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Semiparametric Estimation of Treatment
Effect in a Pretest—Posttest Study

with Missing Data

Marie Davidian, Anastasios A. Tsiatis and Selene Leon

Abstract. The pretest—posttest study is commonplace in numerous appli-

cations. Typically, subjects are randomized to two treatments, and response
is measured at baseline, prior to intervention with the randomized treatment
(pretest), and at prespecified follow-up time (posttest). Interest focuses on
the effect of treatments on the change between mean baseline and follow-up
response. Missing posttest response for some subjects is routine, and disre-
garding missing cases can lead to invalid inference. Despite the popularity of
this design, a consensus on an appropriate analysis when no data are missing,

let alone for taking into account missing follow-up, does not exist. Under a
semiparametric perspective on the pretest—posttest model, in which limited
distributional assumptions on pretest or posttest response are made, we show
how the theory of Robins, Rotnitzky and Zhao may be used to characterize
a class of consistent treatment effect estimators and to identify the efficient
estimator in the class. We then describe how the theoretical results translate
into practice. The development not only shows how a unified framework for
inference in this setting emerges from the Robins, Rotnitzky and Zhao the-
ory, but also provides a review and demonstration of the key aspects of this
theory in a familiar context. The results are also relevant to the problem of
comparing two treatment means with adjustment for baseline covariates.

Key words and phrases. Analysis of covariance, covariate adjustment, in-
fluence function, inverse probability weighting, missing at random.

1. INTRODUCTION

1.1 Background and Motivation

fied follow-up period (posttest response). We use the
terms “baseline/pretest” and “follow-up/posttest” in-
terchangeably. The effect of interest is usually stated as

The so-called pretest—posttest trial arises in a host of“difference in change of (mean) response from baseline
applications. Subjects are randomized to one of two in- to follow-up between treatment and control.”
terventions, denoted here by “control” and “treatment,”
and the response is recorded at baseline, prior to intermon objective is to determine whether the change in
vention (pretest response), and again after a prespecimeasures of immunologic status such as CD4 cell
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For instance, in studies of HIV disease, a com-

count from baseline to some subsequent time follow-
ing initiation of antiretroviral therapy is different for
different treatments. Depressed CD4 counts indicate
impairment of the immune system, so larger, posi-
tive such changes are thought to reflect more effec-
tive treatment. To exemplify this situation, we consider
data from 2139 patients from AIDS Clinical Trials
Group (ACTG) protocol 175 (Hammer et al., 1996),
a study that randomizes patients to four antiretrovi-
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ral regimens in equal proportions. The findings of (GEE) approach (see also Koch, Tangen, Jung and
ACTG 175 indicate that zidovudine (ZDV) monother- Amara, 1998), wherg&Y1, Y»)” is viewed as a mul-
apy is inferior to the other three [ZDVdidanosine tivariate response vector with me@ns, u2 + BZ2)7
(ddl), ZDV+zalcitabine, ddl] therapies, which showed and standard GEE methods are used to make inference
no differences on the basis of the primary study end- on 8. Yang and Tsiatis (2001) and Leon, Tsiatis and
point of progression to AIDS or death. Accordingly, Davidian (2003) provided further details on all of these
we consider two groups: subjects who receive ZDV methods. The two-sample test approach implicitly
alone (control) and those who receive any of the other assumes pre- and posttest responses are uncorrelated,
three therapies (treatment). As is routine in HIV clini- which may be unrealistic, while the pairedest and
cal studies, measures such as CD4 count were collectedANCOVA evidently assume linear dependenceYaf
on all participants periodically throughout, and interest and Y, which may not hold in practice; for example,
also focused on secondary questions regarding changeBigure 1 shows baseline and follow-up CD4 counts in
in immunologic and virologic status. An important sec- ACTG 175 and suggests a mild curvilinear relationship
ondary endpoint was change in CD4 count from base-between them in each group. Numerous authors (e.g.,
line to 96+5 weeks. Brogan and Kutner, 1980; Crager, 1987, Laird, 1983;
To formalize this situation, let’; and Y» denote  Stanek, 1988; Stein, 1989; Follmann, 1991; Yang and
baseline and follow-up response (e.g., baseline andTsiatis, 2001) have studied these “popular” procedures
96+5 week CD4 count) and leZ = 0 or 1 indi- under various assumptions, yet no general consensus
cate assignment to control or treatment, respectively.has emerged regarding a preferred approach, providing
Because, under proper randomization, pretest mearlittle guidance for practice.
response should not differ by intervention, it is rea- A further complication facing the data analyst, par-

sonable to assume thA(Y1|Z =0) = E(Y1|Z=1) = ticularly in lengthy studies, is that of missing follow-
E(Y1) = 1. Letting E(Y2|Z) = up + BZ, the desired  up responsé’, for some subjects. In the ACTG 175
effect may then be expressed as data, for example, although baseline CD4)(is avail-

able for all 2139 participants, 37% are missing CD4
{E(Y2lZ=1) — pa} —{E(Y2|Z = 0) — pua} count at 96-5 weeks {>) due to dropout from the
—E(Ya|Z=1)— E(Y2|Z=0)=§ study. A common approach in this situat_ion is to un-
dertake a complete-case analysis, applying one of the
and interest focuses on the paramgdeA number of  above techniques only to the data from subjects for
ways to make inference gfihave been proposed. Be- whom both the pre- and posttest responses are ob-
cause the question is usually posed in terms of differ- served. In the GEE method, one may in fact include
ence in change from baseline, analysis is often baseddata from all subjects by defining the “multivariate re-
on the “pairedr test” estimator forg found by tak- sponse” for those with missinip to be simplyY;, with
ing the difference of the sample averageslof — Y1) meanu1. However, as is well known, for all of these
in each group. The second expression in (1) involves approaches, unless the data are missing completely at
only posttest treatment means, suggesting estimgting random (Rubin, 1976), which implies that missingness
in the spirit of the two-sample test by the differ-  is not associated with any observed or unobserved sub-
ence ofY> sample means for each treatment (ignoring ject characteristics, these strategies may vyield biased
baseline responses altogether). However, if baseline reinference ors.
sponse is correlated with change in response or posttest Often, baseline demographic and physiologic char-
response itself, intuition suggests taking this into ac- acteristicsX;, say, are collected on each participant.
count. For continuous response, this has led many re-Moreover, during the intervening period from baseline
searchers to advocate the use of analysis of covarianceo follow-up, additional covariate informatiaki,, say,
(ANCOVA) techniques, in which one estimatgsdi- including intermediate measures of the response, may
rectly by fitting the linear modeE (Y2|Y1, Z) = ag + be obtained. In ACTG 175, at baseline CD4 coufi)
a1Y1+ BZ. Avariationis to include aninteractionterm and covariates X1), including weight; age; indica-
involving Y1 Z; here, B is estimated as the coefficient tors of intravenous drug use, HIV symptoms, prior
of (Z — Z) in the regression of, — Y, on Y3 — Y7, experience with antiretroviral therapy, hemophilia,
Z — Z and (Y1 — Y1)(Z — Z), where the overbars sexual preference, gender and race; CD8 count (an-
denote overall sample average. Singer and Andradeother measure of immune status); and Karnofsky score
(1997) mentioned a “generalized estimating equation” (an index that reflects a subject’s ability to perform
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activities of daily living) were recorded for each par- component. For example, in a regression context one
ticipant. In addition, CD4 and CD8 counts and treat- may adopt a parametric model for the conditional ex-
ment status (on/off assigned treatment) were recordedpectation of a continuous response given covariates
intermittently between baseline and96 weeks 5). and seek inference on the model parameters but be
Missingness at follow-up is often associated with uncomfortable assuming the full conditional distrib-
baseline response and baseline and intermediate coution is normal, instead leaving it unspecified. Un-
variates, and this relationship may be differential by der the semiparametric model for the pretest—posttest
intervention. For example, HIV-infected patients who trial we consider, features of the joint distribution
are worse off at baseline as suggested by low baseof V = (X1, Y1, X2, Y», Z) beyond the independence
line CD4 count may be more likely to drop out, par- of (X4, Y7) and Z induced by randomization are left
ticularly if they receive the less effective treatment. unspecified and thus constitute the nonparametric com-
Moreover, HIV-infected patients may base a decision ponent, and interest focuses on the functighaf this

to drop out on post-baseline intermediate measures ofgistribution defined in (1). Whek, is MAR, this semi-
immunologic or virologic status (e.g., CD4 counts), parametric view not only offers protection against in-
which themselves may reflect the effectiveness of their correct assumptions owi, but allows us to exploit the
assigned therapy. Here, the assumption that follow-uptheory of Robins, Rotnitzky and Zhao (1994) to deduce
is missing at random (MAR; Rubin, 1976), associated estimators fo3. These authors derived an asymptotic
only with these observable quantities and not the miss-theory for inference in general semiparametric models
ing response, may be reasonable. _ with data MAR that may be used to identify a class

If one is willing to adopt the MAR assumption, of consistent estimators for parametric components or
methods that take appropriate account of the miss-gych functionals, as we now outline.
ingness should be used to ensure valid inference. Ropins, Rotnitzky and Zhao (1994) restricted atten-
A standard approach to missing data problems is max-jon to estimators that anegular and asymptotically
imum likelihood, which in the pretest-posttest setting |inear, Regularity is a technical condition that rules
with Y> MAR involves full (parametric) specification oyt “pathological’ estimators with undesirable local
of the joint distribution of V = (X3, Y1, X2, Y2, Z). properties (Newey, 1990), such as the “superefficient”
Alternatively, adaptation of popular estimators such as ggtimator of Hodges (e.g., Casella and Berger, 2002,
ANCOVA to handle MARYz on a case-by-ca;e basis page 515). Generically, an estimarfor 8 (p x 1)
may be possible. Maximum likelihood techniques are i, 3 harametric or semiparametric statistical model
known_ to suffer pot_entlal sensitivity to deviations from ¢, 5 random vecto based on i.id. datay;, i =
modeling assumptions, and neither approach has been ., “is asympotically linear if it satisfies, for a
widely applied by practitioners in the pretest—posttest ¢, tion o(W). ’
context.

