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Classifier Technology and the lllusion
of Progress

David J. Hand

Abstract. A great many tools have been developed for supervised classi-
fication, ranging from early methods such as linear discriminant analysis
through to modern developments such as neural networks and support vec-
tor machines. A large number of comparative studies have been conducted
in attempts to establish the relative superiority of these methods. This paper
argues that these comparisons often fail to take into account important as-
pects of real problems, so that the apparent superiority of more sophisticated
methods may be something of an illusion. In particular, simple methods typi-
cally yield performance almost as good as more sophisticated methods, to the
extent that the difference in performance may be swamped by other sources
of uncertainty that generally are not considered in the classical supervised
classification paradigm.
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1. INTRODUCTION

In supervised classification, one seeks to construct
arule which will allow one to assign objects to one of a
prespecified set of classes based solely on a vector of
measurements taken on those objects. Construction of
the rule is based on a “design set” or “training set”
of objects with known measurement vectors and for
which the true class is also known: one essentially tries
to extract from the design set the information which is
relevant to distinguishing between the classes in terms
of the given measurements. It is because the classes are
known for the members of this initial data set that the
term “supervised” is used: it is as if a “supervisor” has
provided these class labels.

Such problems are ubiquitous and, as a consequence,
have been tackled in several different research areas,
including statistics, machine learning, pattern recog-
nition, computational learning theory and data min-
ing. As a result, a tremendous variety of algorithms
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and models has been developed for the construction of
such rules. A partial list includes linear discriminant
analysis, quadratic discriminant analysis, regularized
discriminant analysis, the naive Bayes method, logis-
tic discriminant analysis, perceptrons, neural networks,
radial basis function methods, vector quantization
methods, nearest neighbor and kernel nonparametric
methods, tree classifiers such as CART and C4.5, sup-
port vector machines and rule-based methods. New
methods, new variants on existing methods and new
algorithms for existing methods are being developed
all the time. In addition, different methods for variable
selection, handling missing values and other aspects
of data preprocessing multiply the number of tools yet
further. General theoretical advances have also been
made which have resulted in improved performance at
predicting the class of new objects. These include ideas
such as bagging, boosting and more general ensemble
classifiers. Furthermore, apart from the straightforward
development of new rules, theory and practice have
been developed for performance assessment. A variety
of criteria have been investigated, including measures
based on the receiver operating characteristic (ROC)
and Brier score, as well as the standard measure of mis-
classification rate. Subtle estimators of these have been



2 D.J. HAND

developed, such as jackknife, cross-validation and a va-
riety of bootstrap methods, to overcome the potential
optimistic bias which results from simply reclassifying
the design set.

An examination of recent conference proceedings
and journal articles shows that such developments are
continuing. In part this is because of new computa-
tional developments that permit the exploration of new
ideas, and in part it is because of the emergence of new
application domains which present new twists on the
standard problem. For example, in bioinformatics there
are often relatively few cases but many thousands of
variables. In such situations the risk of overfitting is
substantial and new classes of tools are required. Gen-
eral references to work on supervised classification in-
clude [11, 13, 33, 38, 44].

The situation to date thus appears to be one of very
substantial theoretical progress, leading to deep theo-
retical developments and to increased predictive power
in practical applications. While all of these things are
true, it is the contention of this paper that the practi-
cal impact of the developments has been inflated; that
although progress has been made, it may well not be
as great as has been suggested. The arguments for this
assertion are described in the following sections. They
develop ideas introduced by Hand [12, 14, 15, 18, 19]
and Jamain and Hand [24]. The essence of the argu-
ment is that the improvements attributed to the more
advanced and recent developments are small, and that
aspects of real practical problems often render such
small differences irrelevant, or even unreal, so that the
gains reported on theoretical grounds, or on empirical
comparisons from simulated or even real data sets, do
not translate into real advantages in practice. That is,
progress is far less than it appears.

These ideas are described in four steps.

First, model-fitting is a sequential process of pro-
gressive refinement, which begins by describing the
largest and most striking aspects of the data structure,
and then turns to progressively smaller aspects (stop-
ping, one hopes, before the process begins to model
idiosyncrasies of the observed sample of data rather
than aspects of the true underlying distribution). In
Section 2 we show that this means that the large gains
in predictive accuracy in classification are won using
relatively simple models at the start of the process,
leaving potential gains which decrease in size as the
modeling process is taken further. All of this means
that the extra accuracy of the more sophisticated ap-
proaches, beyond that attained by simple models, is

achieved from “minor” aspects of the distributions and
classification problems.

Second, in Section 3 we argue that in many, perhaps
most, real classification problems the data points in the
design set are not, in fact, randomly drawn from the
same distribution as the data points to which the clas-
sifier will be applied. There are many reasons for this
discrepancy, and some are illustrated. It goes without
saying that statements about classifier accuracy based
on a false assumption about the identity of the design
set distribution and the distribution of future points
may well be inaccurate.

Third, when constructing classification rules, various
other assumptions and choices are often made which
may not be appropriate and which may give mislead-
ing impressions of future classifier performance. For
example, it is typically assumed that the classes are ob-
jectively defined, with no arbitrariness or uncertainty
about the class labels, but this is sometimes not the
case. Likewise, parameters are often estimated by op-
timizing criteria which are not relevant to the real aim
of classification accuracy. Such issues are described in
Section 4 and, once again, it is obvious that these in-
troduce doubts about how the claimed classifier per-
formance will generalize to real problems.

