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AN ASYMPTOTIC SAMPLING FORMULA FOR THE
COALESCENT WITH RECOMBINATION
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Ewens sampling formula (ESF) is a one-parameter family of probabil-
ity distributions with a number of intriguing combinatorial connections. This
elegant closed-form formula first arose in biology as the stationary proba-
bility distribution of a sample configuration at one locus under the infinite-
alleles model of mutation. Since its discovery in the early 1970s, the ESF has
been used in various biological applications, and has sparked several inter-
esting mathematical generalizations. In the population genetics community,
extending the underlying random-mating model to include recombination has
received much attention in the past, but no general closed-form sampling for-
mula is currently known even for the simplest extension, that is, a model with
two loci. In this paper, we show that it is possible to obtain useful closed-form
results in the case the population-scaled recombination rate ρ is large but not
necessarily infinite. Specifically, we consider an asymptotic expansion of the
two-locus sampling formula in inverse powers of ρ and obtain closed-form
expressions for the first few terms in the expansion. Our asymptotic sampling
formula applies to arbitrary sample sizes and configurations.

1. Introduction. The probability of a sample configuration provides a useful
ground for analyzing genetic data. Popular applications include obtaining maxi-
mum likelihood estimates of model parameters and performing ancestral inference
[see Stephens (2001)]. In principle, model-based full-likelihood analyses, such as
that based on the coalescent [Kingman (1982a, 1982b)], should be among the most
powerful methods since they make full use of the data. However, in most cases, it
is intractable to obtain a closed-form formula for the probability of a given data
set. A well-known exception to this hurdle is the Ewens sampling formula (ESF),
which describes the stationary probability distribution of a sample configuration
under the one-locus infinite-alleles model in the diffusion limit [Ewens (1972)].
Notable biological applications of this closed-form formula include the test of se-
lective neutrality [see Watterson (1977), Slatkin (1994, 1996)]. Hoppe (1984) pro-
vided a Pólya-like urn model interpretation of the formula, and recently Griffiths
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and Lessard (2005) provided a new combinatorial proof of the ESF and extended
the framework to obtain new results for the case with a variable population size.
We refer the reader to the latter paper for a nice summary of previous works related
to the ESF. Note that the ESF also arises in several interesting contexts outside bi-
ology, including random partition structures and Bayesian statistics; see Arratia,
Barbour and Tavaré (2003) for examples of intricate combinatorial connections.
The ESF is a special case of the two-parameter sampling formula constructed by
Pitman (1992, 1995) for exchangeable random partitions.

Golding (1984) considered generalizing the infinite-alleles model to include re-
combination and constructed a recursion relation satisfied by the two-locus sam-
pling probability distribution at stationarity in the diffusion limit. Ethier and Grif-
fiths (1990) later undertook a more mathematical analysis of the two-locus model
and provided several interesting results. However, to date, a general closed-form
formula for the two-locus sampling distribution remains unknown. Indeed, it is
widely recognized that recombination adds a formidably challenging layer of com-
plexity to population genetics analysis. Because obtaining exact analytic results in
the presence of recombination is difficult, recent research has focused on devel-
oping sophisticated and computationally-intensive Monte Carlo techniques. Ex-
amples of such techniques applied to the coalescent include Monte Carlo simula-
tions [see Hudson (1985, 2001)], importance sampling [see Griffiths and Marjo-
ram (1996), Stephens and Donnelly (2000), Fearnhead and Donnelly (2001), De
Iorio and Griffiths (2004a, 2004b), Griffiths, Jenkins and Song (2008)] and Markov
chain Monte Carlo methods [see Kuhner, Yamato and Felsenstein (2000), Nielsen
(2000), Wang and Rannala (2008)].

Being the simplest model with recombination, the two-locus case has been ex-
tensively studied in the past [Griffiths (1981), Golding (1984), Hudson (1985),
Ethier and Griffiths (1990), Griffiths (1991)] and a renewed wave of interest was
recently sparked by Hudson (2001), who proposed a composite likelihood method
which uses two-locus sampling probabilities as building blocks. LDhat, a widely-
used software package for estimating recombination rates, is based on this com-
posite likelihood approach, and it has been used to produce a fine-scale map of
recombination rate variation in the human genome [McVean et al. (2004), Myers
et al. (2005)]. LDhat assumes a symmetric diallelic recurrent mutation model at
each locus and relies on the importance sampling scheme proposed by Fearnhead
and Donnelly (2001) for the coalescent with recombination, to generate exhaustive
lookup tables containing two-locus probabilities for all inequivalent sample con-
figurations and a range of relevant parameter values. This process of generating
exhaustive lookup tables is very computationally expensive. A fast and accurate
method of estimating two-locus probabilities would be of practical value.

In this paper, we revisit the tantalizing open question of whether a closed-form
sampling formula can be found for the coalescent with recombination. We show
that, at least for the two-locus infinite-alleles model with the population-scaled re-
combination rate ρ large but not necessarily infinite, it is possible to obtain useful
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closed-form analytic results. Note that the aforementioned Monte Carlo methods
generally become less efficient as ρ increases. Those methods involve sampling
a large collection of genealogical histories consistent with the observed sample
configuration, and, when ρ is large, the sampled genealogies tend to be very com-
plicated; they typically contain many recombination events, and it may take a long
time for every locus to reach a most recent common ancestor. However, contrary
to this increased complexity in the standard coalescent, we actually expect the
evolutionary dynamics to be easier to describe for large ρ, since the loci under
consideration would then be less dependent. Hence, it seems reasonable to conjec-
ture that there may exist a stochastic process simpler than the standard coalescent
with recombination that describes the relevant degrees of freedom in the large ρ

limit. We believe that our sampling formula may provide some hints as to what
that dual process should be.

The work discussed here generalizes previous results [Golding (1984), Ethier
and Griffiths (1990)] for ρ = ∞, in which case the loci become independent and
the two-locus sampling distribution is given by a product of one-locus ESFs. Our
main results can be summarized as follows.