In summary, although missing follow-up response is
commonplace in the pretest—posttest setting, there is n
widely accepted or used methodology for handling it. _ _
In this paper we demonstrate how a unified framework Where fo is the true value off generating the data,
for pretest—posttest analysis under MAR may be devel- E{e(W)} =0, E{p” (W)ep(W)} < co and expectation
oped by exploiting the results in a landmark paper by is with respect to the true distribution @f. The func-

Robins, Rotnitzky and Zhao (1994). tion (W) is referred to as thinfluence function of g,
as to a first-ordep (W) is the influence of a single ob-

1.2 Semiparametric Models, Influence Functions, servation org in the sense given in Casella and Berger
and Robins, Ronitzky and Zhao (2002, Section 10.6.4). An estimator that is both reg-
A popular modeling approach that acknowledges ular and asymptotically linear (RAL) with influence
concerns over sensitivity to parametric assumptions isfunctiong (W) is consistent and asymptotically normal
to take a semiparametric perspectivesaiiparamet- with asymptotic covariance matrik{p(W)e! (W)).
ric model may involve both parametric and Although not all consistent estimators need be RAL,
nonparametric components, where the nonparametricalmost all reasonable estimators are. For RAL estima-
component represents features on which the analystors, there exists an influence functig(W) such
is unwilling or unable to make parametric assump- that E{g(W)e” (W)} — E{¢®T (W) (W)} is non-
tions, and interest may focus on a parametric com- negative definite for any influence functiop(W);
ponent or on some functional of the nonparametric ¢(W) is referred to as thefficient influence function

§2 2B = Bo)=n"T2Y 0(Wi) +op(D),

i=1
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and the corresponding estimator is called dfeient uity of the pretest—posttest study and the simplicity of
estimator. In fact, for any regular estimator, asymptot- the model when no data are missing, to our knowledge
ically linear or not, with asymptotic covariance matrix explicit application of this powerful theory to pretest—
¥, = — E{pT (W)™ (W)} is nonnegative definite;  posttest inference with data MAR with an eye toward
thus, the best estimator in the sense of “smallest” developing practical estimators has not been reported.
asymptotic covariance matrix is RAL, so that restrict- 1 3 opjectives and Summary

ing attention to RAL estimators is not a limitation. We
use the term “influence function” unqualified to mean
the influence function of an RAL estimator.

As indicated by (2), there is a relationship between
influence functions and consistent and asymptotically
normal estimators; thus, by identifying influence func-
tions, one may deduce corresponding estimators. In
missing data problems, Robins, Rotnitzky and Zhao
(1994) distinguished between full-data and observed-
data influence functions. “Full data” refers to the data

that would be observed if there were no missingness;qq ¢ contained demonstration of application of the the-
in the pretest-posttest setting the full data ¥teAc- 4y of semiparametric models and the powerful, gen-
cordingly, full-data influence functions correspond t0 grg| Robins, Rotnitzky and Zhao results in a concrete,
estimators that could be calculated if full data were gamjjiar context. This account hopefully will serve as
available and are hence functions of the full data. 5 resource to researchers and practitioners wishing to
“Observed data” refers to the data observed when Som%ppreciate the scope and underpinnings of the RobinS,
components of the full data are potentially missing; Rotnitzky and Zhao theory by systematically tracing
hence observed-data influence functions correspond tahe key concepts and steps involved in its application
estimators that can be computed from observed dataand explicating how it can lead to practical insight and
only and are functions of the observed data. For atools.

general semiparametric model, the pioneering contri- In Section 2 we summarize the semiparametric
bution of Robins, Rotnitzky and Zhao (1994) was to pretest—posttest model and outline how the class of
characterize the class of all observed-data influencefull-data influence functions for estimators f8rmay
functions when data are MAR, including the efficient be derived. In Section 3 we characterize the observed
influence function, and to demonstrate that observed-data whenY, is MAR, review the essential Robins,
data influence functions may be expressed in terms ofRotnitzky and Zhao (1994) results and apply them to
full-data influence functions. Because for many popu- derive the class of observed-data influence functions.
lar semiparametric models the form of full-data influ- Sections 4 and 5 present strategies for constructing es-
ence functions is known or straightforwardly derived, timators based on observed-data influence functions,
this provides an attractive basis for identifying estima- and we demonstrate the new estimators by application
tors when data are MAR, including the efficient one. 0 the ACTG 175 data in Section 6. Results and prac-

In summary, the Robins, Rotnitzky and Zhao (1994) tical implications are presgnted in the_main ne}rraf[ive;
theory provides a series of steps for deducing estima-teChn_'Cal §upportmg ma_terlal and details of derivations
tors for a semiparametric model of interest when data &€ 9iven in the Appendix. .
are MAR: (1) Characterize the class of full-data influ- As In any missing-data context, Va.“d'ty .Of the as-
ence functions, (2) characterize the observed data ynSumption .Of MA.R foIIo_w-u_p response Is cn_tlcal and_ IS
der MAR and apply the Robins, Rotnitzky and Zhao best Ju_stlfl_ed with avallablhty of rich baseline and in-
theory to obtain the class of observed-data inﬂuenceter\/(:"r"n.g |nformat!on. we assume throughout Fhat the
functions, including the efficient one and (3) identify analystis well equipped to invoke this assumption.
observed-data estimators with influence functions in 2 MODEL AND FULL-DATA
this class. In this paper, for the semiparametric pretest— INFLUENCE FUNCTIONS
posttest model whek, is MAR, g is a scalar p = 1),
and we carry out each of these steps and show ho
they lead to closed-form estimators fBrsuitable for First, consider the full data (no missing posttest re-
routine practical use. Interestingly, despite the ubig- sponse). Suppose each subjéct 1,...,n is ran-

The goals of this paper are twofold. The first main
objective is to develop accessible practical strategies
for inference o in a semiparametric pretest—posttest
model with follow-up data MAR by using the funda-
mental theory of Robins, Rotnitzky and Zhao (1994) as
described above. Although this theory is well known to
experts, many researchers have only passing familiar-
ity with its essential elements. Thus, the second main
goal of this paper is to use the pretest—posttest prob-
lem as a backdrop to provide a detailed and mostly

w2-1 Semiparametric Pretest—Posttest Model



TREATMENT EFFECT IN APR

domized to treatment with known probabiliy; so
Z; =0 or 1 asi is assigned to control or treatment; in
ACTG 175,86 =0.75. ThenYy; andYo; arei’s pretest
and posttest responses (baseline anti®@/eek CD4

in ACTG 175),Xy; isi’s vector of baseline covariates
and X»; is the vector of additional covariates collected
on i after intervention but prior to follow-up, which
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“space” of mean-zerop-dimensional functions o¥

for which there is a certain relationship between the
distance of any element of the space from the origin
and the covariance matrix of the function. From (2),
as the covariance matrix of an influence function is
equal to the asymptotic covariance matrix of the cor-
responding estimator, the search for estimators with

may include intermediate measures of response. As-small covariance matrices, especially the efficient es-
suming subjects’ responses evolve independently, thetimator, may thus be focused on functions in this space

full data oni are V; = (X1, Y1, X2, Yoi, Z;), i.i.d.
acrossi with density p(v) = p(x1, y1, X2, y2,2); We
often suppress the subscriptor brevity. From (1) in-
terest focuses o = E(Y2|Z =1) — E(Y2|Z =0) =
u(zl) — ,u(zo), M;” =pu2+ B andu(zo) = u2; throughout,
expectation and variance are with respect to the true
distribution of V.

and guided by geometric distance considerations.

In Appendix A.1 we first sketch an argument that
demonstrates that any RAL estimator has a unique
influence function, supporting the premise of work-
ing with influence functions. We then review famil-
iar results for fully parametric models and show how
they may be regarded from this geometric perspective.

From Section 1.2, under a semiparametric perspec-Fnally, we indicate how this perspective is extended

tive the analyst may be unwilling to make specific para-
metric assumptions op(x1, y1, X2, y2, z) such as nor-
mality or equality of variances df; andY». For exam-
ple, in HIV researchitis customary to assume that CD4
counts are normally distributed on some transformed
scale and to carry out analyses on this scale; however
as there is no consensus on an appropriate transform
tion, methods that do not require this assumption are
desirable. Thus, in arguments to deduce the form of
full- and observed-data influence functions here and in
Sections 3 and 4, we do not impose any specific as-
sumptions beyond independence &f, Y1) andZ in-

duced by randomization and assumptions on the form(3)

of the mechanism governing missingness. As our ob-
jective is to outline the salient features of the arguments
without dwelling on technicalities, we assume needed

a

to handle semiparametric models. The key results are a
representation of the form of all influence functions for
RAL estimators in a particular model and a convenient
characterization of the efficient influence function that
corresponds to the efficient estimator.

In Appendix A.2 we apply these results to show that
all full-data influence functions for estimators f8rin
the semiparametric pretest—posttest model must be of
the form

{ Z(Y2 “pes B _Z=9, 0, Yl)}
_{(1— 2)(Y2 — o)
1-6
1-2)-(1-5
- 1)_5( )}h“’)(xl,m},

moments, derivatives and matrix inverses exist without where 1) (X1, Y1), ¢ = 0, 1, are arbitrary functions

comment.

2.2 Full-Data Influence Functions

with var{h(©) (X1, Y1)} < oo. Technically, the influence

function (3) depends op, and 8 through their true
values. As is conventional, here and in the sequel we

~ As presented in Section 1.2, our first step in apply- write influence functions as functions of parameters,
ing the Robins, Rotnitzky and Zhao (1994) theory is which highlights their practical use as the basis for de-

to characterize the class of all full-data influence func-
tions for RAL estimators fop; these will be functions

of V. This may be accomplished by appealing to the
theory of semiparametric models (e.g., Newey, 1990;
Bickel, Klaassen, Ritov and Wellner, 1993), which pro-

vides a formal framework for characterizing influence
functions for RAL estimators in such models, includ-

riving estimators, shown in Section 5. From (3), in-
fluence functions and hence all RAL estimators for
are functions only of X1, Y1, Y», Z) and hence do not
depend onX,. This is intuitively reasonable; because
X2 is a post-intervention covariate, we would not ex-
pect it to play a role in estimation g8 whenY> is
observed on all subjects. In Section 3, however, we

ing the efficient influence function. The theory takes will observe that wher¥, is MAR for some subjects,

a geometric perspective, where, generically, influence
functions based on daté for RAL estimators for a
p-dimensional parameter or functiondlin a statisti-

cal model forV are viewed as elements of a particular

such covariates are important not only for validating
the MAR assumption, but for increasing efficiency of
estimation of, as discussed in Robins, Rotnitzky and
Zhao (1994, page 848).
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The results in Appendix A.2 also show that the ef- asY> is missing or observed. Then the observed data
ficient influence function, that with smallest variance for subjecti are O; = (Xo;, Y1, X1, Ri, Ri Y2, Z;),
among all influence functions in class (3), is found by i.i.d. acrossi. We represent the assumption thatis
taking MAR as

