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Embedding Population Dynamics

Models in Inference
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Abstract.

Increasing pressures on the environment are generating an ever-

increasing need to manage animal and plant populations sustainably, and to
protect and rebuild endangered populations. Effective management requires
reliable mathematical models, so that the effects of management action can
be predicted, and the uncertainty in these predictions quantified. These mod-
els must be able to predict the response of populations to anthropogenic
change, while handling the major sources of uncertainty. We describe a sim-
ple “building block™ approach to formulating discrete-time models. We show
how to estimate the parameters of such models from time series of data, and
how to quantify uncertainty in those estimates and in numbers of individuals
of different types in populations, using computer-intensive Bayesian meth-
ods. We also discuss advantages and pitfalls of the approach, and give an
example using the British grey seal population.
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1. INTRODUCTION

At the 2002 World Summit on Sustainable Develop-
ment in Johannesburg, political leaders agreed to strive
for “a significant reduction in the current rate of loss
of biological diversity” by the year 2010. Initial steps
to achieve this include developing and implementing
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monitoring programs and data collection procedures
that quantify the rate of loss of biodiversity (Buckland,
Magurran, Green and Fewster, 2005), allowing assess-
ment of the success of management actions. However,
monitoring is a blunt instrument for management, be-
cause of the long lag between action and observed ef-
fects. Explanatory mathematical models provide “what
if” tools for predicting the impact of different manage-
ment actions on populations and biodiversity before a
course of action is chosen. Both elements are needed:
models, to guide and increase the effectiveness of man-
agement action; and monitoring, to provide a retro-
spective measure of whether the predicted effects have
been achieved. Indeed, the two approaches should be
fully integrated, by using the data from monitoring pro-
grams to update and fine-tune the mathematical mod-
els. One way to integrate the two elements is through
the use of adaptive management techniques (Walters,
2002).

The process of creating explanatory mathematical
models involves several steps, including formulating
one or more models, fitting the models to data, and,
in situations of multiple models, selecting or averag-
ing models that will be used for prediction (Burnham
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and Anderson, 2002). Realistic models that meet the
needs of policymakers and biodiversity managers of-
ten have a high degree of complexity. If these people
are not to be misled, it is essential that uncertainty in
these models is quantified (Harwood and Stokes, 2003;
Clark and Bjgrnstad, 2004). The uncertainty in model-
ing population dynamics that arises includes four main
sources: process variation (demographic and environ-
mental stochasticity), observation error, parameter un-
certainty and model uncertainty.

A popular and powerful approach to formulating
models for plant and animal population dynamics has
been the use of matrix models (Caswell, 2001). Such
models explicitly account for the various processes that
affect the dynamics of populations, for example, sur-
vival, birth, movement. However, fitting such matrix
models to data, for example, estimating survival and fe-
cundity rates, has often been carried out in a somewhat
piecemeal fashion, and uncertainty about model para-
meters has not always been incorporated into model
projections, let alone uncertainty associated with the
initial choice of the particular matrix model.

In contrast, many statistical models for time series of
population data can readily be fit in an integrated man-
ner and various forms of uncertainty simultaneously
accounted for. However, model formulation is often
empirical, with no attempt to incorporate the processes
underlying population dynamics explicitly, for exam-
ple, AR(p) and ARIMA models.

In this paper we review recent developments in mod-
eling population dynamics and describe an integrated
approach to formulating, fitting and selecting realistic
models for population dynamics that builds upon the
matrix model framework. The resulting models are not
necessarily matrix models, and are in fact more flexi-
ble. The approach is embedded within a Bayesian in-
ferential framework, so that the main sources of un-
certainty are accommodated. Two model fitting ap-
proaches are discussed, Markov chain Monte Carlo
(MCMC) and sequential importance sampling (SIS),
and an example of the approach is given for the British
grey seal population.

2. RECENT DEVELOPMENTS IN MODELING
POPULATION DYNAMICS

Matrix population models have long been used for
describing population dynamics. Following the pio-
neering work of Leslie (1945, 1948), such models were
usually deterministic; if observational data were used
at all for fitting models, it was for ad hoc estima-
tion of parameters of the population model, to allow

deterministic projection of the population of interest.
Caswell (2001) gives a comprehensive account of the
mathematical development of the topic, which includes
stochastic extensions (demographic and environmental
variation), and asymptotic analyses of growth rates and
age and stage class distributions for deterministic and
stochastic matrix models. However, in many cases an
integration of field or laboratory experiment data with
an underlying population dynamics model is lacking.
Quoting Tuljapurkar (1997) following an exposition of
analysis of stochastic matrix models: “A useful appli-
cation of stochastic models that we have not discussed
here is the development of methods for estimating the
vital rates of structured populations from data. Such es-
timation methods .. . are desirable in ecology, although
rarely used.”

