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TOPOLOGY-GUIDED SAMPLING OF NONHOMOGENEOUS
RANDOM PROCESSES

BY KONSTANTIN MISCHAIKOW1 AND THOMAS WANNER2

Rutgers University and George Mason University

Topological measurements are increasingly being accepted as an im-
portant tool for quantifying complex structures. In many applications, these
structures can be expressed as nodal domains of real-valued functions and are
obtained only through experimental observation or numerical simulations. In
both cases, the data on which the topological measurements are based are
derived via some form of finite sampling or discretization. In this paper, we
present a probabilistic approach to quantifying the number of components of
generalized nodal domains of nonhomogeneous random processes on the real
line via finite discretizations, that is, we consider excursion sets of a random
process relative to a nonconstant deterministic threshold function. Our results
furnish explicit probabilistic a priori bounds for the suitability of certain dis-
cretization sizes and also provide information for the choice of location of the
sampling points in order to minimize the error probability. We illustrate our
results for a variety of random processes, demonstrate how they can be used
to sample the classical nodal domains of deterministic functions perturbed by
additive noise and discuss their relation to the density of zeros.

1. Introduction. The motivation for this work comes from our attempts to
create novel metrics for quantifying, comparing and cataloging large sets of com-
plicated varying geometric patterns. Random fields (for a general background,
see [1, 4, 12, 19, 22], as well as the references therein) provide a framework in
which to approach these problems and have, over the last few decades, emerged
as an important tool for studying spatial phenomena which involve an element of
randomness [1, 2, 24, 27, 29]. For the types of applications, we have in mind [13,
14, 21], we are often satisfied with a topological classification of sub- or super-
level sets of a scalar function. Algebraic topology, and in particular homology, can
be used in a computationally efficient manner [18] to coarsely quantify these geo-
metric properties. In past work [7, 23], we developed a probabilistic framework for
assessing the correctness of homology computations for random fields via uniform
discretizations. The approach considers the homology of nodal domains of random
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FIG. 1. Sample functions from a random sum of the form u(x,ω) = ∑N
k=0 gk(ω)ϕk(x)

where g1, . . . , gN are independent standard Gaussian random variables. In the left diagram,
we consider random periodic functions, that is, the basis functions ϕk are given by ϕ2k(x) =
cos(2πkx) and ϕ2k−1(x) = sin(2πkx), in the right diagram they are the Chebyshev polynomials
ϕk(x) = cos(k arccosx). In each case, we choose N = 16.

fields which are given by classical Fourier series in one and two space dimensions,
and it provides explicit and sharp error bounds as a function of the discretization
size and averaged Sobolev norms of the random field. While we do not claim it is
trivial—there are complicated combinatorial questions that need to be resolved—
we believe that it is possible to extend the methods and hence the results of [23] to
higher-dimensional domains.

The more serious restriction in [23] is the use of periodic random fields, which
due to the fact that the associated spatial correlation function is homogeneous,
simplifies many of the estimates. In general, however, one expects to encounter
nonhomogeneous random fields. In such cases, it seems unreasonable to expect
that uniform sampling provides the optimal choice. For example, in Figure 1, three
sample functions each are shown for a random sum involving periodic basis func-
tions and Chebyshev polynomials. As one would expect, the zeros of the random
Chebyshev sum are more closely spaced at the boundary, and therefore small uni-
form discretization are most likely not optimal for determining the topology of the
nodal domains.

With this as motivation, we allow for a more general sampling technique. We
remark that because of the subtlety of some of the necessary estimates we restrict
our attention in this paper to one-dimensional domains.

DEFINITION 1.1 (Nonuniform approximation of generalized nodal domains).
Consider a compact interval [a, b] ⊂ R, a threshold function μ : [a, b] → R, and a
function u : [a, b] → R. Then we define the generalized nodal domains of u by

N±
μ = {

x ∈ [a, b] :±(u(x) − μ(x)
)≥ 0

}
,(1)
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which for the case of μ(x) ≡ 0 reduces to the classical definition of a nodal domain
in [5]. An M-discretization of [a, b] is a collection of M + 1 grid points

a = x0 < x1 < · · · < xM = b,

and we define xM+1 = xM = b in the following. The cubical approximations Q±
M

of the generalized nodal domains N±
μ of u are defined as the sets

Q±
μ,M :=⋃{[xk, xk+1] :±((u − μ)(xk)

)≥ 0, k = 0, . . . ,M
}
.

Given a subset X ⊂ [a, b], let β0(X) denote the number of components of X.
Consider a random field u : [a, b] × � → R over the probability space (�, F ,P).
We are interested in optimally characterizing the topology, that is, determining the
number of components, of the nodal domains N±

μ in terms of the cubical approxi-
mations Q±

μ,M . In other words, our goal is to choose the M-discretization of [a, b]
in such a way as to optimize

P{β0(N
±
μ ) = β0(Q

±
μ,M)}.

We provide two results addressing this question. The first characterizes the choice
of the sampling points a = x0 < x1 < · · · < xM = b under reasonably general ab-
stract conditions. More precisely, consider the following assumptions:

(A1) For every x ∈ [a, b], we have P{u(x) = μ(x)} = 0.
(A2) The random field is such that P{u − μ has a double zero in [a, b]} = 0.
(A3) For σ ∈ {±1}, x ∈ [a, b] and δ > 0 with x + δ ∈ [a, b] define

pσ (x, δ) = P

{
σu(x) ≥ σμ(x), σu

(
x + δ

2

)
≤ σμ

(
x + δ

2

)
,

σu(x + δ) ≥ σμ(x + δ)

}
.

Then there exists a continuously differentiable function C0 : [a, b] → R
+ as

well as a constant C1 > 0 such that for all x ∈ [a, b] with x + δ ∈ [a, b] we
have

p+1(x, δ) + p−1(x, δ) ≤ C0(x) · δ3 + C1 · δ4.

In Section 3, we prove the following result.

THEOREM 1.2 (Sampling based on local probabilities). Consider a probabil-
ity space (�, F ,P), a continuous threshold function μ : [a, b] → R, and a random
field u : [a, b] × � → R over (�, F ,P) such that for P-almost all ω ∈ � the func-
tion u(·,ω) : [a, b] → R is continuous. Choose the sampling points a = x0 < · · · <
xM = b such that∫ xk

xk−1

3
√

C0(x) dx = 1

M
·
∫ b

a

3
√

C0(x) dx for all k = 1, . . . ,M,
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and consider the generalized nodal domains N±
μ (ω) and their approxima-

tions Q±
μ,M(ω) as in Definition 1.1. If assumptions (A1), (A2) and (A3) hold,

then

P{β0(N
±
μ ) = β0(Q

±
μ,M)} ≥ 1 − 4

3M2 ·
(∫ b

a

3
√

C0(x) dx

)3

+ O

(
1

M3

)
.(2)

This theorem is a direct generalization of the corresponding result in ([23],
Theorem 1.3). Numerical computations presented in Section 2 suggest that for
certain nonhomogeneous random fields this estimate is sharp—and in fact an
enormous improvement over the homogeneous result where C0(x) is replaced
by maxx∈G C0(x).

Of course in practice one is interested in applying Theorem 1.2 to specific ran-
dom fields. This requires the verification of assumptions (A1), (A2) and (A3),
preferably in terms of central random field characteristics.

DEFINITION 1.3. For a random field u : [a, b] × � → R over a probability
space (�, F ,P), we define its spatial correlation function R : [a, b]2 → R as

R(x, y) = E
((

u(x) − Eu(x)
)(

u(y) − Eu(y)
))

for all x, y ∈ [a, b],
where E denotes the expected value of a random variable over (�, F ,P).