P(R=1|X1,Y1,X2, Y2, Z
7O (X1, Y1) = E(ValX1, Y1, Z =€) — ), (R=11X1, 11, X2, 12, 2)

) (6) =P(R=1X1,1n, X2,7)
c=01 uP=pr+p, u=pun.
b 2 ’ 2 =m(X1, Y1,X2,Z) >¢>0,

Thus, if full data were available in ACTG 175, the op-
timal estimator foi8 would involve the true regression
of 96+5 week CD4 on pretest CD4 and other base-
line covariates listed in Section 1.1. Leon, Tsiatis and
Davidian (2003) identified class (3) when no interven-
ing covariateX» is observed and showed that influ-
ence functions for the popular estimators discussed in
Section 1.1 are members; for example, the two-sample

reflecting the reasonable view for a pretest—posttest
trial that there is a positive probability of observiiig

for any subject. Equation (6) formalizes that missing-
ness does not depend on the unobsegdut may

be associated with baseline and intermediate charac-
teristics and be differential by intervention, the latter
highlighted by the equivalent representation

t test estimator 7(X1, Y1, X2, Z) = Zn VD (X1, Y1, X2)
n n ()
Bos=nit Y ZiYai—ngty (1= Z)Ya, + (1= 2)m® (X1, 11, X2)
5 i=1 i=1 for 7 (X1, Y1, Xp) = 7(X1,Y1, X2,0) > & > 0,
®)
- ¢=0,1. For ACTG 175, (6) and (7) make explicit the
e = 2;1(21' =), ¢=01, belief that subjects may have been more or less likely
1=

to drop out (and hence be missing CD4 at%6veeks)
has influence function (3) with© =0,c=0,1 (see  depending on their baseline CD4 and other characteris-
Appendix A.2). Thus, popular estimators are RAL and tics as well as intermediate measures of CD4 and CD8
valid under the semiparametric model, and hence con-and off-treatment status, where this relationship may
trary to widespread belief, are consistent and asymp-be different for patients treated with ZDV only versus
totically normal even ifY; and Y> are not normally  the other therapies, but that dropout does not depend
distributed. Leon, Tsiatis and Davidian (2003) also on unobserved 965 week CD4. Relaxation of the as-
showed that none of the popular estimators has the ef-sumption thatX, Y1, X, are observed for all subjects
ficient influence function, suggesting that improved es- is discussed in Section 7.
timators are possible, and proposed estimators base
on (4) that offer dramatic efficiency gains over popular
methods.

In fact, (3) is the difference of the forms of all As noted in Section 1.1, a naive approach under these
influence functions forus” and 11y, respectively, — conditions is to conduct a complete-case analysis. For
which may themselves be deduced separately by arexample, using the two-sampléest, estimatg by
guments analogous to those in Appendix A.2. In

%.2 Complete-Case Analysis and
Inverse Weighting

n n
Appendix A.3 we argue that, for the purposes of iden- n;i Z R, Z; Yy — n}é Z Ri(1— Z)Yo;,
tifying observed-data estimators fa@r, it suffices to i=1 i=1
identify observed-data influence functions for estima- (8) n
tors for 15" and 1. separately. We thus focus for nge=Y Ril(Zi=c), ¢=01,

simplicity in Section 3 on estimation (pt(zl). i=1
the difference in sample means based only on data

3. OBSERVED DATA INFLUENCE FUNCTIONS for subjects withY, observed. Under the semipara-
metric model, aF (RZY>) = E{ZY2E(R|X1, Y1, X2,
Yo, Z)} = E{ZYn W (X1, Y1, X»)} by (6) and (7), and
E{RI(Z = 1)} = E(RZ) = E{Zz™M (X1, Y1, X2)},

Suppose now thalt» is missing for some subjects, the first term in (8) converges in probability EXZ Y- -
with all other variables observed, and deffie-0or1 7D (X4, Y1, X2)}/E{Z7 D (X1, Y1, X»)}, which is not

3.1 Semiparametric Pretest—Posttest Model with
MAR Follow-Up Response
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equal toE (Y2|Z = 1) = 15" in general. Similarly, the ~ a general semiparametric model, the class of all ob-
second term is not consistent fﬂéo)- Thus, (8) is not served data influence functions for estimators for a
a consistent estimator f@ in general. parameterg under complex forms of MAR and to
A simple remedy is to incorporate inverse weight- characterize the efficient influence function. The the-
ing of the complete cases (IWCC; e.g., Horvitz and ory reveals, perhaps not unexpectedly, that there is a
Thompson, 1952). Here, whereas the estimatonﬁ@r relati_onship between full- ar!d observed-data influgnce
in (8) solvesy™"_; R: Z; Yz — M(Zl)) — 0, weight each functions and that the latter involve inverse weighting.
contribution by the inverse of the probability of see-  Denote the subset of the full data that is always
ing a complete case; that is, soly&'_; R, Z; (Y2 — ﬁbserbeddforﬁi;u?rj]eas ?*blot* ;(ii‘l’llycli’ i(z, Z) .
Dy - Dv. v v P . ere. Under , the probability that full data are ob-
K2 ){ﬁi (Xy, Y15, X2i) = 0, yielding the estimator served depends only ai*, which we write asr (0*).
for uz ", Assumingz (0*) is known for now, ifef (V) is any

4 < @ full-data influence function, Robins, Rotnitzky and
NRZ) ZRiZi Yoi /77 (Xai, Y1, X2i), Zhao showed that, in general, all observed-data influ-
(9) i=1 ence functions have the forRy’ (V) /7 (0*) — g(0),
B " N whereg(0) is an arbitrary square-integrable function
nrzy =) RiZi/w® (X1, Y1i, X20), of the observed data that satisfiegg(0)|V} = 0. For

i=1 o situations like that here, where a particular subsét of

and analogously for,™. Itis straightforward to show  (¥») is either missing or not for all subjects, this be-
that such inverse weighting yields consistent estimatorscomes
for Méc), ¢ =0, 1; for example, for (9) £ = 1), using
(6) and (7), (11)
RZY>
Hﬂ(l)(Xl, Y1, X2) }

RoT (V) _ R-7(0%

(0% (0" g(07™),

whereg(0*) is an arbitrary square-integrable function
E(R|X1, Y1, X2, Ya, Z)} of the data always observed. In (11), the first term has

1 the form of an IWCC full-data influence function; the
7D (X1, Y1, X2) , :
second term, which has mean zero, depending only
= E(ZY2) = E{ZE(Y2|Z)} = 8E(Y2|Z = 1), on data observed for all subjects, “augments” (e.g.,
and similarlyE{RZ /=D (X1, Y1, X5)} = 8, so that (9) Robins, 1999) the first, which leads to increased effi-
converges in probability t&(Y2|Z = 1) = u$?. Sub-  ciency provided thag is chosen judiciously.

tracting Méc) and multiplying by n'/? for each of 34 Observed-Data Influence Functions for the

c¢=0,1, the associated influence functions are seen  pretest—Posttest Problem

= E{ZYZ

to be
RZ(Ys— 1) In the special case of the pretest—posttest problem,
5@ X2 YMZX and focusing on estimation of the treatment maagl) =
(10) 7 (XL 11 X2) 12 + B, with 0* = (X1, Y1, X2, Z), (3) and (11) im-
R(1— Z)(Y> —uéo)) mediately imply that the class of all observed-data
1—-8)mO(Xq, Y1, X2)’ influence functions for estimators fgm'(zl) whenY; is
MAR is

which have the form of the corresponding full-data in-
fluence functions in (3) weighted by, ¢ =0, 1, R{Z(Ys— uD) — (Z — $)hD (X1, Y1)
for the complete cases onlR (= 1). The IWCC may 5 2(X V1. X2.2) ’

be applied to any RAL estimator with influence func- (12) Tia1, 11, 22,
tion in class (3), including popular ones. However, _ R—n(X1, 11, X2, Z) M x
although such simple IWCC leads to consistent infer- (X1, Y1, X2,2) § b
ence, methods with greater efficiency are possible.

Y1,X2,7)

_ _ for arbitrary h® and g® such that vam® (X,

3.3 The Robins, Rotnitzky and Zhao Theory Y1)} < oo and Va(g(l)(Xl, Y1, X2, Z)} < o0o. Defining

As noted in Section 1.2, the pioneering advance of g (X1, Y1, X2, Z) = (Z—8)h D (X1, Y1) +8gD (X1,
Robins, Rotnitzky and Zhao (1994) was to derive, for Y1, X2, Z), we may write (12) equivalently in a way
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that is convenient in subsequent developments as 3.5 Estimation of the Missingness Mechanism

RZ(Y2— u?) _(Z=9 The foregoing results take and, hencegr @ (X1,

(X1, Y1) it . ]
8(X1, Y1, X2, Z) S Y1, X2) to be known, which is unlikely unlesg; is
(13) missing purposefully by design for some subjects in
R—7n(X1,Y1,X2,2) ay S ; )
— gV (X1, Y1, X2, Z); a way that depends on a subject’s baseline and inter-
7 (X1, Y1, X2, Z) mediate information. In practice, unknowi? is of-
there is a one-to-one correspondence betweenten addressed by positing a parametric modehfdt;
(12) and (13). intuition suggests that such a model be correctly

As in the full-data problem, itis of interest to identify  specified, although we discuss this further in Sec-
the optimal choices ok™® and ¢, or, equivalently,  tion 4.2. For now, then, suppose that a parametric
h® and g®’, that is, those that yield the efficient modelr ™ (Xy, Y1, X2: 1), say, fory (s x 1) has been
observed-data influence function with smallest vari- proposed and is correct, wheyeg is the true value of
ance among all influence functions of form (12) or, , 5o that evaluation atg yields the true probability
equivalently, (13). In Appendix A.4 we show thatthe () (x, y; X,). For definiteness, we focus hence-
optimal choices o™ andg™ in (13) are forth on the logistic regression model

RO (x4, v1) 2O (X1, Y1, Xo: )

_ _ D
=E(Y2[X1,Y1,Z=1) —py’, (16) :exp[dT(Xl, Y1, X2)y}
(14) ¢V (X111, X2, 2) L+ expld” (X1, Y1, X2y} 7L,
1 . . .
= Z{E(Y2| X1, Y1, X2, Z) — 5} whered(X1, Y1, X») is a vector of functions of its ar-