An integration of data with population dynamics
models, and an embedding of such models in statistical
inference, is needed to allow for simultaneous account-
ing of uncertainties about model parameter values, ob-
servation error, process variation (demographic and
environmental stochasticity) and model uncertainty.
State-space models (Harvey, 1989; West and Harrison,
1997), particularly when applied in a Bayesian frame-
work, are a means of integrating data with population
dynamics models and readily quantifying the various
types of uncertainty (Calder, Lavine, Miiller and Clark,
2003; Clark, Ferraz, Oguge, Hays and DiCostanzo,
2005). A process model specifies probability distribu-
tions associated with the relevant population processes,
such as birth, survival and movement, and a corre-
sponding observation model defines the probability
distribution of observations, relating them to states. Us-
ing the terminology of Caswell (2001, pages 37-38),
individuals are classified according to i-states (e.g., age
category, sex, species). The vector of counts (or bio-
mass) of individuals by i-state is the p-state of the pop-
ulation, that is, the distribution of i-states in the popu-
lation. The elements of the state vector in the process
model may correspond to individuals or to groups of
individuals. State-space models are first-order Markov:
the state at time ¢ depends on the state at time # — 1, but
is conditionally independent of earlier states. Higher-
order Markov models are readily accommodated, and
Newman, Buckland, Lindley, Thomas and Ferndndez
(2006) use the term “hidden process models” to de-
scribe the entire range of such models.

Lavine, Beckage and Clark (2002) provide an exam-
ple of a complex process model for tree seedling mor-
tality which could be formulated as a state equation.
The observation equation in their case is degenerate in
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the sense that there is (assumed to be) no observation
error: the true numbers of seedlings are recorded on
the plots. Thus the observation equation would equate
observations to the sum of counts for indistinguish-
able types, while the state equation would split out
these types—hence it is an example of a hidden process
model. If inference were to be drawn on a wider pop-
ulation beyond the sampled plots, then the observation
equation would not be degenerate.

Many of the key developments in this field have
been made in the context of fisheries stock assess-
ment; Quinn and Deriso (1999) give a detailed account
of these developments. Early methods typically mod-
eled either process variation or (more usually) obser-
vation error (Hilborn and Walters, 1992, page 226).
An exception was Collie and Sissenwine (1983), who
modeled a time series of relative abundance data with
observation error to estimate population size. Process
variation was incorporated by assuming that survival
rate was a random variable. Mendelssohn (1988) ex-
tended their approach to allow the underlying popula-
tion dynamics to be random. He obtained maximum
likelihood estimates of the model parameters using the
Kalman filter (Kalman, 1960) together with the EM
algorithm (Dempster, Laird and Rubin, 1977). Gud-
mundsson (1987, 1994), Sullivan (1992) and Schnute
(1994) all used the Kalman filter to fit state-space mod-
els of fish dynamics to time series of catch data, and
Newman (1998) incorporated a spatial component. All
of these authors adopted linear models (or linear ap-
proximations to nonlinear models), and assumed that
process variation and observation errors were both nor-
mally distributed.

Nonlinear, nonnormal models have been devel-
oped within a Bayesian framework. Hilborn, Pikitch
and McAllister (1994), McAllister, Pikitch, Punt and
Hilborn (1994) and Schnute (1994) developed
Bayesian approaches in a fisheries context, and
McAllister and Ianelli (1997) compared fitting algo-
rithms based on sequential importance sampling (SIS,
also known as particle filtering), Markov chain Monte
Carlo MCMC) and adaptive importance sampling.
Millar and Meyer (2000) developed an MCMC fit-
ting algorithm, which Meyer and Millar (1999) imple-
mented in the BUGS package, thus making the meth-
ods more accessible to the user community. Rivot,
Prévost, Parent and Bagliniere (2004) also used BUGS
to fit their model. Cunningham, Reid, McAllister,
Kirkwood and Darby (2007) used the sampling im-
portance resampling (SIR) algorithm (Rubin, 1988)
to model three mackerel stocks, spread through seven

geographic regions, with deterministic movement be-
tween them.

Outside of fisheries, Raftery, Givens and Zeh (1995)
used a “Bayesian synthesis” approach to draw in-
ference from a deterministic population dynamics
model for bowhead whales. As pointed out by Wolpert
(1995), their approach suffers from Borel’s paradox:
their results are dependent on the (nonunique) pa-
rameterization chosen for the population dynamics
model. Subsequently, Poole and Raftery (2000) devel-
oped a “Bayesian melding” method, which is coher-
ent. Trenkel, Elston and Buckland (2000) developed
a model of red deer population dynamics that man-
agers could use to explore the likely effects of dif-
ferent culling strategies. They used SIS with kernel
smoothing to fit the model in a Bayesian framework.
Besbeas, Freeman, Morgan and Catchpole (2002), Bes-
beas, Lebreton and Morgan (2003) and Besbeas, Free-
man and Morgan (2005) used the Kalman filter to fit
state-space models to a combination of abundance and
demographic data on two species of birds (grey heron
and northern lapwing). MCMC has also been used
to fit state-space models for bird populations (Wikle,
2003; Clark and Bjgrnstad, 2004) and moose (Clark
and Bjgrnstad, 2004). Thomas, Buckland, Newman
and Harwood (2005) used SIS to model the dynamics
of a spatially structured grey seal population, allowing
estimation of movement rates between regions. Lele
(2006) used the composite-likelihood method for esti-
mating the parameters of the Gompertz model in the
presence of sampling variability.