The phenomena with which we are concerned in
Sections 3 and 4 are related to the phenomenon of
overfitting. A model overfits when it models the de-
sign sample too closely rather than modeling the dis-
tribution from which this sample is drawn. In Sections
3 and 4 we are concerned with situations in which the
models may accurately reflect the design distributions
(so they do not underfit or overfit), but where they fail
to recognize that these distributions, and the apparent
classification problems described, are in fact merely
a single such problem drawn from a notional distrib-
ution of problems. The real aim might be to solve a
rather different problem. One might thus describe the
issue as one of problem uncertainty. To take a famil-
iar example, which we do not explore in detail in this
paper because it has been explored elsewhere, the rel-
ative costs of different kinds of misclassification may
differ and may be unknown. A very common resolu-
tion is to assume equal costs (Jamain and Hand [24]
found that most comparative studies of classification
rules made this assumption) and to use straightfor-
ward error rate as the performance criterion. However,
equality is but one choice, and an arbitrary one at that,
and one which we suspect is in fact rarely appropriate.
In assuming equal costs, one is adopting a particu-
lar problem which may not be the one which is re-
ally to be solved. Indeed, things are even worse than
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this might suggest, because relative misclassification
costs may change over time. Provost and Fawcett [36]
have described such situations: “Comparison often is
difficult in real-world environments because key para-
meters of the target environment are not known. The
optimal cost/benefit tradeoffs and the target class pri-
ors seldom are known precisely, and often are sub-
ject to change (Zahavi and Levin [47]; Friedman and
Wyatt [8]; Klinkenberg and Thorsten [29]). For exam-
ple, in fraud detection we cannot ignore misclassifica-
tion costs or the skewed class distribution, nor can we
assume that our estimates are precise or static (Fawcett
and Provost [6]).”

Moving on, our fourth argument is that classifica-
tion methods are typically evaluated by reporting their
performance on a variety of real data sets. However,
such empirical comparisons, while superficially attrac-
tive, have major problems which are often not ac-
knowledged. In general, we suggest in Section 5 that
no method will be universally superior to other meth-
ods: relative superiority will depend on the type of
data used in the comparisons, the particular data sets
used, the performance criterion and a host of other fac-
tors. Moreover, the relative performance will depend
on the experience the person making the comparison
has in using the methods, and this experience may dif-
fer between methods: researcher A may find that his
favorite method is best, merely because he knows how
to squeeze the best performance from this method.

These various arguments together suggest that an ap-
parent superiority in classification accuracy, obtained
in “laboratory conditions,” may not translate to a su-
periority in real-world conditions and, in particular,
the apparent superiority of highly sophisticated meth-
ods may be illusory, with simple methods often being
equally effective or even superior in classifying new
data points.

2. MARGINAL IMPROVEMENTS

This section demonstrates that the extra performance
to be achieved by more sophisticated classification
rules, beyond that attained by simple methods, is small.
It follows that if aspects of the classification problem
are not accurately described (e.g., if incorrect distrib-
utions have been used, incorrect class definitions have
been adopted, inappropriate performance comparison
criteria have been applied, etc.), then the reported ad-
vantage of the more sophisticated methods may be in-
correct. Later sections illustrate how some inaccuracies
in the classification problem description can arise.

2.1 A Simple Example

Statistical modeling is a sequential process in which
one gradually refines the model to provide a bet-
ter and better fit to the distributions from which the
data were drawn. In general, the earlier stages in this
process yield greater improvement in model fit than
later stages. Furthermore, if one looks at the histor-
ical development of classification methods, then the
earlier approaches involve relatively simple structures
(e.g., the linear forms of linear or logistic discriminant
analysis), while more recent approaches involve more
complicated structures (e.g., the decision surfaces of
neural networks or support vector machines). It follows
that the simple approaches will have led to greater im-
provement in predictive performance than the later ap-
proaches which are necessarily trying to improve on
the predictive performance obtained by the simpler ear-
lier methods. Put another way, there is a law of dimin-
ishing returns.

Although this paper is concerned with supervised
classification problems, it is illuminating to examine
a simple regression case. Suppose that we have a sin-
gle response variable y which is to be predicted from
d variables (x1,...,xs)! =x. Suppose also that the
correlation matrix of (x”, y)T has the form

Zn 212] _ [(1 — p)I+ p11” T]

o1 X; ! 1

@.1) z:[

with 1 = (1 —p)I + p11?, £p = = = 7 and
Y22 = 1, where I is the d x d identity matrix,
1=(,...,DT of length d and 7 = (t,..., )T of
length d. That is, the correlation between each pair
of predictor variables is p, and the correlation between
each predictor variable and the response variable is 7.
Suppose also that p, T > 0. This condition is not neces-
sary for the argument which follows; it merely allows
us to avoid some detail.

Let V (d) be the conditional variance of y given the
values of d predictor variables x, as above. Standard
results give this conditional variance as

(22) V(d)=Zpn - Ty S
Using the result that
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[with —(d — l)_1 < p < 1, so that Xy is positive def-
inite], leads to
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From this it follows that the reduction in conditional
variance due to adding an extra predictor variable, x4 1
(also correlated p with the other predictors and T with
the response variable), is

Xd+1)=Vd)—Vd+1)

2.5 =
(2.5) =
p.[2|: d2

l—plLl+d—-1p

Note that the condition —(d — 1)~! < p < 1 must still
be satisfied when d is increased.

Now consider two cases:

Case 1. When the predictor variables are uncorre-
lated, p = 0. From (2.5), we obtain X(d + 1) = 72,
That is, if the predictor variables are mutually uncor-
related and each has correlation T with the response
variable, then each additional predictor reduces the
variance of the conditional variance of y given the pre-
dictors by 2. [Of course, by setting p = 0 in (2.4) we
see that this is only possible up to d = t~2 predic-
tors. With this many predictors the conditional variance
of y given x has been reduced to zero.]

