = 1

I (1 − Q)

I−1∑
i=0

d∑
k=1

qi · · ·qi−kJ+1pi−kJ .(7)

Notice that the last of the d terms in the inner sum is Qpi .
Therefore the mean payout, at equilibrium, is

μ∗ := 1

I

I−1∑
i=0

μi + Jp◦.(8)
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Incidentally, in the special case I = J (i.e., d = 1), (7) reduces to

p◦ =
(

1

J

J−1∑
i=0

pi

)
Q

1 − Q
.(9)

3. Strong law of large numbers. Mean payout is the most important statistic
of a slot machine. It can be interpreted as the long-term proportion of coins played
that are paid out to the player. The justification of this interpretation is the strong
law of large numbers, which is well known to hold for traditional machines, whose
sequence of payouts is independent and identically distributed (i.i.d.). Does the
same conclusion hold for the Futurity, even though the independence assumption
and the identically distributed assumption fail?

We will show that the answer is affirmative.
Let R1,R2, . . . be the sequence of payouts of the slot machine excluding

the Futurity awards, given that the initial state (X0, Y0) = (i0, j0) ∈ � is spec-
ified. This sequence clearly satisfies the strong law of large numbers. Indeed,
R1,R2, . . . are independent, uniformly bounded, nonnegative random variables,
with {Rn+mI ,m ≥ 0} identically distributed as the payout distribution in cam po-
sition i (which has mean μi), where i0 + n − 1 ≡ i (mod I ). We conclude that, if
n is a multiple of I , then

n−1E[R1 + · · · + Rn] = 1

I

I−1∑
i=0

μi =: μ.

It follows from a version of the strong law of large numbers for independent, but
not identically distributed, random variables that

n−1(R1 + · · · + Rn) → μ a.s.

Now, how does this change when the Futurity awards are taken into account? Let
R∗

1 ,R∗
2 , . . . be the sequence of payouts of the slot machine including the Futurity

awards, given that the initial state (X0, Y0) = (i0, j0) ∈ � is specified. Notice that,
for each n ≥ 1, Yn is a nonrandom function of (X0, Y0) and 1{R1=0}, . . . ,1{Rn=0};
in particular, Yn−1 is independent of Rn. Clearly,

R∗
n = Rn + J · 1{Yn−1=J−1,Rn=0}

= Rn + J

I−1∑
i=0

1{(Xn−1,Yn−1)=(i,J−1),Rn=0}, n ≥ 1.

It follows that

R∗
1 + · · · + R∗

n

n
= R1 + · · · + Rn

n
+ J

I−1∑
i=0

1

n

n∑
l=1

1{(Xl−1,Yl−1)=(i,J−1),Rl=0}

→ μ + J

I−1∑
i=0

π(i, J − 1)qi = μ + Jp◦ = μ∗ a.s.,
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where μ∗ is as in (8); here the limit assertion requires additional justification. Since
the Markov chain is finite, irreducible and periodic,

1

n

n∑
l=1

1{(Xl−1,Yl−1)=(i,J−1)} → π(i, J − 1) a.s.

for i = 0,1, . . . , I − 1, hence

1

n

n∑
l=1

1{(Xl−1,Yl−1)=(i,J−1),Rl=0}

=
(

1

n

n∑
l=1

1{(Xl−1,Yl−1)=(i,J−1)}
)(∑n

l=1 1{(Xl−1,Yl−1)=(i,J−1),Rl=0}∑n
l=1 1{(Xl−1,Yl−1)=(i,J−1)}

)
(10)

→ π(i, J − 1)qi a.s.

for i = 0,1, . . . , J − 1. We are using the fact that the ratio of sums in (10) rep-
resents the proportion of visits to (i, J − 1) (through time n − 1) that result in a
Futurity award. At each visit to (i, J − 1) the probability of such an award is qi

and the results are determined independently; hence the ratio tends to qi a.s. by the
strong law of large numbers.

We have established the following version of the strong law of large numbers.

THEOREM 2. Let R∗
1 ,R∗

2 , . . . be the sequence of payouts of the generalized
Futurity slot machine starting in an arbitrary initial state (X0, Y0) = (i0, j0). Then

n−1(R∗
1 + · · · + R∗

n) → μ∗ a.s.

Observe that we can similarly obtain the asymptotic frequency of nonzero pay-
outs, the so-called “hit frequency” (usually reported as a percentage):

n−1(
1{R∗

1>0} + · · · + 1{R∗
n>0}

)
= 1{R1>0} + · · · + 1{Rn>0}

n
(11)

+ 1{Y0=J−1,R1=0} + · · · + 1{Yn−1=J−1,Rn=0}
n

→ 1

I

I−1∑
i=0

pi + p◦ =: p∗ a.s.

4. Central limit theorem. The second-most important statistic of a slot ma-
chine is the variance of the payout. (This is arguable. Some would say that the hit
frequency p∗ is more important.) The variance permits determination of the as-
ymptotic distribution of the cumulative number of coins paid out by the machine,
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via the central limit theorem. The central limit theorem is well known to hold for
traditional machines, whose sequence of payouts is i.i.d. Does the same conclusion
hold for the Futurity, even though the independence assumption and the identically
distributed assumption fail?

We will show in two steps that the answer is affirmative. First, we will apply the
central limit theorem for stationary, strongly mixing sequences, and this will allow
us to evaluate the variance parameter. Then, using a simple coupling argument, we
will treat the general case in which the initial state is fixed but arbitrary.

It will be convenient to index time by Z, the set of integers. So we let {Rn}n∈Z
be independent, uniformly bounded, nonnegative random variables, with {Rn :n−
1 ≡ i (mod I )} identically distributed as the payout distribution in cam position
i ∈ {0,1, . . . , I − 1}. We interpret {Rn}n∈Z as the sequence of payouts of the slot
machine excluding the Futurity awards. Thus,

P(Rn > 0) = pn−1, E[Rn] = μn−1, Var(Rn) = σ 2
n−1

for all n ∈ Z, provided we extend these parameters periodically; for example,
pi+mI := pi for all i ∈ {0,1, . . . , I − 1} and m ∈ Z.