To date, model uncertainty has received little atten-
tion. Bayesian model averaging may be incorporated
into importance sampling as noted by Buckland, New-
man, Thomas and Koesters (2004) and Cunningham
et al. (2007). Several models are defined, and a prior
is specified reflecting the initial belief on the relative
plausibility of each model. In the absence of better
knowledge, we would assign each model equal prior
weight. If MCMC is used, then reversible jump MCMC
(Green, 1995) can be used to sample what may be very
high-dimensional model space using the approach of
King and Brooks (2002a, b).

3. MODELING POPULATION PROCESSES AND
ASSOCIATED INFERENCE

3.1 Leslie and Lefkovitch Matrices Decomposed

A Leslie matrix (Leslie, 1945, 1948; Caswell, 2001)
is a population projection matrix that shows how, in
the absence of process variation, a population updates
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itself from one year to the next, through births, deaths
and aging. We use the term “generalized Leslie matrix”
to indicate an age-structured population projection ma-
trix with at least one additional process, such as move-
ment or sex assignment. If, instead of aging, we have
stages of development, then the population projection
matrix is usually referred to as a Lefkovitch matrix
(Lefkovitch, 1965; Caswell, 2001). In the following,
we show how such matrices can be expressed as prod-
ucts of simpler matrices, each one corresponding to a
single biological process (Buckland et al., 2004). This
approach has been used in the context of determinis-
tic matrix population models by Lebreton (1973) and
Lebreton and Isenmann (1976). Hooten, Wikle, Do-
razio and Royle (2007) used the same strategy to split
their matrix model for the growth and spread of the US
population of Eurasian collared-doves into a growth
process and a movement process.

Suppose that we have one species of animal, divided
into two age classes, with a total of ng ;_; newly born
individuals and ny ,—; adults in the population at the
end of year t — 1. Suppose further that the population
is subject to just three processes: survival through the
next year, age incrementation and births. For simplic-
ity, we model the females in the population only. The
expected number of survivors to the end of the next
year can then be written

(E(SO,t)> _g <”0,z1) _ <¢0 0 ) (nO,t1>
E(s1,1) ni—1 0¢1/\ni-1)’
where ¢ is the probability of survival of newly born
individuals to the end of their first year, ¢ is the an-
nual survival probability of adults and S is a survival

projection matrix. We can introduce demographic sto-
chasticity by specifying

50, ~ binomial(ng ;—1, ¢o)
51, ~ binomial(n;—1,¢1) )

We could also introduce environmental stochasticity
by allowing the survival probabilities ¢g and ¢; to
vary at random between years. Survival probabilities
could also be modeled as functions of covariates, for
example, using logistic functions, as in Buckland et al.
(2004). If some of these covariates relate to the indi-
vidual, such as body mass or condition, then i-states
(the states of individuals in the population) can be mod-
eled. If relevant covariates are unavailable, but survival
probabilities are variable, they could be modeled using
random effects.

Age incrementation is deterministic, so that the num-
bers of individuals immediately before births take
place are

()=A()- () C)
at,e S1,¢ 11 S1,¢

where A is an aging projection matrix. Finally, we can
specify the birth process by writing

()=o) = 6 ()

where B is a birth projection matrix, with a suit-
able stochastic model for births, for example, ng ; ~
Poisson(Aaj ;). (Note that the first element of the birth
matrix could equivalently be set to zero, since after ag-
ing and before new births occur, there are no young in
the population; we set it to unity in anticipation of the
growth model below.)

Thus, conditional on numbers at the end of year
t — 1, the expected numbers of individuals present at
the end of year ¢ are

(Far) =D D) i)

=(a s ) Gi)

We denote this Model 1. The vector n, = (%) is

n
termed the p-state or simply the state vector, belétause
it tallies the number of individuals in each state (ma-
ture or immature here). The product of matrices is
an example of a simple Leslie matrix. Note, however,
that only survivors can breed; in the traditional Leslie
matrix, the first row would not contain the survival
parameters, so that the birth rate applies to all individu-
als, whether or not they survive until the breeding sea-
son. By varying the sequencing of the processes that
alter the population, one can readily construct varia-
tions on classic Leslie matrix formulations. Note that
the above equation may be expressed in matrix form as
E(m;|ns_1) = Pn,_, with the Leslie population pro-
jection matrix P = BAS = (Aqf; 0 kfl .