Main results. Consider the diffusion limit of the two-locus infinite-alleles
model with population-scaled mutation rates θA and θB at the two loci. For a sam-
ple configuration n (defined later in the text), we use q(n | θA, θB,ρ) to denote the
probability of observing n given the parameters θA, θB and ρ. For an arbitrary n,
our goal is to find an asymptotic expansion of q(n | θA, θB,ρ) in inverse powers
of ρ, that is, for large values of the recombination rate ρ, our goal is to find

q(n | θA, θB,ρ) = q0(n | θA, θB) + q1(n | θA, θB)

ρ
+ q2(n | θA, θB)

ρ2 + O

(
1

ρ3

)
,

where q0, q1, and q2 are independent of ρ. As mentioned before, q0(n | θA, θB)

is given by a product of one-locus ESFs. In this paper, we derive a closed-form
formula for the first-order term q1(n | θA, θB). Further, we show that the second-
order term q2(n | θA, θB) can be decomposed into two parts, one for which we
obtain a closed-form formula and the other that satisfies a simple strict recursion.
The latter can be easily evaluated using dynamic programming. Details of these
results are described in Section 3. In a similar vein, in Section 4, we obtain a
simple asymptotic formula for the joint probability distribution of the number of
alleles observed at the two loci.

We remark that our work has practical value in genetic analysis. While this
paper was under review, we applied the technique developed here to obtain anal-
ogous results for an arbitrary finite-alleles recurrent mutation model. See Jenkins
and Song (2009) for details. In that paper, we performed an extensive assessment
of the accuracy of our results for a particular finite-alleles model of mutation, and
showed that they may be accurate even for moderate values of ρ, including a range
that is of biological interest. The accuracy (not discussed here) of our results for
the infinite-alleles model is very similar to that finite-alleles case.
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2. Preliminaries. In this section, we review the ESF for the one-locus
infinite-alleles model, as well as Golding’s (1984) recursion relation for the two-
locus generalization. Our notational convention generally follows that of Ethier
and Griffiths (1990).

Given a positive integer k, [k] denotes the k-set {1, . . . , k}. For a nonnegative
real number x and a positive integer n, (x)n := x(x +1) · · · (x +n−1) denotes the
nth ascending factorial of x. We use 0 to denote either a vector or a matrix of all
zeroes; it will be clear from context which is intended. Throughout, we consider
the diffusion limit of a neutral haploid exchangeable model of random mating with
constant population size 2N . We refer to the haploid individuals in the population
as gametes.

2.1. Ewens sampling formula for the one-locus model. In the one-locus
model, a sample configuration is denoted by a vector of multiplicities n =
(n1, . . . , nK), where ni denotes the number of gametes with allele i at the lo-
cus and K denotes the total number of distinct allelic types observed. We use n

to denote
∑K

i=1 ni , the total sample size. Under the infinite-alleles model, any two
gametes can be compared to determine whether or not they have the same allele,
but it is not possible to determine how the alleles are related when they are differ-
ent. Therefore, allelic label is arbitrary. The probability of a mutation event at the
locus per gamete per generation is denoted by u. In the diffusion limit, N → ∞
and u → 0 with the population-scaled mutation rate θ = 4Nu held fixed. Each
mutation gives rise to a new allele that has never been seen before in the popula-
tion. For the one-locus model just described, Ewens (1972) obtained the following
result.

PROPOSITION 2.1 (Ewens). At stationarity in the diffusion limit of the one-
locus infinite-alleles model with the scaled mutation parameter θ , the probability
of an unordered sample configuration n = (n1, . . . , nK) is given by

p(n | θ) = n!
n1 · · ·nK

1

α1! · · ·αn!
θK

(θ)n
,(2.1)

where αi denotes the number of allele types represented i times, that is, αi := |{k |
nk = i}|.

Let An denote an ordered configuration of n sequentially sampled gametes such
that the corresponding unordered configuration is given by n. By exchangeability,
the probability of An is invariant under all permutations of the sampling order.
Hence, we can write this probability of an ordered sample as q(n) without ambi-
guity. It is given by

q(n | θ) = p(n | θ)

[
n!∏K

i=1 ni !
1

α1! · · ·αn!
]−1

=
[

K∏
i=1

(ni − 1)!
]

θK

(θ)n
,(2.2)
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which follows from the fact that there are n!∏K
i=1 ni !

1
α1!···αn! orderings correspond-

ing to n [Hoppe (1984)]. To understand what we mean by ordered and unordered
sampling configurations, it is helpful to relate the Ewens sampling formula to the
theory of random partitions. If the gametes are labeled in order of appearance by
1, . . . , n, then the resulting sample configuration defines a random partition of [n],
with gametes belonging to the same block if and only if they have the same al-
lele. The quantity q(n | θ) is then the probability of a particular partition of [n]
whose block sizes are given by the entries in n, while the quantity p(n | θ) is the
probability of observing any partition of [n] with these block sizes. For example,
if n = (2,1,1), then there are six partitions of [4] with these block sizes, and so
p(n | θ) = 6q(n | θ). It is often more convenient to work with an ordered sample
than with an unordered sample. In this paper, we will work with the former; that
is, we will work with q(n | θ) rather than p(n | θ).

In the coalescent process going backward in time, at each event a lineage is lost
either by coalescence or mutation. By consideration of the most recent event back
in time, one can show that q(n | θ) satisfies

n(n − 1 + θ)q(n | θ) =
K∑

i=1

ni(ni − 1)q(n − ei | θ)

(2.3)

+ θ

K∑
i=1

δni,1q(n − ei | θ),

where δni,1 is the Kronecker delta and ei is a unit vector with the ith entry equal to
one and all other entries equal to zero. The boundary condition is q(ei | θ) = 1 for
all i ∈ [K], and q(n | θ) is defined to be zero if n contains any negative component.
It can be easily verified that the formula of q(n | θ) shown in (2.2) satisfies the
recursion (2.3).

Ewens (1972) also obtained the following result regarding the number of allelic
types.

PROPOSITION 2.2 (Ewens). Let Kn denote the number of distinct allelic types
observed in a sample of size n. Then

P(Kn = k | θ) = s(n, k)θk

(θ)n
,(2.4)

where s(n, k) are the unsigned Stirling numbers of the first kind. Note that (θ)n =
s(n,1)θ + s(n,2)θ2 + · · · + s(n,n)θn.