Notice that we can define the Markov chain {(Xn,Yn)}n∈Z as a nonrandom func-
tion of {Rn}n∈Z. Indeed, Xn = i ∈ {0,1, . . . , I − 1} if n ≡ i (mod I ), so {Xn}n∈Z
is deterministic, and Yn = j ∈ {0,1, . . . , J − 1} if

Rn−kJ−j > 0, Rn−kJ−j+1 = · · · = Rn = 0 for some k ≥ 0.

To take the Futurity awards into account, we define {R∗
n}n∈Z by

R∗
n := Rn + J · 1{Yn−1=J−1,Rn=0}

= Rn + J

∞∑
k=1

1{Rn−kJ >0,Rn−kJ+1=···=Rn−1=Rn=0}(12)

= u(. . . ,Rn−2,Rn−1,Rn), n ∈ Z,

for some nonrandom function u.
The sequence {Rn}n∈Z is independent but not identically distributed, so we con-

sider the sequence of random vectors

Rk := (
RkI+1, . . . ,R(k+1)I

)
, k ∈ Z,

which is i.i.d., hence by (12),

R∗
k := (

R∗
kI+1, . . . ,R

∗
(k+1)I

)
, k ∈ Z,

is a stationary sequence. In particular, the sequence

Sk := RkI+1 + · · · + R(k+1)I , k ∈ Z,

is also i.i.d., and the sequence

S∗
k := R∗

kI+1 + · · · + R∗
(k+1)I , k ∈ Z,



A MARKOVIAN SLOT MACHINE 1107

is also stationary, despite the fact that the Markov chain {(Xn,Yn)}n∈Z is not sta-
tionary in this construction. Sk and S∗

k represent the total payout, excluding and in-
cluding the Futurity awards, respectively, over the segment of I consecutive coups
numbered kI + 1, . . . , (k + 1)I .

We claim that the stationary sequence {S∗
k }k∈Z is strongly mixing, that is, the

quantities

α(m) := sup
A∈σ(S∗

k :k≤−m),B∈σ(S∗
k :k≥0)

|P(A ∩ B) − P(A)P(B)|(13)

satisfy α(m) → 0 as m → ∞. For m ≥ 2, let Cm := {Rk > 0 for some k ∈ {−(m−
1)I + 1,−(m − 1)I + 2, . . . ,0}. Then, with A and B as in (13), A is independent
of B ∩ Cm, so

|P(A ∩ B) − P(A)P(B)|
≤ |P(A ∩ B ∩ Cm) − P(A)P(B ∩ Cm)|

+ |P(A ∩ B ∩ Cc
m) − P(A)P(B ∩ Cc

m)|
= |P(A ∩ B ∩ Cc

m) − P(A)P(B ∩ Cc
m)|

≤ P(Cc
m)

= P
(
R−(m−1)I+1 = R−(m−1)I+2 = · · · = R0 = 0

)
= Qm−1,

and this shows that α(m) converges to 0 geometrically fast.
Letting μ̄ := E[S∗

0 ] and noting that the random variables of interest are uni-
formly bounded, the central limit theorem for stationary, strongly mixing se-
quences [e.g., Bradley (2007), Theorem 10.3] tells us that

S∗
0 + · · · + S∗

m−1 − mμ̄√
mσ̄ 2

d→ N(0,1),

provided

σ̄ 2 := Var(S∗
0 ) + 2

∞∑
m=1

Cov(S∗
0 , S∗

m) > 0.

We now evaluate σ̄ 2.
First, we will frequently encounter

P(Yi−1 = J − 1,Ri = 0)

=
∞∑

k=1

P(Ri−kJ > 0,Ri−kJ+1 = · · · = Ri = 0)

= 1

1 − Q

d∑
k=1

qi−1 · · ·qi−kJ pi−kJ−1

=: Pi−1
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for i = 1,2, . . . , I . For example,

μ̄ := E[S∗
0 ] = E[R∗

1 + · · · + R∗
I ]

=
I∑

i=1

E[R∗
i ] =

I∑
i=1

E
[
Ri + J · 1{Yi−1=J−1,Ri=0}

]

=
I∑

i=1

(μi−1 + JPi−1) =
I−1∑
i=0

μi + J

I−1∑
i=0

Pi.

Next, for i = 1,2, . . . , I ,

Var(R∗
i ) = Var

(
Ri + J · 1{Yi−1=J−1,Ri=0}

)
= Var(Ri) + 2J Cov

(
Ri,1{Yi−1=J−1,Ri=0}

)
+ J 2 Var

(
1{Yi−1=J−1,Ri=0}

)
= Var(Ri) − 2JE[Ri]P(Yi−1 = J − 1,Ri = 0)

+ J 2P(Yi−1 = J − 1,Ri = 0)
(
1 − P(Yi−1 = J − 1,Ri = 0)

)
= σ 2

i−1 − 2Jμi−1Pi−1 + J 2Pi−1(1 − Pi−1),

and, for 1 ≤ i < j ≤ I ,

Cov(R∗
i ,R∗

j ) = Cov
(
Ri + J · 1{Yi−1=J−1,Ri=0},Rj + J · 1{Yj−1=J−1,Rj=0}

)
= J Cov

(
Ri,1{Yj−1=J−1,Rj=0}

)
+ J 2 Cov

(
1{Yi−1=J−1,Ri=0},1{Yj−1=J−1,Rj=0}

)
= J

{
E

[
Ri1{Yj−1=J−1,Rj=0}

] − E[Ri]P(Yj−1 = J − 1,Rj = 0)
}

+ J 2[P(Yi−1 = J − 1,Ri = 0, Yj−1 = J − 1,Rj = 0)

− P(Yi−1 = J − 1,Ri = 0)P(Yj−1 = J − 1,Rj = 0)]

= Jμi−1

( ∑
1≤k<(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1

+ �ijqj−1 · · ·qi − Pj−1

)

+ J 2
( ∑

1≤k<(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1Pi−1

+ �ij

∑
k>(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1 − Pi−1Pj−1

)

=: Aij ,
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where �ij := 1 if j − i ≡ 0 (mod J ) and := 0 otherwise, and the infinite series in
the definition of Aij can be expressed as the finite sum∑

(j−i)/J<k≤d

qj−1 · · ·qj−kJ pj−kJ−1 + QPj−1

when j − i ≡ 0 (mod J ). We conclude that

Var(S∗
0 ) = Var(R∗

1 + · · · + R∗
I ) =

I∑
i=1

Var(R∗
i ) + 2

∑∑
1≤i<j≤I

Cov(R∗
i ,R∗

j )

(14)

=
I−1∑
i=0

[σ 2
i − 2JμiPi + J 2Pi(1 − Pi)] + 2

∑∑
1≤i<j≤I

Aij .

