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Fisher Lecture: Dimension Reduction
in Regression1, 2

R. Dennis Cook

Abstract. Beginning with a discussion of R. A. Fisher’s early written re-
marks that relate to dimension reduction, this article revisits principal com-
ponents as a reductive method in regression, develops several model-based
extensions and ends with descriptions of general approaches to model-based
and model-free dimension reduction in regression. It is argued that the role
for principal components and related methodology may be broader than pre-
viously seen and that the common practice of conditioning on observed
values of the predictors may unnecessarily limit the choice of regression
methodology.
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1. INTRODUCTION

R. A. Fisher is responsible for the context and mathe-
matical foundations of a substantial portion of contem-
porary theoretical and applied statistics. One purpose
of this article is to consider insights into the long-
standing and currently prominent problem of “dimen-
sion reduction” that may be available from his writings.
Two papers are discussed in this regard, Fisher’s path-
breaking 1922 paper on the theoretical foundations of
statistics (Section 1.1), and a later applications paper
on the yield of wheat at Rothamsted (Section 1.2). The
discussion of these articles makes liberal use of quoted
material, in an effort to preserve historical flavor and
reflect Fisher’s style.

Principal component analysis is one of the oldest
and best known methods for reducing dimensionality
in multivariate problems. Another purpose of this arti-
cle is to provide an exposition on principal components
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as a reductive method in regression, with emphasis on
connections to known reductive methods and on the
development of a new method—principal fitted com-
ponents (PFC)—that may outperform principal com-
ponents. The discussion will be related to and guided
by Fisher’s writings as much as the nature of the case
permits. In particular, the philosophical spirit of the
methods discussed in this article derives largely from
Fisher’s notion of sufficiency.

We briefly review principal components in Section 2,
and starting in Section 3 we focus on principal com-
ponents in regression. Principal fitted components are
introduced in Section 4. In Sections 5–7 we expand the
themes of Sections 3 and 4, gradually increasing the
scope of dimension reduction methodology. A general
model-based paradigm for dimension reduction in re-
gression is described in Section 8.1. In keeping with
the Fisherian theme of this article, the development is
model-based, but in Section 8.2 we describe its rela-
tion to recent ideas for model-free reductions. The Ap-
pendix contains justification for propositions and other
results. Emphasis is placed on ideas and methodolog-
ical directions, rather than on the presentation of fully
developed methods.

Reduction by principal components has been pro-
posed as adjunct methodology for linear regression. It
does not arise as a particular consequence of the model
itself but is used to mitigate the variance inflation that

1

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/088342306000000682
http://www.imstat.org
mailto:dennis@stat.umn.edu
http://dx.doi.org/10.1214/088342307000000041
http://dx.doi.org/10.1214/088342307000000050
http://dx.doi.org/10.1214/088342307000000069
http://dx.doi.org/10.1214/088342307000000078


2 R. D. COOK

often accompanies collinearities among the predictors.
Indeed, while collinearity is the main and often the
only motivation for use of principal components in re-
gression, it will play no role in the evolution of the
methods in this article. It is argued in Sections 5.1, 5.2
and 8 that the utility of principal component reduction
is broader than previously seen and need not be tied to
the presence of collinearity. This conclusion is a con-
sequence of postulating inverse regression models that
lead to principal components and principal fitted com-
ponents as maximum likelihood estimators of reductive
subspaces.

Ordinary least squares (OLS) is widely recognized
as a reasonable first method of regression when the
response and predictors follow a nonsingular multi-
variate normal distribution. Nevertheless, examples are
given in Sections 5 and 6.4 to demonstrate that in this
context reduction by principal components and prin-
cipal fitted components may dominate OLS without
invoking collinearity. Sliced inverse regression (SIR;
Li, 1991) is a relatively recent reductive method for
regression that has received notable attention in the
literature. New drawbacks of SIR will emerge from
its relation to principal fitted components described
in Sections 6.3 and 7.5. It is demonstrated by exam-
ple that the method of principal fitted components can
dominate SIR as well as OLS in the multivariate nor-
mal setting. The notions of principal components and
principal fitted components are presented here as re-
ductive frames not necessarily tied to normality. Their
construction in the context of exponential families is
sketched in Section 3.3 and elsewhere.

Conditioning on the observed values of the predic-
tors is a well-established practice in regression, even
when the response and the predictors have a joint dis-
tribution. However, as a consequence of the exposition
on principal components and related reductive meth-
ods, we argue in Section 8 that this practice may unnec-
essarily restrict our choice of regression methodology.
It may be advantageous in some regressions to make
explicit use of the variability in the predictors through
their multivariate inverse regression on the response.

1.1 Fisher, 1922

Much of contemporary statistical thought began with
Fisher’s 1922 article “On the mathematical foundations
of theoretical statistics,” which set forth a new con-
ceptual framework for statistics, including definitions
of Consistency, Efficiency, Likelihood, Specification
and Sufficiency. Fisher also introduced the now famil-
iar terms “statistic,” “maximum likelihood estimate”

and “parameter.” The origins of this remarkable work,
which in many ways is responsible for the ambient tex-
ture of statistics today, were traced by Stigler (1973,
2005), who emphasized that Fisher was the first to use
the word “parameter” in its modern context, 57 times
in his 1922 article (Stigler, 1976). More than any other
single notion, this word reflects the starting point—
parametric families—for Fisher’s constructions. Many
of his ideas are now common knowledge, to the point
that he is no longer credited when they are first intro-
duced in some statistics texts. This paper, perhaps more
than any other of Fisher’s, should be required reading
in every statistics curriculum.

Fisher provided a focal point for statistical methods
at the outset of his 1922 article:

. . . the objective of statistical methods is the
reduction of data. A quantity of data. . . is
to be replaced by relatively few quantities
which shall adequately represent. . . the rel-
evant information contained in the original
data.
Since the number of independent facts sup-
plied in the data is usually far greater than
the number of facts sought, much of the in-
formation supplied by an actual sample is
irrelevant. It is the object of the statistical
process employed in the reduction of data
to exclude this irrelevant information, and
to isolate the whole of the relevant informa-
tion contained in the data.

In these statements Fisher signified the goal of statisti-
cal methods as a type of dimension reduction, the re-
duced data containing the relevant and only the rele-
vant information. The fundamental idea that statistical
methods deal with the reduction of data did not origi-
nate with Fisher, and was probably widely understood
well before his birth in 1890 (see, e.g., Edgeworth,
1884). However, Fisher’s approach is unique because
it changed the course of statistical history.

Fisher identified three distinct problems in his re-
ductive process: 1. “Problems of Specification,” se-
lecting a parametric family; 2. “Problems of Esti-
mation,” selecting statistics for parameter estimation;
and 3. “Problems of Distribution,” deriving the sam-
pling distribution of the selected statistics or functions
thereof. Problems of specification and estimation are
both reductive in nature. Surely, selecting a finitely and
parsimoniously parameterized family from the infinity
of possible choices is a crucial first reductive step that
can overshadow any subsequent reduction of the data
for the purpose of estimation.
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Regarding estimation, Fisher said that once the
model is specified

. . . the statistic chosen should summarize
the whole of the relevant information sup-
plied by the sample.

Any operational version of this idea must include some
way of parsing data into the relevant and irrelevant. For
Fisher, the reductive process started with a parametric
family, targeted information on its parameters θ and
was guided by sufficiency: If D represents the data,
then a statistic t (D) is sufficient if

D|(θ, t) ∼ D|t(1)

so that t contains all of the relevant information
about θ . Subsequent commentaries on sufficiency by
Fisher and others address existence, minimal suffi-
ciency, specializations and variations, relation to the
method of maximum likelihood, and the factorization
theorem.

Fisher was quite specific on how to approach the sec-
ond reductive step, estimation, but was less so regard-
ing the overarching first reductive step, specification. In
stating that problems of specification “. . . are entirely a
matter for the practical statistician,” Fisher positioned
them as a nexus between applied and theoretical sta-
tistics. A model is required before proceeding to prob-
lems of estimation, and model specification falls under
the purview of the practical statistician. He also offered
the following helpful but nonprescriptive advice:

. . . we may know by experience what forms
are likely to be suitable, and the adequacy
of our choices may be tested a posteriori.
We must confine ourselves to those forms
which we know how to handle. . . .”

In these statements Fisher acknowledged a role for sta-
tisticians as members of scientific teams, anticipated
the development of diagnostic methods for model crit-
icism and recognized a place for off-the-shelf models.
Interest in diagnostic methods for regression was par-
ticularly high from a period starting near the time of
Fisher’s death in 1962 and ending in the late 1980s
(Anscombe, 1961; Anscombe and Tukey, 1963; Box,
1980; Cook and Weisberg, 1982; Cook, 1986). Fisher
also linked model complexity with the amount of data,
and evidently did not require that models be “true,”

More or less elaborate forms will be suitable
according to the volume of the data. Evi-
dently these are considerations the nature of
which may change greatly during the course
of a single generation.

Fisher’s first reductive step is the most challenging and
elusive. Indeed, Fisher’s views launched a debate over
modeling that continues today. Writing on Fisher’s dis-
covery of sufficiency, Stigler’s (1973) introduction be-
gan with the sentence:

Because Fisher’s concept of sufficiency de-
pends so strongly on the assumed form of
the population distribution, its importance
to applied statistics has been questioned in
recent years.

Box’s (1979) memorable statement that “All models
are wrong, but some are useful” has been taken to im-
ply, perhaps from a position of devil’s advocate, that D

is the only sufficient statistic. At least two Fisher lec-
tures, Lehmann in 1988 (Lehmann, 1990) and Cox in
1989 (Cox, 1990), were on the issue of model speci-
fication. And then there are the modeling cultures of
Breiman (2001) and McCullagh’s (2002) rather es-
oteric answer to the question “What is a statistical
model?” Fourteen years after his 1922 article, Fisher
suggested that it might be possible to develop induc-
tive arguments for model specification, a promise that
has yet to be realized:

Clearly, there can be no operation properly
termed ‘estimation’ until the parameter to
be estimated has been well defined, and this
requires that the mathematical form of the
distribution shall be given. Nevertheless, we
need not close our eyes to the possibility
that an even wider type of inductive argu-
ment may some day be developed, which
shall discuss methods of assigning from the
data the functional form of the population
(Fisher, 1936).

1.2 Fisher, 1924

In Fisher’s classic 1922 article we see him think-
ing primarily as a theoretical statistician, while in his
1924 paper “III. The influence of rainfall on the yield
of wheat at Rothamsted” we see him as an applied sta-
tistician. Having recently developed a new framework
for theoretical statistics, he might have quickly inte-
grated those ideas into his applied work, but that does
not appear to be the case. He did rely on his 1922 ar-
ticle to justify a claim that a skewness statistic is the
“most efficient statistic” for a test of normality (Fisher,
1924, page 103), but otherwise I found no clear formal
links between the two works.

The opening issue that Fisher addressed in 1924 in-
volves sparsity of data in regression, possibly “n < p.”
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According to Fisher, large sample regression methods
are appropriate when the sample size n is much larger
than the number of predictors p, preferably n > 1000
but at least in the hundreds. However, the number p

of meteorological variables that might plausibly affect
yield could easily exceed the length n of the longest run
of available crop records. Fisher then faced a dimen-
sion reduction problem rather like those encountered
in the analysis of contemporary genomics data. He did
not provide a general solution, but did give a clear opin-
ion on what not to do. It was common practice at the
time to preprocess the potential meteorological predic-
tors by plotting them individually against yield to se-
lect the predictors for the subsequent regression. Fisher
was critical of this practice, concluding that

The meteorological variables to be em-
ployed must be chosen without reference to
the actual crop record.

He also reiterated a theme of his 1922 paper, “Rela-
tionships of a complicated character should be sought
only when long series of crop data are available.”