If the random field is sufficiently smooth, then the derivatives of the spatial
correlation function,

Rk,	(x) = ∂k+	R

∂xk ∂y	
(x, x),(3)

have a natural interpretation in terms of spatial derivatives of the random field u.
Since

Rk,	(x) = E
((

u(k)(x) − Eu(k)(x)
)(

u(	)(y) − Eu(	)(y)
))

,

the function Rk,k contains averaged information on the square of the kth derivative
of the random function u, more precisely, its variance.

To relate the spatial correlation function to the function C0 in Theorem 1.2, we
specialize to Gaussian random fields. To be more precise, we make the following
assumptions.

(G1) Consider a Gaussian random field u : [a, b] × � → R over a probability
space (�, F ,P) such that u(·,ω) : [a, b] → R is twice continuously differen-
tiable for P-almost all ω ∈ �. Furthermore, assume that for every x ∈ [a, b]
the expected value of u(x) satisfies

Eu(x) = 0.
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(G2) The spatial correlation function R is three times continuously differentiable
in a neighborhood of the diagonal x = y and the matrix

R(x) =
⎛⎝R0,0(x) R1,0(x) R2,0(x)

R1,0(x) R1,1(x) R2,1(x)

R2,0(x) R2,1(x) R2,2(x)

⎞⎠(4)

is positive definite for all x ∈ [a, b].
We make considerable use of R, and thus introduce the following notation

Rm
33 := R0,0R1,1 − R2

1,0,

Rm
32 := R0,0R2,1 − R1,0R2,0,(5)

Rm
31 := R1,0R2,1 − R1,1R2,0.

These expressions are just the determinants of minors of R. This allows us to state
the following theorem.

THEOREM 1.4 (Sampling based on spatial correlation). Consider a Gaussian
random field u : [a, b]×� → R satisfying (G1) and (G2), and a threshold function
μ : [a, b] → R of class C3. Choose the sampling points a = x0 < · · · < xM = b in
such a way that∫ xk

xk−1

3
√

C(x) dx = 1

M
·
∫ b

a

3
√

C(x) dx for all k = 1, . . . ,M,

where

C(x) = det R(x)

48π Rm
3,3(x)3/2 · (1 + A(x)

) · e−B(x),(6)

given

A(x) = (Rm
3,1(x)μ(x) − Rm

3,2(x)μ′(x) + Rm
3,3(x)μ′′(x))2

Rm
3,3(x)det R(x)

≥ 0,

B(x) = (R1,0(x)μ(x) − R0,0(x)μ′(x))2 + Rm
3,3(x)μ(x)2

2R0,0(x)Rm
3,3(x)

≥ 0.

Let Q±
μ,M(ω) denote the cubical approximations of the random generalized nodal

domains N±
μ (ω) of u(·,ω). Then

P{β0(N
±
μ ) = β0(Q

±
μ,M)} ≥ 1 − 1

M2 ·
(∫ b

a

3
√

C(x) dx

)3
+ O

(
1

M3

)
.(7)
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The proof of Theorem 1.4 is presented in Section 5. However, it depends on non-
trivial results concerning the asymptotic behavior of sign-distribution probabilities
of parameter-dependent Gaussian random variables. These results are developed
in Section 4.

The number of nodal domains β0(N
±
μ ) is clearly dependent upon the zeros

of u − μ. Thus, it is reasonable to expect that there is some relationship between
the function C derived in Theorem 1.4 and the density of the zeros of the random
field u. The first step is to obtain a density function. For this, a weaker form of (G2)
is sufficient.

(G3) Assume that the spatial correlation function R is two times continuously
differentiable in a neighborhood of the diagonal x = y and that R(x, x) > 0
for all x ∈ [a, b].

Finding the density of the zeros of random fields has been studied in a variety
of settings, see, for example, [2, 4, 6, 11, 12], as well as the references therein.
The following theorem can be found in [6], (13.2.1), page 285.

THEOREM 1.5 (Density of zeros of a random field). Consider a Gaussian ran-
dom field u : [a, b] × � → R satisfying (G1) and (G3). Then the density function
for the number of zeros of u is given by

D(x) = Rm
3,3(x)1/2

π · R0,0(x)
.(8)

In other words, for every interval I ⊂ [a, b] the expected number of zeros of u in I

is given by
∫
I D(x) dx.

While Theorem 1.5 has been known for quite some time, its implications are
surprising. As is demonstrated through examples in Section 2 there is no simple
discernible relationship between the function C 1/3 of Theorem 1.4 and the density
function D.

As is made clear at the beginning of this Introduction, our motivation is to de-
velop optimal sampling methods for the analysis of complicated time-dependent
patterns. Thus, before turning to the proofs of the above-mentioned results, we be-
gin, in Section 2, with demonstrations of possible applications and implications of
Theorem 1.4. In particular, we consider several random generalized Fourier series
u : [a, b] × � → R defined by

u(x,ω) =
∞∑

k=0

gk(ω) · ϕk(x),(9)

where ϕk : [a, b] → R, k ∈ N0, denotes a family of smooth functions and we as-
sume that the Gaussian random variables gk :� → R, k ∈ N0, are defined over a
common probability space (�, F ,P) with mean 0.

We conclude the paper with a general discussion of future work concerning
natural generalizations to higher dimensions.
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2. Sampling of specific random sums. To demonstrate the applicability and
implications of Theorem 1.4, we consider in this section several random general-
ized Fourier series u : [a, b] × � → R of the form in (9). As mentioned before,
the functions ϕk : [a, b] → R, k ∈ N0, denote a family of smooth functions and we
assume that the random variables gk :� → R, k ∈ N0, are Gaussian with vanishing
mean, and defined over a common probability space (�, F ,P). We would like to
point out that these random variables do not need to be independent, and we define

αk,m = E(gkgm) for all k,m ∈ N0.

Then one can easily show that

Rk,	(x) = E
(
u(k)(x)u(	)(x)

)=
∞∑

i,j=0

αi,jϕ
(k)
i (x)ϕ

(	)
j (x).

If in addition the random variables gk are pairwise independent, then we have

Rk,	(x) =
∞∑

j=0

αj,jϕ
(k)
j (x)ϕ

(	)
j (x),

where αj,j ≥ 0 for all j ∈ N0. One can show that this diagonalization can always
be achieved for Gaussian random fields, provided the basis functions ϕk are cho-
sen appropriately. For more details, we refer the reader to [2], Theorems 3.1.1
and 3.1.2, Lemma 3.1.4.

Within the above framework of random generalized Fourier series, we specifi-
cally consider several classes:

• Random Chebyshev polynomials u : [−1,1] × � → R of the form

u(x,ω) =
N∑

k=0

gk(ω) · cos(k arccosx) with E(gkg	) = δk,	.(10)

• Random cosine series u : [0,1] × � → R of the form

u(x,ω) =
N∑

k=0

gk(ω) · cos(kπx) with E(gkg	) = δk,	.(11)

• Random L-periodic functions u : R × � → R of the form

u(x,ω) =
∞∑

k=0

ak ·
(
g2k(ω) · cos

2πkx

L
+ g2k−1(ω) · sin

2πkx

L

)
(12)

with E(gkg	) = δk,	,

with real constants ak .
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• Random polynomials u : [−3,3] × � → R with Gaussian coefficients of bino-
mial variance of the form

u(x,ω) =
N∑

k=0

gk(ω) · xk with E(gkg	) = δk,	 ·
(

N

k

)
,(13)

• Random polynomials u : [−3,3] × � → R with Gaussian coefficients of unit
variance of the form

u(x,ω) =
N∑

k=0

gk(ω) · xk with E(gkg	) = δk,	.(14)

As is indicated in Section 1, we assume that all the random coefficients are centered
Gaussian random variables over a common probability space (�, F ,P).