1 ument, but a development analogous to that below is
= Z{E(V2|X0, V1, X2, Z =) — 13"}, gossible for other choFi)ces (e.g., agrobit model). In the
The formsg®f@’ andref® show explicitly how aug- ACTG 175 analysis in Section 6 we model the prob-
mentation exploits relationships among variables to ability of observing CD4 at 965 weeks by a logis-
gain efficiency. In ACTG 175, then, (14) shows that the tic function, wherei(X1, Y1, X2) includes functions of
optimal estimator fop involves knowledge of the true  baseline and intermediate characteristics.

regressions of 965 week CD4 on baseline CD4 and  Under these conditions, a natural strategy is to derive
qther baseline_ covariat_es, and on this baseline informa-gn estimator fou(zl) from an influence function of the
tion plus post-intervention CD4 and CD8 measures andsqrm (15), assuming that @ (X1, Y1, X») is known:

off-treatment statgs, respectively. . ) estimatey based on the i.i.d. datéXy;, Y1;, X2,
To develop estimators for practical use with good p. Z), i=1 n. and substitute the estimated
1 L/ - LA 3

properties, it is sensible to conS|der_|anue_nce func- value fory in the (correct) parametric model® (X1,
tions with form close to that of the efficient influence . . Q) o (1)
Y1, X2; v); and estimateu,” acting as ifz'* were

function. Accordingly, from the expression fgfff(»’ ; i

in (14) and the rggresentation QF’)f in (7), \?/e re- known. Robins, Rotnltz(lf)y and (Zl)h".’lo (1994) showed
strict attention in the sequel to the subclass of (13) that, for any choice of:*” andg™ in .(15)’ as ang
with elements of the form, fog ™' (X1, Y1, X2, Z) = as an_efﬁuent proce_:dure [e.q., maximum likelihood
ZqD (X1, Y1, Xp) for arbitrary square-integrable (ML)] is used to estimate/, the resulting influence
7D (X1, Y1, X2) function for the estimator fo obtained by this strat-

egy has the form
V¥ (X1, Y1, X2, R, RY2, Z)

@ V¥ (X1, Y1, X2, R, RY>, 7)
RZY2—pn3")  (Z-9)

1 T -1
= ‘Sﬂ(l)(XL Yla XZ) S h( )(Xl’ Yl) (17) +d (Xl, Yl, X2)A(1) (bq(]_) — b(]_))
15
(13 (R — 7D (X, Y1, X2)}Z ' {R—7 D (X1, 11, X2)}Z
e D(X1, Y1, X2) 8
where

gV (X1, 11, X2).

, _ Dy @
Equation (15) includes the optimal?’, but rules out bay = E[(Y2— u3"){1 - 7(X1. 11, X2)}
choices that cannot have the efficient form. -d(X1, Y1, X2)|Z =1],
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by = E[qP (X1, Y1, X2){1— 7P (X1, Y1, X))
-d(X1, Y1, X2)|Z =1],

Aqy = E[zP (X1, Y1, X2)[1 - 7D (X1, 11, X2))
-d(X1,Y1, X2)d" (X1, Y1, X2)|Z =1],

and 7 (X1, Y1, X») is the true probability (i.e., the
parametric model evaluatedjaf). In Appendix A.5 we
give the basis for this result. Thus, estimators;féjr)
with influence functions in class (17) may be de-
rived by finding estimators with influence functions in
class (15) (so fory known” in the context of a correct
parametric model forr D) and substituting the ML es-
timator fory. Thus, although influence functions of the

form (17) are useful for understanding the properties of
estimators fowgl) wheny is estimated, one need only
work with influence functions of the form (15) to de-
rive estimators.

Wheng® (X1, Y1, X») has the efficient fornE (2|
X1,Y1,X2,Z=1)— M(zl), b = by(1)- Hence, as long
as the parametric model for® is correct, even if
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and M;o) from these developments and take their dif-
ference, which is justified by the argument in Appen-
dix A.3.

It may be shown that if the true missingness mecha-
nism follows a parametric model(X1, Y1, X5, Z; ),
inducing modelsr© (X1, Y1, X2; ), ¢ = 0,1, cor-
rectly specifying this model and estimatipgby ML
from the data for subjects witk = 0 and 1 sepa-

rately leads to estimators fqz(zl) and M(ZO) at least
as efficient as those found by estimatipgoy fitting
(X1, Y1, X2, Z; y) to all the data jointly. We recom-

mend this approach in practice.

4. ESTIMATORS FOR B

4.1 Derivation of Estimators from
Influence Functions

As a generic principle, based on (2), to identify an
estimator from a given influence function, one sets the
sum of terms that have the form of the influence func-
tion for each subject =1,...,n to zero, regarding

y is estimated, the last term in (17) is identically the influence function as a function of the parame-
equal to zero, but this will not necessarily be true ter of interest, and solves for this parameter, possibly

otherwise. This reflects the general result shown by sypstituting estimators for other unknown quantities.
Robins, Rotnitzky and Zhao (1994) that an estimator |n complex models, particularly whep > 1, it may

the same properties whether the parameters in a (COrynq this and additional considerations can lead to
rect) model for the missingness mechanism are kKnowngompytational and other challenges. However, for the
or estimated. For generla(l) andq'® not necessarily  gimple pretest—posttest model, this strategy straightfor-
equal to the optimal choices, the theory also implies wardly leads to closed-form estimators fgr as we
the seemingly counterintuitive result that, everyifs now demonstrate.
known, estimating it anyway can lead to a gainin ef- 1o torm of the efficient influence function is a
ficiency; that is, for a specific (nonoptimal) choice of natural starting point from which to derive estima-
hD andg®, the variance of (17) is at least as small as . . . )
that of (15). In Appendix A.5 we give a justification of tor? with _good properties, Thgs, focusmg pél » ap-
this claim. plying this strategy to (15) with the optimal choices

AO(X1, Y1) = EXolX0, Y1, Z = 1) — ul? and

g (X1, Y1, Xo) = E(Y2|X1, Y1, X2. Y = 1) — pu”,

By a development entirely similar to that above for simple algebra yields

influence functions for estimators fpr‘zl), we may ob-
tain similar influence functions for estimators t@&o).
Here, influence functions in a subclass that contains
the efficient influence function are of the form (15)
with Z, 7D, 8, D and ¢V replaced by 1- Z,
7@, (1 - 8) and analogous functions® and ¢(©,
respectively, with similar modifications in (17). The (18)
efficient influence function has, analogous to (14),
heffO = E(Ys|X1,Y1,Z = 0) — @ and ¢ =
E(Y2|X1,Y1, X2, Z=0) — M(ZO). To deduce estimators

for g whenY> is MAR, we derive estimators fqn(zl)

3.6 Summary

n

s’ =m&H Y

i=1

RiZ;Y5;
DXy, Y, X21)

— (&)Y (Zi —8)
i=1

cE(Y2i| X1, Y1, Zi =1)

{Ri — eV (X1, Y, X20)} Z;
(X1, Y, X2)

n

@Y
i=1

-E(Y2i| X1, Y1i, Xoi, Z; = 1),
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and similarly foru(zo). Thus, to estimat@, one would
take the difference of (18) and the analogous expres-
sion for /L(ZO). In practice this is complicated by the
fact that7 (X1, Y1, X2) must be modeled and fitted;
moreover, it is evident that suitable regression models
for E(Y2|X1, Y1, Z) andE(Y2|X1, Y1, X2, Z) must be
identified and fitted. We discuss strategies for resolving
these practical challenges in Section 5.

4.2 Double Robustness

M. DAVIDIAN, A. A. TSIATIS AND S. LEON

show that the right-hand side converges in probability
to ugl) (see Appendix A.6), suggesting that an estima-
tor based on (18) would still be consistent. In fact, the
second term in (18) converges in probability to zero
even if E(Y2|X1,Y1,Z = 1) is replaced by any arbi-
trary function of(X+4, Y1), so that the double robustness
property holds if onlyE (Y>|X1, Y1, X2, Z) is correct.

Of course, if bothm® and E(Y»|X1, Y1, X2, Z) are
specified incorrectly, we cannot expect (18) to yield
consistent inference in general.

So far we have assumed that postulated models AS We discuss in Section 5, in practice one must

for 79, ¢ = 0, 1, are correctly specified. If the pos-
tulated model is incorrect, substituting this incor-
rect model into an influence function of the form
(15) or (17) whenc = 1 with arbitrary #Y and
gV yields an expression that need not have mean
zero; for example, the leading term i (Xy, Y1,

X2, R, RY2, Z) in (15) has expectation zero only if
P(R = 1X1,Y1, X2, Z =1) = 7D (X4, Y1, X»), the
true probability, and similarly fore = 0. Because a
defining characteristic of an influence function is zero

mean, estimators derived under such conditions neeoe

no longer be consistent. However, there is an excep-
tion when the optimat® andg? are used as in (18),
which we now describe.

In general, the augmentation in (11) induces the in-
teresting property that estimators derived from (11)
will be consistent if either (1) the choicg(O*) does
not correspond to the optimal choice butO™) is cor-
rectly specified or (2) the optimal choice g{0*)
is used butr(0*) is misspecified. This property is
referred to asdouble robustness (e.g., Scharfstein,
Rotnitzky and Robins, 1999, Section 3.2.3; van der
Laan and Robins, 2003, Section 1.6).

We may demonstrate the double robustness prop-

erty for estimators for the pretest—posttest model,
for definiteness, considqr(zl). Under option 1, with
any arbitrary choices foh™® and ¢@, if the model
7D (X1, Y1, X2;y) corresponds to the true mecha-
nism, that (15) has mean zero is immediate. Thus,
even if one model% (Y2| X1, Y1, Z) and E(Y2| X1, Y1,

X2, Z) incorrectly in (18), the resulting estimator
still has a corresponding legitimate influence func-
tion in class (17) (assuming is estimated) and

hence is consistent. Conversely, under option 2, sup- ~@)

pose E(Y2|X1,Y1,Z) and E(Y2|X1, Y1, X2, Z) are
correctly specified in (18), butt™® (X1, Y1, X5) is
specified incorrectly by somer*(X1, Y1, X2), say.
Substitutingz* for 7@ in (18), it is straightforward to

develop and fit models fat ), E(Y»|X1, Y1, Z) and
E(Y»|X1,Y1, X2, Z), so the results above are some-
what idealized. However, if the analyst uses his or her
best judgment and efforts to develop these models, the
chance of coming very close to specifying at least one
of them correctly may be high. The theoretical double
robustness property suggests that, by using estimators
like (18) based on the efficient influence function, the
analyst has some protection against inadvertent mis-
modeling. In our experience, even if both types of mod-
Is are mildly incorrectly specified, valid inferences
may be obtained; if one model is grossly incorrect, that
with the mild misspecification error tends to dominate,
so that reliable inferences are still possible.