The bulk of Fisher’s article is devoted to the develop-
ment of models for the regression of yield on rainfall,
models that were painstakingly tailored to the substan-
tive characteristics of the problem, as one would ex-
pect in careful application. Fisher’s study seems true to
his general point that model specification is “entirely a
matter for the practical statistician,” and the corollary
that it depends strongly on context. Regarding dimen-
sion reduction, there is at least one general theme in
Fisher’s analysis: An “n < p” regression might be use-
fully transformed into an “n > p∗” regression, but the
methodology for doing so should not depend on the re-
sponse.

Sufficiency aside (and that is a lot to set aside),
I found little transportable methodology in Fisher’s
writing that might be applied to contemporary dimen-
sion reduction problems in regression. Nevertheless,
dimension reduction was an issue during Fisher’s era
and before. In the next section we turn to a widely
recognized dimension reduction method in statistics—
principal components—whose beginnings occurred
well before Fisher’s time.

2. INTRODUCTION TO PRINCIPAL COMPONENTS

It is well established that principal components are
a useful and important foundation for reducing the di-
mension of a multivariate random sample, represented
here by the vectors X1,X2, . . . ,Xn in R

p . Letting λ1 ≥

· · · ≥ λp and γ 1, . . . ,γ p denote the eigenvalues and
corresponding vectors of � = Var(X), the population
principal components are defined as the linearly trans-
formed variables {γ T

1 X, . . . ,γ T
p X}. We call the γ j ’s

the principal component (PC) directions. The sam-
ple principal components are {γ̂ T

1 X, . . . , γ̂ T
p X}, where

γ̂ 1, . . . , γ̂ p are the eigenvectors (sample PC directions)

corresponding to eigenvalues λ̂1 > · · · > λ̂p of the
usual sample covariance matrix �̂.

The history of principal components goes back at
least to Adcock (1878) who wished to

Find the most probable position of the
straight line determined by the measured
coordinates, each measure being equally
good or of equal weight, (x1, y1), (x2, y2),

. . . , (xn, yn) of n points. . . .

Adcock identified his solution as the “principal axis,”
or first sample PC direction. Subsequent milestones
were given in articles by Pearson (1901), Spearman
(1904) and Hotelling (1933), but I found no direct ref-
erence to principal components in Fisher’s writings. It
has been discovered over time that the leading prin-
cipal components, say {γ T

1 X, . . . ,γ T
k X}, k � p, have

a number of properties that may be helpful, depend-
ing on application-specific requirements. Reviews of
principal components were given by Seber (1984),
Christensen (2001) and Jolliffe (2002). Gould (1981,
Chapter 6) provided an interesting and illuminating
historical account on the use of principal components
in the social sciences. New properties and methods
seem to be communicated often in contemporary statis-
tical literature (see, e.g., Jong and Kotz, 1999; Tipping
and Bishop, 1999; Maronna, 2005).

Principal components have also been studied in the
context of regression, where X is now the vector of
predictors that we would like to reduce prior to per-
forming a regression with response Y . There are sev-
eral reasons why such reduction may be useful in prac-
tice, including the possibilities of mitigating the effects
of collinearity, facilitating model specification by al-
lowing visualization of the regression in low dimen-
sions (Cook, 1998) and providing a relatively small
set of predictors on which to base prediction or inter-
pretation. Collinearity in particular has been the main
motivation for using principal components as a reduc-
tive method in regression. One persistent idea is that
perhaps we can use the leading principal components
in place of X with little loss of information: The first
few principal components should contain essentially
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the same information about Y as the original predic-
tors, which is in the spirit of Fisher’s idea of suffi-
ciency. Kendall (1957, page 75), Hocking (1976) and
others suggested using principal components in this
way. Scott (1992) suggested that the predictors might
be “compressed” by using their principal components
prior to additive nonparametric modeling. Such pro-
cedures have been questioned because principal com-
ponents are computed from the marginal distribution
of X and consequently the leading components may
have little necessary relation with the response. It does
seem optimistic to think that the marginal of X would
necessarily be structured so that the leading principal
components contain the essential information about the
response. Nevertheless, in support of the leading prin-
cipal components, Mosteller and Tukey (1977, page
397) turned this cause for concern into a desirable goal
by posing the question:

. . . how can we find linear combinations of
the [predictors] that will be likely, or un-
likely, to pick up regression from some as
yet unspecified y?

It might seem unusual that Mosteller and Tukey would
begin by asking how to perform linear reduction with-
out reference to the response, but their approach is
in agreement with Fisher’s (1924) point that predic-
tors “. . . be chosen without reference to the actual crop
record.” Mosteller and Tukey answered their question
with the philosophical point that:

A malicious person who knew our x’s and
our plan for them could always invent a y

to make our choices look horrible. But we
don’t believe nature works that way—more
nearly that nature is, as Einstein put it (in
German), “tricky, but not downright mean.”

On the other hand, Cox (1968, page 272) wrote in ref-
erence to reducing X by using the leading principal
components:

A difficulty seems to be that there is no
logical reason why the dependent variable
should not be closely tied to the least im-
portant principal component.

A similar sentiment was expressed by Hotelling (1957),
Hawkins and Fatti (1984) and others. Evidently, many
authors did not trust nature in the same way as
Mosteller and Tukey. Some gave examples of regres-
sions where Cox’s prediction apparently holds, with

a few trailing principal components contributing im-
portant information about the response (Jolliffe, 1982;
Hadi and Ling, 1998). Are there limits to the mali-
ciousness of nature? If nature can produce regressions
where there is useful information about the response in
the last principal component γ T

p X, can it also produce
settings where the regression information is concen-
trated in a few of the original predictors, but is spread
evenly across many of the principal components, mak-
ing analysis on the principal component scale harder
than analysis in the original scale? This possibility is
relevant in recent proposals to ignore the hierarchical
structure of the principal components and use instead
a general subset M of them when developing linear
regression models (Hwang and Nettleton, 2003). In
this regard, Jolliffe (2002, page 177) commented that
“. . . the choice of M for PC regression remains an open
question.”

On balance, the role for principal components in
regression seems less clear-cut than their role in re-
ducing X marginally. The advantages that principal
components enjoy in the multivariate setting, where
the marginal distribution of X is of primary interest,
may be of limited relevance in the regression context,
where the conditional distribution of Y |X is of inter-
est. It seems particularly appropriate to question the
usefulness of principal components when X is fixed
and controlled by the experimenter. In some experi-
mental designs �̂ is proportional to the identity, with
the consequence that there is clearly no useful relation
between its eigenstructure and the regression. And yet
interest in using principal components for dimension
reduction in regression has persisted, notably in the
analysis of microarrays where principal components
have been called “eigengenes” (Alter, Brown and Bot-
stein, 2000). Chiaromonte and Martinelli (2002) and
L. Li and H. Li (2004) used principal components for
preprocessing microarray data, allowing subsequent
application of other dimension reduction methodology
that requires n > p. Acknowledging that preprocess-
ing by principal components might be a viable alter-
native, Bura and Pfeiffer (2003) used marginal t-tests
from the regression of the response on each predictor
for prior selection of genes, a method to which Fisher
would likely have objected.

3. PRINCIPAL COMPONENTS IN REGRESSION

In the rest of this article we consider only regressions
where X is random, so Y and X have a joint distribu-
tion, since a different structure seems necessary when
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X is fixed and subject to experimental control. In this
context we may pursue dimension reduction through
the conditional distribution of Y |X (forward regres-
sion) the conditional distribution of X|Y (inverse re-
gression), or the joint distribution of (Y,X). All three
settings have been used in arguments for the relevance
of principal components and related methodology. For-
ward regression with fixed predictors is perhaps the
most common, particularly in early articles. Helland
(1992) and Helland and Almøy (1994) assumed that
(Y,X) follows a multivariate normal in their develop-
ment of “relevant components.” Oman (1991) used an
inverse model for X|Y in a heuristic argument that the
coefficient vector α in a linear regression model for
Y |X should fall in or close to the space spanned by the
first few principal components. Similarly, in their de-
velopment of multiple-shrinkage principal component
regression, George and Oman (1996) used a model for
the joint distribution of (Y,X) to reach the same con-
clusion.

In this article, we concentrate on X|Y , although the
goal is still to reduce the dimension of X with little
or no loss of information on Y |X. Model-based for-
ward regression analyses traditionally condition on the
observed values of the predictors, a characteristically
Fisherian operation, even if X is random (see Savage,
1976, page 468, and Aldrich, 2005, for further discus-
sion of this point). Nevertheless, the conditional distri-
bution of X|Y may provide a better handle on reduc-
tive information since it can be linked usefully to Y |X
(Proposition 1), and I found nothing in Fisher’s writ-
ings that would compel consideration of only forward
regressions. To facilitate the exposition, let Xy denote
a random variable distributed as X|(Y = y). Subspaces
are indicated as S(·), where the argument is a ma-
trix whose columns span the subspace, and U⊥⊥V|W
means that the random vectors U and V are condition-
ally independent given any value for the random vector
W. The notation R

a×b stands for the space of real ma-
trices of dimension a × b, and R

a means the space of
real vectors of length a.

3.1 A First Regression Model Implicating Principal
Components

Consider the following multivariate model for the in-
verse regression of X on Y :

Xy = µ + �νy + σε.(2)

Here µ ∈ R
p , � ∈ R

p×d , d < p, �T � = Id , σ ≥ 0
and d is assumed to be known. To emphasize the con-
ditional nature of the model, y is used to index ob-
servations in place of the more traditional “i” nota-
tion. The coordinate vector νy ∈ R

d is an unknown

function of y that is assumed to have a positive defi-
nite sample covariance matrix and is centered to have
mean 0,

∑
y νy = 0, but is otherwise unconstrained.

The centering of νy in the sample is for later conve-
nience and is not essential. The error vector ε ∈ R

p

is assumed to be independent of Y , and to be normally
distributed with mean 0 and identity covariance matrix.
This model specifies that, after translation by the inter-
cept µ, the conditional means fall in the d-dimensional
subspace S� spanned by the columns of �. The vec-
tor νy contains the coordinates of the translated con-
ditional mean E(Xy) − µ relative to the basis �. The
mean function is quite flexible, even when d is small,
say at most 3 or 4. Aside from the subscript y, nothing
on the right-hand side of this model is observable.

While the mean function for model (2) is permis-
sive, the variance function is restrictive, requiring es-
sentially that the predictors be in the same scale and
that, conditional on Y , they be independent with the
same variance. Nevertheless, this model provides a
useful starting point for our consideration of principal
components, and may be appropriate for some appli-
cations dealing with measurement error, image recog-
nition, microarray data and calibration (Oman, 1991).
And it may serve as a useful first model when the data
are not plentiful, following the spirit of Fisher’s recom-
mendations.

Model (2) is similar in form to the functional model
for multivariate problems studied by Anderson (1984),
but there are important conceptual differences. Model
(2) is a formal statement about the regression of X
on Y , with the νy’s being fixed because we condition
on Y , in the same way forward regression models are
conditioned on X. Functional models for multivariate
data postulate latent fixed effects without conditioning.
Model (2) also resembles the traditional model for fac-
tor analysis, but again there are important differences.
There is no response in a factor analysis model and no
conditioning. Instead ν, the vector of common factors,
is assumed to be jointly distributed with the error ε,
with conditions imposed on the joint distribution to en-
sure identifiability. Additionally, rotation to obtain a
“meaningful” estimate of � is often of interest in fac-
tor analysis, while in this article interest in � does not
extend beyond S� . Model (2) will lead in directions
that are not available when considering functional or
factor-analytic models for multivariate data.

The following proposition connects the inverse re-
gression model (2) with the forward regression of Y

on X.
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PROPOSITION 1. Under the inverse model (2), the
distribution of Y |X is the same as the distribution of
Y |�T X for all values of X.

According to this proposition, X can be replaced by
the sufficient reduction �T X without loss of informa-
tion on the regression of Y on X, and without speci-
fying the marginal distribution of Y or the conditional
distribution of Y |X. Here “sufficient reduction” is used
in the same spirit as Fisher’s “sufficient statistic.” One
difference is that sufficient statistics are observable,
while sufficient reductions may contain unknown pa-
rameters, � in this instance, and thus need to be esti-
mated. A reasonable estimate of � is needed for the
sufficient reduction �T X to be useful in practice.