Case 2. p > 0. Plots of V(d) for t = 0.5 and for a
range of p values are shown in Figure 1. When there
is reasonably strong mutual correlation between the

+

(d+ 1)2
B 1+dp }

Conditional variance

Number of predictors

F1G. 1. Conditional variance of response variable as additional
predictors are added for T =0.5. A range of values of p is shown.

predictor variables, the earliest ones contribute sub-
stantially more to the reduction in variance remaining
unexplained than do the later ones. The case p = 0 con-
sists of a diagonal straight line running from 1 down to
zero. In the case p = 0.9, almost all of the variance in
the response variable is explained by the first chosen
predictor.

This example shows that the reduction in conditional
variance of the response variable decreases with each
additional predictor we add, even though each predic-
tor has an identical correlation with the response vari-
able (provided this correlation is greater than 0). The
reason for the reduction is, of course, the mutual cor-
relation between the predictors: much of the predictive
power of a new predictor has already been accounted
for by the existing predictors.

In real applications, the situation is generally even
more pronounced than in this illustration. Usually, in
real applications, the predictor variables are not iden-
tically correlated with the response, and the predictors
are selected sequentially, beginning with those which
maximally reduce the conditional variance. In a sense,
then, the example above provides a lower bound on the
phenomenon: in real applications the proportion of the
gains attributable to the early steps is even greater.

2.2 Decreasing Bounds on Possible Improvement

We now return to supervised classification. For illus-
trative purposes, suppose that misclassification rate is
the performance criterion, although similar arguments
apply with other criteria. Ignoring issues of overfitting,
adding additional predictor variables can only lead to
adecrease in misclassification rate. The simplest model
is that which uses no predictors, leading, in the two-
class case, to a misclassification rate of mqg = g, where
7o is the prior probability of the smaller class. Sup-
pose that a predictor variable is now introduced which
has the effect of reducing the misclassification rate to
m1 < mg. Then the scope for further improvement is
only m1, which is less than the original scope mg. Fur-
thermore, if m; < mg — m1, then all future additions
necessarily improve things by less than the first pre-
dictor variable. In fact, things are even more extreme
than this: one cannot further reduce the misclassifica-
tion rate by more than m — mj,, where my, is the Bayes
error rate. To put it another way, at each step the max-
imum possible increase in predictive power decreases,
so it is not surprising that, in general, at each step the
additional contribution to predictive power decreases.
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2.3 Effectiveness of Simple Classifiers

Although the literature contains examples of artifi-
cial data which simple models cannot separate (e.g.,
intertwined spirals or checkerboard patterns), such data
sets are exceedingly rare in real life. Conversely, in
the two-class case, although few real data sets have
exactly linear decision surfaces, it is common to find
that the centroids of the predictor variable distributions
of the classes are different, so that a simple linear sur-
face can do surprisingly well as an estimate of the true
decision surface. This may not be the same as “can
do surprisingly well in classifying the points,” since
in many problems the Bayes error rate is high, mean-
ing that no decision surface can separate the distribu-
tions of such problems very well. However, it means
that the dramatic steps in improvement in classifier ac-
curacy are made in the simple first steps. This is a
phenomenon which has been noticed by others (e.g.,
Rendell and Seshu [37]; Shavlik, Mooney and Towell
[41]; Mingers [34]; Weiss, Galen and Tadepalli [45];
Holte [22]). Holte [22], in particular, carried out an in-
vestigation of this phenomenon. His “simple classifier”
(called 1R) consists of a partition of a single variable,
with each cell of the partition possibly being assigned
to a different class: it is a multiple-split single-level
tree classifier. A search through the variables is used
to find that which yields the best predictive accuracy.
Holte compared this simple rule with C4.5, a more so-
phisticated tree algorithm, finding that “on most of the
datasets studied, 1R’s accuracy is about 3 percentage
points lower than C4’s.”

We carried out a similar analysis. Perhaps the earliest
classification method formally developed is Fisher’s
linear discriminant analysis [7]. Table 1 shows mis-
classification rates for this method and for the best

performing method we could find in a search of the lit-
erature (these data were abstracted from the data accu-
mulated by Jamain [23] and Jamain and Hand [24]) for
a randomly selected sample of ten data sets. The first
numerical column shows the misclassification rate of
the best method we found (m7), the second shows that
of linear discriminant analysis (my ), the third shows
the default rule of assigning every point to the majority
class (mg) and the final column shows the proportion
of the difference between the default rule and the best
rule which is achieved by linear discriminant analysis
[(mo—mp)/(mo— mr)]. Itis likely that the best rules,
being the best of rules which many researchers have
applied, are producing results near the Bayes error rate.

The striking thing about Table 1 is the large values
of the percentages of classification accuracy gained by
simple linear discriminant analysis. The lowest per-
centage is 85% and in most cases over 90% of the
achievable improvement in predictive accuracy, over
the simple baseline model, is achieved by the simple
linear classifier.

I am grateful to Willi Sauerbrei for pointing out that
when the error rates of both the best method and the lin-
ear method are small, the large proportion in achievable
accuracy which can be obtained by the linear method
corresponds to the error rate of the linear method being
a large multiple of that of the best method. For exam-
ple, in the most extreme case in Table 1, the results
for the segmentation data show that the linear discrim-
ination error rate is nearly six times that of the best
method. On the other hand, when the error rates are
small, this large difference will correspond to only a
small proportion of new data points. Small differences
in error rate are susceptible to the issues raised in Sec-
tions 3 and 4: they may vanish when problem uncer-
tainties are taken into account.

