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INTERMEDIATE RANGE MIGRATION IN THE
TWO-DIMENSIONAL STEPPING STONE MODEL

BY J. THEODORE COX1

Syracuse University

We consider the stepping stone model on the torus of side L in Z
2 in the

limit L → ∞, and study the time it takes two lineages tracing backward in
time to coalesce. Our work fills a gap between the finite range migration case
of [Ann. Appl. Probab. 15 (2005) 671–699] and the long range case of [Ge-
netics 172 (2006) 701–708], where the migration range is a positive fraction
of L. We obtain limit theorems for the intermediate case, and verify a con-
jecture in [Probability Models for DNA Sequence Evolution (2008) Springer]
that the model is homogeneously mixing if and only if the migration range is
of larger order than (logL)1/2.

1. Introduction. The subject of this paper is the stepping stone model of pop-
ulation genetics, and in particular the contrast between recent results of [14] and
[18] in the two-dimensional setting. There is a vast literature on the many variants
of the stepping stone model dating back to the seminal work of Malècot [13] and
Kimura [11]. (A few sources for background and references are [5, 8, 15] and [16].)
We will begin by describing the version of the model we consider here, generally
following the setup in [18].

Let Z
2 be the two-dimensional integer lattice, and fix ν > 0 and q : Z2 → [0,1]

with q(0) = 0 and
∑

x q(x) = 1. We suppose that at each site x in

TL = (−L/2,L/2]2 ∩ Z
2

there is a colony of 2N haploid individuals. We think of TL as a torus, and assume
a continuous-time Moran model of reproduction. In this model, a given individual
in colony x dies at rate one, independently of all other individuals, and is replaced
by a copy of an individual chosen at random from the same colony with probability
1 − ν or colony y with probability νq(y − x) computed modulo L. In this way,
we treat TL as a torus. The genealogical structure of a sample of n individuals is
determined by tracing their lineages backward in time.

We will focus on the case of n = 2 lineages, where one is interested in T0, the
time it takes the lineages to enter the same colony, and t0, the time to coalescence of
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the lineages. There are many limit theorems for T0 and t0 in the literature. (A small
sampling can be found [2, 3, 10, 14, 16, 17] and [18].) One may allow N → ∞,
ν → 0 and q to vary as L → ∞. To understand the asymptotic behavior of t0,
one must first understand the behavior of T0 so we will concentrate on the latter.
Furthermore, the question we want to consider is already of interest in the simplest
case of one individual per colony, so we will assume from now on that ν = 2N = 1,
but allow q to vary.

The meanfield or homogeneous mixing case is obtained by taking q to be uni-
form over TL \ {0}. Suppose the two lineages start at 0, x ∈ TL, x �= 0. The law of
T0 is exponential with mean (L2 −1)/2 and is independent of x, and so T0/L

2 con-
verges in law, uniformly in x �= 0, to the exponential distribution with mean 1/2.
Matsen and Wakeley show in [14] that the same limiting behavior of T0/L

2 holds
uniformly in x �= 0 assuming that q is uniform on only a positive fraction of the
torus. By contrast, if q is kept fixed as L → ∞, then the right normalization for
T0 is L2 logL, and the limiting law depends on the starting positions 0, x. (See
[2, 3] and [18] for results of this type.) The purpose of this paper is to fill the gap
between these two situations.

Following two lineages backward in time amounts to following two random
walks until they meet. The difference between the lineage locations is also a ran-
dom walk, and T0 is just the time it takes this difference walk to hit 0. On account
of this, we will now focus on the following random walk setting. For k > 0, let

�k = [−k/2, k/2]2 ∩ Z
2

and for any A ⊂ R
2 let

A′ = A \ {0}.
For r > 0, let B(r) = {x ∈ R

2 :‖x‖∞ ≤ r}. Let M1,M2, . . . be a sequence of posi-
tive integers and assume that qML

: Z2 → [0,1] satisfies

(P0)

qML
(x) = 0 for x /∈ �′

ML
,

∑
x

qML
(x) = 1, qML

is symmetric and

σ 2
ML

≡ ∑
x

x2
1qML

(x) = ∑
x

x2
2qML

(x) > 0.

The uniform distributions uML
(x) = 1�′

ML
(x)/|�′

ML
| clearly satisfy (P0).

Let YL
t be a rate one random walk on Z

2 with jump distribution qML
, and let XL

t

be the corresponding walk on TL viewed as a torus. Given YL
t we construct XL

t

by setting XL
t = Yt modL. Let HL be the hitting time for XL

t of the origin,

HL = inf{t ≥ 0 :XL
t = 0}.

Then HL has the same law as 2T0, so we will study HL. Let Px and Ex denote
probability law and expectation for the walk starting at x.
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With the above notation, the Matsen and Wakely result is as follows. Fix 0 <

c < 1 and let ML = cL and qML
= uML

. Then as L → ∞,

HL/L2 ⇒ E (1) uniformly in XL
0 ∈ T

′
L,(1.1)

where ⇒ indicates the law of the left-hand side converges weakly to the distribu-
tion on right-hand side, and E (β) is the exponential distribution with mean β . On
the other hand, if ML ≡ M is fixed, so there is a single jump distribution qM , then
by Theorem 1 of [18], if 0 < α < 1 and |XL

0 | ≈ Lα as L → ∞, then

HL

L2 logL
⇒ (1 − α)δ0 + αE (1/πσ 2

M).(1.2)

Here, xL ≈ Lα means xL ∈ TLα logL \ TLα/ logL.
It seems clear that the homogeneous mixing behavior of (1.1) should hold if

ML → ∞ at a sufficiently fast rate, and it is natural to ask what this rate might
be. Durrett (see Section 5.6 and Theorem 5.18 of [8]) conjectured that it should be
quite slow, only of greater order than

√
logL as L → ∞, meaning that (1.1) should

hold exactly when ML/
√

logL → ∞. We verify this conjecture for a large class of
jump distributions in Theorems 1.2 and 1.3 below, and obtain a slightly improved
version of (1.2) when ML = O(

√
logL). The proof of (1.1) in [14] makes use of

Markov chain techniques from [1] and [6]. The proof of (1.2) relies heavily on
local central limit theorem estimates for P0(Y

L
t = 0) to then estimate P0(X

L
t = x)

[for use in (2.2) below]. Here, we will use a more direct Fourier-type approach that
seems simpler, and works for both (1.1) and (1.2) as well.