Suppose we wish to model two growth stages rather
than two age classes, and the probability that an indi-
vidual moves from stage 1 to stage 2 is w. Then the
age incrementation matrix A = ((l) (1)) is replaced by
the growth matrix G = ('.” {) and the product of the
three matrices is now a Lefkovitch population projec-
tion matrix: P=BGS = ((1_”;;;”)% A91) Denote this

0 ¢
by Model 2.
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We can now extend Model 1 to have two subpopu-
lations with movement rate & between them; we label
this Model 3. If movement occurs just before the breed-
ing season, then

E(no1,r) ox00 0000
E(niy) 0100 1100
E(noa.r) 000 0000
E(niay) 0001 0011
1—u O uw 0
0O 1—u O m
7 0O 1I—u O
0 7 0 1—u
¢ 0 0 0 not,t—1
04100 niL,i—1
0 0¢o0 ne:—1 |’
00 0d¢1/ \nizs

where ng;; indicates number of immature individu-
als in subpopulation j in year ¢, j = 1,2, and simi-
larly for adults. This may be expressed in matrix form
as E(ns|n;—;) = BAMSn,_{, where the birth (B), ag-
ing (A), movement (M) and survival (S) projection ma-
trices are as above. The product of matrices is now a
generalized Leslie matrix:

P = BAMS

Apo(1 — ) Ap1(1 — ) Agou AP

do(1— ) 11— ) dou o1
Aot Aprp Ago(l — ) A1 (1 —p)
dop o1 do(1 —p) 11 —p)

Diagrammatic representations of Models 1-3 are given
in the Appendix.

Caswell (2001, page 110) considers an additive de-
composition of the projection matrix, in which one
of the matrices describes reproduction and the other
transitions. The matrix for reproduction comprises ele-
ments that represent the expected number of offspring
to individuals, where columns represent the type of in-
dividual, and rows the type of offspring. The transi-
tion matrix comprises elements that represent the prob-
ability that an individual of type j (represented by
columns) at time ¢ — 1 is in the population and of type
i (represented by rows) at time ¢. For the above mul-
tiplicative decompositions, each process can be speci-
fied by its own matrix, whereas in Caswell’s additive
decomposition, each process must be included as a
component of either reproduction or transition. Thus
for a model with growth stages and two sexes, sur-
vival and growth processes both appear in the tran-
sition matrix, and birth and sex assignment are both

handled in the reproduction matrix. The multiplicative
decomposition therefore offers an easier formulation of
the model. It also explicitly orders processes in time,
whereas the additive decomposition does not. The lat-
ter approach therefore shares a disadvantage with the
standard Leslie matrix: the breeding rate applies to all
individuals, whether or not they survive to the breed-
ing season. (If the year is redefined to start just before
the breeding season, then first-year survival cannot be
modeled using an additive decomposition.) A further
disadvantage of the additive decomposition is that it
does not allow the number of states within the popu-
lation to vary through the year, whereas this is read-
ily modeled in the sequential multiplicative framework
(Buckland et al., 2004), allowing greater flexibility.

3.2 The State Equation

Denote the state vector after process & has occurred
in year ¢t by u,, where k =1,..., K, say, and t =
1,...,T. Then ug ; = n,. For Model 1, for example,
K = 3;uy, represents numbers of survivors in each
i-state through to the end of year #,up; represents
numbers of adults after age incrementation, and u3 ; =
n,;. The state equation for process k in year ¢ specifies
how the states are updated. Assuming the process is
first-order Markov (an assumption that may easily be
relaxed), ux; = IBk,t(uk_l,,) fork=1,..., K, where
up; =n,_1 =ug 1, and f’k,t(-) is an operator to be
specified, which is random if the process is stochas-
tic. For the general case, the state equation may be ex-
pressed as

(D n, =P,(n,_y),
where P, (-) is the composition
f)l‘() = f’K,t(PK—l,t(‘ . 'f,l,t(') .. ))

Matrix population models in which all processes are
deterministic arise as special cases. Then we can write

n, =Pm;_,

where P; = Pg ;Px_1;---Py; is typically a general-
ized Leslie or Lefkovitch matrix. Note that P, may be
a function of n,_;, allowing models that are nonlin-
ear in the states, so that, for example, rates can be a
function of population size (Caswell, 2001). A second
special case is when at least one process is stochastic,
but the expected values of the elements of n; may be
expressed as functions of the elements of n,_;. Then

(2) E@m;n;—1) =Py,
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where P, is a population projection matrix such that
E®P;(n;—1)|n;—1) = Pin;_;. Examples are given by
Models 1-3. For Model 1, P; ;(-) is a random variable
generated from a binomial distribution corresponding
to each i-state, P> ;(-) is deterministic, and P3 ;(-) has
a stochastic Poisson-distributed component and a de-
terministic one. In this case, E[l~’3,t(152,,(131,,(n,_1)))|
n,_;] = BASn,_; so that P, = BAS. We stress that
the model fitting procedures described here do not re-
quire (2) to hold and are applicable in the wider context
of (1).

For a full specification of the process model, we
need to choose a probability density function (p.d.f.)
for the initial state vector, say go(ng|@), and a p.d.f.
for the state vector at time ¢ given the state vector at
time t — 1, g,(n/|n,_1, @), where @ is the vector of un-
known parameters. This p.d.f. is determined by the K
p.d.f’s corresponding to each of the processes in (1)
(Buckland et al., 2004). We note that, in the case of
multiple processes, the resulting p.d.f. is a compos-
ite function that can also include convolutions. Di-
rect evaluation of the p.d.f. can thus be quite diffi-
cult without the inclusion of intermediate latent states
(Clark et al., 2005; Newman, Fernandez, Buckland and
Thomas, 2007); Lele (2006) addresses a similar prob-
lem within a likelihood framework.