TABLE 1
Performance of linear discriminant analysis and the best result we found on ten
randomly selected data sets

Data set Best method e.r.  Lindisc e.r.  Default rule  Prop linear
Segmentation 0.0140 0.083 0.760 0.907
Pima 0.1979 0.221 0.350 0.848
House-votes16 0.0270 0.046 0.386 0.948
Vehicle 0.1450 0.216 0.750 0.883
Satimage 0.0850 0.160 0.758 0.889
Heart Cleveland 0.1410 0.141 0.560 1.000
Splice 0.0330 0.057 0.475 0.945
Waveform21 0.0035 0.004 0.667 0.999
Led7 0.2650 0.265 0.900 1.000
Breast Wisconsin 0.0260 0.038 0.345 0.963
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2.4 The Flat Maximum Effect

Even within the context of classifiers defined in
terms of simple linear combinations of the predictor
variables, it has often been observed that the major
gains are made by (for example) weighting the vari-
ables equally, with only little further gains to be had
by careful optimization of the weights. This phenom-
enon has been termed the flat maximum effect [13, 43]:
in general, often quite large deviations from the opti-
mal set of weights will yield predictive performance
not substantially worse than the optimal weights. An
informal argument that shows why this is often the case
is as follows.

Let the predictor variables be (x, ..., x4)T =x and,
for simplicity, assume that E(x;) = 0 and
V(x;)=1fori=1,...,d.Let X = {r};; be the corre-
lation matrix between these variables. Now define two
weighted sums

d d
w= Zwixi and v= Zvixi,

i=1 i=1

using respective weight vectors (wp,...,wy) and
(v1,...,v4). In general, r(w, v), the correlation be-
tween w and v, can take extreme values of +1 and —1,
but suppose we restrict the weights to be nonnegative,
wi,v; >0fori=1,...,d, and also require Y w; =1
and ) v; = 1. Using these conditions, a little algebra
shows that

r(v,w) > ZZviwjr(xi,Xj).

J

Now, with equal weights, v; = 1/d,i=1,...,n, we
obtain

r(v,w) > %Xi:;wjr(xi,xj)

1
z 7 > > wjr(xi, xi),
i

where k = argminj r(xi,xj).
From this,

r(v,w) > é;;wjr(xi,xk)

1
= Ezr(xhxk)'

In words, the correlation between an arbitrary weighted
sum of the x variables (with weights summing to 1) and
the simple combination using equal weights is bounded

below by the smallest row average of the entries in the
correlation matrix of the x variables. Hence if the cor-
relations are all high, the simple average will be highly
correlated with any other weighted sum: the choice of
weights will make little difference to the scores. The
gain to be made by the extra effort of optimizing the
weights may not be worth the effort.

2.5 An Example

As a simple illustration of how increasing model
complexity leads to a decreasing rate of improvement,
we fitted models to the sonar data from the Univer-
sity of California, Irvine (UCI) data base. This data
set consists of 208 observations, 111 of which be-
long to the class “metal” and 97 of which belong
to the class “rock.” There are 60 predictor variables.
The data were randomly divided into two parts, and
a succession of neural networks with increasing num-
bers of hidden nodes was fitted to half of the data,
with the other half being used as a test set. The er-
ror rates are shown in Figure 2. The left-hand point,
corresponding to 0 nodes, is the baseline misclassifi-
cation rate achieved by assigning everyone in the test
set to the larger class. The error bars are 95% confi-
dence intervals calculated from 100 networks in each
case. Figure 3 shows a similar plot, but this time for a
recursive partitioning tree classifier applied to the same
data. The horizontal axis shows increasing numbers of
leaf nodes. Standard methods of tree construction were
used, in which a large tree is pruned back to the requi-
site number of nodes. In both of these figures we see
the dramatic improvement arising from fitting the first
nontrivial model. This far exceeds the subsequent im-
provement obtained in any later step.

Error rate (test set)
025 030 035 040 045 0.50
L 1 1 1 1 L
o

0.20
|

T T T T
0 5 10 15

Number of hidden nodes

FI1G. 2.  Effect on misclassification rate of increasing the number
of hidden nodes in a neural network to predict the class of the sonar
data.
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F1G. 3.  Effect on misclassification rate of increasing the number
of leaves in a tree classifier to predict the class of the sonar data.

3. DESIGN SAMPLE SELECTION

Intrinsic to the classical supervised classification
paradigm is the assumption that the data in the de-
sign set are randomly drawn from the same distribution
as the points to be classified in the future. Sometimes
slight variants of the sampling scheme are used, for
example, drawing samples separately from each class,
but the assumption that future points to be classified
are drawn from the same distributions as the design set
is always made. Unfortunately, as we illustrate in this
section, there are several reasons why this assumption
may not be justified. In fact, as with our suggestion that
the common choice of equal misclassification costs
may be more often inappropriate than appropriate, we
suspect that the assumption that the design distribution
is representative of the distribution from which future
points will be drawn is perhaps more often incorrect
than correct.

If the distribution underlying the design data and that
underlying future points to be classified do differ, then
elaborate optimization of the classifier using the design
data may be wasted effort: the performance difference
between two classifiers may be irrelevant in the context
of the differences arising between the design and future
distributions. In particular, we suggest, more sophis-
ticated classifiers, which almost by definition model
small idiosyncrasies of the distribution underlying the
design set, will be more susceptible to wasting effort in
this way: the grosser features of the distributions (mod-
eled by simpler methods) are more likely to persist than
the smaller features (modeled by the more elaborate
methods).

3.1 Population Drift

A fundamental assumption of the classical paradigm
is that the various distributions involved do not change
over time. In fact, in many applications this is unreal-
istic and the population distributions are nonstationary.
For example, it is unrealistic in most commercial ap-
plications concerned with human behavior: customers
will change their behavior with price changes, with
changes to products, with changing competition and
with changing economic conditions. Hoadley [21] re-
marked “the test sample is supposed to represent the
population to be encountered in the future. But in re-
ality, it is usually a random sample of the current pop-
ulation. High performance on the test sample does not
guarantee high performance on future samples, things
do change” and “there is always a chance that a vari-
able and its relationships will change in the future. Af-
ter that, you still want the model to work. So don’t
make any variable dominant.” He is cautioning against
making the model fit the design distribution too well.
The last point about not making any variable dominant
is related to the flat maximum effect, described above.