2.1. The case of vanishing threshold function. We begin our applications by
thresholding sample random sums at their expected value, that is, we use the
threshold function μ ≡ 0. In this particular case, the function C(x) defined by (6)
in Theorem 1.4 simplifies to

C(x) = det R(x)

48π Rm
3,3(x)3/2 ,(15)

since both A(x) and B(x) vanish.
For the case of random Chebyshev polynomials (10), the left diagram in Fig-

ure 2 shows three normalized sample functions

C 1/3(x)∫ 1
−1 C 1/3(x) dx

for N = 3,5,10. The right diagram shows the expected number of zeros of the
random Chebyshev polynomials as a function of N (red curve), which grows pro-
portional to N . Thus, in order to sample the random field sufficiently fine, we ex-
pect to use significantly more than O(N) discretization points. The blue curve in
the right diagram of Figure 2 shows the values of M for which the bound in (7) of
Theorem 1.4 implies a correctness probability of 95%, and a least squares fit of this
curve furnishes M ∼ N3/2. For comparison, the green curve in the same diagram
shows the values of M for which the bound in our previous result ([23], Theo-
rem 1.4) implies a correctness probability of 95%, provided we apply this theorem
with C0 given as the maxx∈[−1,1] C0(x). Notice that in this case we have M ∼ N3.
In other words, only the topology-guided sampling result of the current paper
yields a reasonable growth for the number of sampling points. In fact, based on
our results for periodic random fields in [23] and the numerical simulations in [7],
we expect that M ∼ N3/2 is the optimal discretization size.

For the case of random cosine sums (11), that is, random trigonometric sums
satisfying homogeneous Neumann boundary conditions, the analogue of the right



1076 K. MISCHAIKOW AND T. WANNER

FIG. 2. Topology-guided sampling of random Chebyshev polynomials (10). The left diagram shows
the functions C 1/3 for N = 3,5,10 (red, blue and green, respectively—increasing values of N in-
crease the number of extrema); for comparison reasons, each curve has been scaled in such a way
that the area under the graph is one. The right diagram shows the expected number of zeros of the
random Chebyshev polynomials as a function of N (bottom red curve), the value of M for which
Theorem 1.4 gives a correctness probability of 95% (middle blue curve), and the value of M for
which [23] gives a correctness probability of 95% (top green curve) with C0 = max C0(x).

diagram in Figure 2 is depicted in the left diagram of Figure 3. Notice that for
the random cosine sums the expected number of zeros is proportional to N , and
the required number of sampling points has to be proportional to N3/2 for both
Theorem 1.4 and [23], Theorem 1.4. In other words, in this situation the gains from
topology-guided sampling are no longer as large as in the context of Chebyshev

FIG. 3. Topology-guided sampling of random trigonometric polynomials (11) satisfying Neumann
boundary conditions (left diagram) and random algebraic polynomials (13) with binomial variances
(right diagram). The curves show the expected numbers of zeros (bottom red curve), the discretization
size required by Theorem 1.4 to achieve 95% correctness (middle blue curve), and the discretization
size required by [23] for a correctness probability of 95% (top green curve), with C0 = max C0(x).
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polynomials. Also in this case, the curves for M are obtained in such a way that
the right-hand side in (7) or the corresponding bound in [23] equals 95%

Similar behavior can be seen in the case of random polynomials (13) with
Gaussian coefficients of binomial variance; see the right diagram of Figure 3. For
the random algebraic polynomials (13), one can show that the expected number of
zeros is proportional to N1/2, and the required number of sampling points implied
by (7) or [23] has to be proportional to N3/4 for both results. In fact, the func-
tion C can be computed explicitly in this case. Due to (13), the spatial correlation
function R is given by

R(x, y) =
N∑

k=0

(
N

k

)
xkyk = (1 + xy)N,

which after some elementary computations furnishes

C(x) = N1/2(N − 1)

24π(1 + x2)3 .(16)

As for the case of random polynomials with Gaussian coefficients of unit variance,
a classical result due to Kac [16, 17] implies that the expected number of zeros is
proportional to logN . In this case, Theorem 1.4 implies that the required number
of sampling points has to be proportional to (logN)3/2.

2.2. The case of constant threshold function. We now turn our attention to a
constant threshold function μ(x) = τ , for some real number τ . In this case, the
function C(x) in Theorem 1.4 simplifies to

C(x) = det R(x)

48π Rm
3,3(x)3/2 · S(x),(17)

where

S(x) =
(

1 + Rm
3,1(x)2τ 2

Rm
3,3(x)det R(x)

)
· exp

(
−R1,0(x)2 + Rm

3,3(x)

2R0,0(x)Rm
3,3(x)

· τ 2
)
.(18)

For large values of |τ |, the scaling function S(x) will be close to zero, and it
therefore effectively decreases the probability for mistakes in the homology com-
putation. In fact, it decreases exponentially fast with respect to |τ |. However, as
is shown in Figure 4 for the random Chebyshev polynomials (10), for values of τ

close to zero, there can be regions in which the probability for mistakes actually
increases. This behavior is even more pronounced in the case of random algebraic
polynomials (13) and (14), which is shown in Figure 5.
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FIG. 4. Effect of varying the threshold τ on the function C(x) in (17) for random Chebyshev poly-
nomials (10) with N = 5. The left diagram shows the function C(x) for τ = 0,1,2,3,4,5 (black,
green, cyan, red, magenta, blue), the right diagram shows only the function S(x) defined in (18).

FIG. 5. Effect of varying the threshold τ on the function C(x) in (17) for random algebraic poly-
nomials (13) (top row) and (14) (bottom row) with N = 5. In each row, the left diagram shows C(x)

for τ = 0,1,2,3,4,5 (black, green, cyan, red, magenta, blue), and the right diagram shows only the
function S(x) defined in (18).
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2.3. The case of varying threshold function. We now consider the case of a
general threshold function under the following assumptions. Suppose a determin-
istic function μ(x) is perturbed by a centered Gaussian random field u(x,ω), and
that we are interested in determining the classical nodal domains of the sum

v(x,ω) = μ(x) + u(x,ω).

Sampling v(x,ω) at the threshold zero is obviously equivalent to sampling u(x,ω)

at the threshold −μ(x). Thus, we can use Theorem 1.4 to find the optimal location
of the sampling points using the function C(x) defined in (6).

In order to demonstrate the effects of the varying threshold function −μ(x)

more clearly, we now assume that the perturbing random field u is homogeneous,
that is, we assume that u is a random L-periodic function of the form (12). Fur-
thermore, we assume that the real scaling factors ak in (12) satisfy

∞∑
k=0

k6a2
k < ∞,

and that at least two of the ak do not vanish. It was shown in [23] that in this case
the spatial correlation function R is given by

R(x, y) = Eu(x)u(y) =
∞∑

k=0

a2
k · cos

2πk(x − y)

L
.

From this, one can readily see that the matrix function R(x) defined in (4) is
constant and given by

R(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
A0 0 −4π2A1

L2

0
4π2A1

L2 0

−4π2A1

L2 0
16π4A2

L4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

A	 =
∞∑

k=0

k2	a2
k .

