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Comment
Olivier Bousquet and Bernhard Schölkopf

Our contribution will be short, but we will try to
compensate by being particularly opinionated. The
field of support vector machines (SVMs) and related
kernel methods has produced an impressive range of
theoretical results, algorithms and success stories in
real-world applications. While it originated in machine
learning, it is also concerned with core problems of
statistics and it is thus timely to publish a comprehen-
sive article that discusses these methods from a statis-
tician’s point of view. We shall use this opportunity to
make a few general comments, largely about the field
rather than about the present paper.

Many papers about SVMs start off saying something
like “SVMs are great because they are based on sta-
tistical learning theory” (this probably includes some
of our own writings). Moguerza and Muñoz are more
careful and only say that SVMs appeared in the context
of statistical learning theory. What actually is the con-
nection between SVMs and statistical learning theory?

Historically, SVMs and their precursors were (co-)
developed by Vladimir Vapnik, one of the fathers of
statistical learning theory. Statistical learning theory
includes an analysis of machine learning which is in-
dependent of the distribution underlying the data. How-
ever, this analysis cannot provide any a priori guarantee
that SVMs (or any other algorithm) will work well on
a real-world problem. So what is special about SVMs,
if anything?

In our view, what is special about SVMs is the com-
bination of the following ingredients: first and fore-
most, the use of positive definite kernels; then regu-
larization via the norm in the associated reproducing
kernel Hilbert space; finally, the use of a convex loss
function which is minimized by a classifier and not a
regressor.

The magic of kernels. Positive definite kernels and
their feature space interpretation do provide a very nice
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way to look at a whole class of algorithms; however, it
is important to stress that they do not bring any statisti-
cal guarantee by themselves. The statistical guarantees
available stem from the regularization (or learning the-
ory) point of view. We shall return to this point below.

The main advantages of positive definite kernels are
the following:

1. They allow easy construction of a nonlinear algo-
rithm from a linear one, often without incurring ad-
ditional computational cost.

2. They provide generality via the fact that they can be
defined on nonvectorial data and do not, in general,
require an explicit mapping to a reproducing kernel
Hilbert space.

Historically, the first point was initially considered one
of the major advantages of kernels and it triggered
a significant number of kernel algorithms other than
SVMs, starting with kernel principal component analy-
sis (PCA). More recently, the second point has ar-
guably taken over the role of the key selling point for
kernel methods. The application of learning algorithms
to nonvectorial data has become the field where nowa-
days a lot of the action is happening in the machine
learning world, in particular concerning applications
on structured data (e.g., in biology or natural language
processing). We are curious to see whether the field of
statistics will also embrace these possibilities.

A sober look at the geometric interpretation. The
geometric point of view is an original way to look at
SVMs and quite possibly the right way to come up
with an algorithm like the SVM in the first place. How-
ever, it does not yield comprehensive statistical un-
derstanding. More precisely, there is no way to prove
that large margin separating hyperplanes perform bet-
ter than other types of hyperplanes independently of
the distribution of the data.

Sure enough, the geometric point of view does pro-
vide intuition and motivates a large number of related
algorithms, but one should not be fooled by geometric
intution or two-dimensional illustrations. The fact that
data that are not linearly separable in input space sud-
denly becomes linearly separable in the so-called fea-
ture space (as depicted on Figure 1 of the main paper)
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has led to misconceptions. Indeed, the picture seems
to suggest that the kernel has magically placed the two
clouds of points in two separate regions of the space,
and hence uncovered the right decision boundary.

The feature space often has a nonintuitive geome-
try. Let us take the example of the Gaussian Radial
Basis Function (RBF) kernel. The corresponding fea-
ture space is of infinite dimension and the points are all
mapped to the positive orthant of the unit sphere. Any
two disjoint point sets in input space can be separated
by a hyperplane in this feature space.