5. PRACTICAL IMPLEMENTATION

To obtain estimators fop based on (18) and the
analogous expression fqz(zo) suitable for practice,
(X1, Y1, X2), E(Y2|X1,Y1, Z =¢) and E(Y2| X1,

Y1, X2, Z = c¢), ¢ = 0,1, must be modeled and fit-
ted. Given parametric models© (X1, Y1, Xo; y), if

y is estimated by ML separately from the data for
Z =0 and 1 as at the end of Section 3.6, yield-
ing estimatorsy, ¢ = 0,1, we may form esti-
mated probabilitiesﬁi(c) = 7©9Xoi, Y1, X1; 79),
say. Similarly, given fits of some regression models
E(Y2|X1, Y1, Z=c) andE(Y2|X1, Y1, X2, Z =), We
may obtain predicted valueg); ande, ), c =0, 1,
say, for E(Y2i| Xy, Y, Zi = ¢) and E(Y2i| Xy, Y1,
Xo2i, Z; = ¢), respectively. Lettingd = n1/n, substi-
tuting in (18) and its analog far = O then yields the

estimatorg = 5" — %>, where

n n
_ (1 o
> =n11 E RiZiYZi/”i()_ E (Zi — 8)ennyi
i=1 i=1

n
(R —77) Ziggi /7
i=1
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and be used. Figure 1 suggests that such reasonable models
_©® L[ _© might_include both linear and quadratic termsyin=
Hy' =ng {Z Ri(1—Z)Yy /7; baseline CDA4.
i=1 Considerations for developing and fitting models
n N for E(Y2|X1, Y1, Z = ¢) are trickier. Ideally, the cho-
+ ) (Zi = 8w sen model for this quantity must be compatible with
i=1 that for E(Y2|X1, Y1, X2, Z), as E(Y2|X1,Y1,Z) =
n _0 _ _0 E{E(Y2|X1, Y1, X2, Z)| X1, Y1, Z}. Several practical
=D (R =)A= Zi)eyi/ 7, |- strategies are possible, although none is guaranteed to
i=1

achieve this property and hence vyield the efficient es-
Intuitively, replacing the unknown quantities in (18) {imators fOFM(zc), ¢ =0, 1. One approach is to adopt a
and its analog for = 0 by consistent estimators should - e directly forE (v2| X1, Y1, Z) that is likely “close
not alter the implications for consistency @f dis- enough” to be “approximately compatible.” For exam-
cussed earlier. We now review considerations involved : : - :
N obtainingz?.(c) 2 o ande, . ¢ 0, 1 ple, if £E(Y2|X1,Y1, X2, Z) is a linear model in func_:-
Anatural a. }oa(c%lto mocél(é)li’ ¥ v 7 — ) tions of (X1, Y1, X2), one may be comfortable with
PP Mg(Y2| X1, Y1, Z =c a linear model forE (Y| X1, Y1, Z) that includes the

and E(Y2|X1, Y1, X2, Z = ¢) is to adopt parametric . )
; ; . functions ok 1, Y1. We demonstrate this ad hoc
models based on usual regression considerations. Fo?ame 1, 1 ) )
g strategy for the ACTG 175 data in Section 6. If all

example, in ACTG 175Y>, = CD4 at 96t5 weeks ¢ . N
is a continuous measurement, suggesting that stan®' X1.Y1. X2, Y7 are continuous, assuming joint nor-

dard linear regression models may be used. Becaus&"@lity may be a reasonable approximation, in which
of the assumption of MARE (Y2|X1, Y1, X2, Z, R) case standard results may be used to deduce both

does not depend oR; thus, E(Y2| X1, Y1, X2, Z) = models. Alternatively, one might use the relationship
E(Y2|X1, Y1, X2, Z, R = 1), implying that this model ~ E(Y2[X1, Y1, Z) = E{E(Y2|X1, Y1, X2, Z)| X1, Y1, Z}.
may be postulated and fitted based only on the com-For example, for low-dimensionakz, a distribu-
plete cases. Thus, standard techniques for model selectional model for X»|X1, Y1, Z might be fitted based
tion and diagnostics may be applied to the data fromon the (Xu;, Y1, X2, Z;), i = 1,...,n, which are
subjects withR = 1. For example, inspection of plots observed for all subjects; integration with respect
like those in Figure 1, which shows only data for sub- to this model would yield the desired conditional
jects for whom CD4 at 965 weeks is observed, may quantities forc = 0,1. For univariate binaryXy,

1200 - 1200 o

800

800

400 - 400 |

follow-up CD4 at 96 + 5 weeks
follow-up CD4 at 96 + 5 weeks

T T T T T T T T T T
0 200 400 600 800 0 200 400 600 800
baseline CD4 baseline CD4

(a) (b)

FIG. 1. CD4 counts after 96+5 weeks versus baseline CD4 counts for complete cases for (a) ZDV alone and (b) the combination of
ZDV+ddl, ZDV+ddC or ddl alone, ACTG 175. Solid lines were obtained using the Splus function | oess() (Cleveland, Grosse and
Shyu, 1993).
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a logistic model forP (X2 = 1|X1,Y1,Z) may be

models all covariates found to be important in any of

used; this is straightforward, but could be more chal- the regression models above, as it may be shown that
lenging for mixed continuous and discrete and/or including covariates in this model that are correlated
high-dimensionalX». Instead, one might invoke an with Y2, even if they are not associated with missing-
empirical approximation, for example, obtaining the ness, can lead to gains in efficiency. Lunceford and

predicted valueey);, ¢ = 0,1, for eachi by aver-
aging estimates of (Y| Xy, Y1, X2/, Z; = ¢) over
subjects; that share the same values 10f1, Y1, Z)

Davidian (2004) demonstrated this phenomenon in a
simple related setting. Thus, we suggest developing
this model after building and fitting of the models for

asi, which would likely be feasible only in specialized E(Y2|X1,Y1, X2, Z =c) andE(Y2|X1,Y1,Z =¢) are
circumstances. A cruder version would be to averagecomplete.

over all Xp; for j in the same group as this would
yield the desired result only iX» is conditionally in-
dependent ofX4, Y1) givenZ.

Theoretically, if all of these models are correctly
specified, therms should be efficient in the sense de-
scribed earlier. For parametric regression models for

A further complication is that, for any chosen model E(Y2|X1,Y1,X2,Z = ¢) and E(Y2|X1,Y1,Z = o),

for E(Y2|X1, Y1, Z), it is no longer appropriate to fit

although additional regression parameters must be es-

the model based on the complete cases only. Ideallytimated because of the geometry, there is no effect as-
this fitting should be carried out by a procedure that ymptotically; a similar phenomenon for nonparametric

accounts for the fact thab is MAR, such as an IWCC

estimation of these quantities is suggested by the re-

version of standard regression techniques. However, ifsults of Newey (1990, pages 118-119) as long as this is
the model is an approximation anyway, complete-case-at a rate faster tham /4. The double robustness prop-
only fitting may not be seriously detrimental. Even if erty discussed in Section 4.2 ensures that consistent
the fit of the chosen model is not consistent for that estimators fois andug), ¢ =0, 1, will be obtained as
model, the discussion of double robustness in Sec-long as either set of models is correct; however, effi-

tion 4.2 suggests that the resulting estima@i@ and
hences should be consistent regardless.

ciency is no longer guaranteed.
The asymptotic variance ¢f is obtained from the

Another approach would be to use nonparamet- expectation of the square of the difference of (15) and

ric smoothing to estimateE (Y2|X1, Y1, X1, Z) and
E(Y2|X1,Y1,Z) and obtain predicted valueg,);
andey )i, for example, locally weighted polynomial
smoothing (Cleveland, Grosse and Shyu, 1993) or
generalized additive modeling (Hastie and Tibshirani,
1990). Ideally, smoothing foE (Y2| X1, Y1, Z) should
be modified to take into account thdb is MAR,
although this may not be critical by double robust-
ness. Instead, an estimate B{Y>|X1, Y1, Z) could
be derived from integration of the nonparametric fit of
E(Y2|X1, Y1, X5, Z). Feasibility of smoothing might
be limited in high dimensions.

However one approaches developing and fitting (19)
models forE (Y2| X1, Y1, X2, Z =c¢) andE (Y| X1, Y1,
Z =c), c=0,1, we have found that it may be ad-
vantageous, at least for large to fit separate models
for ¢ =0, 1. We also recommend including in all four
models the same functions of componentsXaf Y1
and X (if appropriate) if they were found to be impor-
tant in any one model, as it may be prudent to over-
model rather than undermodel.

Similarly, standard techniques for parametric binary
regression may be used to fit modets®) (X1, Y1,
Xo; y) for eachc = 0,1, as alln subjects will have

the analogous control influence function, given by

{ (Y2 — 132 ‘__4
M (X1, Y1, X2)817
(Y2 — )2 }
E Z=0
+{n©abnx»a—ﬂ
—5(1-9)

. EH E(Y2|X1, Y1, Z=1) — uS"

b}
+ﬂnmbnz=m—u9r]

1-35
Ic=1) I(c=0)
_Z( 5 T 1—3)

c=0,1

[1— 7 (X1, Y1, X2)
(X1, Y1, X2)

_ H“(ZC)}Z:|'

Implicit here is the assumption that the models for

the requisite data. We recommend including in these 7 (X1, Y1, X2), E(Y2|X1, Yo, X2, Z = ¢) and E(Y>3|
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X1, Y1, Z = ¢) are correct. Equation (19) may be esti-

mated by replacing the first two terms gz (1))~ -
~(1)\2 ,~(1)2 N _

Sy RiZi(Ya — i5)2/7 % and{(1— Digzo) -

~(0 ~(0)2 —~
Y Ri(l— Zi) (Yo — a2z %%, wherefigz () =

273

assigned treatment prior to 96 weeks; reasons could
include death, dropout or other patient or physician
decisions. Because of the high dimensionXaf and

the fact that bothXq1 and X, contain a mixture of
continuous and discrete variables, we considered para-

=(0) i ini . . .
Y1 Ril(Zi = ¢)/7;”, and replacing the remaining  metric linear regression modeling. Based on the 1342
terms by sample averages with estimates substitutecyf ,, — 2139 subjects that are complete cases, stan-

for needed quantities. Alternatively, VAD may be es-
timated by>-"_, $?/n?, corresponding to the so-called
sandwich technique, whefg is the difference of the
influence functions with estimates substituted, that is,

~(1 N~ ~(1
_ RZi(Ya -0y (Zi — &)@ — 1y
T

(R —7T,~( ))Zi(eq(l)i - M(z )
sz

i

CRi(—Z)(Ya — YY)

11—z
(Zi —8)(@ncoyi — ﬁ(zo))
(1-9)
~(0 ~ ~(0
R =7FNA - Z)@ywi — )
1-5)7©

If E(Y2|X1,Yo, X2, Z) and E(Y2|X1, Y1, Z) are mis-
modeled, the influence function ﬁi‘zl) would instead
be of the form (17) to account for estimationjofand
similarly for ﬁ(zo). Although technically then the above

formulae would seem to require modification, we have
extensive empirical evidence to suggest that they yield
reliable estimates of precision if incorrect models are

used.