3.3 The Observation Equation

The observation equation relates the observation
vector y,; to the states at time ¢ through an operator
0O, (), so that y; = O;(n;). We denote the correspond-
ing observation p.d.f. by f;(y;|n;, ). If the operator is
random but linear, then E (y;|n;) = O;n; for the appro-
priate matrix O;. For example, if for Model 3 we have
an estimate y; , of total population size just after breed-
ing for subpopulation j, with corresponding variance
‘7'2:’ j =1,2, and the two estimates are independently
ndrmally distributed, then

noi,t

C(EGu)) (1100 [ a1,
EQyiing = (E(yz,t)) = (001 1) noos
ni2 ¢

and
2 2
1 {yji —EQj)}
.ft(yl|nl"0): 1_[ \/ﬁexp[ 20_2 ]
J=1/<70 Jit
In a Bayesian context, a prior distribution for o2, may

J.t
be based on an estimate 812 ;» together with its estimated
precision.

Unknown parameters may feature in the projection
matrix O;. In the above example, if the observations
were incomplete counts, with probability p that any in-
dividual animal was counted, we might have

not,t

_(EGD)N_(pPprO00Y ]| niis

Eyiing) = (E()Q,z) ~\00pp)|no:

ni2t

and
fi(y:Ing, 0)
2
— H (nOJ'J +n1j,f) pYit(1 — p)an,t"l‘nlj,t_yj,t‘
=1 Vit

Given additional independent data for estimating p, the
observation p.d.f. may be expanded by multiplying by
the likelihood corresponding to those data.

3.4 Bayesian Inference

Within a Bayesian framework, denote the prior dis-
tribution of the parameters # by g(6). Then the joint
prior distribution for the state vector n; and the para-
meters 6 is

T
8(8) x go(mol6) x [ g (neIn;—1,9),
=1

and the likelihood is

T
l_[ Ji(y:Ing, 0).

t=1

Hence the posterior distribution is

g(n077nT50|y17’yT)

= (8(0) x go(no|@)
3) .
x [ {e (s Im—1, 0) x ﬁ(ytm,,o)})

t=1

X (f(y1,- oy~

This approach for modeling complex environmental
and ecological processes was espoused by Berliner
(1996), Wikle, Berliner and Cressie (1998) and Wikle
(2003).

At time ¢t < T, the following types of inference are
often useful: filtering, using g(ny, 0y, ...,y:) (.e.,
only observations up to time ¢ are used); smooth-
ing, using g(n, @]y1,...,yr) (i.e., the full time se-
ries of observations up to time 7 is used to esti-
mate the state vector at time ¢); and prediction, using
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gmy,0lyy,...,y:) (i.e., observations up to year ¢ are
used to predict the state vector in year ¢/, ¢’ > r).

3.5 Model Fitting

SIS and MCMC are both computer-intensive Monte
Carlo methods, useful for fitting complex models of
the type described above, usually within a Bayesian
framework. Liu (2001) describes both SIS and MCMC,
and Gilks, Richardson and Spiegelhalter (1996) and
Doucet, de Freitas and Gordon (2001) include a range
of articles on MCMC and SIS, respectively.

Newman et al. (2006, 2007) give full details of how
the two approaches may be applied to fit models that
fall within the above framework. Because SIS is less
widely used than MCMC, we start with a brief descrip-
tion of it.

3.5.1 Sequential importance sampling. In its sim-
plest form, a large number R of “particles” are sim-
ulated from the prior distribution g(ng,#) = g(#) x
go(ng|@). The rth “particle” represents a single prior
realization 6, of the parameters of the population
model, together with a single realization of the popula-
tion in the initial year, ng . Each particle is projected
forward to time ¢ = 1, by simulating the state vector
n; , from g1 (ny[ng -, @,) for all r. Particles are resam-
pled with weights proportional to the contribution to
the likelihood of any observations at t = 1. Thus the
weights are w, = fi(yiIni.0,)/ XX filyiny.,,
0,). This resampling, known as bootstrap filtering, was
introduced by Gordon, Salmond and Smith (1993).
The surviving particles (0,,ng,,n; ) are approxi-
mately a sample from the posterior distribution, given
the data at time ¢+ = 1. They may be projected for-
ward to t = 2, with the state vector simulated from
g2(mang »,no -, 0,), and so on, until resampling at
time 7" has been carried out. The surviving particles
are then an approximate sample from the posterior dis-
tribution given by (3).

A practical problem with the above implementation
of SIS is “particle depletion”: typically, only a tiny
proportion of original particles survives, and most of
those appear in the posterior sample many times. Con-
sequently, Monte Carlo variation in the sample poste-
rior distribution between different simulations can be
quite high for this simplest form of sequential impor-
tance sampling. The problem is more acute for the sta-
tic parameters @ and the states corresponding to the
early years. Various tricks are used to mitigate the ef-
fects of particle depletion, such as sampling from a pro-
posal distribution that more closely matches the poste-
rior than does the prior (Liu and Chen, 1998), kernel

smoothing (West, 1993a, 1993b; Trenkel, Elston and
Buckland, 2000), the auxiliary particle filter (Pitt and
Shephard, 1999; Thomas et al., 2005), residual sam-
pling and partial rejection control (Liu, 2001).