Thus, the function C(x) in (6) is now given as

C(x) = π2

6L3 · A0A2 − A2
1

A
3/2
0 A

1/2
1

· S(x),(19)

where

S(x) =
(

1 + (A1μ(x) + A0μ
′′(x) · (L2/(4π2)))2

A0(A0A2 − A2
1)

)

× exp
(
−A1μ(x)2 + A0μ

′(x)2 · (L2/(4π2))

2A0A1

)
.
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FIG. 6. Sampling of deterministic functions μ(x) perturbed by homogeneous random noise.
The left image shows the functions μ(x) = x − x3 + τ for τ = 0,0.5,1,2,3 (green, cyan, red, ma-
genta, blue), the right images shows the corresponding functions C(x) defined in (19).

Notice that the exponential factor is bounded above by exp(−μ(x)2/(2A0)), that
is, large function values of μ(x) lead to small failure probabilities.

We close this subsection by visualizing the function C(x) defined in (19) for the
deterministic function μ(x) = x − x3 + τ and τ -values between 0 and 3. The spe-
cific functions μ(x) are shown in the left image of Figure 6. In the right image, the
corresponding functions C(x) are shown, where u is defined as in (12) with ak = 0
for k = 0 and k > N , as well as ak = N−1/2 for k = 1, . . . ,N . This implies that
the variance of u(x) equals 1. In Figure 6, we use N = 5.

2.4. Comparison with density-guided sampling. In order to illustrate the dif-
ferences between the density of zeros D derived in Theorem 1.5 and the func-
tion C 1/3 from Theorem 1.4, we return to our examples from the last section. For
each of these examples, Figure 7 depicts both

C 1/3(x)∫
C 1/3(x) dx

and
D(x)∫

D(x) dx

for the case N = 5. It is evident from these graphs that in most cases, the
homology-based sampling density is different from the actual density of zeros.
In fact, in many cases it behaves anticyclic to D in the sense that the local extrema
of C 1/3 alternate with the local extrema of D.

There are, however, exceptions, as the case of the random algebraic polyno-
mial (13) demonstrates. In this case, it follows from Theorem 1.5 that

D(x) = N1/2

π(1 + x2)
,

and together with (16) this shows that the normalized C 1/3- and D-functions coin-
cide.
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FIG. 7. A comparison of the function C 1/3 and the density function D for random Chebyshev
polynomials (10) (top left diagram), random trigonometric polynomials (11) (top right), random
algebraic polynomials (13) (bottom left), and random algebraic polynomials (14) (bottom right). In
all cases, the areas under the graphs have been normalized to one, and we chose N = 5.

3. Sampling based on local probabilities. The goal of this section is the
proof of Theorem 1.2, which is a generalization of [23], Theorem 1.3. Thus, we
begin by recalling some basic definitions and results.

As is indicated in Section 1, given a continuous function u : [a, b] → R and a
continuous threshold μ : [a, b] → R we are interested in determining the number
of components of the generalized nodal domain N±

μ in terms of a cubical approxi-
mation Q±

μ,M obtained via sampling at M +1 points as described in Definition 1.1.
For suitably chosen discretization points, and under appropriate regularity and non-
degeneracy conditions on u one can then expect that the number of components
of Q±

μ,M and N±
μ agree. One only has to be able to verify that the function u has

at most one zero (counting multiplicity) in each of the intervals [xk−1, xk], for
k = 1, . . . ,M . This is accomplished using the following framework which goes
back to Dunnage [10].
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DEFINITION 3.1. A continuous function u : [a, b] → R has a double crossover
on the interval [α,β] ⊂ [a, b], if

σ · u(α) ≥ 0, σ · u
(

α + β

2

)
≤ 0 and σ · u(β) ≥ 0(20)

for one choice of the sign σ ∈ {±1}.

DEFINITION 3.2. Let u : [a, b] → R be a continuous function.

• The dyadic points in the interval [α,β] are defined as

dn,k = α + (β − α) · k

2n
for all k = 0, . . . ,2n and n ∈ N0.

The dyadic subintervals of [α,β] are the intervals [dn,k, dn,k+1] for all k =
0, . . . ,2n − 1 and n ∈ N0.

• The interval [α,β] ⊂ [a, b] is admissible for u, if the function u does not have a
double crossover on any of the dyadic subintervals of [α,β].

It was shown in [23] that the concept of admissibility implies the suitability
of our nodal domain approximations. More precisely, the following is a slight re-
wording of [23], Proposition 2.5.

PROPOSITION 3.3 (Validation criterion). Let u : [a, b] → R be a continuous
function and let μ : [a, b] → R be a continuous threshold function. Let N±

μ denote

the generalized nodal domains of u, and let Q±
μ,M denote their cubical approxi-

mations as in Definition 1.1. Furthermore, assume that the following hold:

(a) The function u − μ is nonzero at all grid points xk , for k = 0, . . . ,M .
(b) The function u − μ has no double zero in (a, b), that is, if x ∈ (a, b) is a zero

of u, then u − μ attains both positive and negative function values in every
neighborhood of x.

(c) For every k = 1, . . . ,M , the interval [xk−1, xk] between consecutive discretiza-
tion points is admissible for u − μ in the sense of Definition 3.2.

Then we have

β0(N
±
μ ) = β0(Q

±
μ,M).

The following lemma provides bounds on the probability for admissibility of a
given interval.

LEMMA 3.4. Consider a probability space (�, F ,P), a continuous threshold
function μ : [a, b] → R, and a random field u : [a, b]×� → R over (�, F ,P) such
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that u(·,ω) is continuous for P-almost all ω ∈ �. In addition, assume that (A1),
(A2) and (A3) hold. If [x, x + δ] ⊂ [a, b], then

P([x, x + δ] is not admissible for u − μ)
(21)

≤ 4C0(x)

3
· δ3 +

(
4L

3
+ 8C1

7

)
· δ4,

where L = max{|C′
0(y)| :y ∈ [a, b]}.

PROOF. If the interval I = [x, x +δ] is not admissible, then the function u−μ

has a double crossover on one of its dyadic subintervals. If we now denote the
dyadic points in I by dn,k as in Definition 3.2, then together with (A3) one obtains
the estimate

P{I is not admissible} ≤
∞∑

n=0

2n−1∑
k=0

(
p+1(dn,k, δ/2n) + p−1(dn,k, δ/2n)

)

≤
∞∑

n=0

2n−1∑
k=0

(
C0(dn,k) ·

(
δ

2n

)3

+ C1 ·
(

δ

2n

)4)
.

Since C0 is continuously differentiable, we can define L = max{|C′
0(y)| :y ∈

[a, b]}, and the definition of the dyadic points implies

C0(dn,k) ≤ C0(x) + L · (dn,k − x) ≤ C0(x) + Lδ.

This finally furnishes

P{I is not admissible} ≤
∞∑

n=0

2n−1∑
k=0

((
C0(x) + Lδ

) · ( δ

2n

)3

+ C1 ·
(

δ

2n

)4)

= 4C0(x)

3
· δ3 +

(
4L

3
+ 8C1

7

)
· δ4. �

Combining Proposition 3.3, Lemma 3.4, and restricting to the leading order
term in (21), one obtains

P{β0(N
±
μ ) = β0(Q

±
μ,M)} ≥ 1 − 4

3
·

M∑
k=1

C0(xk−1) · (xk − xk−1)
3.(22)

Clearly, the resulting bound depends on the location of the sampling points, which
suggests maximizing the bound to optimize the location.

We first provide a heuristic argument for this optimal location, and present
the precise result afterwards. One can show that for arbitrary nonnegative num-
bers δ1, . . . , δM ≥ 0 the inequality

M∑
k=1

δ3
k ≥ 1

M2 ·
(

M∑
k=1

δk

)3
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holds, with equality if and only if δ1 = δ2 = · · · = δM . Applying this inequality to
the sum in the right-hand side of (22), implies

M∑
k=1

C0(xk−1) · (xk − xk−1)
3 ≥ 1

M2 ·
(

M∑
k=1

3
√

C0(xk−1) · (xk − xk−1)

)3

(23)

with equality if and only if

3
√

C0(xk−1) · (xk − xk−1) = 3
√

C0(x	−1) · (x	 − x	−1)
(24)

for all k, 	 = 1, . . . ,M.