3.2 Estimation via the Method of Maximum
Likelihood

Even with the previously imposed constraint that
�T � = Id , � and νy are not simultaneously estimable
under model (2) since, for any orthogonal matrix O ∈
R

d×d , we can always rewrite �νy = (�O)(OT νy),
leading to a different factorization. However, the reduc-
tive subspace S� = span(�) is estimable, and that is
the focus of our inquiry. The matrix � is of interest only
by virtue of the subspace generated by its columns, the
condition �T � = Id being imposed for convenience.
This implies that two reductions �T X and A�T X that
are connected by a full-rank linear transformation A
are regarded as equivalent for present purposes. To em-
phasize this distinction we will refer to the parameter
space for S� as a Grassmann manifold Gp×d of dimen-
sion d in R

p .
Consider a function G(A) that is defined on the set

of p × d matrices with d < p and AT A = Id and has
the property that G(AO) = G(A) for any orthogonal
matrix O ∈ R

d×d . The function G(A) depends only on
the span of its argument: If span(A) = span(B), then
G(A) = G(B). The set of d-dimensional subspaces of
R

p is called a Grassmann manifold, a single point in a
Grassmann manifold being a subspace. A Grassmann
manifold is the natural parameter space for the � para-
meterization in this article. While no technical use will
be made of Grassmann manifolds, the terminology is
proper in this context and it may serve as a reminder
that only the subspace S� is of interest. For back-
ground on Grassmann manifolds, see Edelman, Arias
and Smith (1998) and Chikuse (2003).

Estimation of a sufficient reduction might be based
on the method of moments, Bayesian considerations or
a concern for robustness, but staying with Fisher we

will use the method of maximum likelihood. Assum-
ing that the data consist of a random sample of size n

from (Y,X), the maximum likelihood estimator of S�

can be constructed by holding � and σ 2 fixed at possi-
ble values G and s2 and then maximizing the log like-
lihood over µ and νy . This yields µ̂ = X̄ and, in the ab-
sence of replicate y’s, a separate value for each of the
n d-dimensional vectors νy as a function of (G, s2):
νy(G, s2) = GT (Xy − X̄). Substituting back, the par-
tially maximized log likelihood MPC is then, apart from
constants,

MPC(G, s2)

= −(np/2) log(s2)

− (1/2s2)
∑
y

‖Xy − X̄ − PG(Xy − X̄)‖2

= −(np/2) log(s2) − (n/2s2) trace(�̂QG),

where PG = GGT is the projection onto SG and QG =
Ip −PG. Although in this and later likelihood functions
we use G as an argument, the function itself depends
only on SG and thus maximization is over the Grass-
mann manifold Gp×d . Recalling that {λ̂j } and {γ̂ j } are

the eigenvalues and eigenvectors of �̂, it follows that
the maximum likelihood estimator Ŝ� of S� is

Ŝ� = span{γ̂ 1, . . . , γ̂ d},
and that the estimator of σ 2 is σ̂ 2 = ∑p

j=d+1 λ̂j /p.
A sufficient reduction is thus estimated by the first d

sample principal components, and for this reason we
will refer to model (2) as a PC regression model. If
there is replication in the observed y’s, as may hap-
pen if Y is supported on a finite number of points, then
the principal components are to be computed from the
usual between-class covariance matrix.

In the absence of replication in the y’s, the observed
responses play no role other than acting collectively as
a conditioning argument. The same reduction would be
obtained with a continuous multivariate response. In
fact, it is not necessary for the response to be observed
and thus model (2) is one possible route to satisfying
Mosteller and Tukey’s desire to reduce X for an “. . . as
yet unspecified y,” and is in accord with Fisher’s re-
quirement that “. . . the variables to be employed must
be chosen without reference to the actual crop record.”
However, model (2) does not hold for all potential re-
sponses, but requires that the predictors be condition-
ally independent with common variance.

The fact that all full-rank linear transformations
A�̂

T X of the first d sample principal components �̂
T X
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are equivalent reductions in the context of model (2)
may cast doubt on the usefulness of post hoc reification
of principal components. The safest interpretations are
perhaps the ones that suggest regression mechanisms
that can be verified independently of the principal com-
ponents themselves.

As mentioned previously, the PC model (2) may
be appropriate for some applications, but there is also
value in the paradigm it suggests for extension to other
settings. In the next section we sketch at the conceptual
level how the ideas behind (2) can be applied to ex-
ponential families, returning to normal models in Sec-
tion 4.

3.3 Extensions to Exponential Families

As in the PC model, we assume that the predic-
tors are independent given Y , but instead of requir-
ing Xy to be normally distributed we assume that the
j th conditional predictor Xyj is distributed according
to a one-parameter exponential family with density or
mass function of the form

fj (x|ηyj , Y = y) = aj (ηyj )bj (x) exp(xηyj ).(3)

We also assume that the natural parameter ηyj follows
the model for the conditional mean E(Xy) in the nor-
mal case,

ηyj = µj + γ T
j νy, j = 1, . . . , p,

where µj is the j th coordinate of µ and γ T
j is the j th

row of �. Under this setup �T X is again a sufficient
reduction:

PROPOSITION 2. Under the inverse exponential
model (3), the distribution of Y |X is the same as the
distribution of Y |�T X for all values of X.

Given y, µ and � the likelihood for νy is constructed
from the products of (3) for j = 1, . . . , p. This corre-
sponds to fitting a generalized linear model with off-
sets µj , “predictors” γ j and regression coefficient νy .
The remaining parameters µ and S� ∈ Gp×d can then
be estimated by combining these intermediate partially
maximized likelihoods over y. The essential point here
is that generalized PC models can be constructed from
the normal PC model (2) in the way that general-
ized linear models are constructed from linear models.
Marx and Smith (1990) developed a method of princi-
pal component estimation for generalized linear mod-
els. Their approach, while recognizing issues that come
with generalized linear models, seems quite different
from the approach suggested here.

For example, if the coordinates of Xy are inde-
pendent Bernoulli random variables, then we can ex-
press the model in terms of a multivariate logit defined
coordinate-wise as multlogity = µ + �νy, where the
right-hand side is the same as the mean function for
the PC model (2). Since the predictors are condition-
ally independent, we can write

Pr(X = x|Y = y) =
p∏

j=1

pj (y)xj qj (y)1−xj ,

where x = (xj ), pj (y) = Pr(Xj = xj |y), qj (y) = 1 −
pj (y) and log(pj/qj ) = µj + γ T

j νy . The log likeli-
hood is therefore∑

y

{ p∑
j=1

qj (y) + xT
y (µ + �νy)

}
,

which is to be maximized over µ ∈ R
p , νy ∈ R

d and
S� ∈ Gp×d . By analogy with the normal case, this leads
to principal components for binary variables, but they
are not computed from the eigenvectors of a covariance
matrix and they seem distinct from the recent proposal
by de Leeuw (2006) for marginal reduction of X.

4. PRINCIPAL FITTED COMPONENTS

In the PC model (2) no direct use is made of the re-
sponse, which plays the role of an implicit condition-
ing argument. In principle, once the response is known,
we should be able to tailor our reduction to that re-
sponse. One way to adapt the reduction for a specific
response is by modeling νy . This can be facilitated by
graphical analyses when the response is bivariate or
univariate. Recalling that Xj denotes the j th predic-
tor in X, we can gain information from the data on the
mean function E(Xj |Y) by investigating the p two- or
three-dimensional inverse response plots of Xj versus
Y , j = 1, . . . , p, as described by Cook and Weisberg
(1994, Chapter 8) and Cook (1998, Chapter 10). While
such a graphical investigation might not be practical if
p is large, it might be doable when p is in the tens, and
certainly if p is less than, say, 25.

Assume then that νy = βfy , where β ∈ R
d×r , d ≤ r ,

has rank d and fy ∈ R
r is a known vector-valued func-

tion of the response with
∑

y fy = 0. For example, if it
is decided that each inverse mean function E(Xj |Y =
y) can be modeled adequately by a cubic polynomial
in y, then fy equals (y, y2, y3)T minus its sample av-
erage. When Y is univariate and graphical guidance is
not available, fy could be constructed by first partition-
ing the range of Y into h = r + 1 “slices” or bins Hk ,
and then setting the kth coordinate fyk of fy to

fyk = J (y ∈ Hk) − nk/n, k = 1, . . . , r,(4)
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where J is the indicator function and nk is the number
of observations falling in Hk . The j th coordinate νyj

of νy is then modeled as a constant in each slice Hk ,

νyj =
r∑

k=1

βjkfyk =
r∑

k=1

βjk

(
J (y ∈ Hk) − nk/n

)
,

where βjk is the jkth element of β . Each coordinate
of the vector νy = βfy is now a step function that is
constant within slices. Many other possibilities for ba-
sis functions are available in the literature. For exam-
ple, we might adapt a classical Fourier series form (see,
e.g., Eubank, 1988, page 82) and set fy = gy − ḡ, where

gy = (cos(2πy), sin(2πy), . . . ,

cos(2πky), sin(2πky))T

with r = 2k. We will use the slice basis function (4)
later in this article because it leads to a connection with
sliced inverse regression (SIR, Li, 1991). No claim is
made that this is a generally reasonable nonparamet-
ric choice for fy . However, the slice basis function can
be used to allow for replication in model (2), with the
slices corresponding to the unique values of y. The pa-
rameterization νy = βfy can be used with exponen-
tial families as described in Section 3.3 and the PC
model (2).

Substituting νy = βfy into model (2) we obtain the
new model

Xy = µ + �βfy + σε,(5)

for which �T X is still a sufficient reduction. Let X de-
note the n × p matrix with rows (Xy − X̄)T , let F de-
note the n × r matrix with rows fTy , and let X̂ = PFX

denote the n × p matrix of centered fitted values from
the multivariate linear regression of X on fy , including
an intercept. Holding � and σ fixed at G and s, and
maximizing the likelihood over µ and β , we obtain
µ̂ = X̄, β̂ = GT

X
T F(FT F)−1, and the partially max-

imized log likelihood (see Appendix A.3 for details)

MPFC(G, s2)

= (−np/2) log(s2)(6)

− (n/2s2){ trace[�̂] − trace[PG�̂fit]},
where �̂fit = X̂

T
X̂/n is the sample covariance ma-

trix of the fitted values. The likelihood again depends
only on SG. The rank of �̂fit is at most r and typ-
ically rank(�̂fit) = r . In any event, we assume that
rank(�̂fit) ≥ d . The likelihood is then maximized by
setting Ŝ� equal to the span of eigenvectors φ̂1, . . . , φ̂d

corresponding to the largest d eigenvalues λ̂fit
i , i =

1, . . . , d , of �̂fit. The presence of replication in the y’s
does not affect this estimator.

We call φ̂T
1 X, . . . , φ̂T

p X principal fitted components

(PFC), and call the associated eigenvectors φ̂1, . . . , φ̂d

PFC directions. The corresponding estimate of scale is
σ̂ 2 = (

∑p
i=1 λ̂i − ∑d

i=1 λ̂fit
i )/p. A sufficient reduction

under model (5) is then estimated by the first d PFC’s.
We call model (5) a PFC model to distinguish it from
the PC model (2).

5. COMPARING PC’S AND PFC’S

In the PC model (2) there are (n − 1)d ν-parameters
to be estimated, while in the PFC model (5) the cor-
responding number is just dr , which does not increase
with n. Consequently, assuming that (5) is reasonable,
we might expect it to yield more accurate estimates
than (2).