For a jump distribution qM , define the characteristic function

φM(θ) = ∑
x∈�M

eiθxqM(x), θ ∈ R
2,

where θx = θ · x. We will assume that the jump distributions qML
have charac-

teristic functions φML
which satisfy the conditions (P1)–(P3) listed below. These

conditions are satisfied for the uniform distributions uML
(see the Appendix of [4],

where M2 in (P2) there should be M). Proposition 1.1 below shows that they are
satisfied in some generality. Note that the symmetry condition in (P0) implies each
φM is real-valued. The conditions we need are the following.

(P1) There is a σ 2 > 0 such that for all ε > 0 there exists δ > 0 such that for all
large L,

1 − φML
(θ)

σ 2M2
L|θ |2/2

∈ (1 − ε,1 + ε) for all θ ∈ B ′(δ/ML).

(P2) For all δ > 0, there exists δ′ > 0 and ζ > 0 such that for all large L,

1 − φML
(θ) > ζ for all θ ∈ B(δ′) \ B(δ/ML).
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(P3) For all ε > 0 and a > 0,

|φML
(θ)| < ε for all θ ∈ B(π) \ B(a) and all large L.

PROPOSITION 1.1. Let f be a positive, continuous function on B(1/2)

such that f (x1, x2) = f (x2, x1) = f (−x1, x2). Define cM > 0 and qM(x) =
cMf (x/M)uM(x) so that

∑
x qM(x) = 1. Then for any ML → ∞ as L → ∞,

the corresponding sequence of characteristic functions φML
satisfies properties

(P1)–(P3).

In addition to (P1)–(P3), we impose the mild regularity condition

(P4) lim
L→∞

M2
L

logL
= ρ ∈ [0,∞].

Our first result shows that homogeneous mixing occurs if M2
L/ logL → ∞.

THEOREM 1.2. Assume conditions (P0)–(P4) hold with ρ = ∞. Then for all
λ > 0,

lim
L→∞ sup

x∈T
′
L

|Ex(e
−λHL/L2

) − (1 + λ)−1| = 0(1.3)

and

lim
L→∞ sup

x∈T
′
L

|Ex(HL/L2) − 1| = 0.(1.4)

Our next result shows that homogeneous mixing does not occur if ρ < ∞, and
that HL can grow at any rate between L2 and L2 logL. We will use the following
notation. For v > 0, define

AL(α, v) =
⎧⎨
⎩

T
′
v, if α = 0,

TLαv \ TLα/v, if 0 < α < 1,
TL \ TL/v, if α = 1,

and let

tL = logL

M2
L

and β = ρ + 1

πσ 2 .(1.5)

THEOREM 1.3. Assume ML → ∞ and the conditions (P0)–(P4) hold with
ρ < ∞. Fix 0 ≤ α ≤ 1 and k > 0, and put vL = (logL)k . Then for all λ > 0,

lim
L→∞ sup

x∈AL(α,vL)

|Ex(e
−λHL/L2tL) − [(1 − α′) + α′(1 + βλ)−1]| = 0(1.6)

where α′ = (α + ρπσ 2)/(1 + ρπσ 2). Furthermore,

lim
L→∞ sup

x∈AL(α,vL)

|Ex(HL/L2tL) − α′β| = 0.(1.7)
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REMARK 1.4. If we set ρ = 0 in (1.6), then we recover the form (1.2). The
proof of (1.6) is easily adapted to handle the case of a fixed qM satisfying (P0), pro-
viding a slight strengthening of (1.2). One can also see that (1.6) is consistent with
(1.3) by setting tL ≡ 1, rephrasing (1.6) appropriately, and then setting ρ = ∞.

A one-dimensional stepping stone model was considered in [9], where exponen-
tial limit laws for HL were obtained under rather general assumptions on the jump
distributions. We will not state their results, but note that in analogy with Theo-
rem 3 there, one might hope in our two-dimensional setting that with M2

L = logL

some version of (1.2) would hold with (P1)–(P3) replaced by the simpler condi-
tions

(i) lim
L→∞σ 2

ML
/M2

L = σ 2 and
(1.8)

(ii) for some c > 0, qML
≥ cuML

.

More precisely, the desired result would be that (1.8) implies HL/L2 ⇒ E (β0) for
XL

0 large, where the limiting mean β0 depends only on σ 2 and c. This is not the
case, as the following example shows.

EXAMPLE 1.5. Fix 0 < c < 1 and q0 : Z2 → [0,1] satisfying (P0) for some
fixed M0, and let q̂0(θ) = ∑

x q0(x)eiθx . Put qML
(x) = cuML

(x) + (1 − c)q0(x),
assume that limL→∞ M2

L/ logL = 1, and define

β0 = 12

cπ
+ 1

(2π)2

∫
B(π)

dθ

1 − (1 − c)q̂0(θ)
.(1.9)

Then qML
satisfies (1.8) with σ 2 = c/12. If L/ logL < �L < L, then for all λ > 0,

sup
x∈TL\T�L

|Ex(e
−λHL/L2

) − (1 + β0λ)−1| → 0 as L → ∞.(1.10)

REMARK 1.6. The influence of the short range jumps is reflected in the depen-
dence of β0 on q̂0. Other mixtures of jump distributions could also be considered,
e.g.,

∑
i ciuMi

L
where M1

L,M2
L, . . . tend to infinity at different rates.

The proofs in [2, 3] and [18] for the fixed jump distribution case use the fact that
XL

t becomes uniformly distributed over the torus by times of larger order than L2.
The analogous fact in our setting is given below, it will be used in the proof of (1.7).