For large M , the sum on the right-hand side of (23) converges to the integral of C 1/3
0

over [a, b]. The motivation for Theorem 1.2 is now clear: Condition (24) suggests
that for M → ∞, the optimal estimate can be achieved by choosing the sampling
points in an equi-C 1/3

0 -area fashion, since the term C0(xk−1)
1/3(xk −xk−1) approx-

imates the intergral of C 1/3
0 over [xk−1, xk]. This heuristic forms the basis for the

following proof of our first main result.

PROOF OF THEOREM 1.2. Let δmax := maxk=1,...,M |xk − xk−1|, and de-
fine the positive number m := minx∈[a,b] C0(x)1/3 > 0. Furthermore, let L :=
maxx∈[a,b] |dC 1/3

0 /dx|. Then the mean value theorem readily furnishes∣∣∣∣ 3
√

C0(xk−1) · (xk − xk−1) −
∫ xk

xk−1

3
√

C0(x) dx

∣∣∣∣≤ L(xk − xk−1)
2(25)

for all k = 1, . . . ,M . Due to the choice of the sampling points we further have

m · (xk − xk−1) ≤
∫ xk

xk−1

3
√

C0(x) dx = 1

M
·
∫ b

a

3
√

C0(x) dx︸ ︷︷ ︸
=:K

,(26)

which in turn implies

0 < xk − xk−1 ≤ δmax ≤ K

m · M for all k = 1, . . . ,M.(27)

Applying Lemma 3.4 to every subinterval formed by adjacent sampling points, we
now obtain together with (25), (26) and (27) the estimate

1 − P{β0(N
±
μ ) = β0(Q

±
μ,M)}

≤ 4

3

M∑
k=1

C0(xk−1) · (xk − xk−1)
3 + C2

M∑
k=1

(xk − xk−1)
4

≤ 4

3
·

M∑
k=1

(
K

M
+ L(xk − xk−1)

2
)3

+ C2K
4

m4M3
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≤ 4

3
·

M∑
k=1

(
K

M
+ LK2

m2M2

)3

+ C2K
4

m4M3

= 4K3

3M2 + O

(
1

M3

)
for some constant C2 ≥ 0. This is exactly (2). �

4. Asymptotics of sign-change probabilities. Theorem 1.4 can be viewed
as a special case of Theorem 1.2. The content lies in the fact that under the as-
sumption of a Gaussian random field, the function C0 can be explicitly computed.
However, this requires a quantitative understanding of the asymptotic behavior of
sign-distribution probabilities of parameter-dependent Gaussian random variables,
which is the focus of this section.

More precisely, let T (δ) = (T1(δ), . . . , Tn(δ))
t ∈ R

n denote a one-parameter
family of R

n-valued random Gaussian variables over a probability space
(�, F ,P), indexed by δ > 0, and choose a sign sequence (s1, . . . , sn) ∈ {±1}n.
Furthermore, let τ(δ) ∈ R

3 denote an arbitrary threshold vector. We are interested
in the precise asymptotic behavior as δ → 0 of the probability

P(δ) = P
{
sj
(
Tj (δ) − τj (δ)

)≥ 0 for all j = 1, . . . , n
}
.(28)

The following result is an extension of ([23], Proposition 4.1) which dealt only
with the special case τ ≡ 0.

PROPOSITION 4.1. Let (s1, . . . , sn) ∈ {±1}n denote a fixed sign sequence, and
consider one-parameter families of a threshold vector τ(δ) ∈ R

3 and an R
n-valued

random Gaussian variable T (δ) over a probability space (�, F ,P), for δ > 0.
Assume that the following hold:

(i) For each δ > 0, assume that the Gaussian random variable T (δ) has
mean 0 ∈ R

n and a positive definite covariance matrix C(δ) ∈ R
n×n, whose

positive eigenvalues are given by 0 < λ1(δ) ≤ · · · ≤ λn(δ). The corresponding
orthonormalized eigenvectors are denoted by v1(δ), . . . , vn(δ).

(ii) There exists a vector v̄1 = (v̄11, . . . , v̄1n)
t ∈ R

n such that v1(δ) → v̄1 as
δ → 0, and sj · v̄1j > 0 for all j = 1, . . . , n.

(iii) The quotient λ1(δ)/λk(δ) converges to 0 as δ → 0, for all k = 2, . . . , n.
(iv) There exists a vector α = (α1, . . . , αn)

t ∈ R
n such that

lim
δ→0

τ(δ) · vk(δ)

λk(δ)1/2 = αk for all k = 1, . . . , n.(29)

Furthermore, for α as above define

Sα = 2

2n/2 · �(n/2)
· e−∑n

k=2 α2
k /2 ·

∫ ∞
α1

(s − α1)
n−1e−s2/2 ds.(30)
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Then the probability P(δ) defined in (28) satisfies

lim
δ→0

P(δ) ·
√

detC(δ)

λ1(δ)n
= �(n/2) · Sα

2 · πn/2 · (n − 1)! ·
∣∣∣∣∣

n∏
j=1

v̄1j

∣∣∣∣∣
−1

.(31)

For specific values of n, the integral in (29) can be simplified further. For our
one-dimensional application, we need the case n = 3, which is the subject of the
following remark.

REMARK 4.2. Recall that �(1/2) = π1/2, �(1) = 1, and �(t +1) = t�(t) for
t > 0. Furthermore, notice that Sα = 1 for α = 0 ∈ R

n. In addition, for n = 3 one
can readily verify that

Sα = 21/2

π1/2 · e−(α2
2+α2

3)/2

(32)

×
(
−α1e

−α2
1/2 + (1 + α2

1) ·
∫ ∞
α1

e−s2/2 ds

)
.

PROOF. Define the diagonal matrix S = (siδij )i,j=1,...,n, where δij denotes the
Kronecker delta, and let Z+ = {z ∈ R

n : zj ≥ 0 for j = 1, . . . , n}. Finally, let

D(δ) = λ1(δ) · SC(δ)−1S

and

d(δ) = 1

λ1(δ)1/2 · Sτ(δ).

Using the density of the Gaussian distribution of T (δ) according to ([3], Theo-
rem 30.4), which exists since C(δ) is positive definite, in combination with a sim-
ple rescaling and shifting of the coordinate system, the probability in (28) can be
rewritten as

P(δ) = (2π)−n/2
√

detC(δ)
·
∫
Sτ(δ)+Z+

e−zt SC(δ)−1Sz/2 dz

=
√

λ1(δ)n

2nπn detC(δ)
·
∫
Z+

e−(z+d(δ))tD(δ)(z+d(δ))/2 dz.

According to our assumptions, the eigenvalues μ1(δ), . . . ,μn(δ) of the ma-
trix D(δ) are given by

μ1(δ) = 1 and μk(δ) = λ1(δ)

λk(δ)
for k = 2, . . . , n,
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with corresponding orthonormalized eigenvectors wk(δ) = Svk(δ), for k = 1,

. . . , n. Now let B(δ) denote the orthogonal matrix with columns w1(δ), . . . ,wn(δ)

and introduce the change of variables z = B(δ)ζ . Moreover, let

Z(ζ1, δ) =
{
(ζ2, . . . , ζn) :

n∑
k=1

ζkwk(δ) ∈ Z+
}

⊂ R
n−1

define real numbers η1(δ), . . . , ηn(δ) by

ηk(δ) = Sτ(δ) · wk(δ) = τ(δ) · vk(δ) for k = 1, . . . , n,

and let

I (ζ1, δ) =
∫
Z(ζ1,δ)

exp

(
−

n∑
k=1

μk(δ)

2

(
ζk + ηk(δ)

λ1(δ)1/2

)2
)

d(ζ2, . . . , ζn).