It follows from (2.1) and (2.4) that Kn is a sufficient statistic for θ .
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2.2. Golding’s recursion for the two-locus case. Golding (1984) first gener-
alized the one-locus recursion (2.3) to two loci, and Ethier and Griffiths (1990)
later undertook a more mathematical study of the model. We denote the two loci
by A and B , and use θA and θB to denote the respective population-scaled muta-
tion rates. We use K and L to denote the number of distinct allelic types observed
at locus A and locus B , respectively. The population-scaled recombination rate is
denoted by ρ = 4Nr , where r is the probability of a recombination event between
the two loci per gamete per generation. A key observation is that to obtain a closed
system of equations, the type space must be extended to allow some gametes to be
specified only at one of the two loci.

DEFINITION 2.1 (Extended sample configuration for two loci). The two-locus
sample configuration is denoted by n = (a,b, c), where a = (a1, . . . , aK) with ai

being the number of gametes with allele i at locus A and unspecified alleles at
locus B , b = (b1, . . . , bL) with bj being the number of gametes with unspecified
alleles at locus A and allele j at locus B , and c = (cij ) is a K × L matrix with cij

being the multiplicity of gametes with allele i at locus A and allele j at locus B .
Further, we define

a =
K∑

i=1

ai, ci· =
L∑

j=1

cij , c =
K∑

i=1

L∑
j=1

cij ,

b =
L∑

j=1

bj , c·j =
K∑

i=1

cij , n = a + b + c.

We use q(a,b, c) to denote the sampling probability of an ordered sample with
configuration (a,b, c). For ease of notation, we do not show the dependence on
parameters. For 0 ≤ ρ < ∞, Golding’s (1984) recursion for q(a,b, c) takes the
following form:

[n(n − 1) + θA(a + c) + θB(b + c) + ρc]q(a,b, c)

=
K∑

i=1

ai(ai − 1 + 2ci·)q(a − ei ,b, c)

+
L∑

j=1

bj (bj − 1 + 2c·j )q(a,b − ej , c)

+
K∑

i=1

L∑
j=1

[cij (cij − 1)q(a,b, c − eij )

+ 2aibjq(a − ei ,b − ej , c + eij )](2.5)
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+ θA

K∑
i=1

[
L∑

j=1

δai+ci·,1δcij ,1q(a,b + ej , c − eij )

+ δai,1δci·,0q(a − ei ,b, c)

]

+ θB

L∑
j=1

[
K∑

i=1

δbj+c·j ,1δcij ,1q(a + ei ,b, c − eij )

+ δbj ,1δc·j ,0q(a,b − ej , c)

]

+ ρ

K∑
i=1

L∑
j=1

cij q(a + ei ,b + ej , c − eij ).

Relevant boundary conditions are q(ei ,0,0) = q(0, ej ,0) = 1 for all i ∈ [K] and
j ∈ [L]. For notational convenience, we deviate from Ethier and Griffiths (1990)
and allow each summation to range over all allelic types. To be consistent, we
define q(a,b, c) = 0 whenever any entry in a, b or c is negative.

For ease of discussion, we define the following terms.

DEFINITION 2.2 (Degree). The degree of q(a,b, c) is defined to be a+b+2c.

DEFINITION 2.3 (Strictly recursive). We say that a recursion relation is
strictly recursive if it contains only a single term of the highest degree.

Except in the special case ρ = ∞, a closed-form solution for q(a,b, c) is not
known. Notice that the terms q(a−ei ,b−ej , c+eij ) and q(a+ei ,b+ej , c−eij )

on the right-hand side of (2.5) have the same degree as q(a,b, c) on the left-hand
side. Therefore, (2.5) is not strictly recursive. For each degree, we therefore need to
solve a system of coupled equations, and this system grows very rapidly with n. For
example, for a sample with a = 0, b = 0 and c = 40, computing q(0,0, c) requires
solving a system of more than 20,000 coupled equations [Hudson (2001)]; this is
around the limit of sample sizes that can be handled in a reasonable time. In the
following section, we revisit the problem of obtaining a closed-form formula for
q(a,b, c) and obtain an asymptotic expansion for large ρ.

3. An asymptotic sampling formula for the two-locus case. For large ρ,
our objective is to find an asymptotic expansion of the form

q(a,b, c) = q0(a,b, c) + q1(a,b, c)
ρ

+ q2(a,b, c)
ρ2 + O

(
1

ρ3

)
,(3.1)

where q0, q1 and q2 are independent of ρ. Our closed-form formulas will be ex-
pressed using the following notation.
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DEFINITION 3.1. For a given multiplicity vector a = (a1, . . . , aK) with a =∑K
i=1 ai , we define

qA(a) =
[

K∏
i=1

(ai − 1)!
]

θK
A

(θA)a
.(3.2)

Similarly, for a given multiplicity vector b = (b1, . . . , bL) with b = ∑L
i=1 bi , we

define

qB(b) =
[

L∏
j=1

(bj − 1)!
]

θL
B

(θB)b
.(3.3)

As discussed in Section 2.1, qA (respectively, qB ) gives the probability of an or-
dered sample taken from locus A (respectively, B).

DEFINITION 3.2 (Marginal configuration). We use cA = (ci·)i∈[K] and cB =
(c·j )j∈[L] to denote the marginal sample configurations of c restricted to locus A

and locus B , respectively.

The leading-order term q0(a,b, c) is equal to q(a,b, c) when ρ = ∞, in which
case the two loci are independent. Theorem 2.3 of Ethier and Griffiths (1990) states
that q0(0,0, c) = qA(cA)qB(cB). More generally, one can obtain the following
result for the leading-order contribution.

PROPOSITION 3.1. In the asymptotic expansion (3.1) of the two-locus sam-
pling formula, the zeroth-order term q0(a,b, c) is given by

q0(a,b, c) = qA(a + cA)qB(b + cB).(3.4)

Although this result is intuitively obvious, in Section 5.1 we provide a detailed
new proof, since it well illustrates our general strategy. One of the main results of
this paper is a closed-form formula for the next order term q1(a,b, c). The case
with c = 0 admits a particularly simple solution.

LEMMA 3.1. In the asymptotic expansion (3.1) of the two-locus sampling for-
mula, the first-order term satisfies

q1(a,b,0) = 0

for arbitrary a and b.