Notice that this formula depends solely on the basic parameters (I , J , pi , μi

and σ 2
i ).

Next, for i, j = 1,2, . . . , I and m ≥ 1,

Cov(R∗
i ,R∗

mI+j )

= Cov
(
Ri + J · 1{Yi−1=J−1,Ri=0},RmI+j + J · 1{YmI+j−1=J−1,RmI+j=0}

)
= J Cov

(
Ri,1{YmI+j−1=J−1,RmI+j=0}

)
+ J 2 Cov

(
1{Yi−1=J−1,Ri=0},1{YmI+j−1=J−1,RmI+j=0}

)
.

Now

Cov
(
Ri,1{YmI+j−1=J−1,RmI+j=0}

)
= ∑

1≤k≤md+(j−i)/J

E
[
Ri1{RmI−kJ+j>0,RmI−kJ+j+1=···=RmI+j=0}

]

− μi−1Pj−1

= ∑
1≤k<md+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1μi−1

+ �ijqmI+j−1 · · ·qiμi−1 − μi−1Pj−1

= μi−1

(
d∑

k=1

qj−1 · · ·qj−kJ pj−kJ−1(1 + Q + · · · + Qm−2)

+ Qm−1
∑

1≤k<d+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1

+ �ijqj−1 · · ·q0Q
m−1qI−1 · · ·qi − Pj−1

)
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= μi−1

(
−Pj−1 + ∑

1≤k<d+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1

+ �ijqI−1 · · ·qiqj−1 · · ·q0

)
Qm−1

=: BijQ
m−1,

where qI−1 · · ·qi := 1 if i = I , and

Cov
(
1{Yi−1=J−1,Ri=0},1{YmI+j−1=J−1,RmI+j=0}

)
= P(Yi−1 = J − 1,Ri = 0, YmI+j−1 = J − 1,RmI+j = 0) − Pi−1Pj−1

= ∑
1≤k<md+(j−i)/J

Pi−1P(RmI−kJ+j > 0,RmI−kJ+j+1 = · · · = RmI+j = 0)

+ �ij

∑
k>md+(j−i)/J

P(RmI−kJ+j > 0,RmI−kJ+j+1 = · · · = RmI+j = 0)

− Pi−1Pj−1

= ∑
1≤k<md+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1Pi−1

+ �ij

∑
k>md+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1 − Pi−1Pj−1

=
d∑

k=1

qj−1 · · ·qj−kJ pj−kJ−1(1 + Q + · · · + Qm−2)Pi−1

+ Qm−1
∑

1≤k<d+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1Pi−1

+ �ijQ
m−1

∑
k>d+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1 − Pi−1Pj−1

=
(
−Pi−1Pj−1 + ∑

1≤k<d+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1Pi−1

+ �ij

∑
k>d+(j−i)/J

qj−1 · · ·qj−kJ pj−kJ−1

)
Qm−1

=: CijQ
m−1,

and the infinite series in the definition of Cij can be expressed as

Q
∑

(j−i)/J<k≤d

qj−1 · · ·qj−kJ pj−kJ−1 + Q2Pj−1
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when j − i ≡ 0 (mod J ) and j ≥ i, and as∑
d+(j−i)/J<k≤d

qj−1 · · ·qj−kJ pj−kJ−1 + QPj−1

when j − i ≡ 0 (mod J ) and j < i. We conclude that

Cov(S∗
0 , S∗

m) = Cov
(
R∗

1 + · · · + R∗
I ,R∗

mI+1 + · · · + R∗
(m+1)I

)

=
I∑

i=1

I∑
j=1

Cov(R∗
i ,R∗

mI+j )

=
I∑

i=1

I∑
j=1

(JBijQ
m−1 + J 2CijQ

m−1),

and hence that
∞∑

m=1

Cov(S∗
0 , S∗

m) = J

1 − Q

I∑
i=1

I∑
j=1

(Bij + JCij ).(15)

Again, this formula depends solely on the basic parameters. Summing (14) and
twice (15), we obtain σ̄ 2.

Finally, we observe that the central limit theorem for the stationary sequence
{S∗

k }k∈Z yields a central limit theorem for {R∗
n}n∈Z as well. Indeed, with

μ∗ = μ̄/I and (σ ∗)2 := σ̄ 2/I,

we find that

R∗
1 + · · · + R∗

n − nμ∗√
n(σ ∗)2

− S∗
0 + · · · + S∗�n/I
−1 − �n/I
μ̄√

(n/I)σ̄ 2
(16)

tends to 0 a.s. as n → ∞ because the difference between the numerators, namely

R∗
I�n/I
+1 + · · · + R∗

n − (n − I�n/I
)μ∗,
is uniformly bounded in n and the denominators are equal. Thus,

R∗
1 + · · · + R∗

n − nμ∗√
n(σ ∗)2

d→ N(0,1).