Due to (ii) and the definition of the signs sk , the eigenvector w1(δ) has strictly
positive components for all sufficiently small δ > 0, and therefore the identity

(
z + d(δ)

)t
D(δ)

(
z + d(δ)

)=
n∑

k=1

μk(δ)

(
ζk + ηk(δ)

λ1(δ)1/2

)2

implies ∫
Z+

e−(z+d(δ))tD(δ)(z+d(δ))/2 dz

=
∫
B(δ)−1Z+

exp

(
−

n∑
k=1

μk(δ)

2

(
ζk + ηk(δ)

λ1(δ)1/2

)2
)

dζ(33)

=
∫ ∞

0
I (ζ1, δ) dζ1.

From the definition of I (ζ1, δ), one can easily deduce

I (ζ1, δ) = ζ n−1
1 ·

∫
Z(1,δ)

exp

(
−

n∑
k=1

μk(δ)

2

(
ζ1ξk + ηk(δ)

λ1(δ)1/2

)2
)

d(ξ2, . . . , ξn),

where we define ξ1 = 1. This representation furnishes for all ζ1 > 0 and δ > 0 the
estimate

I (ζ1, δ) ≤ ζ n−1
1 · voln−1(Z(1, δ)) · e−(ζ1+η1(δ)λ1(δ)

−1/2)2/2.(34)

Again according to (ii), the (n − 1)-dimensional volume of the simplex Z(1, δ)

converges to the (n − 1)-dimensional volume of the simplex

Z̃ = {z ∈ Z+ : (z − Sv̄1, Sv̄1) = 0} ⊂ R
n,
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which can be computed as

voln−1(Z̃) = 1

(n − 1)! ·
∣∣∣∣∣

n∏
j=1

v̄1j

∣∣∣∣∣
−1

.

Now let ζ1 > 0 be arbitrary, but fixed. Notice that since we did not make any
assumptions about the asymptotic behavior of the eigenvectors w2(δ), . . . ,wn(δ)

for δ → 0, the sets Z(1, δ) do not have to converge. Yet, (ii) yields the existence of
a compact subset K ⊂ R

n−1 such that Z(1, δ) ⊂ K for all sufficiently small δ > 0.
Furthermore, we have

n∑
k=1

μk(δ)

(
ζ1ξk + ηk(δ)

λ1(δ)1/2

)2

= ζ 2
1 + 2ζ1η1(δ)

λ1(δ)1/2 + η1(δ)
2

λ1(δ)
+

n∑
k=2

ζ 2
1 ξ2

k λ1(δ)

λk(δ)

+2
n∑

k=2

ζ1ξkηk(δ)λ1(δ)
1/2

λk(δ)
+

n∑
k=2

ηk(δ)
2

λk(δ)

→ ζ 2
1 + 2ζ1α1 + α2

1 +
n∑

k=2

α2
k

as δ → 0. Due to (iii) and (iv), this convergence is uniform on K . Therefore, we
have

lim
δ→0

I (ζ1, δ) = ζ n−1
1 · voln−1(Z̃) · e−(ζ1+α1)

2/2 · e−(α2
2+···+α2

n)/2

for all ζ1 > 0.

Due to (34) and voln−1(Z(1, δ)) → voln−1(Z̃), we can now apply the dominated
convergence theorem to pass to the limit δ → 0 in (33), and this furnishes

lim
δ→0

∫
Z+

e−(z+d(δ))tD(δ)(z+d(δ))/2 dz

= voln−1(Z̃) · e−(α2
2+···+α2

n)/2 ·
∫ ∞

0
ζ n−1

1 e−(ζ1+α1)
2/2 dζ1

= voln−1(Z̃) · e−(α2
2+···+α2

n)/2 ·
∫ ∞
α1

(s − α1)
n−1e−s2/2 ds. �

We close this section with a corollary to Proposition 4.1. In our applications
of the above result, we are not only interested in the asymptotic behavior of P(δ)

as defined in (28), that is, for the fixed sign sequence (s1, . . . , sn), but also in the
corresponding probability for the negative sign sequence (−s1, . . . ,−sn).

More precisely, if T (δ) = (T1(δ), . . . , Tn(δ))
t ∈ R

n denotes again a one-
parameter family of R

n-valued random Gaussian variables over a probability
space (�, F ,P), indexed by δ > 0, and if we choose both a sign sequence (s1, . . . ,
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sn) ∈ {±1}n and a one-parameter family τ(δ) ∈ R
n of threshold vectors, then we

are interested in the asymptotic behavior as δ → 0 of the probability

P ±(δ) = P
{
sj
(
Tj (δ) − τj (δ)

)≥ 0 for all j = 1, . . . , n
}

(35)
+ P

{
sj
(
Tj (δ) − τj (δ)

)≤ 0 for all j = 1, . . . , n
}
.

This is the subject of the following corollary.

COROLLARY 4.3. Let (s1, . . . , sn) ∈ {±1}n denote a fixed sign sequence,
let τ(δ) ∈ R

n denote a threshold vector, and consider a one-parameter fam-
ily T (δ), δ > 0, of R

n-valued random Gaussian variables over a probability
space (�, F ,P) which satisfies all the assumptions of Proposition 4.1. Then the
probability P ±(δ) defined in (35) satisfies

lim
δ→0

P ±(δ) ·
√

detC(δ)

λ1(δ)n
= �(n/2) · S±

α

2 · πn/2 · (n − 1)! ·
∣∣∣∣∣

n∏
j=1

v̄1j

∣∣∣∣∣
−1

,(36)

where S±
α = Sα + S−α , with α as in (29) and Sα as in (30). Moreover, for the

special case n = 3 one obtains

S±
α = 2e−(α2

2+α2
3)/2 · (1 + α2

1).(37)

PROOF. One only has to apply Proposition 4.1 twice—first with the given sign
vector (s1, . . . , sn), and then with the sign vector (−s1, . . . ,−sn). Notice that in
the latter case, we have to use the eigenvector −v1(δ) instead of v1(δ), which leads
to −αk instead of αk in (29); everything else remains unchanged. This immediately
implies (36). As for (37), one only has to notice that∫ ∞

α1

e−s2/2 ds +
∫ ∞
−α1

e−s2/2 ds =
∫ ∞
−∞

e−s2/2 ds = √
2π

and employ Remark 4.2. �

5. Sampling based on spatial correlations. The goal of this section is the
proof of Theorem 1.4. To do this, we need to relate the spatial correlation func-
tion R to local probability asymptotics. For this, we use the following lemma.

LEMMA 5.1. Consider a Gaussian random field u : [a, b]×� → R satisfying
(G1) and (G2). For x ∈ [a, b) and sufficiently small values of δ > 0, define the
random vector T (δ) = (T1(δ), T2(δ), T3(δ))

t via

T1(δ) = u(x), T2(δ) = u

(
x + δ

2

)
and T3(δ) = u(x + δ).(38)
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Then T is a centered Gaussian random variable with positive definite covari-
ance matrix C(δ). Moreover, if we denote the eigenvalues of C(δ) by 0 < λ1(δ) ≤
λ2(δ) ≤ λ3(δ), then

λ1(δ) = det R(x)

96Rm
3,3(x)

· δ4 + O(δ5),

λ2(δ) = Rm
3,3(x)

2R0,0(x)
· δ2 + O(δ3),

λ3(δ) = 3R0,0(x) + O(δ),

where we use the notation introduced in (3), (4) and (5). In addition, we can choose
the normalized eigenvectors v1(δ), v2(δ) and v3(δ) corresponding to these eigen-
values in such a way that

lim
δ→0

v1(δ) = 1√
6

⎛⎝ 1
−2
1

⎞⎠ , lim
δ→0

v2(δ) = 1√
2

⎛⎝ 1
0

−1

⎞⎠ ,

lim
δ→0

v3(δ) = 1√
3

⎛⎝1
1
1

⎞⎠ .