That q1(a,b,0) vanishes is not expected a priori. Below we shall see that
q2(a,b,0) �= 0 in general. For an arbitrary configuration matrix c of nonnegative
integers, we obtain the following closed-form formula for q1(a,b, c).
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THEOREM 3.1. In the asymptotic expansion (3.1) of the two-locus sampling
formula, the first-order term q1(a,b, c) is given by

q1(a,b, c) =
(

c

2

)
qA(a + cA)qB(b + cB)

− qB(b + cB)

K∑
i=1

(
ci·
2

)
qA(a + cA − ei )

(3.5)

− qA(a + cA)

L∑
j=1

(
c·j
2

)
qB(b + cB − ej )

+
K∑

i=1

L∑
j=1

(
cij

2

)
qA(a + cA − ei )q

B(b + cB − ej )

for arbitrary configurations a,b, c of nonnegative integers.

Lemma 3.1 is used in proving Theorem 3.1. A proof of Theorem 3.1 is pro-
vided in Section 5.2, while a proof of Lemma 3.1 is given in Section 5.3. Note
that the functional form of q0(a,b, c) and q1(a,b, c) in (3.4) and (3.5) has no ex-
plicit dependence on mutation; that is, the dependence on mutation is completely
absorbed into the marginal one-locus probabilities. It turns out that (3.4) and (3.5)
are universal in that they also apply to an arbitrary finite-alleles model of mutation,
with qA and qB replaced with appropriate marginal one-locus probabilities for the
assumed mutation model. See Jenkins and Song (2009) for details.

In principle, similar arguments can be used to find the (j + 1)th-order term
given the j th, although a general expression does not seem to be easy to obtain. In
Section 5.4, we provide a proof of the following result for q2(a,b, c).

THEOREM 3.2. In the asymptotic expansion (3.1) of the two-locus sampling
formula, the second-order term q2(a,b, c) is of the form

q2(a,b, c) = q2(a + cA,b + cB,0) + σ(a,b, c),(3.6)

where σ(a,b, c) is given by the analytic formula shown in the Appendix, and
q2(a,b,0) satisfies the following strict recursion:

[a(a + θA − 1) + b(b + θB − 1)]q2(a,b,0)

=
K∑

i=1

ai(ai − 1)q2(a − ei ,b,0) +
L∑

j=1

bj (bj − 1)q2(a,b − ej ,0)

+ θA

K∑
i=1

δai,1q2(a − ei ,b,0) + θB

L∑
j=1

δbj ,1q2(a,b − ej ,0)(3.7)
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+ 4

[
aθA − (θA + a − 1)

K∑
i=1

δai,1

]

×
[
bθB − (θB + b − 1)

L∑
j=1

δbj ,1

]
qA(a)qB(b)

with boundary conditions q2(ei ,0,0) = q2(0, ej ,0) = 0 for all i ∈ [K] and j ∈
[L].

In contrast to q1(a,b,0) (cf. Lemma 3.1), it turns out that q2(a,b,0) does not
vanish in general. We do not have an analytic solution for q2(a,b,0), but note that
(3.7) is strictly recursive and that it can be easily solved numerically using dynamic
programming. Numerical study (not shown) suggests that the relative contribution
of q2(a+cA,b+cB,0) to q(a,b, c) is in most cases extremely small. [See Jenkins
and Song (2009) for details.] Deriving an analytic expression for σ(a,b, c) in (3.6)
is a laborious task, as the long equation in the Appendix suggests. We have written
a computer program to verify numerically that our analytic result is correct.

4. Joint distribution of the number of alleles at the two loci in a sample.
Following the same strategy as in the previous section, we can obtain the asymp-
totic behavior of the joint distribution of the number of alleles observed at the
two loci in a sample. To make explicit the dependence of these numbers on the
sample size, write the number of alleles at locus A as Ka,b,c and the number of
alleles at locus B as La,b,c. Ethier and Griffiths (1990) proved that the probability
p(a, b, c;k, l) := P(Ka,b,c = k,La,b,c = l) satisfies the recursion

[n(n − 1) + θA(a + c) + θB(b + c) + ρc]p(a, b, c;k, l)

= a(a − 1 + 2c)p(a − 1, b, c;k, l) + b(b − 1 + 2c)p(a, b − 1, c;k, l)

+ c(c − 1)p(a, b, c − 1;k, l) + 2abp(a − 1, b − 1, c + 1;k, l)

+ θA[ap(a − 1, b, c;k − 1, l) + cp(a, b + 1, c − 1;k − 1, l)](4.1)

+ θB[bp(a, b − 1, c;k, l − 1) + cp(a + 1, b, c − 1;k, l − 1)]
+ ρcp(a + 1, b + 1, c − 1;k, l),

where p(a, b, c;k, l) = 0 if a < 0, b < 0, c < 0, k < 0, l < 0, a = b = c = 0, or
k = l = 0. Equation (4.1) has a unique solution satisfying the initial conditions

p(1,0,0;k, l) = δk,1δl,0, p(0,1,0;k, l) = δk,0δl,1

for k, l = 0,1, . . . , n.
As with Golding’s recursion, equation (4.1) can be solved numerically, but

quickly becomes computationally intractable with growing n. The only exception
is the special case of ρ = ∞, for which the distribution is given by the product of
(2.4) for each locus. In what follows, we use the following notation in writing an
asymptotic series for p(a, b, c;k, l).
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DEFINITION 4.1. For loci A and B , respectively, we define the analogues of
(2.4) as

pA(a;k) = s(a, k)θk
A

(θA)a
(4.2)

and

pB(b; l) = s(b, l)θ l
B

(θB)b
,(4.3)

where s(a, k) and s(b, l) are the Stirling numbers of the first kind.

We pose the expansion

p(a, b, c;k, l) = p0(a, b, c;k, l) + p1(a, b, c;k, l)

ρ
+ O

(
1

ρ2

)
(4.4)

for large ρ. Then, in Section 5.5, we prove the following result for the zeroth-order
term.

PROPOSITION 4.1. For an asymptotic expansion of the form (4.4) satisfying
the recursion (4.1), p0(a, b, c;k, l) is given by

p0(a, b, c;k, l) = pA(a + c;k)pB(b + c; l).(4.5)

Similar to Lemma 3.1, we obtain the following vanishing result for the first-
order term in the case of c = 0.