Among the most important reasons for changes to
the distribution of applicants are changes in market-
ing and advertising practices. Changes to the distrib-
utions that describe the customers explain why, in the
credit scoring and banking industries [16, 20, 39, 42],
the classification rules used to predict which applicants
are likely to default on loans are updated every few
months: their performance degrades, not because the
rules themselves change, but because the distributions
to which they are being applied change [27].

An example of this is given in Figure 4. The available
data consisted of the true classes (“bad” or “good”)

Error rate

T T T T
Jan 94 Jan 95 Jan 96 Jan 97

Months

FI1G. 4. Evolution of misclassification rate of a classifier built at
the start of the period.
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and the values of 17 predictor variables for 92,258
customers taking out unsecured personal loans with a
24-month term given by a major UK bank during the
period 1 January 1993 to 30 November 1997; 8.86%
of the customers belonged to the bad class. The figure
shows how the misclassification rate for a classifica-
tion rule built on data just preceding the start of the dis-
played period changed over time. Since the coefficients
of the classifier were not changing, the deterioration in
performance must be due to shifts in the distributions
of customers over time.

An illustration of how this “population drift” phe-
nomenon affects different classifiers differentially is
given in Figure 5. For the purposes of this illustra-
tion we used a linear discriminant analysis (LDA)
as a simple classifier and a tree model as a more
complicated classifier. For the design set we used cus-
tomers 1,3,5,7,...,4999. We then applied the classi-
fiers to alternate customers, beginning with the second,
up to the 60,000th customer. This meant that different
customers were used for designing and testing, even
during the initial period, so that there would be no over-
fitting in the reported results. Figure 5 shows lowess
smooths of the misclassification cost [i.e., misclassifi-
cation rate, with customers from each class weighted
so that cg/c1 = 1 /mo, where ¢; is the cost of misclas-
sifying a customer from class i and 7; is the prior (class
size) of class i]. As can be seen from the figure, the
tree classifier (the lower curve) is initially superior (has
smaller loss), but after a time its superiority begins to
fade. Superficial examination of the figure might sug-
gest that the effect takes a long time to become ap-
parent, not really manifesting itself until around the
40,000th customer, but consider that, in an application
such as this, the data are always retrospective. In the

@«
.

Smoothed misclassification cost

0 10000 20000 30000 40000 50000 60000

Customer number

FIG. 5. Lowess smooths of cost-weighted misclassification rate
for a tree model and LDA applied to customers 2,4, 6, ..., 60,000.

present case, one cannot determine the true class un-
til the entire 24 month loan term has elapsed. [In fact,
of course, this is not quite true: if a customer defaults
before the end of the term, then their class (bad) is
known, but otherwise their true (good or bad) class is
not known until the end, so that to obtain an unbiased
sample, one has to wait until the end. Survival analy-
sis models can be constructed to allow for this, but that
is leading us away from the point.] For our problem,
to accumulate an unbiased sample of 5000 customers
with known true outcome, one would have to wait un-
til two years after the 5000th customer had been ac-
cepted. In terms of the horizontal axis in Figure 5, this
means that the model would be built, and would be ini-
tially used at around the time that the 40,000th cus-
tomer was being considered. The figure shows that this
is just when the model degrades. The changes in pop-
ulation structure which occurred during the two years
which elapsed while we waited for the true classes of
the 5000 design set customers to become known have
reduced any advantage that the more sophisticated tree
model may have.

In summary, the apparent superiority of the more so-
phisticated tree classifier over the very simple linear
discriminant classifier is seen to fade when we take into
account the fact that the classifiers must necessarily be
applied in the future to distributions which are likely
to have changed from those which produced the design
set. Since, as demonstrated in Section 2, the simple lin-
ear classifier captures most of the separation between
the classes, the additional distributional subtleties cap-
tured by the tree method become less and less relevant
when the distributions drift. Only the major aspects are
still likely to hold.

The impact of population drift on supervised clas-
sification rules is nicely described by the American
philosopher Eric Hoffer, who said, “In times of change,
learners inherit the Earth, while the learned find them-
selves beautifully equipped to deal with a world that no
longer exists.”

3.2 Sample Selectivity Bias

The previous subsection considered the impact on
classification rules of distributions which changed over
time. There is little point in optimizing the rule to the
extent that it models aspects of the distributions and
decision surface which are likely to have changed by
the time the rule is applied. Similar futility applies if
a selection process means that the design sample is
drawn from a distribution distorted in some way from
that to which the classification rule is to be applied.
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In fact, I suspect that this may be common. Consider,
for example, a classification rule aimed at differential
medical diagnosis or medical screening. The rule will
have been developed on a sample of cases (including
members of each class). Perhaps these cases will be
drawn from a particular hospital, clinic or health dis-
trict. Now all sorts of demographic, social, economic
and other factors influence who seeks and is accepted
for treatment, how severe the cases being treated are,
how old they are and so on. In general, it would be
risky to assume that these selection criteria are the
same for all hospitals, clinics or health districts. This
means that the fine points of the classification rule are
unlikely to hold. One might expect its coarser features
to be true across different such sets of cases, but the
detailed aspects will reflect particular properties of the
population from which the design data were drawn. In
fact, there are some subtleties here. Suppose that the
classification rule follows the diagnostic paradigm [di-
rectly modeling p(c|x), the probability of class mem-
bership, ¢, given the descriptor vector x], rather than
the sampling paradigm [which models p(c|x) indi-
rectly from the p(x|c) using Bayes’ theorem]. Then if
x spans the space of all predictors of class member-
ship and if the model form chosen for p(c|x) includes
the “true” model, then sampling distortions based on
x alone will not adversely influence the classifier: the
classifier built in one clinic will also apply elsewhere.
Of course, it would be a brave person who could con-
fidently assert that these two conditions held. Such
subtleties aside, what this means, again, is that effort
spent on overrefining the classification model is proba-
bly wasted effort and, in particular, that fine differences
between different classification rules should not be re-
garded as carrying much weight.