3.5.2 Markov chain Monte Carlo. This method
generates dependent samples from the posterior dis-
tribution in (3), by simulating a Markov chain whose
stationary distribution is the required posterior distrib-
ution. A particular strength of this method is that it al-
lows the typically large dimensionality of the posterior
distribution to be broken down, by simulating blocks
of variables (parameters or states) in turn, condition-
ing on the current values of the other variables in the
chain. An efficient implementation of MCMC for fit-
ting population dynamics models depends critically on
the choice of blocking scheme for the parameters and
states, and of proposal distributions (Gilks and Roberts,
1996). Reparameterization can be very useful in some
cases.

3.6 Extending the Model Framework

The modeling framework captured by (1) is very
flexible, and goes far beyond the simple examples pre-
sented in Section 3.1. We now briefly discuss some of
the possibilities.

For moderate and large populations, demographic
stochasticity may be negligible compared to environ-
mental stochasticity. Vital rates (i.e., birth and sur-
vival rates) can be modeled as (autocorrelated) random
variables to account for environmental stochasticity
or trends in habitat quality (Rivot et al., 2004). Vi-
tal rates could also vary in a completely random
manner (i.i.d. sequences; Newman, 2000), evolve ac-
cording to a discrete-time Markov chain, or follow
an autoregressive-moving-average process (Caswell,
2001, pages 378-379; see also Johnson and Hoeting,
2003). Further, hierarchical models can be used that in-
clude random effects for sampling correlated processes
(Clark et al., 2005). More detailed models could spec-
ify vital rates as functions of covariates, such as the
environment, habitat or age, which could vary sto-
chastically. These covariates could also reflect deliber-
ate management actions, or accidental anthropogenic
changes in the environment, allowing their effects on
population abundance to be predicted. Inclusion of co-
variates that relate to i-state allows modeling of in-
dividuals. Modeling vital rates as random effects is
another way to allow for individual variation. Density-
dependent effects (i.e., effects that reduce birth and/or
survival rates as the population gets larger) can be in-
troduced by making vital rates a function of population
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size. Harvesting and assignment of sex and genotype
to newborn animals can also be incorporated.

At a more ambitious level, environmental and demo-
graphic processes can be modeled together, rather than
simply using environmental variables as covariates in
models for population-level parameters. For example,
Wikle, Berliner and Cressie (1998) developed a hier-
archical space-time model for monthly temperatures
and Wikle (2003) developed a hierarchical space—time
model for the spread of the house finch. In principle,
assuming that temperatures affect house finch survival
and subsequent spread, a combined hierarchical space—
time model for monthly temperatures and house finch
abundance is possible.

Spatial structure can also be modeled, by extending
the simple movement model represented by Model 3;
the movement rate may also be modeled as a function
of animal density and/or covariates (Buckland et al.,
2004; Thomas et al., 2005). Similarly, we can include
additional species in the model by extending the state
vector to include entries corresponding to all species.
Survival probabilities and/or birth rates of one species
can then be modeled as functions of the abundance
of the other species, as in discrete-time predator-prey,
consumer-resource or community models (Gurney and
Nisbet, 1998).

Many of these possibilities can be viewed as exten-
sions to standard matrix models, or to stochastic linear
models as in (2). Table 1 contains some examples, all of
which are “hidden” process models because we do not
directly observe the states that arise from each process

(e.g., numbers of deaths and survivors as a result of
the survival process). Instead, we observe or estimate
certain states at certain points in time (e.g., number of
females present at breeding colonies). Inferences about
all the underlying hidden processes, such as plausible
parametric forms for models of the processes, and es-
timates of the corresponding parameters, can be drawn
from these observations (Harwood and Stokes, 2003;
Thomas et al., 2005; Newman et al., 2006).

As Clark and Bjgrnstad (2004) note, missing obser-
vations, for example as the result of uneven sampling
intervals, are readily accommodated by the state-space
framework. Because we split the annual population
processes into chronological order, our framework is
readily extended to allow observations at different
times of the year. Changing effort, another issue con-
sidered by Clark and Bjgrnstad (2004), is also easily
accommodated in this framework: capture or detection
probability can be modeled in the observation equa-
tion as a function of effort, or counts can be adjusted
for effort, so that the adjusted counts (which may be
absolute or relative abundance estimates) are entered
into the observation equation, along with their esti-
mated precision. Dupuis (1995) and Clark et al. (2005)
modeled structured populations in the context of mark-
recapture, and Clark et al. (2005) noted that other data
models could be used with their methods. In our frame-
work, as with Clark et al. (2005), the structure appears
in the state vector, and transitions are modeled in the
state equation. For mark-recapture, if the mark status
of an animal is included in the state vector, then the

TABLE 1

Representations of hidden process models as matrix population models

Randomly varying vital rates:
Vital rates as functions of covariates:

Density dependence:

Metapopulations:

where the off-diagonal submatrices handle movement between subpopulations.