There is thus something mysterious happening in
this space, but this space is but one way to look at
things. We might instead directly look at the SVM
algorithm and see that it loosely speaking tries to
combine functions of the form k(xi, ·) using coeffi-
cients chosen to maximize the real-valued predictions
yif (xi) on the training set. This brings us to the con-
cept of margin. People usually say that maximizing the
margin is good for generalization. There are two con-
cepts of margin to be distinguished:

• Geometric margin (distance to the hyperplane). This
is related to the norm of the weight vector, so that
maximizing the margin corresponds to minimizing
the norm (i.e., to regularization). Regularization can
indeed lead to good generalization, provided the
kind of smoothness enforced by the regularizer re-
flects the specifics of the problem.

• Numerical margin [i.e., the quantity yif (xi) which
appears in the hinge loss used by the standard SVM].
The main reason why it makes sense to maximize
this margin is because the hinge loss is a convex non-
increasing upper bound of the classification loss, so
that making yif (xi) large will ensure that the hinge
loss is small and thus that we minimize the number
of misclassification errors. However, this only means
that minimizing the empirical hinge loss might lead
to minimizing the empirical misclassification error,
but does not guarantee that the expected misclassifi-
cation error will be minimized as well.

These two notions are quite distinct, yet they are some-
times confused because they are entangled in the al-
gorithms. For instance, if one minimizes the hinge loss
over linear combinations of kernels and if there exists a
combination such that the total hinge loss on the train-
ing set is zero, then this combination is not unique: we
can multiply it by an arbitrary positive scale factor. In-
troducing a constraint on the norm of the weight vector
is a natural way to remove this gauge freedom. This

constraint is not innocent. It introduces a coupling be-
tween the numerical and the geometric margins: max-
imizing the geometric margin (in the context of an
appropriate nonlinear kernel) leads to regularization
which prevents overfitting by penalizing complex func-
tions, while maximizing the numerical margin leads
to minimization of the empirical error. Searching for
a function with small empirical error while penalizing
the complexity is the key to most reasonable learning
algorithms.

Convexity and loss functions. Another attractive fea-
ture of positive definite kernels is that they allow non-
linearization of learning algorithm while preserving
the convexity of the associated optimization problem.
This is also one reason for the success of SVMs: the
optimization problem is easier to handle than that of
other algorithms such as artificial neural networks. The
introduction of SVMs with kernels in the machine
learning community suddenly moved the focus from
optimization algorithms (e.g., multiple variants of gra-
dient descent) to optimization criteria. This has created
significant interest in convex functionals (for all kinds
of problems such as model selection, semisupervised
or unsupervised learning) and methods of convexify-
ing existing functionals.

In the context of supervised learning, this search for
convexity has led to the introduction of many differ-
ent convex loss functions. However, something that
has often been overlooked is the set of properties the
loss function has to satisfy so that it leads to a consis-
tent algorithm. For example, in the classification set-
ting, a minimum requirement is that with sufficient
data, minimizing the loss should lead to minimiza-
tion of the misclassification error. For standard SVMs,
the fact that the hinge loss satisfies this property was
noticed relatively late (see reference [40] of the main
paper) and, more surprisingly, in the context of multi-
class classification this has been addressed only very
recently. It has been proved in [1] that several variants
of multiclass SVM do not have the required property.
Of course, this is not to say that they perform poorly on
a finite sample, but it is important to understand what
an algorithm is aiming at and how it should behave as
the sample size increases.

Moguerza and Muñoz are indeed aware of the fact
that the minimizer of the hinge loss is the Bayes clas-
sifier (or rather is a function which has the same sign
as that of the Bayes classifier), but they later say that
there is still work to be done to provide a probabilistic
interpretation of the output values produced by SVM
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classifiers. This is somewhat problematic because, at
least asymptotically, there is no possible relationship
between probabilities and output values. [This follows
from the consistency property: With an appropriate
kernel, the values of the function produced by the SVM
algorithm will converge to exactly +1 or −1 on all the
points where P(Y |X) ∈]0,1/2[∪ ]1/2,1[ so that the
value of f (X) will have no relationship to P(Y |X).]
Hence, on a finite sample, if a relationship occurs, it
will likely be by pure chance (or because the kernel
happens to regularize exactly in the way needed for the
preferred functions to look like the conditional proba-
bility density function).