This problem of sample selection and how it might
be tackled has been the subject of intensive research,
especially by the medical statistics and econometrics
communities, but appears not to have been of great
concern to researchers on classification methods. Hav-
ing said that, one area that involves sample selectivity
in classification problems which has attracted research
interest arises in the retail financial services industry,
as in the previous section. Here, as in that section, the
aim is to predict, for example, on the basis of appli-
cation and other background variables, whether or not
an applicant is likely to be a good customer. Those ex-
pected to be good are accepted, and those expected to
be bad are rejected. For those that have been accepted,
we subsequently discover their true good or bad class.
For the rejected applicants, however, we never know

whether they are good or bad. The consequence is that
the resulting sample is distorted as a sample from the
population of applicants, which is our real interest for
the future. Measuring the performance or attempting to
build an improved classification rule using those indi-
viduals for which we do know the true class (which is
needed for supervised classification) has the potential
to be highly misleading for the overall applicant popu-
lation. In particular, it means that using highly sophis-
ticated methods to squeeze subtle information from the
design data is pointless. This problem is so ubiquitous
in the personal financial services sector that it has been
given its own name—reject inference [17].

4. PROBLEM UNCERTAINTY

Section 3 looked at mismatches between the distri-
butions modeled by the classification rule and the dis-
tributions to which it was applied. This is an obvious
way in which things may go awry, but there are many
others, perhaps not so obvious. This section illustrates
just three.

4.1 Errors in Class Labels

The classical supervised classification paradigm is
based on the assumption that there are no errors in
the true class labels. If one expects errors in the class
labels, then one can attempt to build models which
explicitly allow for this, and there has been work to
develop such models. Difficulties arise, however, when
one does not expect such errors, but they nevertheless
occur.

Suppose that, with two classes, the true posterior
class probabilities are p(1|x) and p(2|x), and that a
(small) proportion § of each class is incorrectly be-
lieved to come from the other class at each x. Denoting
the apparent posterior probability of class 1 by p*(1]x),
we have

prx) = (1-8)px) +3p2[x).

It follows that if we let r(x) = p(1|x)/p(2|x) denote
the true odds and let r*(x) = p*(1|x)/p*(2|x) denote
the apparent odds, then

@.1) o= X e

er(x)+1
with e =§/(1 — 3).

With small ¢, (4.1) is monotonic increasing in r(x),
so that contours of r(x) map to corresponding con-
tours of *(x). In particular, if the true optimal decision
surface is r(x) = k (k is determined by the relative
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misclassification costs), then the optimal decision sur-
face when errors are present is given by r*(x) = k¥,
with k* = (k 4+ ¢)/(ek + 1). Unfortunately, if the oc-
currence of mislabeling is unsuspected, then r*(x) will
be compared with k rather than k*. In the case of
equal misclassification costs, so that k = 1, we have
k* = k = 1, so that no problems arise from the misclas-
sification. (Indeed, advantages can even arise: see [9].)
However, what happens if k £ 1? It is easy to show that
r*(x) > r(x) whenever r(x) < 1 and that r*(x) < r(x)
whenever r(x) > 1. That is, the effect of the errors in
class labels is to shrink the posterior class odds to-
ward 1, so that comparing r*(x) with k rather than k*
is likely to lead to worse performance. There is also a
secondary issue, that the shrinkage of r(x) will make
it less easy to estimate the decision surface accurately
because it is a flatter surface: the variance of the es-
timated decision surface, from sample to sample, will
be greater when there is mislabeling of classes. In such
circumstances it is better to stick to simpler models,
since the higher order terms of the more complicated
models will be very inaccurately estimated.

4.2 Arbitrariness in the Class Definition

The classical supervised classification paradigm also
takes as fundamental the fact that the classes are well
defined. That is, that there is some fixed clear external
criterion which is used to produce the class labels. In
many situations, however, this is not the case. In par-
ticular, when the classes are defined by thresholding a
continuous variable, then there is always the possibil-
ity that the defining threshold might be changed. Once
again, this situation arises in consumer credit, where
it is common to define a customer as “defaulting” if
they fall three months in arrears with repayments. This
definition, however, is not a qualitative one (contrast
has a tumor/does not have a tumor) but is very much
a quantitative one. It is entirely reasonable that alter-
native definitions (e.g., four months in arrears) might
be more useful if economic conditions were to change.
This is a simple example, but in many situations much
more complex class definitions based on logical com-
binations of numerical attributes, split at fairly arbi-
trary thresholds, are used. For example, student grades
are often based on levels of performance in continu-
ous assessment and examinations. In detecting verte-
bral deformities in studies of osteoporosis, the ranges
of the anterior, posterior and mid heights of the verte-
bra, as well as functions of these, such as ratios, are
combined in quite complicated Boolean conditions to
provide the definition (e.g., [10]). Definitions formed

in this sort of way are particularly common in situa-
tions that involve customer management. For example,
Lewis [31] defined a good account in a revolving credit
operation (such as a credit card) as someone whose
billing account shows (a) on the books for a mini-
mum of 10 months, (b) activity in 6 of the most recent
10 months, (¢) purchases of more than $50 in at least
3 of the past 24 months and (d) not more than once
30 days delinquent in the past 24 months. A bad ac-
count is defined as (a) delinquent for 90 days or more
at any time with an outstanding undisputed balance of
$50 or more, (b) delinquent three times for 60 days in
the past 12 months with an outstanding undisputed bal-
ance on each occasion of $50 or more or (c) bankrupt
while the account was open. Li and Hand [32] gave an
even more complicated example from retail banking.