5.1 Simulating Ŝ�

A small simulation using multivariate normal (Y,X)

was conducted to obtain first insights into the operating
characteristics of principal components and principal
fitted components. Here and in all other simulations we
restrict � ∈ R

p (d = 1) because this allows straightfor-
ward comparisons with forward OLS. The two compo-
nent methods are applicable when d > 1, but then the
OLS fit of Y on X must necessarily miss d − 1 direc-
tions. First, Y was generated as a normal random vari-
able with mean 0 and variance σ 2

Y , and then Xy was
generated according to the inverse model

Xy = �y + σε,(7)

with � = (1,0, . . . ,0)T , p = 10 and σ > 0. The for-
ward regression Y |X follows a textbook normal linear
regression model,

Y = α0 + αT x + σY |Xε,(8)

where x denotes an observed value of X, σY |X is con-
stant, ε is a standard normal random variable and, as
indicated by Proposition 1 and its extension to PFC
models, span(α) = span(�). Thus, E(Y |X) depends on
X via �T X, which is equal to X1 for this simulation.
Let α̂ denote the OLS estimator of α. We consider three
ways of estimating S� , each based on a correct model:
OLS, using span(α̂); PC, using span(γ̂ 1); and PFC, us-
ing span(φ̂1) from the fit of model (5) with fy = y − ȳ.

Each data set was summarized conveniently by com-
puting the angle between � and each of γ̂ 1 (PC), φ̂1
(PFC) and α̂ (OLS). Other summary measures were
tested but they left the same qualitative impressions
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as the angle. The mean squared error (9) used in Fig-
ure 1(d) and discussed in Section 5.2 is one instance
of an alternative summary measure. Three aspects of
the simulation model were varied, the sample size n,
the conditional error standard deviation σ and the mar-
ginal standard deviation of Y , σY . It might be expected
that PFC will do better than PC in this simulation.
While both methods are based on a correct model, the
PFC model is more parsimonious. On the other hand, it
could be more difficult to anticipate a relation between
these inverse methods and OLS, which is based on a
correct forward model.

Shown in Figure 1(a) are average angles taken over
500 replications versus n, with σ = σY = 1. On the av-
erage, the OLS vector was observed to be a bit closer
to S� than the PC vector γ̂ 1, except for small samples,
when γ̂ 1 was the better of the two. More importantly,
the PFC vector φ̂1 was observed to be more accurate
than the other two estimators at all sample sizes. The
difference between the PFC and OLS estimators can
be increased by varying σY , as is apparent from Fig-
ure 1(b).

Figure 1(b) shows the results of a second series of
simulations at various values of σY with n = 40 and
σ = 1. The method of principal fitted components is
seen to be superior for small values of σY , while it
is essentially equivalent to principal components for
large values. Perhaps surprisingly, the OLS estimator
is clearly the worst method over most of the range of
σY . Figure 1(c) shows average angles as σ varies with
n = 40 and σY = 1. Again, PFC is seen to be the best
method, with the relative performance of PC and PFC
depending on the value of σ . The accuracy of the PC
or PFC estimates of S� should improve as n increases,
or as σY increases or as σ decreases. The results in Fig-
ure 1 agree with this expectation.

To explain the relative behavior of the OLS esti-
mates in the simulation results for model (7), let R =
σ 2

Y /(σ 2
Y + σ 2). Then it can be shown that α = R�, that√

n(α̂ − α) is asymptotically normal with mean 0 and
covariance matrix

Var(α̂) = RQ� + R(1 − R)P�,

and that αT [Var(α̂)]−1α = R/(1 − R). As σY → ∞,
R → 1 but Var(α̂) ≥ RQ� . Thus, Var(α̂) is bounded
below, and this explains the behavior of the OLS es-
timates in Figure 1(b). On the other hand, as σ →
∞, α → 0 and Var(α̂) → 0, but αT [Var(α̂)]−1α → 0
as well. Consequently, α → 0 faster than the “stan-
dard deviation” of its estimates and the performance
of α̂ must deteriorate. These results can be extended

straightforwardly to model (2) with d = 1, but then the
behavior of the OLS estimator will depend on Var(νY )

and Cov(νY ,Y ).
Letting �k denote the kth element of the � in

model (7), the marginal correlation between the j th
and kth predictors, j �= k, is

ρjk = �k�jσ
2
Y√

(σ 2 + �2
j σ

2
Y )(σ 2 + �2

kσ
2
Y )

.

If �j and �k are both nonzero, then |ρjk| → 1 as
σ 2

Y → ∞ with σ 2 fixed. However, � = (1,0, . . . ,0)T

in the version of model (7) used to produce Figure 1(b),
with the consequence that the predictors are both mar-
ginally and conditionally independent. Thus, the bot-
toming out of the OLS estimator in Figure 1(b) for
large values of σY and in Figure 1(c) for small values
of σ has nothing to do with collinearity. To gain further
insights into the impact of collinearity in this situation,
we repeated the simulation leading to Figure 1(b) with
� = (1, . . . ,1)T /

√
10. Now, ρjk → 1 as σY → ∞ for

all pairs of predictors. However, within the simulation
error, these new results were identical to those of Fig-
ure 1(b). This suggests that the value of principal com-
ponent estimators does not rest solely with the presence
of collinearity.

5.2 Prediction

While this article is focused on estimation of reduc-
tive subspaces, this first simulation study provides a
convenient place to touch base with predictive consid-
erations. Since the forward regression follows a normal
linear model, we characterize predictive performance
by using the scaled mean squared error

MSE = E(Yf − â − b̂�̂
T Xf )2/σ 2

Y |X,(9)

where (Yf ,Xf ) represents a future observation on
(Y,X), and the expectation is taken over (Yf ,Xf ) and
the data. The forward model error variance σ 2

Y |X was
used for scaling because the numerator of (9) is in the
units of Y 2, and the MSE will be constant for OLS as
we vary σY . �̂ can be γ̂ 1 (PC), φ̂1 (PFC) or α̂ (OLS).
The intercept â and slope b̂ were then computed from
the OLS fit of Yi on �̂

T Xi (b̂ = 1 for α̂). The MSE,
which is bounded below by 1, was estimated by first
calculating the expectation explicitly over the future
observations and then using 500 simulated data sets to
estimate the remaining expectation over the data. Fig-
ure 1(d) shows the resulting MSE as a function of σY

and the three estimators. The PFC estimator performed
the best, except for small values of σY , where the PC
estimator did better. The OLS estimator was dominated
by the other two.



DIMENSION REDUCTION IN REGRESSION 11

FIG. 1. Simulation results for model (7). (a)–(c) display average simulation angles between the estimated and the true direction versus (a)
sample size with σY = σ = 1; (b) σY with n = 40, σ = 1; and (c) σ with n = 40, σY = 1. (d) is the square root of the standardized MSE of
prediction versus σY with n = 40 and σ = 1.

6. INVERSE MODELS WITH STRUCTURED
ERRORS

Let �0 ∈ R
p×(p−d) denote a completion of �; that

is, (�0,�) ∈ R
p×p is an orthogonal matrix. The PC

model (2) and the PFC model (5) have the prop-
erty that Y is independent of �T

0 X both marginally,
Y ⊥⊥�T

0 X, and conditionally, Y ⊥⊥�T
0 X|�T X. Conse-

quently, (Y,�T X)⊥⊥�T
0 X. This enables us to identify

�T
0 X unambiguously as irrelevant information to be

excluded (Fisher, 1922). The PC and PFC models also
have quite restrictive conditions on Var(Xy) = σ 2Ip .
In this section we extend the variance function of these
models while preserving the form of the relevant and
irrelevant information.

6.1 An Extended PC Model

Consider the PC model with heterogeneous errors,

Xy = µ + �νy + �0	0ε0 + �	ε,(10)

where µ, �, �0 and νy are as defined previously.
The error vectors ε0 ∈ R

p−d and ε ∈ R
d are inde-

pendent and normally distributed, each with mean 0
and identity covariance matrix. The full-rank matrices
	 ∈ R

d×d and 	0 ∈ R
(p−d)×(p−d) serve in part to con-

vert the normal errors to appropriate scales and, with-
out loss of generality, are assumed to be symmetric.
Since the two error components must be independent,
the variance structure in this model is still restrictive,
but it is considerably more permissive than the variance
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structure in the first PC model (2) and the components
of X can now be in different scales.

Linearly transforming both sides of model (10),
we have �T Xy = �T µ + νy + 	ε and �T

0 Xy =
�T

0 µ + 	0ε0. From these representations we see that
(�,�0)

T Xy contains two independent components.
The active y-dependent component �T Xy consists of
the coordinates of the projection of X onto S� . It has
an arbitrary mean and constant but a general covari-
ance matrix. The other projective component lives in
the orthogonal complement span(�0) = S⊥

� and has
constant mean and variance. Most importantly, this ex-
tended model preserves the independence property that
(Y,�T X)⊥⊥�T

0 X, so �T X is a sufficient reduction:

PROPOSITION 3. Under the extended PC model
(10), the distribution of Y |X is the same as the distrib-
ution of Y |�T X for all values of X.

Turning to estimation, we assume that the y’s are
distinct. Replication for model (10) can be addressed
with a version of model (13), which is discussed in
Section 6.2, by using the slice basis function for fy to
indicate identical y’s. Maximizing over µ, νy and 	0,
the partially maximized log likelihood LPC is a func-
tion of possible values G and M for � and 	2, apart
from constants:

LPC(G,M)

= −(n/2) log(|GT
0 �̂G0|) − (n/2) log(|M|),

where G0 is a completion of G. 	2 is not estimable, but
because the likelihood factors, it is maximized over G0
for any fixed M by any full-rank linear transformation
of the last p − d sample PC directions. Consequently,
we might be tempted to take

Ŝ� = span⊥(γ̂ d+1, . . . , γ̂ p).(11)

Thus a sufficient reduction is again estimated by the
first d sample principal components computed from �̂.
Nevertheless, additional conditions are necessary for
principal components to work well under this model.

Some of the differences between the PC model (2)
and the extended version (10) can be seen in the mar-
ginal covariances of the predictors. Under model (2)

� = σ 2�0�
T
0 + �{σ 2Id + Var(νY )}�T .

Here the smallest eigenvalue of � is equal to σ 2 with
multiplicity p − d and corresponding eigenvectors �0.
The largest d eigenvalues, which are all larger than σ 2,
are the same as the eigenvalues of σ 2Id +Var(νY ). The
corresponding PC directions are �vj , j = 1, . . . , d ,

where {vj } are the eigenvectors of σ 2Id + Var(νY ). In
this case S� and S�0 are distinguished by the magni-
tudes of the corresponding eigenvalues of �, providing
the likelihood information to identify S� .

Under model (10)

� = �0	
2
0�

T
0 + �{	2 + Var(νY )}�T

= �0V0D0VT
0 �T

0 + �VDVT �T ,

where V0D0VT
0 and VDVT are the spectral decomposi-

tions of 	2
0 and 	2 +Var(νY ). The PC directions under

model (10) can be written unordered as �0V0 and �V
with eigenvalues given by the corresponding elements
of the diagonal matrices D0 and D. The estimate of S�

given in (11) will be consistent if the largest eigenvalue
in D0 is smaller than the smallest eigenvalue in D. In
other words, the likelihood-based estimator (11) should
be reasonable if the signal as represented by D is larger
than the noise as represented by D0.

To help fix ideas, consider the extension of model (7),

Xy = �y + σ0�0ε0 + σ�ε,(12)

where (Y,X) is normally distributed, and the sufficient
reduction still has dimension 1. The forward regression
Y |X follows a normal linear regression model where
the mean function depends on X only via �T X, and

� = σ 2
0 �0�

T
0 + (σ 2

Y + σ 2)��T .

If σ 2
0 < σ 2

Y + σ 2, then the first population principal
component yields a sufficient reduction �T X. If σ 2

0 >

σ 2
Y + σ 2, then a sufficient reduction is given by the last

population principal component, illustrating the pos-
sibility suggested by Cox (1968). However, if σ 2

0 =
σ 2

Y + σ 2, then principal components will fail since all
of the eigenvalues of � are equal.

In short, principal components may yield reasonable
reductions if the signal dominates the noise in the ex-
tended PC model (10).