THEOREM 1.7. Assume (P1)–(P4) hold. If sL/[(L2/M2
L) ∨ logL] → ∞ as

L → ∞, then

lim
L→∞ sup

t≥sL

sup
x∈TL

L2|P0(X
L
t = x) − L−2| = 0.(1.11)
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Returning to the stepping stone model, we could now consider the genealogy
of a sample of n > 2 individuals. Let ζL

t be a system of rate one coalescing ran-
dom walks on TL with jump distribution qML

. If we consider lineages starting at
xi ∈ TL,1 ≤ i ≤ n, and put ζL

0 = {x1, . . . , xn}, then |ζL
t | is the number of dis-

tinct lineages left at time t . Under the assumptions of Theorem 1.3, and assuming
|xi − xj | ≥ L/ logL for i �= j , the analog of Theorem 2 of [18] would be

lim
L→∞P(|ζL

sL2tL
| = k) = P(Dπσ 2s = k), k = 1, . . . , n,(1.12)

where Dt is the pure death process on the positive integers which makes transition
k → k − 1 at rate

(k
2

)
. In fact, the genealogy of the lineages (on this time scale)

converges to the genealogy described by Kingman’s coalescent (see [12]). We will
not pursue these matters here, since with the results developed the methods of [2,
3] and [18] could be adapted to prove such limit laws.

The outline of the rest of the paper is as follows. In Section 2, we develop some
simple Fourier analytic tools. Proposition 1.1 is proved in Section 3, Theorem 1.7
is proved in Section 4, Theorem 1.2 is proved in Section 5, and Theorem 1.3 is
proved in Section 6. Finally, we verify the claims for Example 1.5 in Section 7.
For simplicity, we will assume throughout the rest of the paper that L,M,ML, . . .

are positive even integers.

2. Preliminaries. For a jump distribution qM satisfying (P0) with character-
istic function φM , define the transforms

φt
M(θ) = E0(e

iθYL
t ) = exp

(−t
(
1 − φM(θ)

))
,

FL(x,λ) = Ex(e
−λHL) and(2.1)

GL(x,λ) =
∫ ∞

0
e−λsPx(X

L
s = 0) ds,

where θ ∈ R
2, t ≥ 0, x ∈ TL and λ ≥ 0. The reason for our interest in GL(x,λ) is

the formula

FL(x,λ) = GL(x,λ)

GL(0, λ)
,(2.2)

a simple consequence of the strong Markov property. We will also make use of the
well-known Fourier inversion formula

P0(X
L
t = x) = 1

L2

∑
y∈TL

φt
M(2πy/L)e2πixy/L, x ∈ TL,(2.3)

from which it is easy to derive

GL(x,λ) = 1

L2

∑
y∈TL

e2πixy/L

1 + λ − φM(2πiy/L)
.(2.4)
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In order to obtain useful bounds on the above, we will need to estimate sums of
complex exponentials over various regions, including

Dk = {x ∈ Z
2 : |x| ≤ k/2},

where |x| = ‖x‖2.

LEMMA 2.1. (a) For K ≥ 1 and θ ∈ B(π),∣∣∣∣
∑

x∈TK

eiθx

∣∣∣∣ ≤ 4(K + 1)(1 + ‖θ‖−1∞ ) and

(2.5) ∣∣∣∣
∑

x∈DK

eiθx

∣∣∣∣ ≤ 4(K + 1)‖θ‖−1∞ .

(b) There is a constant C0 such that for all J ≥ 1 and θ ∈ B ′(π),

sup
K>J

∣∣∣∣
∑

y∈DK\DJ

eiθy

|y|2
∣∣∣∣ ≤ C0

1 ∧ (J‖θ‖∞)
.(2.6)

(c)

lim
K→∞

1

logK

∑
y∈T

′
K

1

|y|2 = lim
K→∞

1

logK

∑
y∈D′

K

1

|y|2 = 2π.(2.7)

PROOF. Combining the two elementary facts sinu ≥ u/2 for |u| ≤ π/2 and∑k
j=−k eiju = sin((k + 1

2)u)/sin u
2 for any positive integer k and real u we obtain

∣∣∣∣∣
k∑

j=−k

eiju

∣∣∣∣∣ ≤ 4/|u| for all k ∈ Z
+, u ∈ B(π).

Consequently,

∣∣∣∣
∑

x∈�K

eiθx

∣∣∣∣ ≤
K/2∑

k=−K/2

∣∣∣∣∣
K/2∑

j=−K/2

eiθ2j

∣∣∣∣∣ ≤ 4(K + 1)

|θ2| .

This bound holds with θ1 replacing θ2, and therefore∣∣∣∣
∑

x∈�K

eiθx

∣∣∣∣ ≤ 4(K + 1)‖θ‖−1∞ for all θ ∈ B(π).(2.8)

The first bound in (2.5) follows from this inequality and the fact that |�K \ TK | =
2K + 1. The second bound in (2.5) is derived using the argument for (2.8).

For (b), if 1 ≤ k ≤ |y| ≤ k + 1, then

0 ≤ 1

k2 − 1

|y|2 ≤ 1

k2 − 1

(k + 1)2 ≤ 6

|y|3 .
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Let γk(θ) = k−2 ∑
x∈Dk

eiθx and C = 6
∑

y∈Z2\{0} |y|−3 < ∞. Then

∣∣∣∣
∑

y∈DK\DJ

eiθy

|y|2
∣∣∣∣ ≤ C +

∣∣∣∣∣
K−1∑
k=J

∑
y∈Dk+1\Dk

eiθy

k2

∣∣∣∣∣.