Our concern with these complicated definitions is
that they are fairly arbitrary: the thresholds used to par-
tition the various continua are not natural thresholds,
but are imposed by humans. It is entirely possible that,
retrospectively, one might decide that other thresholds
would have been better. Ideally, under such circum-
stances, one would go back to the design data, redefine
the classes and recompute the classification rule. How-
ever, this requires that the raw data have been retained
at the level of the underlying continua used in the defin-
itions. This is often not the case. The term concept drift
is sometimes used to describe changes to the defini-
tions of the classes. See, for example, the special issue
of Machine Learning (1998, Vol. 32, No. 2), Widmer
and Kubat [46] and Lane and Brodley [30]. The prob-
lem of changing class definitions has been examined
in [25, 26] and [28].

If the very definitions of the classes may change
between designing the classification rule and apply-
ing it, then clearly there is little point in developing
an overrefined model for the class definition which
is no longer appropriate. Such models fail to take
into account all sources of uncertainty in the problem.
Of course, this does not necessarily imply that sim-
ple models will yield better classification results: this
will depend on the nature of the difference between
the design and application class definitions. However,
there are similarities to the overfitting issue. Overfitting
arises when a complicated model faithfully reflects as-
pects of the design data to the extent that idiosyncrasies
of that data, rather than merely of the distribution from
which the data arose, are included in the model. Then
simple models, which fit the design data less well, lead
to superior classification. Likewise, in the present con-
text, a model optimized on the design data class de-
finition is reflecting idiosyncrasies of the design data
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which may not occur in application data, not because
of random variation, but because of the different def-
initions of the classes. Thus it is possible that models
which fit the design data less well will do better in fu-
ture classification tasks.

The possibility of arbitrariness in the class definition
discussed in this section is quite distinct from the pos-
sibility of class priors or relative misclassification costs
being changed—referred to in the quote from Provost
and Fawcett [36] above—but the possibility of these
changes, also, casts doubt on the wisdom of model-
ing the problem too precisely, that is, of using models
which are too sophisticated.

4.3 Optimization Criteria and Performance
Assessment

When fitting a model to a design set, one optimizes
some criterion of goodness of fit (perhaps modified
by a penalization term to avoid overfitting) or of clas-
sification performance. Many such measures are in
use, including likelihood, misclassification rate, cost-
weighted misclassification rate, Brier score, log score
and area under the ROC curve. Unfortunately, it is not
difficult to contrive data sets for which different opti-
mization criteria lead to (e.g.) linear decision surfaces
with very different orientations (even to the extent of
being orthogonal). Benton [2, Chap. 4] illustrated this
for several real data sets. Clearly, then it is important to
specify the criterion to be used when building a clas-
sification rule. If the use to which the model will be
put is well specified to the extent that a measure of per-
formance can be precisely defined, then this measure
should determine the criterion of goodness of fit. All
too often, however, there is a mismatch between the
criterion used to choose the model, the criterion used
to evaluate its performance, and the criterion which ac-
tually matters in real application. For example, a com-
mon approach might be to use likelihood to estimate
a model’s parameters, use misclassification rate to as-
sess its performance and use some cost-weighted mis-
classification rate in practice (e.g., some combination
of specificity and sensitivity). In circumstances such as
these, it would clearly be pointless to refine the model
to a high degree of accuracy from a likelihood perspec-
tive, when this may be only weakly related to the real
performance objective.

Having said that, one must acknowledge that often
precise details of how performance is to be measured
in the future cannot be given. For example, in most
applications it is difficult to give more than general
statements about the relative costs of different kinds

of misclassifications. In such cases it might be worth-
while to choose a criterion that is equivalent to averag-
ing over a range of possible costs: likelihood, the area
under a receiver operating characteristic curve and the
weighted version of the latter described in [1] can all
be regarded as attempts to do that.

5. INTERPRETING EMPIRICAL COMPARISONS

There have been a great many empirical compar-
isons of the performance of different kind of clas-
sification rules. Some of these are in the context of
a new method having been developed and the effort to
gain some understanding of how it performs relative to
existing methods. Other comparisons are purely com-
parative studies, seeking to make disinterested compar-
ative statements about the relative merits of different
methods. At first glance, such comparative studies
are useful in shedding light on the different methods,
on which generally yield superior performance or on
which are to be preferred for particular kinds of data
or in particular domains. However, on closer exami-
nation, such comparisons have major weaknesses and
can even be seriously misleading. Various authors have
drawn attention to these problems, including Duin [4],
Salzberg [40], Hand [13], Hoadley [21] and Efron [5],
so we will only briefly mention some of the main points
here; in particular, only those points relative to classi-
fication accuracy, rather than other aspects of perfor-
mance. Jamain and Hand [24] also gave a more detailed
review of comparative studies of classification rules.

Different categories of users might be expected to
obtain different rankings of classification methods in
comparative studies. For example, we can contrast an
expert user, who will be able to fine-tune methods, with
an inexperienced user, perhaps someone who has sim-
ply pulled some standard public-domain software from
the web. It would probably be surprising if their rank-
ings did not differ. Moreover, experts will tend to have
particular expertise with particular classes of method.
Someone expert in neural networks may well achieve
superior results with those methods than with support
vector machines and vice versa. Taken to an extreme,
of course, many comparative studies are made to estab-
lish the performance and properties of newly invented
methods—Dby their inventors. One might expect sub-
stantial bias in favor of the new methods, compared to
what others might be able to achieve, in such studies.
Duin [4] pointed out the difficulty of comparing, “in a
fair and objective way,” classifiers which require sub-
stantial input of expertise (so that domain knowledge
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can be taken advantage of ) and classifiers which can
be applied automatically with little external input of
expertise. The two extremes (of what is really a con-
tinuum, of course) are appropriate in different circum-
stances.