We can go one step further and derive a central limit theorem for {R̂∗
n}n≥0 with

(X̂0, Ŷ0) = (i0, j0) specified, where the hats on R̂∗
n , X̂0 and Ŷ0 distinguish them

from the R∗
n , X0 and Y0 already defined. The idea of the proof is the same as

in (16). We define R̂n := Rn+i0 for n ≥ 1, and we define (X̂n, Ŷn) for n ≥ 1 in
terms of (X̂0, Ŷ0) = (i0, j0) and 1{R̂1=0}, . . . ,1{R̂n=0} in the usual way. Then

R̂∗
1 + · · · + R̂∗

n − nμ∗√
n(σ ∗)2

− R∗
1 + · · · + R∗

n − nμ∗√
n(σ ∗)2
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tends to 0 a.s. as n → ∞ because R̂∗
n = R∗

n+i0
unless R̂∗

1 = · · · = R̂∗
n−1 = 0. In

words, the sequences R̂∗
1 , . . . , R̂∗

n and R∗
1 , . . . ,R∗

n differ only by a shift (of i0

terms), once the Ŷ process and the shifted Y process couple, which occurs after
the first win. We have therefore established the following central limit theorem.

THEOREM 3. Let R̂∗
1 , R̂∗

2 , . . . be the sequence of payouts of the generalized
Futurity slot machine starting in an arbitrary initial state. Then

R̂∗
1 + · · · + R̂∗

n − nμ∗√
n(σ ∗)2

d→ N(0,1).

5. Numerical results for the Futurity. The Futurity was in production from
1936 to 1941. (After December 7, 1941, Mills Novelty stopped producing slot
machines and became a defense contractor for the duration of the war. When it
resumed slot production in 1945, it did so with new designs.) In particular, there
were minor variations in the payouts and reel strip labels used with the machine,
but the fundamental properties, the Futurity award and the periodic mode changes,
are common to every Mills Futurity. The precise version we consider here is the
one described by Geddes (1980).

To simplify matters, we code the six symbols as lemon = 0, cherry = 1,
orange = 2, plum = 3, bell = 4 and bar = 5. The pay table can then be described
by the function p : {0,1,2,3,4,5}3 �→ Z+ given by p(5,5,5) := 150, p(4,4,4) =
p(4,4,5) := 18, p(3,3,3) = p(3,3,5) := 14, p(2,2,2) = p(2,2,5) := 10,
p(1,1,0) = p(1,1,4) := 5 and p(1,1,2) = p(1,1,3) = p(1,1,5) := 3; other-
wise p := 0. The three reel strips can be described as follows, in which the symbols
in odd-numbered positions are italicized for convenience:

reel 1: 1,5,1,2,1,5,1,5,1,3,1,2,5,1,4,3,1,5,1,2,

reel 2: 1,4,1,3,1,4,1,2,1,4,1,4,1,2,1,2,4,1,5,4,

reel 3: 3,4,2,0,3,4,2,0,4,0,2,3,2,4,2,4,5,2,3,5.

Table 1 summarizes the relevant information from these reel strips. Of course, the
reels operate independently, and the 10 possible positions at which each reel can
stop (given the mode) are assumed equally likely.

With fE(i, j) denoting the frequency of symbol i on reel j in mode E (see
Table 1), we find that the mean payout in mode E is

μE = 1

(10)3

5∑
i1=0

5∑
i2=0

5∑
i3=0

fE(i1,1)fE(i2,2)fE(i3,3)p(i1, i2, i3) = 0.28.

Similarly, the mean payout in mode O is μO = 2.234. Certainly, these numbers
justify our descriptions of mode E as “tight” and mode O as “loose,” as do the facts
that the probability of a nonzero payout in mode E, other than a Futurity award,
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TABLE 1
Reel strip inventories for the Futurity in both modes

Mode E Mode O

Symbol Reel 1 Reel 2 Reel 3 Reel 1 Reel 2 Reel 3

Lemon (= 0) 0 0 3 0 0 0
Cherry (= 1) 1 1 0 8 8 0
Orange (= 2) 3 3 1 0 0 5
Plum (= 3) 2 1 1 0 0 3
Bell (= 4) 0 5 4 1 1 1
Bar (= 5) 4 0 1 1 1 1

Total 10 10 10 10 10 10

is pE = 0.032, and the corresponding probability in mode O is pO = 0.643. See
Table 2.

With the statistics of Table 2, we can define

(p0,p1, . . . , p9) := (pE,pE,pE,pE,pE,pO,pE,pE,pE,pO),

(μ0,μ1, . . . ,μ9) := (μE,μE,μE,μE,μE,μO,μE,μE,μE,μO),

(σ 2
0 , σ 2

1 , . . . , σ 2
9 ) := (σ 2

E, σ 2
E, σ 2

E, σ 2
E, σ 2

E, σ 2
O, σ 2

E, σ 2
E, σ 2

E, σ 2
O),

and qi := 1 − pi for i = 0,1, . . . ,9. With I = J = 10 (in particular, d = 1), we
can apply Theorem 1 to obtain the stationary distribution for the driving Markov
chain. Numerical values are shown in Table 3. Geddes and Saul (1980) obtained
an approximate stationary distribution from their simulation, essentially accurate

TABLE 2
Payout frequencies and statistics for the Futurity in both modes, excluding Futurity awards.

Results are exact (no rounding)

Payout Mode E Mode O

0 968 357
3 3 576
5 7 64

10 18 0
14 4 0
18 0 2

150 0 1

Total 1000 1000

Mean payout μE = 0.28 μO = 2.234
Variance of payout σ 2

E = 2.7076 σ 2
O = 24.941244

Probability of nonzero payout pE = 0.032 pO = 0.643
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TABLE 3
Stationary distribution of the Markov chain, rounded to six decimal places. Rows indicate cam position, and columns indicate pointer position.