Finally, for a C3-function μ : [a, b] → R define the vector τ(δ) = (τ1(δ), τ2(δ),

τ3(δ))
t via

τ1(δ) = μ(x), τ2(δ) = μ

(
x + δ

2

)
and τ3(δ) = μ(x + δ).(39)

Then

τ(δ) · v1(δ) = Rm
3,1(x)μ(x) − Rm

3,2(x)μ′(x) + Rm
3,3(x)μ′′(x)

4
√

6Rm
3,3(x)

· δ2 + O(δ3),

τ (δ) · v2(δ) = R1,0(x)μ(x) − R0,0(x)μ′(x)√
2R0,0(x)

· δ + O(δ2),

τ (δ) · v3(δ) = √
3 · μ(x) + O(δ).

PROOF. Due to our assumptions on u, the vector T (δ) is normally distributed
with mean 0 ∈ R

3 and covariance matrix C(δ) ∈ R
3×3 given by

C(δ) =
⎛⎝ r(0,0) r(0, δ/2) r(0, δ)

r(0, δ/2) r(δ/2, δ/2) r(δ/2, δ)

r(0, δ) r(δ/2, δ) r(δ, δ)

⎞⎠ ,

where we use the abbreviation

r(δ1, δ2) = R(x + δ1, x + δ2).
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For (δ1, δ2) → 0, the function r can be expanded as

r(δ1, δ2) = R0,0(x) + R1,0(x)δ1 + R1,0(x)δ2 + R2,0(x)

2
δ2

1 + R1,1(x)δ1δ2

+ R2,0(x)

2
δ2

2 + R3,0(x)

6
δ3

1 + R2,1(x)

2
δ2

1δ2 + R2,1(x)

2
δ1δ

2
2

+ R3,0(x)

6
δ3

2 + O(|(δ1, δ2)|4),
where the Rk,	 where defined in (3). Furthermore, (G2) implies that we have the
strict inequalities

R0,0(x) > 0, Rm
3,3(x) > 0 as well as det R(x) > 0.

These strict inequalities ensure that in all of the expansions derived below the
leading order coefficients are positive.

Using the above expansion of r , the determinant of the covariance matrix C(δ)

of the random vector T (δ) can be written as

detC(δ) = 1
64 · det R(x) · δ6 + O(δ7),

that is, the covariance matrix is positive definite for sufficiently small δ > 0. Fur-
thermore, by applying the Newton polygon method [26, 28] to the characteristic
polynomial det(C(δ)−λI) it can be shown that in the limit δ → 0 the three eigen-
values λk(δ), for k = 1,2,3, of C(δ) are given by the expansions in the formulation
of Lemma 5.1.

We now turn our attention to the asymptotic statements concerning the eigen-
vectors of the covariance matrix. According to the form of C(δ), we have

lim
δ→0

C(δ) =
⎛⎝R0,0(x) R0,0(x) R0,0(x)

R0,0(x) R0,0(x) R0,0(x)

R0,0(x) R0,0(x) R0,0(x)

⎞⎠ ,

where the limit has a double eigenvalue 0, as well as the simple eigenvalue
3R0,0(x) with normalized eigenvector (1,1,1)t/31/2. Due to standard results on
the perturbation of simple eigenvalues and corresponding eigenvectors [30], this
implies that v3(δ) can be chosen as in the formulation of the lemma.

In order to determine the asymptotic behavior of the eigenvector corresponding
to λ1, we consider the adjoint of the covariance matrix, whose expansion is given
by

adjC(δ) = Rm
3,3(x)

4
·
⎛⎝ 1 −2 1

−2 4 −2
1 −2 1

⎞⎠ · δ2 + O(δ3).

The constant coefficient matrix has the double eigenvalue 0, as well as the pos-
itive eigenvalue 6 with associated unnormalized eigenvector (1,−2,1)t . Since
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the eigenspace for the largest eigenvalue of the adjoint matrix coincides with
the eigenspace for the eigenvalue λ1(δ) of C(δ), the simplicity of these eigen-
values shows that we can choose a normalized eigenvector v1(δ) for λ1(δ) with
v1(δ) → (1,−2,1)t/61/2 for δ → 0. Finally, the orthogonality of the three eigen-
vectors shows that we can choose a normalized eigenvector v2(δ) for λ2(δ) with
v2(δ) → (1,0,−1)t/21/2 for δ → 0.

We now turn our attention to the asymptotics of the inner products τ(δ) · vk(δ).
Since μ is a C3-function, we can write

τ(δ) = μ(x)

⎛⎝1
1
1

⎞⎠+ μ′(x)

2

⎛⎝0
1
2

⎞⎠ · δ + μ′′(x)

8

⎛⎝0
1
4

⎞⎠ · δ2 + O(δ3),

and this representation immediately furnishes τ(δ) · v3(δ) → 31/2 ·μ(x) as δ → 0.
The statements concerning τ(δ) ·v1(δ) and τ(δ) ·v2(δ) are more involved, and rely
on expansions of the eigenvectors in terms of δ.

As for the first eigenvector, write v1(δ) = (v1,1(δ), v1,2(δ), v1,3(δ))
t , and con-

sider the functions

w1,k(δ) = − 2√
6 · v1,2(δ)

· v1,k(δ) for k = 1,2,3.

Then the vector w1(δ) = (w1,1(δ),w1,2(δ),w1,3(δ))
t is defined for sufficiently

small δ > 0, and for these δ we have

w1,2(δ) = − 2√
6

as well as
(
C(δ) − λ1(δ)I

)
w1(δ) = 0.

Using the abbreviation C(δ) = (ci,j (δ))i,j=1,2,3, the latter system is equivalent to(
c1,1(δ) − λ1(δ)

)
w1,1(δ) + c1,3(δ)w1,3(δ) = 2√

6
· c1,2(δ),

c3,1(δ)w1,1(δ) + (
c3,3(δ) − λ1(δ)

)
w1,3(δ) = 2√

6
· c3,2(δ),

which immediately implies

w1,1(δ) = 2√
6

· (c3,3(δ) − λ1(δ))c1,2(δ) − c3,2(δ)c1,3(δ)

(c1,1(δ) − λ1(δ))(c3,3(δ) − λ1(δ)) − c1,3(δ)c3,1(δ)
,

w1,3(δ) = 2√
6

· (c1,1(δ) − λ1(δ))c3,2(δ) − c1,2(δ)c3,1(δ)

(c1,1(δ) − λ1(δ))(c3,3(δ) − λ1(δ)) − c1,3(δ)c3,1(δ)
.