6. TREATMENT EFFECT IN ACTG 175

We now apply the proposed methods to the data

from ACTG 175, whereB is the difference in mean
CD4 count at 965 weeks for subjects receiving ZDV

(control) and those receiving any of the other three

therapies (treatment), so thé&t= 0.75. The analysis
here is not definitive, but is meant to illustrate the typi-
cal steps in an analysis based on these techniques.
Following Section 5, we begin by modeling(Y>|
X1,Y1,X2,Z =¢), ¢ =0,1. As reviewed in Sec-
tion 1.1, X; contains 11 baseline covariates in ad-
dition to baseline CD4X1). For X», we considered
three covariates available for all subjects: CD4 at-30
weeks postrandomization, CD8 at 25 weeks and
an indicator of whether the subject went off his/her

dard model selection techniques indicate that weight,
indicators of HIV symptoms and prior antiretroviral
therapy, Karnofsky score, CD8 count and CD4 count
(linear and quadratic terms in CD4 and CD8) at base-
line, CD8 and CD4 count at 26 weeks (linear and
quadratic terms), and off-treatment status are associ-
ated with Yo = CD4 count at 965 weeks in one

or both treatment groups. Thus, we fit separately for
¢ =0, 1, the models

E(Y2|X1, Y1, X2, Z =¢)

= a((f) + ocic)wt + ozéc) HIV + aéc)prior

+ o Karn+ o' CD& + o) CD&

) +a$CD4 + oy CD43 + ar’ CD8so
+ o9 CD8y + ol CD4yo + {9 CD43,
+ a{Jofftrt

by ordinary least squares (OLS), obtaining predicted
valuese, ()i, ¢ =0, 1 for eachi =1, ..., n. Adopting

the ad hoc strategy in Section 5, we directly modeled
E(Y2|X1,Y1,Z =c¢), ¢ = 0,1, by including the same
terms inX; andY; as in (20), that is,

E(Ys|X1, Y1, Z =c)
— oy + Wt + oS HIV + o prior
+ aflc) Karn+ aéc)CDSO + aéC)CDSS
+a$CD4 + o CD4,

again fitting the model for eachby OLS and obtain-
ing predicted valuesy ), c = 0,1 for all n subjects.
Finally, based on standard techniques for logistic re-
gression and the guidelines in Section 5, we arrived at

logit (X1, Y1, X2; )
vs"
+ (c) K (C) (C)

4" Kamn+ ys9 CD8& + 15~ CD&
+ 77/ CD4o + y5” CD4 + 75" CD8zo
+ v15 CD8g + 115 CD40 + 1 CD4,

c=0,1,

=19 + Wt 4y PHIV + 15 prior

+ yl(g) offtrt,
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Treatment effect e TtABfLE :QLGiS e D4 count We have carried out extensive simulations that show

reatmer 'mates for W counts that the proposed methods lead to consistent inference
for ACTG 175 : i : '

and considerable efficiency gains over simpler methods

Estimate SE such as IWCC estimators; a detailed account is avail-
able at http://www4.stat.ncsu.edu/~davidian.
New method 57.24 10.20 We considered the situation where only follow-up re-
KA,(I%%VA 652.'22 1;_';3 sponse is_ potentially missing; baseline and interm_edi-
Paired test 67 14 903 Aate covariates are assumed observable for all subjects.

In some settings covariate information in the period be-
NoTE. Standard errors for the new method and the IWCC estimate tween baseline and follow-up may be censored due to
were obtainec_i using the_sandwi_ch app_roach. ANOVA denotes or- dropout, Ieading to onIy partially observé@. The de-
dinary analysis of covariance with no interaction term. Standard velopment may be extended to this case via the Robins,
errors for the popular estimators based on complete cases were ob- . .
tained from standard formulze. Rotnitzky gnd Zhao (1994) theory and is related to that
for causal inference for time-dependent treatments, re-
quiring assumptions similar to those of sequential ran-
domization identified by Robins (e.g., Robins, 1999;

group. -
. ~ . van der Laan and Robins, 2003).
Table 1 shows the estimate gfand the estimated Although our presentation is in the context of the

standard error obtained by the sandwich technique, ang retest—posttest study, it is evident that the results are
appears to provide strong evidence that mean CD4 a post Y, .
equally applicable to the problem of comparing two

weeks is higher in the treatment gr relativ . . . :
965 weeks ghe € treatment group refative means in a randomized study with adjustment for base-

to the control. Table 1 also presents the estimatg of i 2tes 10 | fici i d
obtained via the IWCC method. The IWCC estimated IN€ covariates 1o Improve elriciency, as discussed, for
example, by Koch et al. (1998), because the pretest

standard error is larger than that for the proposed meth-res onser~ mav be viewed as simplv another base-
ods, consistent with the implication of the theory that i P 1 yTh he devel Py ts al lari
incorporation of baseline and intervening covariate in- Ine covanate_. us, the developments aiso clarify
formation should improve precision. For comparison, hOW. such o_p_tlmal_ adjustment shoul_d be carrl_ed out to
Table 1 shows estimates gfobtained by the two most gch@ve efﬂment inferences on a _dn‘ference In means
dn this setting; moreover, they provide a systematic ap-

popular approaches in practice based on the complet roach 1o accounting for MisSing response
cases only. These results suggest there may be nonned)- 9 gresp ‘

ligible bias associated with these naive methods, in this APPENDIX

case suggesting an overly optimistic treatment differ-

ence. A.1l. INFLUENCE FUNCTIONS AND
SEMIPARAMETRIC THEORY

where y was estimated separately by ML for each

7. DISCUSSION Correspondence between influence functions and

We have shown how the theory developed by Robins, RAL estimators. Before we describe semiparametric
Rotnitzky and Zhao (1994) may be applied to the theory, we sketch an argument that more fully justifies
ubiquitous pretest—posttest problem to deduce analy-why working with influence functions is informative
sis procedures that take appropriate account of MAR for identifying (RAL) estimators. It is straightforward
follow-up data, yield consistent inferences and lead to to show by contradiction that an asymptotically lin-
efficiency gains over simpler methods by exploiting ear estimator [i.e., an estimator satisfying (2)] has a
auxiliary covariate information. This perspective pro- unique (almost surely) influence function. In the nota-
vides a general framework for pretest—posttest analysistion in (2), if this were not the case, there would exist
with missing data that illuminates how relationships another influence functiop*(W) with E{p*(W)} =0
among variables play a role in both accounting for that also satisfies (2). If (2) holds for bot(W)
missingness and enhancing precision, thus offering theand¢* (W), it must be thatd = n=Y2 3" {p(W;) —
analyst guidance for selecting appropriate methods ing*(W;)} = 0,(1). Whereas the¥; are i.i.d., A con-
practice. We hope that this explicit, detailed demon- verges in distribution to a normal random vector with
stration of this theory in a familiar context will help re- mean zero and covariance matrix = E[{p(W) —
searchers who are not well versed in its underpinningseo*(W)}{g(W) — ¢*(W)}T]. Whereas this limiting dis-
appreciate the fundamental concepts and how the theotribution is 0,(1), it must be thatE = 0, implying
retical results may be translated into practical methods.o (W) = ¢*(W) almost surely.
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Parametric model. We begin by considering fully  theefficient score. Evidently@®f(V) is the efficient in-
parametric models. Formally, a parametric model for fluence function, and these familiar results emphasize
data V is characterized by all densitigs(v) in a the connection between efficiency and the score vector.
class# indexed by ag-dimensional parametet, so We are now in position to place these results in a
that p(v) = p(v, 9) € &P is fully specified byd. Sup- geometric context. Our discussion of this geometric
pose that interest focuses on a paramegten this construction for both parametric and semiparametric
model. In the most familiar caseé,may be partitioned ~ models is not meant to be rigorous and complete, but
explicitly ast = (87, )T for B (p x 1) andn (r x 1), serves only to highlight the crucial elements.

r =q — p, SO thatn is a nuisance parameter, and We  Hjjpert space. A Hilbert space ¢ is a linear vec-
may write p(v, B, n). Alternatively, 8 = B(6) may be o1 space, so thatihy + bhy € H for hi, hy € H
some function o®, and identifying the nuisance pa- gnqg any reala, b, equipped with an inner product;
rameter may be IeSS Straightforward, but the prinCipIeS see Luenberger (1969, Chapter 3) The key feature
are the same. For simplicity, wherefsn the pretest—  that underlies the geometric perspective is that influ-
posttest problem is a scalar, we restrict attention to ence functions based on data for estimators for
r=1 a p-dimensional paramete in a statistical model
may be viewed as elements in the particular Hilbert
space # of all p-dimensional, mean-zero random
functionsh(V) such thatE{h” (V)h(V)} < oo, with
inner productE{th(V)hz(V)} for hy, hp € # and cor-
responding normii|| = [E{hT (V)h(V)}1Y/2, measur-
ing distance fronk = 0. Thus, the geometry of Hilbert
spaces provides a unified framework for deducing re-
sults with regard to influence functions in both para-

Maximum likelihood estimator in a parametric mod-
el. For definiteness, consider the case whére-
(8,n1)T. Define as usual the score vecnV, 0) =
{Sﬂ(V,G),SUT(V,@)}T = [3/0B{logp(V, B, m},
a/an" {log p(V, B, m}1" and letdo = (Bo, 1¢)" be the
true value ofd. ThenE{Sy(V, 6p)} = 0 and the infor-
mation matrix is

1(60) = E{Ss (V. 00) ST (V. 60))} metric and semiparametric models.
Some general results concerning Hilbert spaces are
_ (1;3/3 lﬂn> Loy (rxr), dgy (Lxr) important. For any linear subspadé of #, the set
gy Ay )7 M P ’ of all elements of# orthogonal to those inM, de-