LEMMA 4.1. For an asymptotic expansion of the form (4.4) satisfying the
recursion (4.1), we have

p1(a, b,0;k, l) = 0.

Using this lemma, it is then possible to obtain the following result for an arbi-
trary c.

PROPOSITION 4.2. For an asymptotic expansion of the form (4.4) satisfying
the recursion (4.1), p1(a, b, c;k, l) is given by

p1(a, b, c;k, l) = c(c − 1)

2
[pA(a + c;k) − pA(a + c − 1;k)]

(4.6)
× [pB(b + c; l) − pB(b + c − 1; l)].

Proofs of Proposition 4.2 and Lemma 4.1 are provided in Sections 5.6 and 5.7,
respectively.

5. Proofs of main results. In what follows, we provide proofs of the results
mentioned in the previous two sections.
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5.1. Proof of Proposition 3.1. First, assume c > 0. Substitute the expansion
(3.1) into Golding’s recursion (2.5), divide by ρc and let ρ → ∞. We are then left
with

q0(a,b, c) =
K∑

i=1

L∑
j=1

cij

c
q0(a + ei ,b + ej , c − eij ).(5.1)

Now, applying (5.1) repeatedly gives

q0(a,b, c) = ∑
orderings

∏
(i,j)∈[K]×[L] cij !

c! q0(a + cA,b + cB,0),

where the summation is over all distinct orderings of the c gametes with mul-
tiplicity c = (cij ). There are c!∏

(i,j) cij ! such orderings and since the summand is

independent of the ordering, we conclude

q0(a,b, c) = q0(a + cA,b + cB,0).(5.2)

Clearly, (5.2) also holds for c = 0. From a coalescent perspective, this equation
tells us that any gamete with specified alleles (i.e., “carrying ancestral material”)
at both loci must undergo recombination instantaneously backward in time.

Now, by substituting the asymptotic expansion (3.1) with c = 0 into Golding’s
recursion (2.5) and letting ρ → ∞, we obtain

[n(n − 1) + θAa + θBb]q0(a,b,0)

=
K∑

i=1

ai(ai − 1)q0(a − ei ,b,0) +
L∑

j=1

bj (bj − 1)q0(a,b − ej ,0)

(5.3)

+ 2
K∑

i=1

L∑
j=1

aibjq0(a − ei ,b − ej , eij )

+ θA

K∑
i=1

δai ,1q0(a − ei ,b,0) + θB

L∑
j=1

δbj ,1q0(a,b − ej ,0).

Equation (5.2) implies q0(a − ei ,b − ej , eij ) = q0(a,b,0), so with a bit of rear-
ranging we are left with

[a(a + θA − 1) + b(b + θB − 1)]q0(a,b,0)

=
K∑

i=1

ai(ai − 1)q0(a − ei ,b,0) +
L∑

j=1

bj (bj − 1)q0(a,b − ej ,0)(5.4)

+ θA

K∑
i=1

δai ,1q0(a − ei ,b,0) + θB

L∑
j=1

δbj ,1q0(a,b − ej ,0)
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with boundary conditions q0(ei ,0,0) = q0(0, ej ,0) = 1 for all i ∈ [K] and
j ∈ [L]. Noting that (5.4) is the sum of two independent recursions of the
form (2.3), one for each locus and each with appropriate boundary condition, we
conclude that q0(a,b,0) is given by

q0(a,b,0) = qA(a)qB(b),(5.5)

a product of two (ordered) ESFs. It is straightforward to verify that (5.5) satis-
fies (5.4). Finally, using (5.2) and (5.5), we arrive at (3.4).

5.2. Proof of Theorem 3.1. First, assume c > 0. Substitute the asymptotic ex-
pansion (3.1) into Golding’s recursion (2.5), eliminate terms of order ρ by ap-
plying (5.1), and let ρ → ∞. After applying (5.2) to the remaining terms and
invoking (5.4), with some rearrangement we obtain

cq1(a,b, c) −
K∑

i=1

L∑
j=1

cij q1(a + ei ,b + ej , c − eij )

= c(c − 1)q0(a + cA,b + cB,0)

−
K∑

i=1

ci·(ci· − 1)q0(a + cA − ei ,b + cB,0)

−
L∑

j=1

c·j (c·j − 1)q0(a + cA,b + cB − ej ,0)

+
K∑

i=1

L∑
j=1

cij (cij − 1)q0(a + cA − ei ,b + cB − ej ,0).

Now, by utilizing (5.5), this can be written in the form

q1(a,b, c) = f (a,b, c) +
K∑

i=1

L∑
j=1

cij

c
q1(a + ei ,b + ej , c − eij ),(5.6)

where

f (a,b, c) := (c − 1)qA(a + cA)qB(b + cB)

− qB(b + cB)

K∑
i=1

ci·(ci· − 1)

c
qA(a + cA − ei )

(5.7)

− qA(a + cA)

L∑
j=1

c·j (c·j − 1)

c
qB(b + cB − ej )

+
K∑

i=1

L∑
j=1

cij (cij − 1)

c
qA(a + cA − ei )q

B(b + cB − ej ).
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Above, we assumed c > 0. We define f (a,b, c) = 0 if c = 0. Iterating the recur-
sion (5.6), we may write q1(a,b, c) as

q1(a,b, c) = f (a,b, c)

+
K∑

i=1

L∑
j=1

cij

c

[
f (a + ei ,b + ej , c − eij )

+
K∑

i′=1

L∑
j ′=1

ci′j ′ − δii′δjj ′

c − 1

× q1(a + ei + ei′,b + ej + ej ′,

c − eij − ei′j ′)

]
.

Similarly, repeatedly iterating (5.6) yields

q1(a,b, c) = q1(a + cA,b + cB,0) + f (a,b, c)

+ ∑
i1j1

ci1j1

c
f (a + ei1,b + ej1, c − ei1j1)

+ ∑
i1j1,i2j2

ci1j1

c

ci2j2 − δi1j1,i2j2

c − 1
(5.8)

× f (a + ei1 + ei2,b + ej1 + ej2, c − ei1j1 − ei2j2)

+ · · · + ∑
i1j1,...,icjc

∏
ij cij !
c! f (a + cA,b + cB,0).