6.2 An Extended PFC Model

In this section we consider a PFC model with hetero-
geneous errors by modeling the ν-parameters in (10),

Xy = µ + �βfy + �0	0ε0 + �	ε,(13)

where all terms are as defined previously, except we
no longer require that d ≤ r . The maximum likeli-
hood estimators under (13) are not affected by the pres-
ence of replication in the y’s. Extensions of the expo-
nential family model (3) to permit dependence among
the predictors may depend on the particular family in-
volved. For instance, the quadratic exponential model
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described by Zhao and Prentice (1990) might be useful
when the predictors are correlated binary variables.

Under model (13), �T X is again a sufficient reduc-
tion, so we are still interested in estimating the reduc-
tive subspace S� . Maximizing the log likelihood over
µ and β , we find the partially maximized log likeli-
hood, apart from unimportant constants,

−(n/2) log |M0| − (n/2) trace[M−1
0 GT

0 X
T
XG0/n]

−(n/2) log |M|,
−(n/2) trace[M−1GT {XT

X − X
T PFX}G/n],

where G, M and M0 represent possible values for �,
	2 and 	2

0. After maximizing over M and M0 (see,
e.g., Muirhead, 1982, page 84), the maximum likeli-
hood estimate of S� is found by maximizing

LPFC(G) = (−n/2) log |GT
0 �̂G0|

(14)
− (n/2) log |GT �̂resG|,

where �̂res = �̂ − �̂fit is the sample covariance matrix
of the residuals from the fit of Xy on fy . Like previous
likelihoods, (14) depends only on SG. But in contrast
to the previous likelihoods, here there does not seem
to be a recognizable estimate for S� , and thus Ŝ� must
be obtained by maximizing (14) numerically over the
Grassmann manifold Gp×d .

The following proposition gives population versions
of matrices in the partially maximized likelihood func-
tion (14). It summarizes some of the discussion in Sec-
tion 6.1, and provides results that will be useful for
studying (14).

PROPOSITION 4. Assume the extended PFC mo-
del (13) with uncorrelated but not necessarily normal
errors, Var((εT

0 ,εT )T ) = Ip . Then

�̂
p−→ � = �0	

2
0�

T
0 + �{	2 + βVar(fY )βT }�T ,

�̂fit
p−→ �fit = �βVar(fY )βT �T ,

�̂res
p−→ �res = �0	

2
0�

T
0 + �	2�T .

To understand the behavior of the function LPFC(G)

(14) in a bit more detail, write it in the form, with H =
PFXG/

√
n,

−2LPFC(G)/n

= log |GT
0 �̂G0| + log |GT �̂G − GT

X
T PFXG/n|

= log{|GT
0 �̂G0||GT �̂G||In − H(GT �̂G)−1HT |}

= log{|GT
0 �̂G0||GT �̂G||In − PFPXGPF|}.

The first product in the log is such that

|GT
0 �̂G0||GT �̂G| ≥ |�̂|,(15)

and it achieves its lower bound when the columns of G
are any d sample PC directions and the columns of G0
consist of the remaining directions. Consequently, the
function − log{|GT

0 �̂G0||GT �̂G|} has at least
(p
d

)
lo-

cal maxima of equal height. It is then up to the last term
− log |In − PFPXGPF| to reshape LPFC into a possi-
bly multimodal surface over Gp×d with a single global
maximum. If a G can be found so that span(XG) ⊆
span(F), then |In − PFPXGPF| = 0 and the log likeli-
hood is infinite at its maximum. If the signal is weak,
or in the extreme FT

X ≈ 0, then |In − PFPXGPF| ≈ 1
for all G, this term will contribute little to the log likeli-
hood, and we will be left with a surface having perhaps
many local maxima of similar heights.

Because the likelihood surface may be multimodal,
use of standard gradient optimization methods may be
problematic in some regressions. Consideration of a
candidate set of solutions or starting values might miti-
gate the problems resulting from a multimodal surface
and can further illuminate the role of principal com-
ponents. It also provides a relatively straightforward
way to explore this methodology if computer code for
Grassmann optimization is not conveniently available.

Candidate sets can be constructed using the fol-
lowing rationale. Recall from the discussion in Sec-
tion 6.1 that the unordered PC directions are of the
form (�0V0,�V), and they comprise one possible pop-
ulation candidate set. This structure means that there is
a subset of d PC directions γ (1), . . . ,γ (d), such that

S� = span(�V) = span
{
γ (1), . . . ,γ (d)

}
.

Consequently, provided that the eigenvalues corre-
sponding to �V are distinct from those corresponding
to �0V0, we can construct an estimator of the suffi-
cient reduction VT �T X by evaluating LPFC(G) at all
subsets of d sample PC directions γ̂ (1), . . . , γ̂ (d), and
then choosing the subset with the highest likelihood.
We call this the PFCPC method, because the PFC like-
lihood is being evaluated at the PC directions. This
method might be awkward to implement if the number
of combinations to be evaluated is large. As an alterna-
tive, we could choose PC directions sequentially:

1. Find γ̂ (1) = arg maxLPFC(h), where the maximum
is taken over the p × 1 vector h in the PC candidate
set A = {γ̂ j , j = 1, . . . , p}.

2. Find γ̂ (2) = arg maxLPFC(γ̂ (1),h), where the max-
imum is now taken over the p × 1 vector h in the
reduced candidate set A − {γ̂ (1)}.
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3. Continue until reaching the final maximization

γ̂ (d) = arg maxLPFC

(
γ̂ (1), . . . , γ̂ (d−1),h

)
,

where the maximum is now taken over h in A −
{γ̂ (1), . . . , γ̂ (d−1)}.

This approach is similar in spirit to other methodology
for selecting principal components (Jolliffe, 2002), but
here we base the selection on a likelihood.

Using Proposition 4 and following the same ratio-
nale we can construct two additional candidate sets.
One consists of the PFC directions, the eigenvectors
of �̂fit, and the other contains the eigenvectors of �̂res,
which are called the residual component (RC) direc-
tions. The estimator constructed by evaluating the PFC
likelihood (14) at all subsets of the candidate set con-
sisting of the PC, PFC and RC directions will be de-
noted as PFCall.

Before turning again to illustrative simulations, we
connect principal fitted components with sliced inverse
regression.

6.3 PFC and SIR

To relate SIR and PFC, fy must be constructed using
the slice basis function (4). Let X̄k = ∑

i∈Hk
Xi/nk and

X̄ = ∑n
i=1 Xi/n. Then it can be shown that �̂fit is the

sample covariance matrix of the slice means X̄k ,

�̂fit =
h∑

k=1

(nk/n)(X̄k − X̄)(X̄k − X̄)T

= �̂
1/2

�̂sir�̂
1/2

,

where �̂sir = �̂
−1/2

�̂fit�̂
−1/2

is the usual SIR kernel
matrix in the standardized scale of Z = �−1/2(X −
E(X)), with sample version Ẑ = �̂

−1/2
(X − X̄). Sub-

stituting this form into the partially maximized log
likelihood (14), we have

−2LPFC(G)/n = log |GT
0 �̂G0|

+ log |GT �̂
1/2{Ip − �̂sir}�̂1/2

G|.
Suppose now that we redefine (G0,G) to be an orthog-
onal matrix in the �̂ inner product, (G0,G)T �̂(G0,

G) = Ip . Then GT
0 �̂G0 = Ip−d and, letting G∗ =

�̂
1/2

G, (14) can be written as a function of G∗ with
G∗T G∗ = Id ,

LPFC(G∗) = −(n/2) log |G∗T {Ip − �̂sir}G∗|.
This objective function results in the standard SIR es-
timates since it is maximized by setting the columns

of G∗ to be the matrix Ĝ∗ whose columns are the
first d eigenvectors of �̂sir. This solution is then back-
transformed to the original X scale so that Ŝ� =
�̂

−1/2
span(Ĝ∗). From this we see that, starting from

the normal likelihood for (13), the SIR solution is
found by using a sample-based inner product. Rela-
tive to the likelihood, this can have a costly effect of
neglecting the information in �̂ when estimating the
sufficient reduction.

While SIR does not require normality or a particu-
lar structure for Var(Xy), it is known that its operat-
ing characteristics can vary widely depending on these
features. Bura and Cook (2001) argued that generally
SIR performs the best under normality and that its per-
formance can degrade when Var(Xy) is not constant.
Cook and Ni (2005) showed that SIR can be very inef-
ficient when Var(Xy) is not constant and they provided
a new model-free method called inverse regression es-
timation (IRE) that can dominate SIR in applications.
From these and other articles, we would expect SIR to
be at its best under the models considered here, which
all have both normality and constant Var(Xy).

Like SIR, the fundamental population character-
istics of the PC and PFC methods considered here
do not hinge on normality. From (14) and Proposi-
tion 4, the normalized partially maximized log like-
lihood LPFC(G)/n converges in probability to

L̃PFC(G) = −(1/2) log |GT
0 �G0|

− (1/2) log |GT �resG|.
We then have:

PROPOSITION 5. Assume the conditions of Propo-
sition 4. Then � = arg maxG L̃PFC(G).

This proposition says that the likelihood objective
function arising from the extended PFC model (13)
produces Fisher consistent estimates when the errors
are uncorrelated, but not necessarily normal, suggest-
ing that normality per se is not crucial for the type of
analysis suggested in this article.

6.4 Illustration via Simulation

A simulation study was conducted to illustrate some
of the results to this point. We generated Y as a
N(0, σ 2

Y ) random variable, and then generated Xy ac-
cording to model (12) with p = 10, sample size n =
250 and � = (1,0, . . . ,0)T . As in previous simula-
tions, dim(S�) = 1 to allow straightforward compar-
isons with OLS. In reference to model (13), the data
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were generated with 	0 = σ0Ip−1 and 	 = σ . Four es-
timators were applied to each data set: OLS, SIR with
eight slices and PFCPC based on the likelihood for the
extended PFC model (13) using the slicing construc-
tion (4) with eight slices for fy . To expand the com-
parisons, we also included a recent semiparametric es-
timator RMAVE (Xia et al., 2002), which is based on
local linear smoothing of the forward regression with
adaptive weights and, like SIR, is expected to do well
in the context of this simulation. The results were sum-
marized by computing the angle between each of the
four estimates and S� .

The angles plotted in Figure 2 are averages taken
over 500 replications. Figure 2(a) is a plot of the aver-
age angle versus the error standard deviation σ for the
signal, with σY = σ0 = 1. Clearly, the likelihood-based

estimator PFCPC dominates SIR, OLS and RMAVE,
except when σ is close to 1, so the three variances in
the simulation are close. The RMAVE estimator is in-
distinguishable from OLS in all of the simulations of
Figure 2. In Figure 2(b) σY was varied while holding
σ = σ0 = 1. Again we see that PFCPC dominates over
most of the plot.

The error standard deviation σ0 for the inactive pre-
dictors was varied for the construction of Figure 2(c).
Here the results are of a fundamentally different char-
acter. PFCPC performed the best for σ0 < 1, and the
three methods are roughly equivalent for the larger val-
ues of σ0. But in the middle region, PFCPC performed
the worst. This poor performance arises because the es-
timate was computed using the PC candidate set, and
in the simulations when σ0 = √

2 the population eigen-
values of � = 2Ip are equal. When � is spherical, the

FIG. 2. Simulation results based on model (12). In (a)–(c) the likelihood-based estimator was computed from the PC candidate set. In (d)
the estimator was computed from the full candidate set containing the PC, PFC and RC directions. RMV is short for RMAVE.
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principal components are arbitrary and cannot be ex-
pected to convey any useful information. These obser-
vations allow us to guess about the qualitative behavior
of the four estimators in Figure 2(a) when σ < 1 and
in Figure 2(b) when σy < 1. For instance, as σy goes to
0 in Figure 2(b), all methods should exhibit deteriorat-
ing performance, but PFCPC should again perform the
worst since the eigenvalues of � converge to 1. These
guesses are confirmed by simulations (not shown).