We can rewrite the sum on the right-hand side above, obtaining
∣∣∣∣∣
K−1∑
k=J

∑
y∈Dk+1\Dk

eiθy

k2

∣∣∣∣∣ =
∣∣∣∣∣
K−1∑
k=J

(
(k + 1)2

k2 γk+1(θ) − γk(θ)

)∣∣∣∣∣

=
∣∣∣∣∣
K−1∑
k=J

(
γk+1(θ) − γk(θ) + 2k + 1

k2 γk+1(θ)

)∣∣∣∣∣

≤ |γK(θ)| + |γJ (θ)| + 3
K−1∑
k=J

|γk+1(θ)|
k

.

By the bound (2.5),

3
K−1∑
k=J

|γk+1(θ)|
k

≤ 18

‖θ‖∞

K−1∑
k=J

1

k(k + 1)
≤ 18

J‖θ‖∞
.

Making use of the trivial bound |γk(θ)| ≤ (k +1)2/k2 ≤ 4 for |γK(θ)| and |γJ (θ)|,
we therefore have ∣∣∣∣

∑
y∈DK\DJ

eiθ

|y|2
∣∣∣∣ ≤ C + 8 + 18

J‖θ‖ ,

proving (2.6).
The second limit in (c) follows from a simple comparison with an integral. The

first follows from a second comparison showing that

lim
K→∞

∑
D2K\DK

1

|y|2 = 2π log 2.(2.9)
�

We close this section by recording the fact∑
y∈TL

e2πixy/L = 0 for all x ∈ T
′
L.(2.10)

3. Proof of Proposition 1.1. Throughout this section, we will write M

for ML. It is straightforward to check that the assumptions of Proposition 1.1 imply
the following. As M → ∞:

(i) cM → c0 = 1/
∫
B(1/2) f (x) dx,

(ii) σ 2
M/M2 → σ 2 = c0

∫
B(1/2) x

2
1f (x) dx and
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(iii) φM(θ/M) → φ̃(θ) = c0
∫
B(1/2) e

iθxf (x) dx, θ ∈ B(π).

Let ZM have distribution qM . By a standard inequality (see (2.3.6) in [7]) and
the fact that |ZM | ≤ M/2,∣∣1 − φM(θ) − (σ 2

M |θ |2/2)
∣∣ ≤ E

(
(|θZM |3/6) ∧ |θZM |2)

(3.1)

≤ |θ |2M2

4

(
(|θ |M/12) ∧ 1

)
.

Using (ii), this implies that for any δ > 0,

sup
θ∈B ′(δ/M)

∣∣∣∣1 − φM(θ)

σ 2
M |θ |2/2

− 1
∣∣∣∣ ≤ 2M2

4σ 2
M

(
(δ/12) ∧ 1

)

→ 1

2σ 2

(
(δ/12) ∧ 1

)
as M → ∞.

Using (ii) again, this is enough to establish (P1).
Fix ε > 0 and put c̄ = sup{cM}. We will prove that there exists a finite constant

A depending on ε such that

lim sup
M→∞

sup
θ∈B(π)\B(A/M)

∑
x∈�M

eiθxqM(x) ≤ εc̄(1 + 20‖f ‖∞),(3.2)

which is stronger than (P3). First, we replace the sum over �M with one over TM

at the cost of a small error,∣∣∣∣
∑

x∈�M

eiθxqM(x) − cM

|�′
M |

∑
x∈TM

eiθxf (x/M)

∣∣∣∣ ≤ (2M + 2)c̄‖f ‖∞
|�′

M | .(3.3)

The idea now is to break the sum over TM into sums over disjoint translates of TK ,
where K < M is chosen so that f (x/M) is essentially constant on the translates,
and then apply (2.5).

To do this, let �M,K = {z ∈ KZ
2 : z + TK ⊂ TM}, and choose ε′ ∈ (0, ε) small

enough so that |f (x) − f (x′)| < ε if ‖x − x′‖∞ < ε′. Choose A large enough
so that Aε′ > ε−1 and suppose ‖θ‖∞ > A/M . Since |TM \ ⋃

z∈�M,K
(z + TK)| ≤

4MK , ∣∣∣∣
∑

x∈TM

eiθxf (x/M) − ∑
z∈�M,K

∑
x∈TK

eiθ(z+x)f
(
(z + x)/M

)∣∣∣∣ ≤ 4‖f ‖∞KM.(3.4)

For large M , we can choose K to satisfy ε′/2 < K/M < ε′. By our choice of ε′,
|f ((z+ x)/M)−f (z/M)| < ε for all z ∈ �M,K and x ∈ TK . Applying this bound
gives ∣∣∣∣

∑
z∈�M,K

∑
x∈TK

eiθ(z+x)f
(
(z + x)/M

)

(3.5)

− ∑
z∈�M,K

eiθzf (z/M)
∑

x∈TK

eiθx

∣∣∣∣ ≤ εM2.
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By (2.5) and the bound |�M,K | ≤ M2/K2,
∣∣∣∣

∑
z∈�M,K

eiθzf (z/M)
∑

x∈TK

eiθx

∣∣∣∣ ≤ M2‖f ‖∞
K2 4(K + 1)(1 + ‖θ‖−1)

(3.6)

≤ 8M2‖f ‖∞
K

(1 + ‖θ‖−1∞ ).

By combining (3.3)–(3.6), the bounds ε′/2 < K/M < ε′ and then using ‖θ‖∞ >

A/M , we obtain

|φM(θ)| ≤ c̄

|�′
M |

[
(2M + 2)‖f ‖∞ + 4KM‖f ‖∞

+ ε|M2| + 8M2

K
‖f ‖∞(1 + ‖θ‖−1∞ )

]

≤ c̄

|�′
M |

[
ε|M2| + ‖f ‖∞

(
(2M + 2) + 4ε′M2 + 16(M/ε′)(1 + M/A)

)]

→ c̄

[
ε + 4ε′‖f ‖∞ + 16‖f ‖∞

ε′A

]
as M → ∞.

Since Aε′ > ε−1 and ε′ < ε, the right-hand side above is no larger than εc̄(1 +
20‖f ‖∞), which establishes (3.2).