Entries greater than 1/100 are shaded

0 1 2 3 4 5 6 7 8 9 Sum

0 0.071306 0.001267 0.001226 0.001187 0.023090 0.000410 0.000397 0.000384 0.000372 0.000360 1/10
1 0.003549 0.069024 0.001226 0.001187 0.001149 0.022351 0.000397 0.000384 0.000372 0.000360 1/10
2 0.003549 0.003435 0.066815 0.001187 0.001149 0.001112 0.021636 0.000384 0.000372 0.000360 1/10
3 0.003549 0.003435 0.003325 0.064677 0.001149 0.001112 0.001077 0.020943 0.000372 0.000360 1/10
4 0.003549 0.003435 0.003325 0.003219 0.062608 0.001112 0.001077 0.001042 0.020273 0.000360 1/10
5 0.003549 0.003435 0.003325 0.003219 0.003116 0.060604 0.001077 0.001042 0.001009 0.019624 1/10
6 0.071306 0.001267 0.001226 0.001187 0.001149 0.001112 0.021636 0.000384 0.000372 0.000360 1/10
7 0.003549 0.069024 0.001226 0.001187 0.001149 0.001112 0.001077 0.020943 0.000372 0.000360 1/10
8 0.003549 0.003435 0.066815 0.001187 0.001149 0.001112 0.001077 0.001042 0.020273 0.000360 1/10
9 0.003549 0.003435 0.003325 0.064677 0.001149 0.001112 0.001077 0.001042 0.001009 0.019624 1/10

Sum 0.171001 0.161193 0.151837 0.142915 0.096857 0.091152 0.050526 0.047593 0.044797 0.042130
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to three decimal places. One drawback of a simulation in this context is that it does
not clearly show that, when the stationary distribution is expressed as a matrix,
several entries in each column are equal.

We calculate from (9), (8) and (11) that

p◦ ≈ 0.0168011, μ∗ ≈ 0.838811, p∗ ≈ 0.171001.

Based on their simulation of 1,000,000 coups, Geddes and Saul (1980) obtained
the estimates 0.016638, 0.838995 and 0.171451, respectively. They did not at-
tempt to estimate the variance parameter. Using (14) and (15), we find that

Var(S∗
0 ) ≈ 69.860263,

∞∑
m=1

Cov(S∗
0 , S∗

m) ≈ −0.951088,

hence

(σ ∗)2 ≈ 6.795809.

All displayed numbers are exact except for rounding.
Geddes and Saul (1980) also proposed a very interesting betting strategy: Sim-

ply play the machine until, and only until, a payout occurs. Let E(i, j) be the
player’s expected profit when starting from cam position i and pointer position j .
Then

E(i,9) = −1 + μi + 10qi, i = 0,1, . . . ,9,

where of course the 10 is the Futurity award. Furthermore,

E(i, j) = −1 + μi + qiE
(
i + 1 (mod 10), j + 1

)
, i = 0,1, . . . ,9,

for j = 8,7, . . . ,0 (in that order). These expectations are evaluated numerically in
Table 4. This result is due to Geddes and Saul.

We find that, if the pointer position is 3–9, a positive expectation is assured
(regardless of the cam position). In fact, 90 of the 100 expectations are positive.
Perhaps more surprising is the fact that∑

(i,j)∈�

π(i, j)E(i, j) ≈ 0.960501.

In other words, the “stop after the next payout” betting system has positive ex-
pectation when played at equilibrium. This observation, however, is less useful
than it may first appear to be. For if the player has reached approximate equilib-
rium through extensive play, then the positive expected profit the system promises
will not make up for the negative expected profit already incurred. And the player
should not expect to find a machine at approximate equilibrium after extensive
play by others. Indeed, a player quits not at a fixed time, such as after the 10,000th
coup, but rather at a random stopping time, such as after the next win, or after
running out of coins. Moreover, as we have seen, if the pointer position is 3–9,
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TABLE 4
Expected player profit when playing until a payout occurs, as a function of initial cam position (row) and pointer position (column), rounded to six

decimal places; columns 8 and 9 are exact

0 1 2 3 4 5 6 7 8 9

0 −1.640567 −0.210554 0.085131 0.390591 0.706148 5.122320 6.035454 6.978775 7.953280 8.960
1 −1.056559 −0.950999 0.526288 0.831747 1.147305 1.473294 6.035454 6.978775 7.953280 8.960
2 −0.453244 −0.347685 −0.238636 1.287487 1.603045 1.929034 2.265799 6.978775 7.953280 8.960
3 0.170015 0.275574 0.384623 0.497277 2.073850 2.399839 2.736605 3.084503 7.953280 8.960
4 0.813877 0.919437 1.028486 1.141140 1.257518 2.886209 3.222975 3.570873 3.930272 8.960
5 1.479024 1.584584 1.693633 1.806287 1.922665 2.042890 3.725423 4.073321 4.432720 4.804
6 −0.743671 0.686343 0.982028 1.287487 1.603045 1.929034 2.265799 6.978775 7.953280 8.960
7 −0.130013 −0.024453 1.452834 1.758293 2.073850 2.399839 2.736605 3.084503 7.953280 8.960
8 0.503931 0.609491 0.718540 2.244663 2.560220 2.886209 3.222975 3.570873 3.930272 8.960
9 1.158832 1.264392 1.373441 1.486095 3.062668 3.388657 3.725423 4.073321 4.432720 4.804
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a player has positive equity and may not want to relinquish it by walking away.
It seems likely that most players would notice this at least for pointer positions 7,
8 and 9, for in those cases a loss is impossible.

Geddes and Saul (1980) remarked that “the machine tends to leave the player
at an unprofitable starting point most of the time after paying off.” One way to
confirm this is to evaluate the asymptotic distribution of the Markov chain’s state
after a payout. Arguing as in (11), we get

lim
n→∞

∑n
l=1 1{R∗

l >0,(Xl,Yl)=(i,0)}∑n
l=1 1{R∗

l >0}

= lim
n→∞

(1/n)
∑n

l=1(1{Xl−1=i−1,Rl>0} + 1{(Xl−1,Yl−1)=(i−1,9),Rl=0})
(1/n)

∑n
l=1(1{Rl>0} + 1{Yl−1=9,Rl=0})

= (0.1)pi−1 + π(i − 1,9)qi−1

(0.8)pE + (0.2)pO + p◦ =: ρ(i,0) a.s.,

where p−1 := p9, etc. We find that ρ(0,0) = ρ(6,0) ≈ 0.416991 and ρ(i,0) ≈
0.020752 otherwise, and of course states (0,0) and (6,0) have negative entries in
Table 4. Geddes and Saul obtained approximations from their simulation. Observe
that states (0,0) and (6,0) account for about 0.833982 of the probability, which
can be interpreted as the long-term proportion of payouts that occur when the
machine is in mode O. This is the same as the long-term proportion of Futurity
awards that occur when the machine is in mode O.