To conclude this section with a more philosoph-
ical viewpoint, let us mention that the SVM algo-
rithm also reinforces the belief that one should be
concerned about the objective rather than about the
model: what is important is not whether one can iden-
tify the “true” target function; rather, one should try to
find some function, from a large class, which will per-
form well. This belief is shared by many researchers
in the machine learning community, and it probably
distinguishes them from “classical” statisticians, as ar-
gued, for example, in [3].

Theoretical considerations. Regarding the statisti-
cal analysis of the SVM algorithm, besides the works
cited in the paper, there are a few additional references
that are worth mentioning; for example, [6] first proved
universal consistency of L1-SVM with a Gaussian ker-
nel, while Steinwart and Scovel [8] and Steinwart [7]
obtained rates of convergence under various condi-
tions. Also, more recently, the consistency of SVM has
been proved by Vert and Vert [9] in the case where the
regularization parameter is held fixed, but the kernel
width goes to zero. This suggests that there is a cou-
pling between both types of regularization (provided
by a small norm of the function and a large kernel
width).

It is now clear that the VC dimension is not the right
parameter to capture the rates of convergence, espe-
cially when studying real-valued functions classes. Al-
ternative possibilities (based on Rademacher averages)
along with finite-sample performance bounds can be
found, for example, in [2].

Progress has also been made in understanding the
role of sparsity in SVMs. First of all, the number of
support vectors is asymptotically linear in the sample
size if the Bayes error is nonzero. Second, on large data
bases the number of support vectors is usually too large
for fast testing (hence the development of reduced set
methods which can be applied to nonsparse models [4,
5]).

Why do SVM work so well in practice? There is
probably no theoretical answer to this question. The
fact that they are universally consistent is surely in-
teresting, but does not explain anything about finite
sample performance on real-world data sets (e.g., the
k-nearest neighbor algorithm is also universally con-
sistent). The sparsity also does not explain it. Regular-
ization (by the kernel width and by the function norm)
surely plays a role (by preventing overfitting) but this
cannot be quantified. Indeed, in statistical terms, one
can only tell the effect of regularization on the variance
but not on the bias, at least if one does not make spe-
cific assumptions on the smoothness of the target func-
tion. The only possible answer to this question might
thus be that on those problems where SVMs excel, the
kernel that is used induces a regularizer that incorpo-
rates appropriate prior knowledge about the problems
or, equivalently, it captures the right notion of similar-
ity. In a large majority of applications, the Gaussian
RBF kernel is used and its success simply means
that the Euclidean distance in input space is locally
meaningful for those problems. [Indeed, the Gaussian
kernel incorporates a notion of similarity which is a
monotonic function of the Euclidean distance. In this
case, the SVM produces a “local rule”: The prediction
at a given point is a weighted combination of the labels
of nearby points (where the weight mainly depends on
the distance and is adapted by the coefficients λi which
appear in equation (3.4) of the main paper).]

Future directions for research. Although, as ex-
plained by Moguerza and Muñoz, the SVM algorithm
in itself has several interesting merits, we think that
what is most important about it is its impact on the field
of machine learning and statistics. It has introduced
new concepts and ideas that have considerably influ-
enced their progress, and we expect that the acquired
momentum will lead to further advances, in domains
such as structured learning, joint kernels (mixing in-
puts and outputs), links to graphical models, and semi-
supervised learning, to name but a few. In a different
direction, one could try to extend the notion of kernel
so as to handle higher level similarities, such as analo-
gies (which can be considered as similarities between
pairs of examples).

There are also several important questions that need
to be addressed so as to bridge the gap between ba-
sic research and applications. For instance, there is no
satisfactory method for choosing the parameters other
than using cross-validation, which can be an obstacle in
applications. Moreover, there are still significant com-
putational issues arising from the implementation of
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SVM-like algorithms using nonlinear kernels for large-
scale problems.
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