To prove (P2), it now suffices to prove that for all 0 < δ < A < ∞ there exists
ζ > 0 such that

lim sup
M→∞

sup
θ∈B(A/M)\B(δ/M)

φM(θ) ≤ 1 − ζ.(3.7)

Let φ̃M(θ) = φM(θ/M). By (iii), φ̃M(θ) → φ̃(θ) as M → ∞, and the convergence
is uniform on compact sets. Since the probability distribution with density c0f (x)

on B(1/2) is not degenerate or of lattice type, |φ̃(θ)| must be bounded away from
1 on any compact set not containing 0. For 0 < δ < A, we may choose ζ > 0 such
that φ̃(θ) < 1 − ζ for all θ ∈ B(A) \ B(δ). The uniform convergence φ̃M → φ̃ on
B(A) \ B(δ) now implies (3.7).

4. Proof of Theorem 1.7. We continue to write M for ML. It suffices to prove
that

lim
L→∞ sup

x∈TL

L2|P0(X
L
sL

= x) − L−2| = 0.(4.1)

By pulling out the y = 0 term from (2.3), we see that

L2|P0(X
L
sL

= x) − L−2| =
∣∣∣∣
∑

y∈T
′
L

φ
sL
M (2πy/L)e2πixy/L

∣∣∣∣ ≤ ∑
y∈T

′
L

φ
sL
M (2πy/L).
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The limit (4.1) will follow from showing the last sum tends to zero as L → ∞.
By (P1) there exists δ > 0 such that for large L,

1 − φM(2πy/L) ≥ π2σ 2M2|y|2/L2 for all y ∈ T
′
δL/M.(4.2)

This implies [recall (2.1)] that∑
y∈T

′
δL/M

φ
sL
M (2πy/L) ≤ ∑

y∈T
′
δL/M

exp(−sLπ2σ 2M2|y|2/L2).

This last sum tends to 0 as L → ∞ by comparison with∫ ∞
0

e−π2σ 2sL(M2/L2)r2
r dr = 1

2π2σ 2sLM2/L2 → 0

since sLM2/L2 → ∞ by assumption.
By (P2) and (P3), there exists ζ > 0 such that for all large L,

1 − φM(2πy/L) ≥ ζ for all y ∈ TL \ TδM/L.

This bound implies ∑
y∈TL\TδL/M

φ
sL
M (2πy/L) ≤ L2 exp(−ζ sL) → 0

since sL/ logL → ∞ by assumption. This completes the proof of (4.1).

5. Proof of Theorem 1.2. We continue to write M for ML. To prove (1.3), it
suffices in view of (2.2) to establish the following facts:

lim
L→∞GL(0, λ/L2) = λ−1 + 1(5.1)

and

lim
L→∞ sup

x∈T
′
L

|GL(x,λ/L2) − λ−1| = 0.(5.2)

PROOF OF (6.1). By (2.4),

GL(0, λ/L2) = λ−1 + 1

L2

∑
y∈T

′
L

1

1 + λ/L2 − φM(2πy/L)
(5.3)

and thus (5.1) will follow from

lim
L→∞

1

L2

∑
y∈T

′
L

1

1 − φM(2πy/L)
= 1.(5.4)

We will prove (5.4) by breaking T
′
L into regions appropriate for utilizing

(P1)–(P3). To prepare for this, fix ε > 0. By (P1), there exists δ > 0 such that
for all large L,

1

1 − φM(2πy/L)
≤ 1

π2σ 2M2|y|2/L2 for y ∈ T
′
δL/M.(5.5)
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By (P2) there exists δ′ > 0 and ζ > 0 such that for all large L,

1

1 − φM(2πy/L)
< 1/ζ for y ∈ Tδ′L \ TδL/M.(5.6)

By (P3), for any 0 < a < δ′ and all large L,∣∣∣∣ 1

1 − φM(2πy/L)
− 1

∣∣∣∣ < ε for y ∈ TL \ TaL.(5.7)

We claim that

lim
L→∞

1

L2

∑
y∈T

′
δL/M

1

1 − φM(2πy/L)
= 0,(5.8)

lim sup
L→∞

1

L2

∑
y∈TaL\TδL/M

1

1 − φM(2πy/L)
≤ a2/ζ(5.9)

and

lim sup
L→∞

∣∣∣∣ 1

L2

∑
y∈TL\TaL

1

1 − φM(2πy/L)
− (1 − a2)

∣∣∣∣ ≤ ε.(5.10)

The bounds (5.9) and (5.10) are immediate from (5.6) and (5.7). For (5.8), we note
that since M2/ logL → ∞, (2.7) implies that

lim
L→∞

1

M2

∑
y∈T

′
L

1

|y|2 = 0.(5.11)

This fact and (5.5) easily imply (5.8). We note for later use that neither (5.9) nor
(5.10) require M2/ logL → ∞, they hold for any M → ∞ and φM satisfying (P2)
and (P3).

Having established (5.8)–(5.10), we combine them to obtain

lim sup
L→∞

∣∣∣∣ 1

L2

∑
y∈T

′
L

1

1 − φM(2πy/L)
− 1

∣∣∣∣ ≤ a2/ζ + a2 + ε.

Let a ↓ 0 and then ε ↓ 0 to complete the proof of (5.4). �

PROOF OF (5.2). After separating out the y = 0 term as before, it suffices to
prove that

lim
L→∞ sup

x∈T
′
L

1

L2

∣∣∣∣
∑

y∈T
′
L

e2πixy/L

1 − φM(2πy/L)

∣∣∣∣ = 0.(5.12)

In view of (5.8) and (5.9), we may concentrate on the region TL \TaL. By (5.7),
uniformly in x ∈ T

′
L,

lim sup
L→∞

1

L2

∣∣∣∣
∑

y∈TL\TaL

e2πixy/L

(
1

1 − φM(2πy/L)
− 1

)∣∣∣∣ ≤ ε.
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It is here we make use of (2.10). It implies that for all x ∈ T
′
L,∣∣∣∣ 1

L2

∑
y∈TL\TaL

e2πixy/L

∣∣∣∣ =
∣∣∣∣− 1

L2

∑
y∈TaL

e2πixy/L

∣∣∣∣ ≤ a2.