The key observation is that the right-hand side of (5.8) has a nice probabilistic
interpretation which allows us to obtain a closed-form formula. To be more precise,
consider the first summation∑

i1j1

ci1j1

c
f (a + ei1,b + ej1, c − ei1j1).

For a fixed sample configuration c, this can be interpreted as the sum over all
possible ways of throwing away a gamete at random and calculating f based on the
remaining subsample, which we will denote c(c−1). Equivalently, it is the expected
value of f with respect to subsampling without replacement c − 1 of the gametes
in c. Write this as

E
[
f

(
A(c−1),B(c−1),C(c−1))],

where C(c−1) is the random subsample obtained by sampling without replacement
c − 1 gametes from c, and A(c−1) := a + cA − C(c−1)

A , B(c−1) := b + cB − C(c−1)
B .

Note that once the subsample c(c−1) is obtained, then a(c−1) and b(c−1) are fully
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specified. More generally, consider the (c − m)th sum in (5.8). A particular term
in the summation corresponds to an ordering of c − m gametes in c, which, when
removed leave a subsample c(m). With respect to this subsample, the summand is

K∏
i=1

L∏
j=1

cij !
c
(m)
ij !

m!
c! f

(
a(m),b(m), c(m))

and for each such subsample c(m) there are
( c−m
c−c(m)

)
distinct orderings of the re-

maining types in c, with each ordering contributing the same amount to the sum.
Here,

( c−m
c−c(m)

)
denotes the multinomial coefficient:(

c − m

c − c(m)

)
= (c − m)!∏K

i=1
∏L

j=1(cij − c
(m)
ij )! .

Gathering identical terms, the (c −m)th sum in (5.8) can therefore be written over
all distinct subsamples of c of size m:

∑
c(m)

(
c − m

c − c(m)

) K∏
i=1

L∏
j=1

cij !
c
(m)
ij !

m!
c! f

(
a(m),b(m), c(m))

= ∑
c(m)

1( c
m

) K∏
i=1

L∏
j=1

(
cij

c
(m)
ij

)
f

(
a(m),b(m), c(m))

= E
[
f

(
A(m),B(m),C(m))],

where, for a fixed m, C(m) = (C
(m)
ij ) is a multivariate hypergeometric(c, c,m) ran-

dom variable; that is,

P

( ⋂
(i,j)∈[K]×[L]

[
C

(m)
ij = c

(m)
ij

]) = 1( c
m

) ∏
(i,j)∈[K]×[L]

(
cij

c
(m)
ij

)
.

Furthermore, marginally we have

C
(m)
ij ∼ hypergeometric(c, cij ,m),

C
(m)
i· ∼ hypergeometric(c, ci·,m),

C
(m)
·j ∼ hypergeometric(c, c·j ,m).

In summary, (5.8) can be written as

q1(a,b, c) = q1(a + cA,b + cB,0) +
c∑

m=1

E
[
f

(
A(m),B(m),C(m))].(5.9)

According to Lemma 3.1, the first term q1(a + cA,b + cB,0) vanishes, so we are
left with

q1(a,b, c) =
c∑

m=1

E
[
f

(
A(m),B(m),C(m))].(5.10)
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Finally, since A(m) +C(m)
A = a+ cA and B(m) +C(m)

B = b+ cB , (5.7) and (5.10)
together imply

q1(a,b, c)

=
c∑

m=1

[
(m − 1)qA(a + cA)qB(b + cB)

− qB(b + cB)
1

m

K∑
i=1

E
[
C

(m)
i·

(
C

(m)
i· − 1

)]
qA(a + cA − ei )

− qA(a + cA)
1

m

L∑
j=1

E
[
C

(m)
·j

(
C

(m)
·j − 1

)]
qB(b + cB − ej )

+ 1

m

K∑
i=1

L∑
j=1

E
[
C

(m)
ij

(
C

(m)
ij − 1

)]
qA(a + cA − ei )q

B(b + cB − ej )

]
.

The moments in this equation are easy to compute and one can sum them over m

to obtain the desired result (3.5).

5.3. Proof of Lemma 3.1. First, note that for any sample (a,b, c) and any sub-
sample of the form (a(1),b(1), c(1)), we have f (a(1),b(1), c(1)) = 0, since every
term on right-hand side of (5.7) has a vanishing coefficient. So, equation (5.9)
implies

q1(a − ei ,b − ej , eij ) = q1(a,b,0)(5.11)

for any (i, j) ∈ [K]×[L]. Now, substitute the asymptotic expansion (3.1) with c =
0 into Golding’s recursion (2.5). Note that terms of order ρ are absent since c = 0.
Eliminate terms with coefficients independent of ρ by applying (5.3), multiply
both sides of the recursion by ρ, and let ρ → ∞ to obtain the following:

[n(n − 1) + θAa + θBb]q1(a,b,0)

=
K∑

i=1

ai(ai − 1)q1(a − ei ,b,0) +
L∑

j=1

bj (bj − 1)q1(a,b − ej ,0)

+ 2
K∑

i=1

L∑
j=1

aibjq1(a − ei ,b − ej , eij )

+ θA

K∑
i=1

δai,1q1(a − ei ,b,0) + θB

L∑
j=1

δbj ,1q1(a,b − ej ,0)

with boundary conditions q1(ei ,0,0) = q1(0, ej ,0) = 0 for all i ∈ [K] and j ∈
[L]. This equation can be made strictly recursive by applying (5.11) to q1(a −
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ei ,b − ej , eij ). It therefore follows from the boundary conditions (for example, by
induction) that q1(a,b,0) = 0.