Finally, we observe that the previous mode (E or O) is clear at a glance. This
depends on the fact that the machine’s payout window displays not only the three
symbols on the payline (from the last coup) but also the symbols on the line above
and the line below the payline. If the previous mode was O, then exactly four
coups are needed to determine the cam position with certainty; if the previous
mode was E, then at least four and at most seven coups are needed. The player
who is unwilling to play without a positive expectation should play with pointer
position 3 or greater, but also pointer position 2 if the previous mode was O.

6. A two-armed slot machine. Motivated by Parrondo’s paradox, here we
consider a two-armed generalization of the Futurity slot machine, and we label the
arms A and B . Excluding the Futurity award, the sequence of payouts from each
arm is assumed nonnegative i.i.d., with arm A (resp., B) having probability pA

(resp., pB ) of a nonzero payout and mean payout μA (resp., μB ) in all cam po-
sitions. The two arms are linked only by the Futurity award: After J consecutive
losses, regardless of the order of play of the two arms, the J lost coins are returned
to the player. We assume that J ≥ 2, and we let qA := 1 − pA and qB := 1 − pB .

The asymptotic mean payout per coup, including the Futurity award, from play-
ing arm A only (resp., arm B only) is

μ∗
A = μA + Jp◦

A where p◦
A := pAqJ

A

1 − qJ
A
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[resp., μ∗
B = μB + Jp◦

B , where p◦
B := pBqJ

B/(1 − qJ
B)]. If we play arm A with

probability γ (0 < γ < 1) and arm B otherwise, a strategy we denote by C :=
γA + (1 − γ )B , then this random mixture has probability pC := γpA + (1 −
γ )pB of a nonzero payout and mean payout μC := γμA + (1 − γ )μB in all cam
positions, excluding the Futurity award. Let qC := 1 − pC . Then the asymptotic
mean payout per coup, including the Futurity award, from playing the random-
mixture strategy with parameter γ is

μ∗
C := μC + Jp◦

C where p◦
C := pCqJ

C

1 − qJ
C

.

We will say that the Parrondo effect is present for the random-mixture strategy
with parameter γ if

μ∗
C < γμ∗

A + (1 − γ )μ∗
B.

In words, the asymptotic mean payout per coup from playing the random-mixture
strategy on the two-armed machine is less than the asymptotic mean payout per
coup from playing the same random-mixture strategy on two one-armed machines,
one of them equivalent to arm A and the other equivalent to arm B , each with its
own Futurity award.

THEOREM 4. If pA �= pB , J ≥ 2 and 0 < γ < 1, then the Parrondo effect is
present for the random-mixture strategy with parameter γ .

REMARK. As Abbott (2009) remarked, “In its most general form, Parrondo’s
paradox can occur where there is a nonlinear interaction of random behavior with
an asymmetry.” Here J ≥ 2 ensures the nonlinearity, while pA �= pB ensures the
asymmetry.

In the scenario of Pyke (2003) described in Section 1, μ∗
A = μ∗

B = 1 (both arms
are fair), hence μ∗

C < 1 (the random mixture-strategy is losing for the player, hence
winning for the casino).

PROOF OF THEOREM 4. The function f (x) := (1 − x)xJ /(1 − xJ ) is strictly
convex on (0,1) for each J ≥ 2 because

f ′′(x) = JxJ−2[J (1 − x)(1 + xJ ) − (1 + x)(1 − xJ )]
(1 − xJ )3

= J (1 − x)xJ−2

(1 − xJ )3

J−1∑
j=1

(1 − xj )(1 − xJ−j )

> 0, 0 < x < 1.
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Therefore,

μ∗
C − [γμ∗

A + (1 − γ )μ∗
B]

= J {p◦
C − [γp◦

A + (1 − γ )p◦
B]}

= J
{
f

(
γ qA + (1 − γ )qB

) − [γf (qA) + (1 − γ )f (qB)]}
< 0

since qA �= qB and 0 < γ < 1. �

In fact, the function f of the proof satisfies

1 − x + Jf (x) = (1 − x)
1 + (J − 1)xJ

1 − xJ
= 1 + (J − 1)xJ

1 + x + · · · + xJ−1 < 1

for 0 < x < 1. In particular, pA + Jp◦
A < 1 and pB + Jp◦

B < 1. If we assume non-
negative integer payouts, then μA ≥ pA and μB ≥ pB . It follows that μA and μB

can be chosen in such a way that μ∗
A = μ∗

B = 1. Actually, fractional payouts per
unit bet are commonplace on modern slot machines. (For example, a machine with
five paylines might return three coins from a five-coin bet.) In such cases, a loss,
for the purpose of the Futurity award, means a zero payout, not just a payout that
is less than the amount bet.

Now we turn to strategies involving nonrandom patterns of the two arms. Let D

denote a (finite) nonrandom pattern of As and Bs, with at least one A and at least
one B , that is repeated ad infinitum. For example, D could be as simple as AB

or ABB , or it could be more complicated, such as ABBAB . Let r ≥ 1 and s ≥ 1
be the numbers of As and Bs, respectively, in pattern D. Then the asymptotic mean
payout per coup, including the Futurity award, from playing pattern D repeatedly
is given by (8) with I equal to the least common multiple of r + s and J . More
precisely,

μ∗
D := rμA + sμB

r + s
+ Jp◦

D,

where p◦
D can be inferred from (7). The simplest case is that in which r + s divides

J because then (9) applies and we have

p◦
D := rpA + spB

r + s

(
(qr

Aqs
B)J/(r+s)

1 − (qr
Aqs

B)J/(r+s)

)
.(17)

In this case, p◦
D (and hence μ∗

D) depends on D only through r and s. For example,
p◦

AABBB = p◦
ABBAB as long as J is a multiple of 5.