. . . . L i 1
where expectation is with respect to the true density oted M= (i.e., such that ifhy € M and hp € M,
(v, Bo, 10). Writing & = (B, 77)7 to denote the max- the inner product ofi1, k> is zero), is also a linear
imum likelihood estimator fo found by maximiz-  Subspace of. Moreover, for two linear subspaces
ing Y, log p(ui. B. n), it is well known (e.g., Bickel M and N, M @ N is thedirect sum of M and N if

et al., 1993, Section 2.4) that, under regularity condi- every element i/ N has a unique representation of
the formm + n for m € M, n € N. Intuitively, it is the

tons, case that the entire Hilbert spage= M ® M. As we
~ n will see momentarily, a further essential concept is the
(A1) V2B —poy=n l/zzweﬁ(vi) +op(D), notion of aprojectior?f The projection of: € # onrt)o a
i=1 closed linear subspad¢ of J# is the element i/, de-
o®"(V) =155, (Sp(V. 60) noted byI1(k|M), such thaflh — [1(h|M)|| < ||h —m|
for all m € M and theresidual & — I1(h|M) is orthog-
(A.2) — IpndynSy(V, 60)}, onal to allm € M; such a projection is unique (e.g.,
q Qe — Qa7 Luenberger, 1969, Section 3.3).
Phon = BB = Bt = pn- In light of the pretest—posttest problem, we again
S0 thatE{(peff(V)} — 0 and g is RAL with influ- takep = 1. Let6p be the true value of.
ence functionp® (V). Whereass® (V) = S (V, 60) — Geometric perspective on the parametric model.
lﬂnl,;}Sn(V, 6o) has variancelgg.,, B is consistent  Consider first the case whefe may be partitioned

and asymptotically normal with asymptotic variance as 0 = (8, "), n (r x 1). Let A be the linear
E{e®"(V)e®MT(V)} = 1/4psen, the well-known  subspace of# that consists of all linear combina-
Cramér—Rao lower bound, the smallesAt possible vari-tions of S,(V,6p) of the form BS,(V, 6p), that is,
ance for (regular) estimators f@r. Thus, 8 is the effi- A ={BS,(V,6p) for all (1 x r) B}, the linear sub-
cient estimator and, accordingl§£™(V) is often called ~ space of# spanned by, (V, 6p). WhereasA depends
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on the score for nuisance parameters, it is referred tomust satisfy properties 1 and 2, and, writipgV) =

as thenuisance tangent space. A fundamental result
in this case is that all influence functions for RAL es-
timators for 8 may be shown to lie in the subspace
A+ orthogonal toA. Although a proof of this is be-
yond our scope, it is straightforward to provide an

o*(V) + {p(V) — ¢*(V)} for some other influence
function ¢*(V), it is straightforward to use properties
1 and 2 to show thair (V) = {o(V) — ¢*(V)} e I't.
Thus, in general, by identifying any influence function
andI't, one may exploit Result A.1 to characterize all

example by demonstrating that the efficient influence influence functions.

function in (A.2) lies inAL. In particular, we must
show thatE{¢®™ (V)BS,(V,60)} = E[{Sg(V, 6o) —
L0418y (V. 00)}T BS,(V.00)1/4pgey = O for all B
(1 x r). By taking B successively to be &l x r)

vector with a 1 in one component and Os elsewhere,

Depending on the particular model and natures pf
one method for characterizing influence functions may
be more straightforward than another. When using Re-
sult A.1in models wheré = (8, n7)T, T" may be most
easily determined by finding. andT'g separately; for

this may be seen to be equivalent to showing that generalg(#), I' may often be identified directly.

E[{Sp(V,60) — 1/3;71,7,715;7(V, 90)}5,7T(V, to)] = O,
which follows immediately. Thus, one approach to
identifying influence functions for a particular model
with 0 = (8, n7)T is to characterize the form of ele-
ments inA+ directly.

Alternatively, other representations are possible.
For generalp(v, 0), the tangent space T is the lin-
ear subspace off spanned by the entire score vec-
tor Sy(V, 6p), where Sp(V,60) = 9/96 {logp(V, 6)},
that is,I" = {BSy(V, 6p) for all (1 x ¢) B}. We have
the following key result.

RESULT A.1. Representation of influence func-
tions. All influence functions for (RAL) estimators
for B may be represented agV) = ¢*(V) + ¥ (V),
whereg* (V) is any influence function angl(V) e T'+,
the subspace off orthogonal tal".

This may be shown for gener#(0); we demon-
strate whend = (8, n7)T. In this case, a defining
property of influence functiong(V) which is related
to regularity is that (1)E{@(V)Sg(V,6p)} =1 and
(2) E{p(V)S](V,60)} =0 (1 x r); the proof is out-

From Result A.1, we may also deduce a useful char-
acterization of the efficient influence functi@ﬁﬁ(V)
that satisfies E{p2(V)} — E{¢®T2(V)} > 0 for
all influence functions ¢(V). Whereas for
arbitrary o(V), (V) = (V) — (V) for ¢ e '+
and E{¢®2(V)} = |l¢ — ¥ || must be as small as pos-
sible, it must be thaiy = IT(¢|I'Y). Thus, we have the
following result.

RESULT A.2. Representation of the efficient in-
fluence function. The functiong®(V) may be repre-
sented ag (V) — I1(p| 1) (V) for any influence func-
tion (V).

In the cased = (B, nT)T, it is in fact possible to
identify explicitly the form of the efficient influence
function. Here, theefficient score is defined as the
residual of the score vector f@rafter projecting it onto
the nuisance tangent spacﬂ?ff(v, 0o) = Sg(V,00) —
I(Sg|A), and theefficient influence function is an ap-
propriately scaled version &€ given by ¢¢(v) =
[E{S¢2(V, 60)}1715€%(V, 6p). It is straightforward to
observe thapc(V) is an influence function by show-

side our scope here. Given this, we now show thating it satisfies properties 1 and 2 above. Specifically,
all influence functions can be represented as in Re-by constructionS®" € A, so property 2 holds. This

sult A.1. First, we demonstrate that ¢f(V) can be
written asep* (V) + v (V), wherep* (V) andy (V) sat-
isfy the conditions of Result A.1, thep(V) is an in-
fluence function. Letting’ g = {BSg(V, 6p) for all real

B} be the space spanned by the scorefoit may be
shown thatl' = A @ I['g. Thus, if ¢ € T4, Y(V) is
orthogonal to functions in botl\ and I'g, so that
E{y(V)Sp(V,60)} = 0 and E{w(V)S,,T(V, o)} =0
(1xr). Moreover, becausg*(V) is an influence func-
tion, it satisfies properties 1 and 2, whence it follows

thate(V) also satisfies properties 1 and 2 and, hence,

is itself an influence function. Conversely, we show that
if (V) is an influence function, it can be represented
as in Result A.1. Ifp(V) is an influence function, it

implies E{¢®"(V)T1(Ss|A)(V)} =0, so that
E{g®(V)Sp(V, 00))
= E{o®"(v)$®M(V, 60)) + E{e®T(V)I1(S51A) (V)
= E{S®™(V, 00} E{S*™(V, )} = 1,

demonstrating property 1. Thaf (V) has the small-

est variance among influence functions may be seen by
using the fact that all influence functions may be writ-
ten asp(V) = & (V) + ¢ (V) for somey (V) e I'L.
BecauseSg € I'g andI1(Sg|A) € A are both inl, it
follows that E{y (V)¢ (V)} = 0. Thus,E{¢2(V)} =
E[{e®" (V) + 4 (V))?] = E{p®T2(V)} + E{y2(V)}, s0

that any other influence functign(V) has variance at
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least as large as that of(V), and this smallest vari-  particular choice of submodel. That is, there exists a

ance is immediately seen to bgSET2(V, 6p). density identified by the parametégg within the pa-
Finally, we may relate this development to the famil- rameter space of the parametric submodel such that

iar maximum likelihood results whea = (8, n7)7. po(v) = p(v,&). In Appendix A.2 below, we give

By definition, T1(Sg|A) € A is the unique element an explicit example of parametric submodels in the

BoS, € A such that E[{Sg(V,00) — BoS,(V,60)} - pretest—posttest setting.

BS,(V,60)] =0 for all B (1 x r). As above, this is The importance of this concept is that an estimator

equivalent to requiring=[{Sg(V, 6o) — BoS,(V, 60)} - is an (RAL) estimator for3 under the semiparamet-

SF(V,60)1=0 (1 x r), implying Bo= g4, Thus,  ric model if it is an estimator under every parametric

M(SglA) = dppd tS,(V.6p) and $M(V.6p) = submodel. Thus, the class of estimators forfor

Sg(Vi, 6o) — 1/3”1;”1577(‘/[’90), as expected. the semiparametric model must be contained in the

For a parametric model, it is usually unnecessary to class of estimators for a parametric submodel and,
appeal to the foregoing geometric construction to iden- hence, any influence function for the semiparametric
tify the efficient estimator and influence functions. In model must be an influence function for a paramet-
contrast, in the more complex case of a semiparamet-ic submodel. Now, ifTs is the tangent space for a
ric model such results often may not be derived readily. given submodep (v, §) with score vectorSg (v, §) =
However, as we now discuss, the geometric perspectived/d& {log p(v, )}, by Result A.1 the corresponding
may be generalized to semiparametric models, provid-influence functions for estimators fgr must be rep-
ing a systematic framework for identifying influence resentable ag(V) = ¢*(V) + y(V), wherep*(V) is
functions. any influence function in the parametric submodel
and y(V) e Iz~ Thus, intuitively, definingl’ to be
the mean square closure of all parametric submodel
tangent spaces [i.el; = {h € # such that there ex-