The principle of comparing methods by applying
them to a collection of disparate real data sets is use-
ful, but has its weaknesses. An obvious one is that dif-
ferent studies use different collections of data sets, so
making comparisons difficult. Furthermore, the collec-
tion will not be representative of real data sets in any
formal sense. Moreover, a potential user is not really
interested in some “average performance” over distinct
types of data, but really wants to know what will be
good for his or her problem, and different people have
different problems, with data arising from different do-
mains. A given method may be very poor on most kinds
of data, but very good for certain problems.

The widespread use of standard collections of data
sets (such as the UCI repository [35]) has clear merits:
new methods can be compared with earlier ones on a
level playing field. However, this also means that there
will be some overfitting both to the individual data sets
in the collection and to the collection as a whole. That
is, some methods will do well on data sets in the collec-
tion purely by chance. Indeed, the more successful the
collection is in the sense that more and more people
use it for comparative assessments, the more serious
this problem will become.

Jamain and Hand [24] pointed out the difficulty of
saying exactly what a classification “method” is. Is
a neural network with a single hidden node to be
regarded as from the same family as one with an ar-
bitrary number of hidden nodes? It is clearly not ex-
actly the same method. Comparative evaluations using
the two models may well yield very different classi-
fication results. It is this sort of phenomenon which
explains why the comparative performance literature
contains many different results for “the same” meth-
ods applied to given public data sets. Can one then
draw general conclusions about the effectiveness of the
method of neural networks? Furthermore, to what ex-
tent is preprocessing the data to be regarded as part of
the method? Linear discriminant analysis on raw data
may yield very different results from the same model
applied to data which has been processed to remove
skewness. Is, then, linear discriminant analysis good
or bad on these data? Likewise, is a data set in which
missing values have been replaced by imputed values
the same as a data set in which incomplete records have

been dropped? Applying the same method to the two
variants of the data is likely to yield different results.

We have already commented that the “accuracy” of
a classification rule can be measured in a wide variety
of ways, and that different measures are likely to yield
different performance rankings of classifiers.

Given all of the above points, it is not surprising
that different authors have drawn different conclu-
sions about the relative accuracy of different classifiers.
Other commentators have taken things even further. In
the discussion that accompanies [3], Efron suggested
that new methods always look better than older ones
and that complicated methods are harder to criticize
than simpler ones. He also noted that it is difficult
to make fair comparisons by making the same effort
in applying different methods—a point made above.
Hoadley, in the same discussion, “coined a phrase
called the ‘ping-pong theorem.” This theorem says that
if we revealed to Professor Breiman the performance
of our best model and gave him our data, then he could
develop an algorithmic model using random forests,
which would outperform our model. But if he revealed
to us the performance of his model, then we could de-
velop a segmented scorecard, which would outperform
his model.”

With so many difficulties in ranking and comparing
classifiers, one might naturally have reservations about
small differences in performance—of the kind gener-
ally asserted for the more complicated and sophisti-
cated methods over the older and simpler models.

6. CONCLUSION

In Section 2 we demonstrated that, when building
predictive models of increasing complexity, the mar-
ginal gain from complicated models is typically small
compared to the predictive power of the simple models.
In many cases, the simple models accounted for over
90% of the predictive power that could be achieved by
“the best” model we could find. Now, in the idealized
classical supervised classification paradigm, certain as-
sumptions are implicit: it is assumed that the distribu-
tions from which the design points and the new points
are drawn are the same, that the classes are well defined
and the definitions will not change, that the costs of dif-
ferent kinds of misclassification are known accurately,
and so on. In real applications, however, these addi-
tional assumptions will often not hold. This means that
apparent small (Iaboratory) gains in performance might
not be realized in practice—they may well be swamped
by uncertainties arising from mismatches between the
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apparent problem and the real problem. In particular,
many of the comparative studies in the literature are
based on brief descriptions of data sets, containing no
background information at all on such possible addi-
tional sources of variation due to breakdown of im-
plicit assumptions of the kind illustrated above. This
must cast doubt on the validity of their conclusions.
In general, it means that deeper critical assessment of
the context of the problem and data should be made if
useful practical conclusions are to be drawn. If enough
is known about likely additional sources of variabil-
ity, beyond the classical sources of sampling variability
and model uncertainty, then more sophisticated mod-
els can be built. However, if insufficient information is
known about these additional sources, which we spec-
ulate will very often be the case, then the principle of
parsimony suggests that it is better to stick to simple
models.

We should note, parenthetically, that there are also
other reasons to favor simple models. Interpretability,
in particular, is often an important requirement of a
classification rule. Indeed, sometimes it is even a le-
gal requirement (e.g., in credit scoring). This leads
us to the observation that what one regards as “sim-
ple” may vary from user to user: some might favor
weighted sums of predictor values, others might pre-
fer (small) tree structures and yet others might regard
nearest neighbor methods as being simple.

Perhaps it is appropriate to conclude with the com-
ment that, by arguing that simple models are of-
ten more appropriate than complex ones and that the
claims of superior performance of the more complex
models may be misleading, I am not suggesting that
no major advances in classification methods will ever
be made. Such a claim would be absurd in the face
of developments such as the bootstrap and other re-
sampling approaches, which have led to significant
advances in classification and other statistical mod-
els. All I am saying is that much of the purported
advance may well be illusory. Furthermore, although
(almost by definition) one cannot predict where the
next step-change will come from, one might venture
a guess as to its general area. Resampling methods
are children of the computer revolution, as indeed are
most other recent developments in classifier technol-
ogy [e.g., classification trees, neural networks, support
vector machines, random forests, multivariate adap-
tive regression splines (MARS) and practical Bayesian
methods]. Since progress in computer hardware is
continuing, one might reasonably expect that the ad-
vances will arise from more powerful data storage and
processing ability.
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