We will say that the Parrondo effect is present for the nonrandom-pattern strat-
egy with pattern D (with r As and s Bs) if

μ∗
D <

rμ∗
A + sμ∗

B

r + s
.

The interpretation is analogous to that of the random-mixture strategy.
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THEOREM 5. If pA �= pB , J ≥ 2, and r, s ≥ 1, and if r + s divides J , then the
Parrondo effect is present for the nonrandom-pattern strategy with pattern D.

REMARK. While J is a characteristic of the machine, the pattern D (and
hence r and s) is chosen by the player, so the assumption that r + s divides J

is too restrictive. We believe that this assumption can be weakened considerably
(see below), but it cannot simply be omitted.

PROOF OF THEOREM 5. The presence of the Parrondo effect is equivalent to

p◦
D <

rp◦
A + sp◦

B

r + s
.

By the arithmetic mean-geometric mean inequality and qA �= qB ,

(qr
Aqs

B)1/(r+s) <
rqA + sqB

r + s
.

Since the function g(x) := xJ /(1 − xJ ) is increasing on (0,1), we have

p◦
D = rpA + spB

r + s

(
(qr

Aqs
B)J/(r+s)

1 − (qr
Aqs

B)J/(r+s)

)

<
rpA + spB

r + s

( [(rqA + sqB)/(r + s)]J
1 − [(rqA + sqB)/(r + s)]J

)

= p◦
C <

rp◦
A + sp◦

B

r + s
,

where p◦
C is as in the proof of Theorem 4 with γ := r/(r + s), and the second

inequality uses Theorem 4. �

Various attempts have been made at explaining why Parrondo’s paradox holds
in the nonrandom-pattern case; see, for example, Ethier and Lee (2009). When
the assumptions of Theorem 5 are met, we have an especially simple explanation:
the AM-GM inequality and convexity.

Let us generalize (17) to arbitrary D, r , s and J . Although we can minimize
the number of terms by taking I to be the least common multiple of r + s and J ,
we can equally well take I to be any multiple of r + s and J , and the simplest
choice is I := (r + s)J (i.e., d := r + s). Define each of p1,p2, . . . , pr+s to be
pA or pB in accordance with the corresponding term in the pattern D. Extend this
definition by pi+r+s = pi for all i ∈ {1,2, . . . , r + s}, and define qi := 1 − pi for
i = 1,2, . . . ,2(r + s). With this notation, we can write

p◦
D = 1

r + s

r+s∑
k=1

(
r+s∑
j=1

pj

j+kJ−(r+s)�kJ/(r+s)
∏
i=j+1

qi

)
(qr

Aqs
B)�kJ/(r+s)


1 − (qr
Aqs

B)J
,
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where empty products are 1. For example, if r + s divides J , then all products are
empty and this reduces algebraically to (17). For a less trivial example, consider
D = ABB . Then, if J = 3K + 1 for a positive integer K ,

p◦
ABB = (1/3)[(pAqB + pBqB + pBqA)(qAq2

B)K

+ (pAq2
B + pBqBqA + pBqAqB)(qAq2

B)2K

+ (pA + 2pB)(qAq2
B)J ]/[1 − (qAq2

B)J ],
and, if J = 3K + 2 for a nonnegative integer K ,

p◦
ABB = (1/3)[(pAq2

B + pBqBqA + pBqAqB)(qAq2
B)K

+ (pAqB + pBqB + pBqA)(qAq2
B)2K+1

+ (pA + 2pB)(qAq2
B)J ]/[1 − (qAq2

B)J ].
Despite the impression that may be given by the proof of Theorem 5, it is not

true in general that p◦
D < p◦

C when γ := r/(r + s), and it is easy to find coun-
terexamples. It is also not true in general that p◦

D depends on D only through r

and s. For example, with J = 6, p◦
AABB > p◦

ABAB = p◦
AB if pA �= pB . However,

extensive numerical computation suggests the following.

CONJECTURE. Under the assumptions of Theorem 5, the conclusion holds for
patterns of the form D := ArBs if we replace the assumption that r + s divides J

by any one of the following four assumptions:

(a) J = 2.
(b) min(r, s) = 1.
(c) r + s ≤ J .
(d) pA + pB > 1/3.

We can confirm the sufficiency of condition (b) at least in the simplest case,
r = s = 1. The case of even J is covered by Theorem 5, so we suppose that J is
odd, say J = 2K + 1 for some positive integer K . Then, by algebra,

p◦
AB − 1

2
(p◦

A + p◦
B) = (pAqB + pBqA)(qAqB)K + (pA + pB)(qAqB)J

2[1 − (qAqB)J ]

− 1

2

(
pAqJ

A

1 − qJ
A

+ pBqJ
B

1 − qJ
B

)

= − h(qA, qB)

2(1 − qJ
A)(1 − qJ

B)[1 − (qAqB)J ]
< 0,
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where

h(x, y) := [xK+1 − yK+1 + (xy)K+1(xK − yK)]
· [xK(1 − x)(1 − y2K+1) − yK(1 − y)(1 − x2K+1)]

= (1 − x)(1 − y)[xK+1 − yK+1 + (xy)K+1(xK − yK)]

·
K−1∑
k=0

(xK−k − yK−k)[(xy)k − (xy)K ]

> 0, x, y ∈ (0,1), x �= y.