5.4. Proof of Theorem 3.2. Here, we provide only an outline of a proof; details
are similar to the proof of Theorem 3.1. Substitute the asymptotic expansion (3.1)
into Golding’s recursion (2.5), eliminate terms with coefficients proportional to
ρ or independent of ρ. Then, multiply both sides of the recursion by ρ and let
ρ → ∞ to obtain

cq2(a,b, c) −
K∑

i=1

L∑
j=1

cij q2(a + ei ,b + ej , c − eij )

=
K∑

i=1

ai(ai − 1 + 2ci·)q1(a − ei ,b, c)

+
L∑

j=1

bj (bj − 1 + 2c·j )q1(a,b − ej , c)

+
K∑

i=1

L∑
j=1

[cij (cij − 1)q1(a,b, c − eij )

+ 2aibjq1(a − ei ,b − ej , c + eij )]
(5.12)

+ θA

K∑
i=1

[
L∑

j=1

δai+ci·,1δcij ,1q1(a,b + ej , c − eij )

+ δai ,1δci·,0q1(a − ei ,b, c)

]

+ θB

L∑
j=1

[
K∑

i=1

δbj+c·j ,1δcij ,1q1(a + ei ,b, c − eij )

+ δbj ,1δc·j ,0q1(a,b − ej , c)

]

− [n(n − 1) + θA(a + c) + θB(b + c)]q1(a,b, c).

By substituting our expression (3.5) for q1(a,b, c), the right-hand side can be ex-
pressed as a function g(a,b, c) which is completely known but rather cumbersome
to write down. As in the proof of Theorem 3.1, the same “unwrapping” maneuver
can be applied to rearrange (5.12) into the form (3.6), where

σ(a,b, c) =
c∑

m=1

E
[
g
(
A(m),B(m),C(m))].
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This time E[g(A(m),B(m),C(m))] is a function of fourth-order moments of the
multivariate hypergeometric distribution. The formula shown in the Appendix is
obtained by evaluating the expectations and summing over m.

We now show that q2(a,b,0) satisfies the recursion shown in (3.7). We will use
the fact that for a sample (a − ei ,b − ej , eij ), we have

g(a − ei ,b − ej , eij )

= 2(a − 1)(b − 1)qA(a)qB(b)

− 2(b − 1)(ai − 1)qA(a − ei )q
B(b)(5.13)

− 2(a − 1)(bj − 1)qA(a)qB(b − ej )

+ 2(ai − 1)(bj − 1)qA(a − ei )q
B(b − ej ).

For an arbitrary c, g(a,b, c) is much more complicated.
Now, one can adopt the approach used in the proof of Lemma 3.1 to obtain a

strict recursion for q2(a + cA,b + cB,0). First, note that (3.6) and (5.13) imply

q2(a − ei ,b − ej , eij )

= q2(a,b,0) + E
[
g
(
(A − ei )

(1), (B − ej )
(1), e(1)

ij

)]
= q2(a,b,0) + g(a − ei ,b − ej , eij )

= q2(a,b,0) + 2(a − 1)(b − 1)qA(a)qB(b)(5.14)

− 2(b − 1)(ai − 1)qA(a − ei )q
B(b)

− 2(a − 1)(bj − 1)qA(a)qB(b − ej )

+ 2(ai − 1)(bj − 1)qA(a − ei )q
B(b − ej ).

As before, substitute the asymptotic expansion (3.1) for c = 0 into Golding’s re-
cursion (2.5), eliminate terms with coefficients independent of ρ or proportional
to ρ−1, and let ρ → ∞ to obtain

[n(n − 1) + θAa + θBb]q2(a,b,0)

=
K∑

i=1

ai(ai − 1)q2(a − ei ,b,0) +
L∑

j=1

bj (bj − 1)q2(a,b − ej ,0)

+ 2
K∑

i=1

L∑
j=1

aibjq2(a − ei ,b − ej , eij )

+ θA

K∑
i=1

δai,1q2(a − ei ,b,0) + θB

L∑
j=1

δbj ,1q2(a,b − ej ,0)
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with boundary conditions q2(ei ,0,0) = q2(0, ej ,0) = 0 for all i ∈ [K] and j ∈
[L]. This equation can be made strictly recursive by applying (5.14) to q2(a −
ei ,b − ej , eij ). After some simplification, this leads to the recursion (3.7).

5.5. Proof of Proposition 4.1. The proof is similar to the proof of Proposi-
tion 3.1, working with the system (4.1) rather than Golding’s recursion (2.5). First,
assume c > 0. Substitute the expansion (4.4) into the recursion (4.1), divide by ρc

and let ρ → ∞. We are left with

p0(a, b, c;k, l) = p0(a + 1, b + 1, c − 1;k, l),

which implies

p0(a, b, c;k, l) = p0(a + c, b + c,0;k, l).(5.15)

Clearly, (5.15) also holds for c = 0.
Now, by substituting the asymptotic expansion (4.4) with c = 0 into (4.1) and

letting ρ → ∞, we obtain

[n(n − 1) + θAa + θBb]p0(a, b,0;k, l)

= a(a − 1)p0(a − 1, b,0;k, l) + b(b − 1)p0(a, b − 1, c;k, l)

+ 2abp0(a − 1, b − 1,1;k, l)(5.16)

+ θAap0(a − 1, b,0;k − 1, l)

+ θBbp0(a, b − 1,0;k, l − 1).

After invoking (5.15) on p0(a − 1, b − 1,1;k, l) and rearranging, we are left with

[a(a + θA − 1) + b(b + θB − 1)]p0(a, b,0;k, l)

= a(a − 1)p0(a − 1, b,0;k, l) + b(b − 1)p0(a, b − 1,0;k, l)
(5.17)

+ θAap0(a − 1, b,0;k − 1, l)

+ θBbp0(a, b − 1,0;k, l − 1)

with boundary conditions p0(1,0,0;k, l) = δk,1δl,0 and p0(0,1,0;k, l) = δk,0δl,1.
Equation (5.17) can be expressed as a linear sum of two independent recursions:

(a − 1 + θA)pA
0 (a;k) = (a − 1)pA

0 (a − 1;k) + θApA
0 (a − 1;k − 1),

(b − 1 + θB)pB
0 (b; l) = (b − 1)pB

0 (b − 1; l) + θBpB
0 (b − 1; l − 1)

with respective boundary conditions pA
0 (1;k) = δk,1 and pB

0 (1; l) = δl,1. These
recursions are precisely those considered by Ewens [(1972), (21)], with respective
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solutions (4.2) and (4.3). Hence, pA
0 (a;k) = pA(a;k) and pB

0 (b; l) = pB(b; l),
and it is straightforward to verify that pA(a;k)pB(b; l) satisfies (5.17). Substitut-
ing this solution into (5.15), we arrive at (4.5), as required.