Expanding the right-hand sides now furnishes

w1(δ) = 1√
6

⎛⎝ 1
−2
1

⎞⎠+
√

6

24
· Rm

3,2(x)

Rm
3,3(x)

⎛⎝ 1
0

−1

⎞⎠ · δ +
⎛⎝w1,1,2

0
w1,3,2

⎞⎠ · δ2 + O(δ3),

with

w1,1,2 + w1,3,2 = 1

4
√

6
· Rm

3,1(x)

Rm
3,3(x)

.
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This finally implies

τ(δ) · w1(δ) = Rm
3,1(x)μ(x) − Rm

3,2(x)μ′(x) + Rm
3,3(x)μ′′(x)

4
√

6Rm
3,3(x)

· δ2 + O(δ3),

and together with

τ(δ) · v1(δ) = −√
6v1,2(δ)

2
· τ(δ) · w1(δ) and lim

δ→0

−√
6v1,2(δ)

2
= 1

this establishes the asymptotic behavior of τ(δ) · v1(δ).
Finally, we turn our attention to the second eigenvector. Following our above

approach, we write v2(δ) = (v2,1(δ), v2,2(δ), v2,3(δ))
t , and consider the functions

w2,k(δ) = 1√
2 · v2,1(δ)

· v2,k(δ) for k = 1,2,3.

Then the vector w2(δ) = (w2,1(δ),w2,2(δ),w2,3(δ))
t is defined for sufficiently

small δ > 0, and for these δ we have

w2,1(δ) = 1√
2

as well as
(
C(δ) − λ2(δ)I

)
w2(δ) = 0.

Using again the abbreviation C(δ) = (ci,j (δ))i,j=1,2,3, the latter system is equiva-
lent to (

c2,2(δ) − λ2(δ)
)
w2,2(δ) + c2,3(δ)w2,3(δ) = − 1√

2
· c2,1(δ),

c3,2(δ)w2,2(δ) + (
c3,3(δ) − λ2(δ)

)
w2,3(δ) = − 1√

2
· c3,1(δ),

which immediately implies

w2,2(δ) = − 1√
2

· (c3,3(δ) − λ2(δ))c2,1(δ) − c2,3(δ)c3,1(δ)

(c2,2(δ) − λ2(δ))(c3,3(δ) − λ2(δ)) − c2,3(δ)c3,2(δ)
,

w2,3(δ) = − 1√
2

· (c2,2(δ) − λ2(δ))c3,1(δ) − c3,2(δ)c2,1(δ)

(c2,2(δ) − λ2(δ))(c3,3(δ) − λ2(δ)) − c2,3(δ)c3,2(δ)
.

Expanding the right-hand sides now furnishes

w2(δ) = 1√
2

⎛⎝ 1
0

−1

⎞⎠+
⎛⎝ 0

w2,2,1

w2,3,1

⎞⎠ · δ + O(δ2)

with

w2,2,1 + w2,3,1 = 1√
2

· R1,0(x)

R0,0(x)
.

This finally implies

τ(δ) · w2(δ) = R1,0(x)μ(x) − R0,0(x)μ′(x)√
2R0,0(x)

· δ + O(δ2)
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and together with

τ(δ) · v2(δ) = √
2v2,1(δ) · τ(δ) · w2(δ) and lim

δ→0

√
2v2,1(δ) = 1

this establishes the asymptotic behavior of τ(δ) · v2(δ). �

After these preparations, we are finally in a position to prove our second main
result. As mentioned in Section 1, this result provides a general means for deter-
mining the location of sampling points of random fields in such a way that the
topology of the underlying nodal sets is correctly recognized with the largest prob-
ability. In addition, the sampling density can readily be determined from deriva-
tives of the spatial correlation function of the random field.

PROOF OF THEOREM 1.4. Due to our assumptions, the random variable
u(x, ·) :� → R is normally distributed with mean 0 and its variance R0,0(x) is pos-
itive for each x ∈ [a, b] due to (G2). This immediately implies (A1). Furthermore,
(A2) follows readily from [1], Theorem 3.2.1. Thus, in order to apply Theorem 1.2
we only have to verify (A3).

For this, we apply Corollary 4.3 with n = 3 and sign vector (s1, s2, s3) =
(1,−1,1). Fix x ∈ [a, b) and consider the δ-dependent three-dimensional random
vector T (δ) defined in (38). Then according to Lemma 5.1, this random vector
satisfies all of the assumptions of Proposition 4.1 and Corollary 4.3 with

detC(δ) = 1

64
· det R(x) · δ6 + O(δ7) and λ1(δ) = det R(x)

96Rm
3,3(x)

· δ4 + O(δ5)

as well as

α1 = Rm
3,1(x)μ(x) − Rm

3,2(x)μ′(x) + Rm
3,3(x)μ′′(x)

Rm
3,3(x)1/2 det R(x)1/2 ,

α2 = R1,0(x)μ(x) − R0,0(x)μ′(x)

R0,0(x)1/2Rm
3,3(x)1/2 ,

α3 = μ(x)

R0,0(x)1/2 .

Applying Corollary 4.3, we then obtain

lim
δ→0

(
p+1(x, δ) + p−1(x, δ)

) ·√detC(δ)

λ1(δ)3 = 3
√

6

4π
· (1 + α2

1) · e−(α2
2+α2

3)/2,

where we used the formula for S±
α given in (37). In combination with the above

expansions for detC(δ) and λ1(δ), this limit furnishes

p+1(x, δ) + p−1(x, δ) = (1 + α2
1) · e−(α2

2+α2
3)/2

64π
· det R(x)

Rm
3,3(x)3/2 · δ3 + O(δ4).
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Thus, assumption (A3) is satisfied with C0(x) = 3C(x)/4, and Theorem 1.4 follows
now immediately from Theorem 1.2. �

6. Concluding remarks. At first glance, the title of this paper may appear
somewhat misleading or more ambitious than the results delivered. After all, the
techniques of proof are based on classical probabilistic arguments. However, the
results are new and the examples of Section 2 demonstrate that they have interest-
ing nonintuitive implications.

A reasonable question is why were these results not discovered sooner. We be-
lieve that the answer comes from the fact that we are approaching the problem of
optimal sampling from the point of view of trying to obtain topological informa-
tion. This point of view had been taken previously in the work of Adler and Tay-
lor [1, 2]. Their main focus, however, was the estimation of excursion probabilities,
that is, the likelihood that a given random function exceeds a certain threshold.
In [1, 2], it is shown that such excursion probabilities can be well-approximated
by studying the geometry of random sub- or super-level sets of random fields.
More precisely, it is shown that the expected value of the Euler characteristic of
super-level sets approximates excursion probabilities for large values of the thresh-
old, and that it is possible to derive explicit formulas for the expected values of the
Euler characteristic and other intrinsic volumes of nodal domains of random fields.

All of the above results concern the intrinsic volumes of the nodal domains—
which are additive set functionals, and therefore computable via local consider-
ations alone [20, 25]. In contrast, in previous work [14] we have demonstrated
that the homological analysis of patterns of nodal sets can uncover phenomena
that cannot be captured using for example only the Euler characteristic. The more
detailed information on the geometry of patterns encoded in homology is an inher-
ently global quantity and cannot be computed through local considerations alone.
On the other hand, recent computational advances allow for the fast computation
of homological information based on discretized nodal domains. For this reason,
we focus on the interface between the discretization and the underlying nodal do-
main, rather than the homology of the nodal domain directly, and then quantify the
likelihood of error in the probabilistic setting. In this sense, our approach comple-
ments the above-mentioned results on the geometry of random fields by Adler and
Taylor [1, 2].

Given the current activity surrounding the ideas of using topological methods
for data analysis and remote sensing [8, 9, 15], we believe the importance of this
perspective will grow. Thus, the title of our paper is chosen in part to encourage
the interested reader to consider the natural generalizations of this work to higher-
dimensional domains where the question becomes one of optimizing the homology
of the generalized nodal sets in terms of homology computed using a complex
derived from a nonuniform sampling of space.
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