By the last two facts,

lim sup
L→∞

sup
x∈T

′
L

1

L2

∣∣∣∣
∑

y∈TL\TaL

e2πixy/L

1 − φM(2πy/L)

∣∣∣∣ ≤ ε + a2(5.13)

and we note here that (5.13) does not require that M2/ logL → ∞. Taken together,
(5.8), (5.9) and (5.13) imply

lim sup
L→∞

sup
x∈T

′
L

1

L2

∣∣∣∣
∑

y∈T
′
L

e2πixy/L

1 − φM(2πy/L)

∣∣∣∣ ≤ ε + a2(1 + 1/ζ ).(5.14)

Let a → 0 and then ε → 0 to complete the proof of (5.12). �

PROOF OF (1.4). By standard monotonicity arguments,

Px(HL > uL2) → e−u uniformly in x ∈ T
′
L,u ≥ 0(5.15)

as L → ∞. In particular, for all large L,

Px(HL > L2) ≤ e−1/2 for all x ∈ T
′
L.

By this bound and the Markov property,

Px(HL > kL2) = ∑
y∈T

′
L

Px

(
XL

(k−1)L = y,HL > (k − 1)L2)
Py(HL > L2)

≤ e−1/2Px

(
HL > (k − 1)L2)

.

Consequently, for all large L, Px(HL > kL2) ≤ e−k/2 for k ≥ 1 and x ∈ T
′
L. This

fact and (5.15) easily imply (1.4). �

6. Proof of Theorem 1.3. We continue to write M for ML. The limit (1.6)
follows easily from a little algebra and the following analogues of (5.1), (5.2):

lim
L→∞

GL(0, λ/L2tL)

tL
= λ−1 + ρ + 1

πσ 2(6.1)

and

lim
L→∞ sup

x∈A(α,vL)

∣∣∣∣GL(x,λ/L2tL)

tL
−

[
λ−1 +

(
1 − α

πσ 2

)]∣∣∣∣ = 0.(6.2)

The proofs of (6.1) and (6.2) are similar to the proofs of (5.1) and (5.2), but require
a bit more care.
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Fix ε > 0. By (P1) there exist δ > 0 and functions ψL such that ‖ψL‖∞ < ε and
for all large L,

1

1 − φM(2πy/L)
= 1 + ψL(y)

2π2σ 2M2|y|2/L2 for y ∈ T
′
δL/M.(6.3)

As before, we assume δ′, ζ > 0 are such that for all 0 < a < δ′, (5.6) and (5.7)
hold. Recall that we are now assuming M2/ logL → ρ < ∞.

PROOF OF (6.1). The y = 0 term in the sum for GL(0, λ/tL) yields λ−1, so it
suffices to prove that

lim
L→∞

1

L2tL

∑
y∈T

′
L

1

1 − φM(2πy/L)
= ρ + 1

πσ 2 .(6.4)

We claim that:

lim sup
L→∞

∣∣∣∣ 1

L2tL

∑
y∈T

′
δL/M

1

1 − φM(2πy/L)
− 1

πσ 2

∣∣∣∣ ≤ ε

πσ 2 ,(6.5)

lim sup
L→∞

1

L2tL

∑
y∈TaL\TδL/M

1

1 − φM(2πy/L)
≤ ρa2/ζ(6.6)

and

lim sup
L→∞

∣∣∣∣ 1

L2tL

∑
y∈TL\TaL

1

1 − φM(2πy/L)
− (1 − a2)ρ

∣∣∣∣ ≤ ερ.(6.7)

The limits (5.9) and (5.10) and the fact that 1/tL → ρ imply (6.6) and (6.7), so
consider the region the region T

′
δL/M . By (6.3),

1

L2tL

∑
y∈T

′
δL/M

1

1 − φM(2πy/L)
= 1

logL

∑
y∈T

′
δL/M

1 + ψL(y)

2π2σ 2|y|2 .

By using (2.7) above, we obtain (6.5).
Combining (6.5)–(6.7) gives

lim sup
L→∞

∣∣∣∣ 1

L2tL

∑
y∈T

′
L

1

1 − φM(2πy/L)
− β

∣∣∣∣ ≤ ε

πσ 2 + ρa2/η + ρ(a2 + ε).

Let a → 0 and then ε → 0 to complete the proof of (6.4). �

PROOF OF (6.2). Fix 0 < α < 1. (We will not give the slight changes in proof
needed to handle the cases α = 0,1.) It suffices to prove that uniformly in x ∈
A(α, vL),

1

L2tL

∑
y∈T

′
L

e2πixy/L

1 − φM(2πy/L)
→ 1 − α

πσ 2 as L → ∞.(6.8)
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With ε, δ as before, we claim that

lim sup
L→∞

sup
x∈A(α,vL)

∣∣∣∣ 1

L2tL

∑
y∈T

′
δL/M

e2πixy/L

1 − φM(2πy/L)
− 1 − α

πσ 2

∣∣∣∣ ≤ ε

πσ 2 .(6.9)

Given this, (5.13) and (6.6) imply

lim sup
L→∞

sup
x∈A(α,vL)

∣∣∣∣ 1

L2tL

∑
y∈T

′
L

e2πixy/L

1 − φM(2πy/L)
− 1 − α

πσ 2

∣∣∣∣

≤ ε

πσ 2 + ρ(ε + a2 + a2/ζ ),

which is enough to establish (6.8).
The first step in proving (6.9) is to use (6.3) to obtain

1

L2tL

∑
y∈T

′
δL/M

e2πixy/L

1 − φM(2πy/L)
= 1

logL

∑
y∈T

′
δL/M

e2πixy/L

2πσ 2|y|2
(
1 + ψL(y)

)
.(6.10)

Next, we may replace T
′
δL/M in the right-hand side above with D′

δL/M because

lim
L→∞

1

logL

∑
y∈T

′
δL/M\D′

δL/M

1

|y|2 = 0(6.11)

by (2.9). Now, we break AL(α, vL) into the union of the smaller regions

DL(α,m) = DLα(logL)m+1 \ DLα(logL)m, m ∈ [−k, k) ∩ Z.