5.6. Proof of Proposition 4.2. First, assume c > 0. Substitute the asymptotic
expansion (4.4) into the recursion (4.1), eliminate terms with coefficients linear in
ρ by applying (5.15), and let ρ → ∞. After applying (5.15) to the remaining terms
and invoking (5.17), with some rearrangement we obtain

p1(a, b, c;k, l) − p1(a + 1, b + 1, c − 1;k, l)

= (c − 1)[p0(a + c, b + c,0;k, l) − p0(a + c − 1, b + c,0;k, l)
(5.18)

− p0(a + c, b + c − 1,0;k, l)

+ p0(a + c − 1, b + c − 1,0;k, l)].
Applying the recursion repeatedly, this becomes

p1(a, b, c;k, l)

= p1(a + c, b + c,0;k, l)

+ [p0(a + c, b + c,0;k, l) − p0(a + c − 1, b + c,0;k, l)
(5.19)

− p0(a + c, b + c − 1,0;k, l)

+ p0(a + c − 1, b + c − 1,0;k, l)]

×
c−1∑
m=0

(c − 1 − m).

According to Lemma 4.1, the first term p1(a +c, b+c,0;k, l) vanishes. Hence,
since p0(a, b, c;k, l) is given by (4.5), the right-hand side of (5.19) is fully known.
With some rearrangement, we are left with (4.6).

5.7. Proof of Lemma 4.1. First, note that (5.18) implies

p1(a − 1, b − 1,1;k, l) = p1(a, b,0;k, l).(5.20)

Now, substitute the asymptotic expansion (4.4) with c = 0 into (4.1), eliminate
leading-order terms by applying (5.16), and let ρ → ∞. The result is made strictly
recursive by invoking (5.20), and we obtain

[a(a + θA − 1) + b(b + θB − 1)]p1(a, b,0;k, l)

= a(a − 1)p1(a − 1, b,0;k, l)

+ b(b − 1)p1(a, b − 1,0;k, l)

+ θAap1(a − 1, b,0;k − 1, l)

+ θBbp1(a, b − 1,0;k, l − 1)
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with boundary conditions p1(1,0,0;k, l) = p1(0,1,0;k, l) = 0, for k, l = 0,

. . . , n. It therefore follows (e.g., by induction) that p1(a, b,0;k, l) = 0.

APPENDIX: EXPRESSION FOR σ(a,b, c)

We use QA to denote qA(a + cA), QA
i to denote qA(a + cA − ei ), QA

ik to denote
qA(a + cA − ei − ek), and so on. Then

σ(a,b, c)

= c

3

[
(c − 1)(c + 1)(3c − 2)

8
+ (c − 1)(3a + 3b + 2c − 1) + 6ab

]
QAQB

− θA(c − 1)

2

K∑
i=1

δai,0δci·,1Q
A
i QB − θB(c − 1)

2

L∑
j=1

δbj ,0δc·j ,1Q
AQB

j

+
K∑

i=1

[
θA − c(c − 3) + 2a + 4b − 4

4
ci·(ci· − 1)

− (2b + c − 1)ci·(ai + ci· − 1)

]
QA

i QB

+ 1

2

K∑
i=1

[
θA

2
δci·,2 + 5 − 6ai − 4ci·

6

]
ci·(ci· − 1)QA

iiQ
B

+
L∑

j=1

[
θB − c(c − 3) + 2b + 4a − 4

4
c·j (c·j − 1)

− (2a + c − 1)c·j (bj + c·j − 1)

]
QAQB

j

+ 1

2

L∑
j=1

[
θB

2
δc·j ,2 + 5 − 6bj − 4c·j

6

]
c·j (c·j − 1)QAQB

jj

+
K∑

i,k=1

ci·(ci· − 1)ck·(ck· − 1)

8
QA

ikQ
B

+
L∑

j,l=1

c·j (c·j − 1)c·l(c·l − 1)

8
QAQB

jl

− θA + θB − c(c − 5) + 2a + 2b − 4

4

K∑
i=1

L∑
j=1

cij (cij − 1)QA
i QB

j
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+
K∑

i=1

L∑
j=1

[
ci·(ci· − 1)c·j (c·j − 1)

4

+ cij (cij + 1 − 2ci· + 2ci·c·j − 2c·j )
2

+ cij bj (ci· − 1) + cij ai(c·j − 1) + 2aibj cij

+ θB

2
δbj ,0δc·j ,1δcij ,1(ci· − 1)

+ θA

2
δai,0δci·,1δcij ,1(c·j − 1)

]
QA

i QB
j

+ 1

2

K∑
i=1

[
ai + ci· − 1 − θA

2
δci·,2

] L∑
j=1

cij (cij − 1)QA
iiQ

B
j

+ 1

2

L∑
j=1

[
bj + c·j − 1 − θB

2
δc·j ,2

] K∑
i=1

cij (cij − 1)QA
i QB

jj

− 1

4

K∑
i=1

L∑
j=1

K∑
k=1

cij (cij − 1)ck·(ck· − 1)QA
ikQ

B
j

− 1

4

K∑
i=1

L∑
j=1

L∑
l=1

cij (cij − 1)c·l(c·l − 1)QA
i QB

jl

+ 1

8

K∑
i=1

L∑
j=1

K∑
k=1

L∑
l=1

cij (cij − 1)ckl(ckl − 1)QA
ikQ

B
jl

− 1

12

K∑
i=1

L∑
j=1

cij (cij − 1)(2cij − 1)QA
iiQ

B
jj .

To check the correctness of the above expression, we also solved the recursion
(5.12) numerically for all sample configurations of sizes n = 10,20, and 30 (with
K,L ≤ 2), and confirmed that the above analytic expression agreed in all cases.
We also implemented a Mathematica program to solve q(a, b, c) exactly in the
special case K = L = 1. The program can return series expansions in terms of
ρ−1 as ρ → ∞ which are symbolic in θA and θB . We could then compare the first
three terms against q0, q1, and q2, for various sample configurations (a, b, c).

Acknowledgments. We thank Robert C. Griffiths, Charles H. Langley and
Joshua Paul for useful discussions.
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