We conclude this section by asking, at what rate can the casino make money
with our two-armed machine, assuming that both arms are fair in the sense that
μ∗

A = μ∗
B = 1? For simplicity, we suppose the player adopts the random-mixture

strategy with γ = 1
2 . Then the casino’s win rate is

J

[
1

2
(p◦

A + p◦
B) − p◦

C

]
(18)

= J

[
1

2

(
pAqJ

A

1 − qJ
A

+ pBqJ
B

1 − qJ
B

)
− [(pA + pB)/2][(qA + qB)/2]J

1 − [(qA + qB)/2]J
]
,

which for fixed J ≥ 2 has supremum 1
2 [1−J2−J /(1−2−J )], achieved as pA → 0

and pB → 1 (and vice versa). But this case is unrealistic.
Kilby, Fox and Lucas (2005), page 137, reported a simulation study of the effect

of hit frequency on player longevity. They considered 10 slot machines with hit fre-
quencies ranging from 6.7% to 29.6% and mean payouts being roughly equal. So
we take pA = 3/10 and pB = 1/15 as being the extremes among hit frequencies
considered typical in the industry (for single-payline machines). Notice that condi-
tion (d) of the conjecture is met. We find that (18) is increasing in J for J ≤ 20 and
decreasing in J for J ≥ 20. At J = 20 its value is about 0.161553 (i.e., 16.2%),
while at J = 10 its value is about 0.100383. Similar calculations can be done for
other strategies. It would seem from the numerical evidence that there is a reason-
able profit potential (for the casino) in a two-armed version of the Futurity with
both arms fair and J = 10. However, it must be recognized that there are strategies
other than those ordinarily associated with Parrondo’s paradox, so our tentative
conclusion about the viability of this machine on the casino floor is premature.

Consider a strategy for which the choice of arm depends on the Futurity pointer.
Specifically, let K and L be positive integers such that K + L = J , and assume
that, if the Futurity pointer shows j consecutive losses and 0 ≤ j ≤ K − 1, then
arm A is pulled, otherwise arm B is pulled. The driving Markov chain has state
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space �1 := {0,1, . . . , J − 1} and one-step transition matrix P1 defined by

P1(i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pA if 0 ≤ i ≤ K − 1 and j = 0,
qA if 0 ≤ i ≤ K − 1 and j = i + 1,
pB if K ≤ i ≤ J − 2 and j = 0,
qB if K ≤ i ≤ J − 2 and j = i + 1,
1 if i = J − 1 and j = 0.

This chain is irreducible and aperiodic, and its unique stationary distribution π1 is
given by

π1(j) =
{

c−1q
j
A if 0 ≤ j ≤ K − 1,

c−1qK
A q

j−K
B if K ≤ j ≤ J − 1,

where

c := 1 + qA + · · · + qK−1
A + qK

A (1 + qB + · · · + qL−1
B ).

If the mean payouts of arms A and B are

1 = μ∗
A = μA + Jp◦

A and 1 = μ∗
B = μB + Jp◦

B,

then the mean payout at equilibrium under our strategy is

μ∗ =
(

K−1∑
j=0

π1(j)

)
μA +

(
J−1∑
j=K

π1(j)

)
μB + Jπ1(J − 1)qB

= 1 −
(

K−1∑
j=0

π1(j)

)
Jp◦

A −
(

J−1∑
j=K

π1(j)

)
Jp◦

B + Jπ1(J − 1)qB,

and we find that the Parrondo effect (in favor of the casino) holds if and only if

π1(J − 1)qB <

(
K−1∑
j=0

π1(j)

)
p◦

A +
(

J−1∑
j=K

π1(j)

)
p◦

B.

Now if we substitute the formula for the stationary distribution, the constant c is
irrelevant, and the condition becomes

qK
A qL

B < (1 + qA + · · · + qK−1
A )

pAqJ
A

1 − qJ
A

+ qK
A (1 + qB + · · · + qL−1

B )
pBqJ

B

1 − qJ
B

or

qK
A qL

B <
(1 − qK

A )qJ
A

1 − qJ
A

+ qK
A (1 − qL

B)qJ
B

1 − qJ
B

.

This is equivalent to

qK
A

(
1 − qL

A

1 − qJ
A

− 1 − qL
B

1 − qJ
B

)
< 0,
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which holds if and only if qA > qB or equivalently pA < pB . Here we are using
the fact that the function f1(x) := (1−xL)/(1−xJ ) is decreasing on (0,1), which
follows from

f ′
1(x) = JxJ−1(1 − xL) − LxL−1(1 − xJ )

(1 − xJ )2

= −(1 − x)xL−1

(1 − xJ )2

K∑
k=1

L∑
l=1

xk−1(1 − xK−k+l)

< 0, 0 < x < 1.

So we have the Parrondo effect if pA < pB . If, however, pA > pB , then the Par-
rondo effect fails and the player has the advantage.

Returning to our example in which pA = 3/10 and pB = 1/15, we suppose that
J = 10 and consider the above strategy with K = 4. If μ∗

A = μ∗
B = 1, then we find

that the player’s win rate is about 0.145747 (i.e., 14.6%). We conclude that our
machine is not ready for casino play.

Figure 1 compares several strategies in terms of the expected casino cumulative
profit.

The fact that the player can achieve a substantial advantage by using the in-
formation available from the Futurity pointer will not come as a surprise to those
familiar with the original history-dependent Parrondo games [Parrondo, Harmer

FIG. 1. Expected casino cumulative profit for various player strategies. We assume a two-armed
slot machine with hit frequencies pA = 3/10 and pB = 1/15; Futurity award paid after J = 10
consecutive losses, regardless of the order of play of the two arms; initial pointer position 0; and
both arms fair when played exclusively (μ∗

A = μ∗
B = 1). j is the Futurity pointer position. Results

are by direct calculation (not simulation).
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and Abbott (2000)]. Let us recall the assumptions: In game A the player tosses
a 1/2-coin (heads has probability 1/2), whereas in game B , the player tosses a
9/10-coin if his last two results are two losses, a 1/4-coin if his last two results are
a loss and a win in either order, and a 7/10-coin if his last two results are two wins.
In both games, the player wins one unit with heads and loses one unit with tails. If
the player can use information about his two most recent results to choose which
game to play, the optimal strategy is clear: Play game A if the last two results differ
and game B otherwise. Most studies of Parrondo’s paradox disregard this strategy
and consider only “blind” strategies, those that do not rely on the player’s past. In
the casino setting, however, one cannot expect a player to disregard information
that may prove to be profitable.
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