We will prove that for each fixed m,

lim
L→∞ sup

x∈DL(α,m)

∣∣∣∣ 1

logL

∑
y∈D′

δM/L

e2πixyy/L

2π2σ 2|y|2 − 1 − α

πσ 2

∣∣∣∣ = 0.(6.12)

Since (6.9) will follow from (6.10)–(6.12), the problem now is to prove (6.12).
To do this, fix m ∈ Z, let KL = L1−α(logL)−(m+1/2), and consider the regions

DδL/M \ DKL
and D′

KL
. The bound (2.6) implies that for all x ∈ DL(α,m),

1

logL

∣∣∣∣
∑

y∈DδL/M\DKL

e2πixy/L

|y|2
∣∣∣∣ ≤ C0

(logL)(1 ∧ KL|2πx/L|)

≤ C0

logL
∨ C0

2πKL(logL)m+1Lα−1 → 0(6.13)

as L → ∞.
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To handle the sum over D′
KL

, we make use of the fact that e2πixy/L ≈ 1 there.
More precisely, for x ∈ DL(α,m),

1

logL

∣∣∣∣
∑

y∈D′
KL

e2πixy/L − 1

|y|2
∣∣∣∣ ≤ 1

logL

∑
y∈D′

KL

2π |x|/L
|y|

≤ 2πLα−1(logL)m
∑

y∈D′
KL

1

|y| .

Comparison with an integral shows there is a constant C < ∞ such that∑
y∈D′

KL
|y|−1 ≤ CKL, so it follows that

lim
L→∞ sup

x∈DL(α,m)

1

logL

∣∣∣∣
∑

y∈D′
KL

e2πixy/L − 1

|y|2
∣∣∣∣ = 0.(6.14)

Coming to the main term at last, by (2.7) we see that

1

2π2σ 2 logL

∑
y∈D′

KL

1

|y|2 = logKL

2π2σ 2 logL

1

logKL

∑
y∈D′

KL

1

|y|2 → 1 − α

πσ 2

(6.15)
as L → ∞.

Taken together, (6.13)–(6.15) establish (6.12), as required. �

PROOF OF (1.7). We proceed as in the proof of (1.4) with just a few changes.
First, by (1.6) with α = m = 1, there exists a finite L0 such that for all L ≥ L0,
Py(HL > L2tL) ≤ e−1/2β for all y ∈ TL \ TL/ logL. Next, by Theorem 1.7, there
exists finite L1 ≥ L0 such that for L ≥ L1 and all x, y ∈ TL, Px(X

L
L2tL

= y) ≤
2/L2. Therefore, for all L ≥ L1 and x ∈ T

′
L,

Px(HL > 2L2tL) ≤ Px(X
L
L2tL∈TL/ logL

) + sup
y∈TL\TL/ logL

Py(HL > L2tL)

≤ 2|TL/ logL|/L2 + e−1/2β ≤ 2/(logL)2 + e−1/2β.

It follows that for some finite L2 ≥ L1, if L ≥ L2 then

sup
x∈T

′
L

Px(HL > 2L2tL) ≤ e−1/3β.

Iterating as in the proof of (1.4), we obtain

sup
x∈T

′
L

Px(HL > 2kL2tL) ≤ e−k/3β(6.16)

for all L ≥ L2.
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Now for a fixed 0 ≤ α ≤ 1 and k > 0, (1.6) implies

Px(HL > uL2tL) → (1 − q)e−u/β

(6.17)
uniformly in x ∈ A(α, vL), u ≥ 0,

as L → ∞. The limit (1.7) is a consequence of this fact and (6.16). �

7. Example 1.5. In this section, we verify the claims made in Example 1.5.
We first check that

σ 2
ML

M2
L

= 1

M2
L

∑
x

x2
1qML

(x)

= c

M2
L

∑
x

x2
1uML

(x) + 1 − c

M2
L

∑
x

x2
1q0(x) → c

∫
B(1/2)

x2
1 dx

= c

12
as L → ∞,

so (1.8) holds with σ 2 = c/12. We turn now to the proof of (1.10).
Let ûML

(θ) = ∑
x uML

(x)eiθx . Our first step is to establish the analogues of
(P1)–(P3) for φML

(θ) = cûML
(θ)+ (1−c)q̂0(θ). By Proposition 1.1, ûML

satisfies
(P1)–(P3) with σ 2 = 1/12. Furthermore, it is easy to check that q̂M0 satisfies: for
all ε > 0 there exists δ > 0 such that

1 − q̂0(θ)

σ 2
0 |θ |2/2

∈ (1 − ε,1 + ε) for all θ ∈ B ′(δ).

With this it is easy to see that the following versions of (P1)–(P3) hold for φML
.

(P1)′ For ε > 0 there exists δ > 0 such that for all large L,

1

1 − φML
(2πy/L)

= 1 + ψL(y)

cM2
Lπ2|y|2/6L2

for all y ∈ T
′
δL/ML

,

where ‖ψL‖∞ ≤ ε.
(P2)′ For δ > 0 there exists δ′ > 0 and ζ > 0 such that for all large L,

1 − φML
(2πy/L) ≥ cζ for all y ∈ Tδ′L \ TδL/ML

.

(P3)′ For fixed 0 < a < 1,

lim
L→∞ sup

y∈TL\TaL

∣∣∣∣ 1

1 − φML
(2πy/L)

− 1

c + (1 − c)(1 − q̂0(2πy/L))

∣∣∣∣ = 0.