Multiple species:

Emy[n;_1) =Pfn;
E(myn,_1) =P(x/)n;_
E@m¢|n;_1) =Pm,_1)n,_;

ng NG| PiyPio--\ (g1

E| | Do || Der-1 Py Py oo | | mp st
ng ; Ng ;| Pyi(n—p) 0 g ;|
Emn,_))=E| | .t ||| -1 || = 0 Pppmy_p) -+ || mpr—1

*The matrix P; is the population projection matrix, showing how expectations of states n; conditional on n,_| relate to n,_ . The matrix P;
might have elements that are expectations of functions of the vital rates (indicated by P}), or might depend on covariates x; [denoted P(x;)]
or states n;_1 [denoted P(n;_1)]. More complex models can be obtained by combining the different model types. Further, P, might depend
on intermediate states, corresponding to a time point between ¢ — 1 and ¢, in which case the expectations do not hold and the models should
be interpreted in the more general context of (1).
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capture model is incorporated into the state equation
(Buckland et al., 2004), and the observation equation
is degenerate: the numbers of animals with capture his-
tories ending with capture are known without error.
If, on the other hand, the capture process is consid-
ered to be part of the observation process (in which
case inference is not conditional on known numbers
of individuals captured), it is modeled in the observa-
tion equation. Population processes such as survival,
births and transitions (e.g., movement) are handled
in the state equation, allowing a population dynamics
model to be “embedded” in the mark-recapture analy-
sis.

3.7 Limitations

The models described here operate in discrete time
and space, and the population is partitioned into dis-
crete states. Movement models that are continuous in
space can be incorporated, by specifying a probabil-
ity density function for distance and direction moved,
given an animal’s current state, location and other rel-
evant covariates. Extension to continuous time is less
straightforward. However, we can readily decrease the
time intervals that are modeled to reduce the approxi-
mations implicit in discretization. Further, for time in-
tervals in which only a single process (e.g., survival)
operates, no approximation is required—in effect, we
integrate out time over the period. For example, if sur-
vival and movement processes operate synchronously,
we can specify models for the instantaneous death and
movement rates, and use simulation-based methods
to embed these continuous-time models in the above
structure. However, the benefits of this approach (in
terms of improved correspondence with reality) would
have to be weighed against the additional computa-
tional burden.

The same approach can be used to model commu-
nities of species, but our ability to fit such models
is hampered by a lack of knowledge and of data on
species interactions. For example, one species may act
as both predator and prey of another at different stages
of their life cycles. Similarly, knowledge is often lack-
ing about the form of the relationships between biolog-
ical processes and environmental covariates. However,
technological advances in data logging offer greater
potential for gathering data that can be used to in-
fer such relationships. As computer power increases,
we can, for example, contemplate the development
of community models that incorporate the important
processes, while accommodating the major sources of
uncertainty.

4. EXAMPLE: MODELING A METAPOPULATION

Thomas et al. (2005) developed a hidden process
model of the metapopulation dynamics of British grey
seals. These animals spend over 80% of their time at
sea (McConnell, Fedak, Lovell and Hammond, 1999),
and 90% of this time underwater (Thompson, Ham-
mond, Nicholas and Fedak, 1991), so that it is difficult
to survey the entire population. However, the species
breeds colonially and pups spend most of the first three
weeks of their lives ashore, where they are readily
counted. Aerial pup counts have been conducted at all
of the major Scottish breeding colonies in every year
since 1984. These counts are used to estimate the total
number of pups born at each colony in each year.

To illustrate the ideas of this paper, we modeled
the population of female seals for the period 1984—
2002 by aggregating the colonies into four geograph-
ically distinct regions: North Sea (4 colonies) Inner
Hebrides (19 colonies), Outer Hebrides (11 colonies)
and the Orkneys (22 colonies). We used this model to
investigate whether it was more likely that the differ-
ential trends in pup production observed among the
four regions were due to density-dependent survival
and movement, or to deliberate killing of seals to pro-
tect salmon farms.

The model is shown diagrammatically in Figure 1.
We can come close to expressing it in the form of
a matrix population model by writing E(ns|n,_1) =
BM;AS;n;_{, where n; and n;_; are column vectors
listing number of individuals in each of seven age cat-
egories and four geographical regions. The matrix B
represents reproduction, with the same birth rate for all
mature females (age 6 or more); M; represents move-
ment of seals aged 5 (those recruiting to the breed-
ing population) between regions, which is modeled as
a function of relative densities and distances between
sites; A represents the annual deterministic process of
aging; and S; is a diagonal matrix of survival proba-
bilities, which are modeled as a function of either pup
production or salmon farming activity. Note that the
movement matrix M; is density dependent, and the sur-
vival matrix S; is either density dependent or a function
of salmon farming activity, so that both vary by year,
whereas the aging matrix A is certainly time indepen-
dent, and the birth matrix B is assumed to be. The prod-
uct P, = BM,AS; is the generalized Leslie matrix, a
population projection matrix. However, the nonlinear-
ity arising from the density dependence in M; inval-
idates this matrix representation of the model, which
needs to be interpreted in the more general framework
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FIG. 1. Model for British grey seals. For clarity, only one region is shown. Dashed lines indicate stochastic processes, solid lines determin-

istic processes.

of (1). The density dependence in S; would be allow-
able in the matrix representation framework, because
it is modeled using n;_;, whereas the density depen-
dence in M; is modeled using the intermediate state
vector up ;.