Figure 2(d) was constructed as Figure 2(c), ex-
cept the estimator PFCPC was replaced by the esti-
mator PFCall based on the candidate set of PC, PFC
and RC directions. The PFCall estimate of S� always
performed as well as or better than SIR, OLS and
RMAVE, except in a neighborhood around σ0 = √

2.
The vector that maximized the likelihood always came
from the PC candidate set for σ0 ≤ 0.75, from the PFC
candidate set for 1 ≤ σ0 ≤ 1.25, and from the resid-
ual candidate set for σ0 ≥ 2. At σ0 = 1.5 this vector
came about equally from the residual and PFC candi-
date sets. These results may provide some intuition into
operational characteristics of the likelihood as reflected
through the three matrices given in Proposition 4. For
this simulation example those matrices are

� = �0�
T
0 σ 2

0 + ��T (σ 2 + σ 2
Y ),

�fit = ��T σ 2
Y ,

�res = �0�
T
0 σ 2

0 + ��T σ 2.

When σ0 is small, the first sample PC direction evi-
dently provides the best estimate of S� . When σ0 is
large, we can gain information on S� from the small-
est PC or the largest PFC. Evidently, the error variation
that comes with σ0 causes the smallest PC to be less
reliable than the largest PFC. When σ 2

0 = σ 2 + σ 2
Y , the

PC directions provide no information on S� , but the
PFC and residual directions can both provide informa-
tion.

To gain insights about the potential advantages of
pursuing the maximum likelihood estimator, we used
a gradient algorithm for Grassmann manifolds (Edel-
man, Arias and Smith, 1998) to find a local maxi-
mum of the likelihood, starting with the best direction
from the full candidate set. The local likelihood solu-
tion resulted in improvements all along the “PFCall”
curve, with the greatest improvement in a neighbor-
hood around σ0 = 1.5. For instance, at σ0 = 1.5, the av-
erage angle for the local likelihood solution was about
11 degrees, which is quite close to the average angles
for SIR and OLS, while the average angle shown in

Figure 2(d) for the full candidate set is about 15 de-
grees. On balance, the local likelihood gave solutions
that were never worse and were sometimes much better
than those of the three competing methods.

SIR and RMAVE are model-free methods of di-
mension reduction for regression. Normally some loss
would be expected relative to likelihood-based meth-
ods when the model holds. But the magnitude of the
loss in this simulation, particularly in Figures 2(a)
and 2(b), is surprising. The behavior of SIR is likely
explained in part by the discussion in Section 6.3.
Some authors (see, e.g., L. Li and H. Li, 2004; and
Chiaromonte and Martinelli, 2002) have used princi-
pal components to reduce the dimension of the predic-
tor vector prior to a second round of reduction using
SIR. The results of this simulation raise questions re-
garding such methodology generally. If we are in a sit-
uation like Figure 2(a) or 2(b) where principal com-
ponents do well, the motivation for switching to SIR
seems unclear. On the other hand, if we are in a situ-
ation like Figure 2(c) with σ0 ≈ √

2, then there seems
little justification for using principal components in the
first place.

6.5 Model Selection

The dimension d of the reductive subspace was as-
sumed known in the discussion of the extended PFC
model (13), but inference on d , which is in effect a
model selection parameter, may be required in prac-
tice. Likelihood methods are a natural first choice, in-
cluding penalized log likelihood methods like AIC and
BIC. In this section we briefly consider one possibility
for inference on d , and include two simple illustrative
examples.

If we set d = p, then we can take � = Ip and the
extended PFC model (13) reduces to the standard mul-
tivariate normal linear model, Xy = µ + βfy + 	ε,
which we call the “full model.” All extended PFC mod-
els with d < p are properly nested within the full
model and may be tested against it by using a like-
lihood ratio. Let 
d denote −2 times the log likeli-
hood ratio for comparing an extended PFC model to the
full model. The dimension of the Grassmann manifold
Gp×d is d(p − d), which is the number of real para-
meters needed to determine S� and to simultaneously
determine S⊥

� . From this it can be verified that, under
the PFC model of the null hypothesis, 
d is asymptot-
ically chi-squared with r(p − d) degrees of freedom.

We use the Horse Mussel data (Cook and Weisberg,
1994) for the first example. The response is the log-
arithm of muscle mass, and the p = 4 predictors are
the logarithms of shell height, length, mass and width.
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Scatterplots of the predictor versus the response indi-
cate that fy = y − ȳ is a reasonable choice. The ex-
tended PFC model (13) with d = 1 was fitted by using
Grassmann optimization with the starting value chosen
as the best direction from the full candidate set. This
gave 
1 = 3.3 with three degrees of freedom, indicat-
ing that these data provide little information to distin-
guish between the full model and the PFC model with
d = 1. The pairwise sample correlations between the
estimated sufficient reduction, the first PC and the first
PFC were all essentially 1, so the first PC produces
an equivalent solution for these data. However, PC re-
gression by itself does not allow one to infer strong in-
dependence, (Y,�T X)⊥⊥�T

0 X. Using the cubic option
for fy produced the same conclusions.

Fearn’s (1983; see also Cook, 1998, page 175) cali-
bration data are the basis for the second example. The
response is the protein content of a sample of ground
wheat, and the predictors are − log(reflectance) of NIR
radiation at p = 6 wavelengths. The predictors are
highly correlated in these data, with pairwise sample
correlations ranging between 0.92 and 0.9991. As in
the previous example, fy = y − ȳ seemed to be a rea-
sonable choice. Fitting the extended PCF model with
this fy gave 
1 = 29.1 with five degrees of freedom
and 
2 = 2.6 with four degrees of freedom. Conse-
quently, we infer that the sufficient reduction is com-
posed of two linear combinations of the predictors,
which can be viewed in a three-dimensional plot with
the response. In contrast to the previous example, here
there does not seem to be an easily described relation-
ship between the estimated sufficient reduction and the
principal components. All of the principal components
are related to the sufficient reduction in varying de-
grees, the strongest relationships involving the second,
third and sixth components.

Several data sets from the literature were studied
similarly. The conclusion that d < p, and sometimes
substantially so, was the rule rather than the exception.
In the next section we consider more general versions
of the PC and PFC models by allowing for unstructured
errors. This will provide a closer connection with some
standard methodology, and may give intuition about
the common practice of standardizing the data prior to
computing principal components. We concluded from
this that the kinds of models proposed here will likely
have wide applicability in practice.

7. PC AND PFC MODELS WITH UNSTRUCTURED
ERRORS

Suppose that Xy follows the general PC model

Xy = µ + �νy + σ
1/2ε,(16)

where the parameters and the error ε have the same
structure as in model (2) and the conditional covari-
ance matrix Var(Xy) = σ 2
 > 0. Then we have the
following.

PROPOSITION 6. Under model (16), the distri-
bution of Y |X is the same as the distribution of
Y |�T 
−1X for all values of X.

We first consider implications of this proposition
when 
 is known, and then turn to the case in which
Var(Xy) is unknown.

7.1 
 known

The essential variance condition in the PC model (2)
and the PFC model (5) is that Var(Xy) = σ 2
, where

 is known but not necessarily the identity. Accord-
ing to Proposition 6 a sufficient reduction for (16) is
�T 
−1X. Letting Zy = 
−1/2Xy , we have

Zy = 
−1/2µ + 
−1/2�νy + σε

= µ∗ + �∗ν∗
y + σε,

where the columns of �∗ are an orthonormal basis
for span(
−1/2�) and ν∗

y is the corresponding coor-

dinate function. It follows that S� = 
1/2S�∗ and thus
that the coordinates of the sufficient reduction are in

−1S� = 
−1/2S�∗ . In short, the required reductive
subspace S
−1� is estimated by the span of 
−1/2

times the first d eigenvectors of 
−1/2�̂
−1/2. An
implication of this result is that principal components
computed in the standardized Z-scale are appropriate
reductions for both X and Z, because

�∗T Z = (�∗T 
−1/2)(
1/2Z) = (
−1/2�∗)T X.

Turning to the general PFC model

Xy = µ + �βfy + σ
1/2ε,(17)

and following the discussion of model (16), �T 
−1X
is again a sufficient reduction. The maximum likeli-
hood estimate of the reductive subspace is the span of

−1/2 times the first d eigenvalues of 
−1/2�̂fit


−1/2.

7.2 Var(Xy ) unknown

We now turn to the PFC model (17) with Var(Xy)

unknown. For notational convenience, redefine 
 =
Var(Xy), absorbing the scale parameter σ 2 into the def-
inition of 
. Maximizing the log likelihood over β and
µ, the resulting partially maximized log likelihood

(−n/2) log |D|
− (n/2) trace[D−1/2�̂D−1/2(18)

− PD−1/2GD−1/2�̂fitD−1/2]
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is a function of possible values D and G for 
 and �.
For fixed D this function is maximized by choosing
D−1/2G to be a basis for the span of the first d eigen-
vectors of D−1/2�̂fitD−1/2, yielding another partially
maximized log likelihood K(D),

K(D)/n = (−1/2) log |D|

− (1/2)

{
trace[D−1/2�̂D−1/2]

−
d∑

i=1

λi(D−1/2�̂fitD−1/2)

}
= (−1/2) log |D|

− (1/2)

{
trace[D−1�̂res]

+
p∑

i=d+1

λi(D−1�̂fit)

}
,

where λi(A) indicates the ith eigenvalue of A, and the
second equality was found by substituting �̂ = �̂fit +
�̂res. The first two terms alone,

(−1/2) log |D| − (1/2) trace[D−1�̂res],
are maximized by 
̂ = �̂res and this is a consistent es-
timator of 
. The final term,

−(1/2)

p∑
i=d+1

λi(D−1�̂fit),

reflects the fact that we may have r > d and thus that
there is an error component in �̂fit due to overfitting.
Since it is assumed that rank(�̂fit) ≥ d , this term will
not be present if r = d , and use of 
̂ = �̂res should be
reasonable if r is not much larger than d . However, the
final term may be important if r is substantially larger
than d .

Once 
̂ is determined, the estimate of the reductive
subspace is the span of 
̂−1/2 times the first d eigen-
vectors of 
̂−1/2�̂fit
̂

−1/2. This is the same as the es-
timator in the case where 
 is known, except 
̂ is sub-
stituted for 
.

7.3 Prior Data Standardization for PC’s

Reduction by principal components is often based on
the marginal correlation matrix of the predictors rather
than on �̂ (see, e.g., Jolliffe, 2002, page 169; L. Li and
H. Li, 2004). In this section we provide a population-
level discussion that may shed light on the appropriate-
ness of this practice.

The contours of the conditional covariance matrix
are spherical in the first PC model (2), Var(Xy) =
σ 2Ip , and the contours of � = σ 2Ip + �Var(νY )�T

are elliptical. Generally, the method of maximum like-
lihood treats Var(Xy) as a reference point, with the
impact of the response being embodied in the eigen-
vectors of � relative to Var(Xy). In the context of
model (2), these eigenvectors are the same as the eigen-
vectors of �. When passing from Var(Xy) = σ 2Ip

to �, the response distorts the conditional variance by
“pulling” its spherical contours parallel to the reductive
subspace, which is then spanned by the first d prin-
cipal components. The same ideas work for the first
PFC model (5), except more information is supplied to
the mean function E(Xy), with the consequence that
the marginal covariance matrix of the predictors � is
replaced by the covariance matrix of the fitted val-
ues �fit.

Likelihood estimation in all of the other normal
models considered in this article can be interpreted
similarly, but the calculations become more involved
because the reference point Var(Xy) is no longer spher-
ical. Consider first the general PC model (16) with 

known. The reference point Var(Xy) = σ 2
 no longer
has spherical contours, so the eigenstructure of � is
not sufficient to find the reductive subspace. To find
the eigenvectors of � relative to Var(Xy), first con-
struct the standardized predictors Z = 
−1/2X. The
reductive subspace in the Z-scale is then the span of
the first d eigenvectors of Var(Z) = 
−1/2�
−1/2, be-
cause the contours of Var(Zy) = σ 2Ip are spherical.
The final step is to return to the X-scale by multiplying
these eigenvectors by 
−1/2. The general PFC model
(17) follows the same pattern, as may be seen from the
discussion at the end of Section 7.2.