With the above in place, the next step is to prove that

lim
L→∞GL(0, λ/L2) = λ−1 + β0
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or equivalently

lim
L→∞

1

L2

∑
y∈T

′
L

1

1 − φML
(2πy/L)

= β0.(7.1)

To do this fix ε > 0, choose δ, δ′ as in (P1)′ and (P2)′, and break T
′
L into the usual

subregions.
Applying (P1)′, we have

1

L2

∑
y∈T

′
δL/ML

1

1 − φML
(2πy/L)

= 6

cM2
Lπ2

∑
y∈T

′
δL/ML

1 + ψL(y)

|y|2 .

This implies, using (2.7),

lim sup
L→∞

∣∣∣∣ 1

L2

∑
y∈T

′
δL/ML

1

1 − φML
(2πy/L)

− 12

cπ

∣∣∣∣ ≤ 12ε

cπ
,(7.2)

where we have used M2
L/ logL → 1. Next, for 0 < a < δ′, (P2)′ implies

lim sup
L→∞

1

L2

∑
y∈TaL\TδL/ML

1

1 − φML
(2πy/L)

≤ a2

cζ
.(7.3)

By (P3)′ and continuity,

1

L2

∑
y∈TL\TaL

1

1 − φML
(2πy/L)

→
∫
B(1/2)\B(a/2)

dθ

c + (1 − c)(1 − q̂0(2πθ))

= 1

(2π)2

∫
B(π)\B(aπ)

dθ

1 − (1 − c)q̂0(θ)
.

Let a ↓ 0 and then ε ↓ 0 in (7.2) and (7.3) to complete the proof of (7.1).
The final task is to prove that

lim
L→∞ sup

x∈TL\T�L

|GL(x,λ/L2) − λ−1| = 0

or equivalently

lim
L→∞ sup

x∈TL\T�L

∣∣∣∣ 1

L2

∑
y∈T

′
L

e2πixy/L

1 − φML
(2πy/L)

∣∣∣∣ = 0.(7.4)

Consider the region T
′
δL/M . By (2.9), we may replace T

′
δL/M with D′

δL/M , at
the cost of a negligible error. We break D′

δL/M into two pieces. By (2.7),

lim
L→∞

1

logL

∑
y∈D′

Lε

1

|y|2 = 2πε.(7.5)
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By (2.5), for all x ∈ TL \ T�∣∣∣∣ 1

logL

∑
y∈DδL/M\DLε

e2πixy/L

|y|2
∣∣∣∣ ≤ C0

logL
∨ C0L

KL2π |x|
(7.6)

≤ C0

logL
∨ C0L

1−ε

2π�L

→ 0 as L → ∞.

By (P1)′ and the above,

lim sup
L→∞

sup
x∈TL\T�L

∣∣∣∣ 1

L2

∑
y∈T

′
δML/L

e2πixy/L

1 − φML
(2πy/L)

∣∣∣∣ ≤ 12ε

cπ
(7.7)

and combining this with (7.3) gives

lim sup
L→∞

sup
x∈TL\T�L

∣∣∣∣ 1

L2

∑
y∈T

′
aL

e2πixy/L

1 − φML
(2πy/L)

∣∣∣∣ ≤ 12ε

cπ
+ a2

cζ
.(7.8)

Now consider the region TL \ TaL. By (P3)′, for all large L and x ∈ TL,

1

L2

∑
y∈TL\TaL

∣∣∣∣ e2πixy/L

1 − φML
(2πy/L)

− e2πixy/L

1 − (1 − c)q̂0(2πy/L)

∣∣∣∣ ≤ ε.(7.9)

For integers K > 0 define �L,K = {z ∈ KZ
2 : z + TK ⊂ TL \ TaL}, and note that

|�L,K | ≤ L2/K2 and |(TL \TaL)\⋃
z∈�L,K

(z+TK)| ≤ 8LK . By the trivial bound
1 − (1 − c)q̂0(θ) ≥ c and (7.9),

∣∣∣∣ 1

L2

∑
y∈TL\TaL

e2πixy/L

1 − φML
(2πy/L)

(7.10)

− 1

L2

∑
z∈�L,K

∑
y∈z+TK

e2πixy/L

1 − (1 − c)q̂0(2πy/L)

∣∣∣∣ ≤ ε + 8K

cL
.

By the continuity of q̂0, there exists δ′′ > 0 such that if θ, θ ′ ∈ B(π) and |θ −
θ ′| < δ′′ then ∣∣∣∣ 1

1 − (1 − c)q̂0(θ)
− 1

1 − (1 − c)q̂0(θ ′)

∣∣∣∣ < ε.

Assuming K < δ′′L, this implies
∣∣∣∣ 1

L2

∑
z∈�L,K

∑
y∈z+TK

e2πixy/L

1 − (1 − c)q̂0(2πy/L)

(7.11)

− 1

L2

∑
z∈�L,K

e2πixz/L

1 − (1 − c)q̂0(2πz/L)

∑
y∈TK

e2πixy/L

∣∣∣∣ < ε.
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Now (2.5) can be applied, giving
∣∣∣∣ 1

L2

∑
z∈�L,K

e2πixz/L

1 − (1 − c)q̂0(2πz/L)

∑
y∈TK

e2πixy/L

∣∣∣∣
(7.12)

≤ |�L,K |
cL2

∣∣∣∣
∑

y∈TK

e2πixy/L

∣∣∣∣ ≤ (4(K + 1)(1 + L/2π�L))

cK2

for all x ∈ TL \ T�L
. Taken together (7.8) and (7.10)–(7.12) yield

lim sup
L→∞

sup
x∈TL\T�L

∣∣∣∣ 1

L2

∑
y∈T

′
L

e2πixy/L

1 − φML
(2πy/L)

∣∣∣∣

≤ 12ε

cπ
+ a2

cζ
+ 2ε + lim sup

L→∞

(
8K

cL
+ (4(K + 1)(1 + L/2π�L))

K2

)
.

If set K = L/
√

�, then the limsup above is 0. Let a ↓ 0 and the ε ↓ 0 to finish the
proof.

Acknowledgment. It is a pleasure to thank Rick Durrett for suggesting this
problem.
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