Pup production estimates were assumed to be nor-
mally distributed, and sequential importance sampling
was used to fit the models. Two measures of salmon
farming activity were considered: annual salmon pro-
duction by area, and total staff numbers by area. In
the matrix notation, S; now becomes S(X;), where X;
is either salmon production or total staff numbers, or
S(n;_;) for the model in which survival is a function
of pup production. Annual salmon production, with a
common parameter across regions for its possible ef-
fect on seal survival, provided the best fitting model, as
judged by Akaike’s Information Criterion.

Smoothed estimates of numbers of pups in each of
the regions are shown in Figure 2 for the model with-
out density dependence and movement, but with an-
nual salmon production as a covariate. This simplistic
model is able to fit the time series of pup production es-
timates reasonably well. However, the estimated levels
of deliberate killing are implausibly high, with a best

estimate of around 4000 seals shot annually in recent
years in the Outer Hebrides. This level of mortality is
unlikely to occur undetected, suggesting that the dif-
ferences in trends in pup production among regions are
not due solely to anthropogenic killing.

5. DISCUSSION

Ecologists often have a good understanding of the
processes regulating the abundance of particular an-
imal or plant populations, but the statistical methods
that have traditionally been used to model time series
of abundance estimates do not exploit this knowledge.
Consequently, the resulting models are ineffective for
predicting future changes. They also provide no mech-
anism for exploring the impact of different manage-
ment actions, such as harvest strategies or reintroduc-
tions of a species into its former range. Explicit models
of population processes are needed for this kind of pre-
diction. However, the uncertainty associated with these
predictions will not be adequately quantified if these
models are not fully embedded into inference. Hence,
the risks associated with different management strate-
gies will be unknown. Methods of the type described
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here are therefore essential for effective management
of species and of the ecosystems to which they belong.
In the section on limitations, the issues of con-
tinuous-time processes and modeling of communities
were raised. These topics offer many research oppor-
tunities. Guidelines or rules of thumb for model for-
mulation with associated measures of the extent of
nonidentifiability or weak identifiability are needed.
For example, given the observation and state vec-
tors, which components of the state vector and which
parameters are identifiable? Quoting Harvey (1989,
page 205): “The question of identifiability is a fun-
damental one in statistical modeling. It is particularly
important in the context of unobserved components
modeling since it is very easy to set up models which
are not identifiable.” Methods exist for linear regres-
sion models (e.g., variance inflation factors and condi-
tion numbers of the correlation matrix for predictors;
Myers, 1990), for mark-recapture models (Catchpole
and Morgan, 1997; Catchpole, Morgan and Freeman,
1998) and for time-invariant structural models (Harvey,
1989), but similar methods have not yet been devel-
oped for nonlinear, nonstationary state-space models.

Methods for fitting nonlinear, non-Gaussian state-
space models are the subject of much research (e.g.,
Doucet, de Freitas and Gordon, 2001). Choices in-
clude MCMC, SIS and other sequential Monte Carlo
procedures. Whereas these are general-purpose com-
putational methodologies, the details of any specific
algorithm are bound to be quite complicated. The di-
mension of the posterior distribution is typically very
high, as it includes the static parameters and the state
vectors for all years. At the same time, there is often
not enough data information to identify all unknowns
clearly, leading to strong correlations in the posterior
distribution. The combination of high dimensionality
with strong correlations is certainly challenging from
a computational perspective and there are research op-
portunities here. In addition, practitioners would ben-
efit from guidance on when to choose one procedure
over another, and from the development of software
for largely automated fitting of state-space models.
WinBUGS (MRC Biostatistics Unit, Cambridge, UK),
which uses MCMC, has been successfully used for
some complicated state-space models for ecological
data (Rivot et al., 2004), but if correlations between
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parameters and states are high, convergence can be ex-
tremely slow (Newman et al., 2007).

Finally, state-space model formulation and inference
need to be fully integrated with what Caswell calls
a “complete demographic analysis” that includes as-
ymptotic dynamics, transient dynamics and perturba-
tion analysis.

APPENDIX: DIAGRAMMATIC REPRESENTATIONS
OF THE MODELS

Diagrams in Figures 3—5 above are similar to life
cycle graphs (Caswell, 2001, pages 56-59). We use
dashed arrows to indicate stochastic processes, and
solid arrows to indicate deterministic processes. Also
shown are the rates associated with the stochastic
processes: ¢o and ¢ are the survival rates of young
and adults, respectively, and X is the mean number of
births per adult. For Model 2, 7 is the annual rate of
change from stage 1 to stage 2. These rates may them-
selves be modeled, to allow dependence on environ-
mental variables, population size, numbers of preda-
tors, resources, and so on. We can represent Model 1 as
Figure 3. Model 2 may be represented by Figure 4. And
finally Model 3. Rates have been omitted from Figure 5
to aid clarity.
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