It may now be clear why the approach in this article
provides little support for the common practice of stan-
dardizing the predictors so that the covariance matrix
of the new predictors W = diag(�)−1/2X is a corre-
lation matrix. The discussion of the PC model in Sec-
tion 7.1 indicated that standardization should be based
on 
, not diag(�), followed by back transformation to
the original scale. Reduction using the eigenvectors of
Var(W) requires that Var(Wy) be spherical, but this re-
quirement will not generally be met. As a consequence,
the eigenvectors of Var(W) may have little useful rela-
tion to the reductive subspace.

As a simple example, consider the simulation mo-
del (7), where the predictors are marginally and con-
ditionally independent, with Var(Xy) = σ 2Ip . Conse-
quently, Var(W) = Ip and the principal components of
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the standardized predictors do not convey useful infor-
mation. However, Var(Wy) is not spherical, so the suf-
ficient reduction should be computed from the eigen-
vectors of Var(W) = Ip relative to Var(Wy).

7.4 Connection with OLS for Y |X

Suppose that we adopt model (17) with fy = (y − ȳ)

and 
 unknown, again absorbing σ 2 into 
. In this
case, d = r = 1, β is a scalar and � ∈ R

p . Letting Ĉ =
Ĉov(X, Y ),

�̂fit = ĈĈT

σ̂ 2
Y

,

which is of rank 1. Consequently, it follows from the
previous section that


̂ = �̂res = �̂ − ĈĈT

σ̂ 2
Y

and that

�̂−1
res = �̂−1+�̂−1Ĉ[1−ĈT �̂−1Ĉ/σ̂ 2

Y ]−1ĈT �̂−1/σ̂ 2
Y .

The estimate Ŝ
−1� is the span of �̂
−1/2
res times the

eigenvector corresponding to the largest eigenvalue
of �̂

−1/2
res �̂fit�̂

−1/2
res . But �̂fit has rank 1, and con-

sequently the first (nonnormalized) eigenvector is
�̂

−1/2
res Ĉ. Multiplying this by �̂

−1/2
res , we have that

Ŝ
−1� = span(�̂−1
res Ĉ). Next, �̂−1

res Ĉ = �̂−1Ĉ × con-
stant, so the inverse method yields OLS under mo-
del (17) with fy = (y − ȳ): Ŝ
−1� = span(α̂). The

constant above is ĈT �̂
−1

Ĉ/(σ̂ 2
Y − ĈT �̂

−1
Ĉ). This

connection with OLS requires that d = r = 1 and that
fy = (y − ȳ). Estimators based on (17) and other val-
ues of d and r may thus be regarded as a subspace
generalization of OLS.

The relation Ŝ
−1� = span(α̂) that holds under
model (17) allows us to reinterpret the results for OLS,
PC and PFC in Figures 1 and 2 as a comparison be-
tween three estimators based on inverse models with
different structures for E(Xy) and Var(Xy). The rela-
tive performance of the PC (2) and PFC (5) estima-
tors in Figure 1 suggests that substantial gains are pos-
sible by modeling the inverse mean function. On the
other hand, the relative performance of OLS (17) and
the extended PFC estimator (13) in Figure 2 indicates
that there are substantial costs associated with estimat-
ing 
. These conclusions point to the extended PFC
model (13) as a particularly useful target for dimen-
sion reduction in practice, since it requires a model for
the inverse mean and avoids estimation of 
 when ap-
propriate.

7.5 Connection with SIR

As in Section 6.3, we must use the slice basis func-
tion (4) to relate the SIR estimator of the reductive sub-
space S
−1� to the estimator obtained from model (17)
using 
̂ = �̂res as the estimator of 
. Letting �̂i denote
an eigenvector of the normalized SIR matrix (cf. Sec-
tion 6.3)

�̂sir = �̂−1/2�̂fit�̂
−1/2,

�̂−1/2�̂i is a non-normalized eigenvector of �̂
−1

�̂fit
with the same eigenvalues as �̂sir. The subspace

spanned by the first d eigenvectors of �̂
−1

�̂fit gives
the SIR estimate of S
−1� . Similarly, the subspace

spanned by the first d eigenvectors of �̂
−1
res �̂fit is the

estimate of the reductive subspace from model (17),
still using 
̂ = �̂res. These estimators are identical
provided �̂res > 0, because then the eigenvectors of

�̂
−1

�̂fit and �̂
−1
res �̂fit are identical, with corresponding

eigenvalues λi and λi/(1 − λi) (see Appendix A.7).

7.6 Simulations with Unstructured Errors

To help fix ideas and provide results to direct further
discussion, consider data simulated from the model

Xy = �y + 
1/2ε,(19)

where p = 10, Y is a normal random variable with
mean 0 and standard deviation σY = 15, � = (1, . . . ,

1)T /
√

10, and 
 was generated once as 
 = AT A,
where A is a p × p matrix of independent standard
normal random variables, yielding predictor variances
of about 10 and correlations ranging between 0.75 and
−0.67. Four estimators of the sufficient reduction sub-
space S
−1� were computed for each data set gener-
ated in this way:

1. The OLS estimator. This is the same as the PFC es-
timator with fy = (y − ȳ) (cf. Section 7.4).

2. The PFC estimator with a third-degree polynomial
in y for fy , designated PFC-Poly in later plots.

3. The SIR estimator with eight slices. This is the same
as the PFC estimator with the slicing option for fy
and 
̂ = �̂res (cf. Section 7.5).

4. The PFC estimator using the slicing construction
for fy with eight slices and the true 
, designated
PFC-� in later plots (cf. Section 7.2).

Shown in Figure 3(a) are the natural logarithms of
the average angles from 500 replications of each sam-
pling configuration. The logarithms were necessary
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FIG. 3. Natural logarithm of the average angle versus (a) sample size and (b) k for four estimators based on simulation model (19) with
different covariance matrices 
.

since the angles varied over several orders of magni-
tude. The OLS and PFC-Poly estimators were essen-
tially indistinguishable and are represented by a sin-
gle curve in Figure 3(a). These estimators seemed to
do quite well, with the average angle varying between
0.51 for n = 50 and 0.18 for n = 250. The performance
of the PFC estimator using the true 
 was exceptional,
the average angle varying between 0.0034 and 0.0014.
SIR performed the worst, its average angle varying be-
tween 19.2 and 8 degrees.

PFC did exceptionally well when using the true 
,
while SIR’s performance was considerably worse. The
reason for this difference seems to be that SIR’s slicing
estimate of 
 is biased. In the context of this example,

 = � −��T σ 2

Y . But when using the slicing construc-
tion for fy , 
̂ = �̂res is a consistent estimator of


sir = � − Var(E(X|Y ∈ Hk))

= � − ��T Var(E(Y |Y ∈ Hk)),

where Hk indicates slice k, as defined in Section 4.
The difference between these two population covari-
ance matrices is


 − 
sir = ��T (
σ 2

Y − Var(E(Y |Y ∈ Hk))
)

= ��T E(Var(Y |Y ∈ Hk)),

which is nonzero for continuous responses. One con-
sequence of this bias is that SIR may not be able to
find an exact or near exact fit. An exact fit occurs in the
context of model (17) if �T 
 = 0, so �T X is a deter-
ministic function of y. To illustrate this phenomenon
we generated data from simulation model (19) with


 = (cI10 − ��T )σ 2
Y

and c > 1. Here � = cσ 2
Y I10 and an exact fit occurs

if c = 1. Values of c < 1 are not allowed since then

 will not be positive definite. With c = 1 + 0.1/10k ,
Figure 3(b) shows the natural logarithm of the average
simulation angle versus k for the four estimators used
in Figure 3(a) with n = 50. Clearly, SIR’s response to
increasing k is negligible. At k = 4 the average angles
for SIR, OLS and PFC-� were about 7.7, 0.085 and
0.0002, respectively.

The general conclusions here are that (1) there can
be a substantial cost associated with estimation of 

(cf. Section 7.4) and (2) the slicing construction for fy
may impose inherent limitations on the analysis under
model (17). The first conclusion does not occur for any
of the other inverse models discussed in this article,
because for them S� is the reductive subspace, which
does not require a direct estimate of 
.

8. DISCUSSION

8.1 General Remarks

Conditioning. Fisher believed that if a statistic is an-
cillary, then inferences should be made from the condi-
tional distribution of the data given that statistic. As a
consequence of this logic, many of us have been taught
and still practice what has become effectively a first
principle of parametric regression: Inference should be
conditioned on the observed values of the predictors,
even if Y and X are both random. It may be, how-
ever, that this principle has forced a myopic view of re-
gression methodology. The inverse models studied in
the previous sections describe the conditional distrib-
ution of X given Y and thereby make explicit use of
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the randomness in X. With these inverse models, we
were able to achieve results that are superior to those
from standard methods, and to those from recent di-
mension reduction methods. The success of these in-
verse models depends in part on imposing an appropri-
ately restrictive structure on the conditional variances
Var(Xy). They were presented, not as models for shot-
gun application, but as illustrations of potential, recall-
ing Fisher’s view that model specification is a matter
for the practical statistician. In contrast, if we condition
on the observed values of the predictors, they become
known constants and the possibilities of inferring about
their variance structure or utilizing prior knowledge are
lost to us.

Reductive subspaces. The reductive subspace pro-
vides a connection between forward and inverse re-
gressions. Starting with the PC model (2) and pass-
ing through a series of extensions, the last two PFC
models considered were the extended PFC model (13),
Xy = µ+�βfy +�0	0ε0 +�	ε, and the general PFC
model (17), Xy = µ + �βfy + 
1/2ε, in which 
 is
unstructured and unknown. This final model connects
inverse and forward regression methodology, since it
is here that certain forward and inverse estimates of
S
−1� are the same. While the error structure in model
(13) is restrictive, it may be useful in some applica-
tions. Perhaps more importantly, we should be aware
of the possibility to develop models “between” (13)
and (17) that allow us to infer simultaneously about the
reductive subspace and about the relevant structure of
Var(Xy).

Simulation practices. Perhaps due in part to the con-
ditioning tradition, it seems quite common to gener-
ate X as a N(0, I ) random vector in simulation stud-
ies to compare regression methods. This practice may
place notable limitations on the results of the simula-
tion, since it implies that there is no useful informa-
tion in Var(X), as in the simulations with σ0 = √

2 in
Figure 2(c). This will give a clear edge to some for-
ward methods. However, as demonstrated in this arti-
cle, when (Y,X) has a joint distribution there may well
be useful information in Var(X).

Collinearity. The rationale for employing principal
components in regression has been rather uneven. Tied
closely to the presence of collinearity, reduction by
principal components has been seen as a way to com-
pensate for variance inflation in the estimates of the re-
gression coefficients. However, collinearity played no
essential role in this article, suggesting that the utility
of principal component reduction is broader than pre-
viously seen.

n < p. Dimension reduction seems particularly im-
portant in regressions where “n < p.” Many available
methods encounter problems at an operational level be-
cause of the need to compute �̂−1. However, with the
exception of Section 7, the methods described in this
article do not require the computation of an inverse,
and may therefore have value in regressions where n

is not large relative to p. First simulation results sus-
tain this conjecture, particularly when the methods are
used in conjunction with predictor screening at the out-
set. As mentioned at the end of Section 2, past studies
have based predictor screening on the univariate for-
ward regressions of Y on Xj . However, the results here
suggest that predictor screening be based on univariate
inverse regressions of Xj on fy , j = 1, . . . , p.

8.2 Model-Based Sufficient Dimension Reduction

At the outset of his book Statistical Methods for Re-
search Workers, Fisher (1941, page 1) offered the fol-
lowing definition:

Statistics may be regarded as (i) the study
of populations, (ii) as the study of variation,
(iii) as the study of methods of the reduction
of data.

In this statement and in his commentary that follows,
Fisher seems to suggest that “reduction of data” may
encompass more than just sufficient statistics; for in-
stance, efficient statistics may be adequate for such
purposes. For this reason I imagine that Fisher would
not have objected to the notion of a sufficient reduction
as defined in this article.

The sufficient reductions described in the previous
sections are special cases of a general reductive para-
digm that emerges from the following definition: A re-
duction R : Rp → R

q , q ≤ p, is sufficient if at least one
of the following three statements holds:

Reductive forms.

(i) X|(Y,R(X)) ∼ X|R(X),
(ii) Y |X ∼ Y |R(X),

(iii) Y ⊥⊥X|R(X).

Statement (i) corresponds to inverse regression and re-
quires only the conditional distribution of X|Y . For in-
stance, if Y is a categorical response indicating one of
two populations and X|Y is normal with mean µy and
covariance matrix 
, then Fisher’s linear discriminant
function is a sufficient reduction (Rao, 1962). State-
ment (ii) corresponds to forward regression and re-
quires only the conditional distribution of Y |X, while
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statement (iii) requires the joint distribution of (Y,X).
The key point for present purposes is that these three
forms are equivalent if Y and X are both random. For
example, we may determine a sufficient reduction from
X|Y (i) and then pass that reduction to the forward re-
gression (ii) or the joint distribution (iii) without spec-
ifying the marginal distribution of Y or the conditional
distribution of Y |X. This is how all sufficient reduc-
tions were determined in the previous sections, the
methods of derivation being essentially the same as the
methods available for determining sufficient statistics.

The connection with sufficient statistics goes further:
If we set X equal to the data, X = D, and set Y equal
to the parameters, Y = θ , then statement (i) becomes
D|(θ,R) ∼ D|R and we are led back to Fisher’s con-
cept of sufficiency (1). In this way, the notion of a
sufficient reduction encompasses sufficient statistics as
well.

While the reductions discussed in the previous sec-
tions are linear functions of X, sufficient reductions do
not have to be linear. If Xy is normally distributed with
mean 0 and Var(Xy) = Ip +νy��T , νy > −1, � ∈ R

p ,
then (�T X)2 is a sufficient reduction.

8.3 Model-Free Sufficient Dimension Reduction

In this article I have adopted a largely Fisherian per-
spective: (1) Find an adequate solution to the problem
of specification for the conditional distribution of X|Y ,
(2) use the inverse model for X|Y to estimate a suf-
ficient reduction R(X), and then, as described in Sec-
tion 8.2, (3) pass the estimated reduction to the forward
regression. Lacking an inverse model, these ideas are
not directly applicable because then there is no proba-
bility structure with which to determine a sufficient re-
duction. However, progress is still possible by restrict-
ing the search for a sufficient reduction to a specific
functional form. In view of their prevalence in the pre-
vious sections, linear reductions form a natural and po-
tentially useful class.

Consider then the reductive forms of Section 8.2
with R(X) = GT X, G ∈ R

p×k , k ≤ p. One linear re-
duction always exists because statements (i)–(iii) are
trivially true with G = Ip . If GT X is a linear reduc-
tion, then so is AT GT X for any full rank A ∈ R

k×k ,
suggesting again that interests center on the dimension
reduction (DR) subspace SG. If SG is a DR subspace
and SG ⊆ S, then S is also a DR subspace. There may
be infinitely many DR subspaces, and it therefore be-
comes necessary to consider the “smallest” subspace.

There are at least two ways to define a smallest DR
subspace. One way is to require a subspace Smin =

mink SG with the smallest dimension. However, such
subspaces are not necessarily unique and, even if they
were, they do not impose sufficient structure on the re-
gression for progress in theory or uncomplicated ap-
plication in practice. Another way is to restrict atten-
tion to the class of regressions in which the intersection
SY |X = ⋂

SG of all DR subspaces is itself a DR sub-
space. The central subspace SY |X (Cook, 1994, 1998)
then becomes the parameter of interest. The reduc-
tive subspaces S� and S
−1� encountered in previous
sections are instances of model-based DR subspaces.
Since generally there is no forward or inverse model
to tie up loose ends like high-order conditional mo-
ments, it has proven quite hard to estimate the entire
central subspace without some restrictions on the re-
gression. Nevertheless, there are successful methods
that can provide useful estimates of SY |X under condi-
tions that are weak relative to a parsimonious forward
or inverse model.

An introduction to model-free sufficient dimension
reduction via central subspaces is available from Cook
(1998) and the references contained therein. See Cook
and Ni (2005) for recent methodology and references
to recent literature.

APPENDIX

A.1 Propositions 1, 3 and 6

We first demonstrate Proposition 6. Propositions
1 and 3 will then follow as special cases.

To demonstrate Proposition 6 we first show that
the distribution of X|(�T 
−1X, Y = y) is the same
as the distribution of X|�T 
−1X for all y. Accord-
ing to model (16), Xy is normally distributed with
mean µy = µ + �νy and constant variance. Thus
X|(�T 
−1X, Y = y) is normally distributed with con-
stant variance and mean

E(X|�T 
−1X, Y = y)

= µy + P T


−1�(
)
(X − µy)

= (
Ip − P T


−1�(
)

)
µ + P T


−1�(
)
X

+ (
Ip − P T


−1�(
)

)
�νy

= (
Ip − P T


−1�(
)

)
µ + P T


−1�(
)
X,

where P
−1�(
) is the operator that projects onto

span(
−1�) in the 
 inner product. From this the last
term in the second equation is 0. Since X|(�T 
−1X,
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Y = y) is normally distributed with mean and vari-
ance that do not depend on y, it follows that the dis-
tribution of X|(�T 
−1X, Y = y) is the same as the
distribution of X|�T 
−1X for all y. Consequently,
Y ⊥⊥X|�T 
−1X, which implies that Y |X and
Y |�T 
−1X have identical distributions.

Proposition 1 follows immediately because 
 = Ip .
Under Proposition 3,

[Var(Xy)]−1 = �0	
−2
0 �T

0 + �	−2�T .

Consequently, [Var(Xy)]−1� = �	−2 and Proposi-
tion 3 follows.

A.2 Proposition 2

We use a different approach to demonstrate this
proposition. Suppose that under model (3) the joint
density or mass function f (x|y) of X|(Y = y) can be
written as

f (x|y) = h(x)g(�T x, y),

where h is a function that does not depend on y and
g is a function that depends on x only through �T x. It
would then follow from the usual factorization theorem
for sufficiency that the distribution of X|(�T X, Y = y)

is the same as the distribution of X|�T X for all y, and
thus Y ⊥⊥X|�T X.

To demonstrate the required factorization, let xj be
the j th element of x and, using the conditional inde-
pendence of the predictors, write

f (x|y) =
p∏

j=1

aj (ηyj )bj (xj ) exp{xjηyj }

=
p∏

j=1

aj (ηyj )bj (xj ) exp{xj (µj + γ T
j νy)}

=
[ p∏

j=1

bj (xj ) exp(xjµj )

]

×
[

exp{νT
y �T x}

p∏
j=1

aj (ηyj )

]

= h(x)g(�T x, y).

A.3 Equation (6)

Substituting µ̂ = X̄ and β̂
T = (FT F)−1FT

XG into
the log likelihood, we need to maximize

MPFC = (−np/2) log(s2)

− (1/2s2)
∑
y

‖Xy − X̄ − PGX
T F(FT F)−1fy‖2

= (−np/2) log(s2)

− (1/2s2)

{
trace

[∑
y

(Xy − X̄)T (Xy − X̄)

]

− trace

[
PGX

T F(FT F)−1

× ∑
y

fy(Xy − X̄)T

]

− trace

[∑
y

(Xy − X̄)

× fTy (FT F)−1FT
XPG

]

+ trace

[
(FT F)−1FT

XPGX
T

× F(FT F)−1
∑
y

fyfTy

]}
.

But
∑

y fy(Xy − X̄)T = FT
X and

∑
y fyfTy = FT F.

Thus

MPFC = (−np/2) log(s2)

− (1/2s2){ trace[XT
X] − trace[PGX

T PFX]
− trace[XT PFXPG]

+ trace[XT PFXPG]}
= (−np/2) log(s2)

− (1/2s2){ trace[XT
X] − trace[PGX

T PFX]}
= (−np/2) log(s2)

− (n/2s2){ trace[�̂] − trace[PG�̂fit]}.
A.4 Proposition 4

Requiring the errors to be uncorrelated but not nec-

essarily normal, it is known that �̂
p−→ �, and

� = Var(X)

= E(Var(X|Y)) + Var(E(X|Y))

= �0	
2
0�

2
0 + �	2�T + �βVar(fY )βT �T .

To find the limiting value of �̂fit = X
T PFX/n, use

model (13) to write

XT
y − X̄T = (µT − X̄T ) + fTy βT �T

+ εT
0 	T

0 �T
0 + εT 	T �T
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and thus

X = 1n(µ
T − X̄T ) + FβT �T + R0	0�

T
0 + R	�T ,

PFX = FβT �T + PFR0	0�
T
0 + PFR	�T ,

where R0 is the n × p − d matrix with rows εT
0

and R is the n × d matrix with rows εT . From this,
X

T PFX/n contains nine terms. The first of these

is �β(FT F/n)�T βT p−→ �βVar(fY )�T βT . The re-
maining terms involve products containing either or
both of the factors FT R/n and FT R0/n. Recalling that
the rows (corresponding to samples) of R and R0 are
independent, these factors both converge to 0 and this
property forces each of the eight remaining terms to
converge to 0. For instance, the last quadratic term can
be written �	(RT PFR/n)	�T , and

RT PFR/n = (RT F/n)(FT F/n)−(FT R/n),

which converges to 0 in probability by Slutsky’s theo-
rem.

Since �̂ = �̂fit + �̂res, take the difference of the lim-
iting values for �̂ and �̂fit to confirm the limiting value
for �̂res.

A.5 Equation (15)

Let O = (O1,O2) be a partitioned p × p orthogonal
matrix. Then

|�̂| = |OT �̂O| =
∣∣∣∣ OT

1 �̂O1 OT
1 �̂O2

OT
2 �̂O1 OT

2 �̂O2

∣∣∣∣
= |OT

1 �̂O1||OT
2 �̂O2

− OT
2 �̂O1(OT

1 �̂O1)
−1OT

1 �̂O2|
≤ |OT

1 �̂O1||OT
2 �̂O2|.

A.6 Proposition 5

Let C = β Var(fY )βT and H = GT
0 �C1/2. Then it

follows from Proposition 4 that

−2L̃PFC(G) = log |GT
0 �G0| + log |GT �resG|

= log |GT
0 �resG0 + GT

0 �C�T G0|
+ log |GT �resG|

= log |GT
0 �resG0|

+ log |Id + HT (GT
0 �resG0)

−1H|
+ log |GT �resG|

> log |GT
0 �resG0| + log |GT �resG|

≥ log |�res|
= log |�	2�T + �0	

2
0�

T
0 |

= log |	2
0||	2|.

In addition,

−2L̃PFC(�) = log |�T
0 ��0| + log |�T �res�|

= log |	2
0||	2|.

Therefore L̃PFC(G) ≥ L(�) for all G. The minimiz-
ing argument yields a unique subspace if L̃PFC(G) >

L̃PFC(�) for all G such that GT G = Id , dim(SG) = d

and SG �= S� .

A.7 Eigenvectors of �̂−1�̂fit and �̂−1
res�̂fit

�̂−1�̂fit� = λ� ⇐⇒ �̂fit� = λ�̂�

⇐⇒ �̂fit� = λ�̂res� + λ�̂fit�

⇐⇒ (1 − λ)�̂fit� = λ�̂res�

⇐⇒ �̂−1
res �̂fit� = (

λ/(1 − λ)
)
�.

The conclusion follows because �̂res = �̂ − �̂fit > 0
and λ/(1 − λ) is a strictly monotonic function of λ.
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