Geometric per spective on the semiparametric model.
In its most general form, a semiparametric model for
dataV is characterized by the clag3 of all densities . : .
p{v, 8(-)} that depend on an infinite-dimensional para- ists a sequence of pgrametrlc.submod@@ with
meterd (.). Often, analogous to the familiar parametric 17(V) = B;Sg; (V. §0))II > 0 asj — oo}, where B;
cased(-) = {8, n(-)}, whereg is (p x 1) and () is are(1 x rj) constant matrlces], then it may be shown
an infinite-dimensional nuisance parameter, and inter-that Result A.1 holds for semiparametric model influ-
est focuses orf. For example, in the regression sit- €Nce functions. That is, all influence functiopsV)
uation in Section 1.28 specifies a parametric model for estimators forg in the semiparametric model may
for the conditional expectation of a response given P& represented ag*(V) + v (V), where ¢*(V) is
covariates, andy(-) represents all remaining aspects, a1 semiparametric model influence function a_nd
such as other features of the conditional distribution, ¥ (V) € I'". Moreover, Result A.2 also holds: as in
that are left unspecified. Alternatively, interest may fo- the parametric case, the efficient estimator with small-
cus on a functionaB{6(-)} of 8(:). This is the case est variance has influence functi@ﬁﬁ(V) and may
in the semiparametric pretest—posttest model, wherePe represented 3M(V) = (V) — T(p|TH)(V) for
6(-) represents all aspects of the distributionlof=  any semiparametric model influence functiptV). In
(X1, Y1, X2, Yo, Z) that are left unspecified andl is Appendix A.2 we use these results to deduce full-data

given in (1). influence functions for the semiparametric pretest—
The key to generalization of the results for paramet- posttest model.
ric models to this setting is the notion ofparamet- Although the pretest—posttest model may be han-

ric submodel. A parametric submodel is a parametric dled using the above development, it is worth not-
model contained in the semiparametric model that con-ing that a framework analogous to the parametric
tains the truth. In the most general case, with densi-case ensues whefi(-) = {8, 7(-)}, so that p(v) =

ties p{v, 6(-)} and functional of interes#{6(-)}, there plv, B, n()}, with true valuesBg, no(-) such that the

is a truedp(-) such thatpg(v) = p{v,6p(-)} € P is true density ispo(v) = p{v, Bo, no(-)} € £. Here,

the density that generates the data. A parametric suba parametric submodeps ¢ is the class of all densi-
model is the class of all densitig% characterized by a ties characterized bg and finite-dimensiona$ such
finite-dimensional parametérsuch that®: C & and that Pg ¢ C P, pl{v, Bo, no(-)} = p(v, Po, o) € Ppe.

the true densitypo(v) = p{v, 6o(-)} = p(v, &) € P, As a parametric model, a submodel has a correspond-
where the dimensiom of & varies according to the ing nuisance tangent space and, as above, because
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the only restriction on such densities of indepen-
dence of(X41, Y1) and Z, it follows that # has el-

tors for a parametric submodel, influence functions ements of the form, in obvious notatiop(v) =

for estimators forg for the semiparametric model

must lie in a space orthogonal to all submodel nui-

p(x1, yp) p(x2lx1, y1, 2) p(y2lx1, y1, x2, 2) p(z|x1, ¥1),
wherep(z|x1, y1) = 8°(1 — 8)17% ands is known. The

sance tangent spaces. Thus, defining the semiparametangent space is the mean square closure of the tan-

ric model nuisance tangent spateas the mean square

closure of all parametric submodel nuisance tangent

gent spaces of parametric submodels

p(x1, y1; 1) p(y2lx1, 1, 2: 62)

spaces, it may be shown that all influence functions (a 4)

for the semiparametric model lie int. Moreover,
the semiparametric model tangent spiice A @ I'g,
wherel'g is the space spanned By{V, Bo, no(-)} =
a/0B8 [logp{V, B, no(-,)}] evaluated app. The semi-
parametric model efficient scorgeff is Sg{V, Bo,
no(-)} — TI(Sg|A)(V) with efficient influence func-
tion oV, Bo, no()} = {E(S*M{V, o, no(-) 1P} -
STV, Bo, no()}. The variance o™, {E([SET{V, Bo,
no()}1%)}~1, achieves the so-callesmiparametric ef-
ficiency bound, that is, the supremum over all paramet-
ric submodels of the Cramér—Rao lower bounds&or

A.2. DERIVATION OF FULL-DATA
INFLUENCE FUNCTIONS

We apply the theory in Appendix A.l1 to iden-
tify the class of all influence functiong(V) for
estimators forg depending on the full dat&/ =
(X1, Y1, X2, Y2, Z) under the semiparametric pretest—
posttest model with no assumptions pw) beyond
independence afX4, Y1) andZ. By Result A.1, these
may be written asp(V) = ¢*(V) + ¥ (V), where
(V) e I't and ¢* is any influence function, so we
proceed by identifying @* and characterizing .

To identify a¢* under the semiparametric model,
consider the two-sample test estimatorBa, in (5).
Using ne/n 2 §¢(1 — 8)1¢, ¢ = 0,1, E(ZY2) =
E{ZE(Y2|Z)} = 8E(Y2]Z = 1) and similarly for
E{(1— Z)Y>}, B is clearly consistent under the min-
imal assumptions om(v), and from the ensuing ex-

pression fornY/2(By, — B), writing B = ;5 — u¥

and usingn./n LS 8¢(1 —8)1¢, it is straightforward
to derive the corresponding influence function

0 (V) =Z(Y2 — 1y?)/8

—1-2)(v2—u)/@-9),

where we write this as a function @1‘20) andu(zl) fol-

lowing the convention noted after (3).
To find I't, we consider the clas® of all den-
sities for our semiparametric model. Incorporating

(A.3)

- p(x2|x1, Y1, 2, 2; £3)8%(1 — §) 177,

say. Each of the first three components of (A.4) must
contain the truth. For example, fo(x2|x1, y1, y2, 2)

is the true conditional density ok, given (X1, Y1,
Y», Z), then, forhz such thatE {h3(X1, Y1, X2, Y2, Z)|
X1, Y1, Y2, Z} =0, a typical submodel for this compo-
nentis

p(x2|x1, y1, y2, 2; §3)
= po(x2|x1, ¥1, y2, 2)
{1+ &3h3(x1, y1, X2, y2, 2)},

whereé&s is sufficiently small so thap (x2|x1, y1, y2,
z; &3) is a density and the score with respecté&p
may be shown to bés(X1, Y1, Y2, Z), and similarly
for the first two components of (A.4). Evidently =
I'1 ® ', @ I's, where (e.g., Newey, 1990)
'y ={all h1(X1, Y1) € #} [s0 E{h1(X1, Y1)} =0],
Fo=[h2(X1,Y1,Y2,Z) € H

such thatE{h»(X1, Y1, Y2, Z)| X1, Y1, Z} = 0],
[3=1[h3(X1,Y1,X2,Y2, Z) e H#

such thatE{h3(X1, Y1, X2, Y2, Z)|

X1,1,Y2, Z}=0].

It is easy to verify thal"1, I'> andI'3 are all mutually
orthogonal; e.g., foho € 'y, h3 € '3,

E{ho(X1, Y1, Y2, Z)h3(X1, Y1, X2, Y2, Z)}
= E[h2(X1,Y1,Y2,Z)
- E{h3(X1, Y1, X2,Y2,Z)|X1, Y1, Y2, Z}] =0.

Thus, I'*t is the space orthogonal to all dfy, I'p
andTI's. It is straightforward to verify that the space
4 = [h4(X1, Y1, Z) € # such thatE{h4(X1, Y1, Z)|
X1,Y1} = 0] is orthogonal to all ofl"'1, I'> and I's.
Moreover, it may also be deduced that & I', ®
I's @ 'y is in fact the entire Hilbert spac# of mean-
zero functions ofV. Thus, it follows thatl'4 contains
all elements of#¢ orthogonal td", so thatl't = I'y.
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BecauseZ is binary, we may write any element for all (X1, Y1). For (A.6), then, we require
in 'L equivalently aZh® (X1, Y1)+ (11— Z2)h O (X1, @
Y1) for somer(© (X1, Y1), ¢ = 0, 1, with finite variance E H Z(Y2—p37)
such thatE{Zh® (X1, Y1) + (1 — 2)h O (X1, Y1)| X1, )
Y1} = 0. This impliesh® (X1, Y1) = —h©O (X1, Y1) -
(1 — 8)/8 for arbitraryh@ (X1, Y1), showing that ele-

+(Z — D (x, Yl)}
ments in["+ may be written agZ — §)h(X1, Y1) for

arbitraryh with var{h (X1, Y1)} < oco. Equivalently, we -(Z — 8)’X1, Yl} =0 as,
may write these elements agZ — §)h (X1, Y1), which
proves convenient in later arguments. and similarly for (A.7). Using independence X1,
Recalling thatu$” = uz + B and u = pup and Y1) andZ, we obtain
combining the foregoing results, we thus have that all ne© (x, . vy)
influence functions for RAL estimators fgr must be
of the form . AE2|X1, Y1, Z = ¢) — pui)
= (-1 T :
Z(Y2— 2 — P) 5(1=9)
s c=0,1
(A.5)  A-2DHT2—p2) (Z — §)h(Xy. Y1), For example, for: = 1 this follows from

1-56

var{h(X1, Y1)} < oo, E{Z(Z —8)(Y2— u§’)X1. Y1}

_ B e
which may also be expressed in the equivalent form — — E[Z(Z = HE{(Y2 =~ pu37)1X1. 11, Z}1X1. Y1 ]

givenin (3). = Q=) E{(Ya— nS") X1, Y1, Z = 1)
We may in fact identify the efficient influence func-

tion ¢¢ in class (A.5). By Result A.2 we may represent FP(Z=11X1, 1),

o®M(X1, Y1, Y2, Z) = ¢*(X1. Y1, Y2, Z) — TI(¢*|T'Y) whereP(Z = 1|X4, Y1) = §, and similarly

for any arbitrary influence functiop*, and, from

above, we know thafl(¢*|I't) must be of the form E{(Z - 8)%h*"D (X1, Y1)| X1, Y1}

—(Z - 8)h®M(X1, Y1) for somer®™. Projection is a lin- — 51— $)hD (X1, vp).

ear operation; hence, taking to be (A.3), the projec- ’

tion may be found as the difference of the projections Substituting inp* (X1, Y1, Y2, Z) — I (¢*|T 1), the ef-

of each term in (A.3) separately. Moreover, by defi- ficientinfluence function is

nition the residual for each term must be orthogonal Z(Yo — u2 — B)

to I'L. Thus, we wish to findi™© (X1, 1), ¢ =0, 1, [—

é
such that (Z = OEWal X, Y1, Z =1) — 2 — B)
E([Z(Yz—u(zl)) - 5 ]
) _[(1—2)(1’2—#2)
eff(1 1-6
A8 - ) (Z = HEVIX1, Y1, Z =0) — o)
+ L }
(2= (X1, D) =0,
A.3. REPRESENTATION OF OBSERVED-DATA
E([(l —Z)(Y2— M(zo)) INFLUENCE FUNCTIONS
1-9 Robins, Rotnitzky and Zhao (1994) derived the
(A7) =z - S)heff(O)(Xl’ Yl)}] form Qf observed-data_ influence functions in_ (12) by
adopting the geometric perspective on semiparamet-

ric models outlined in Appendix A.1l. In contrast to
(Z = 8)h(Xa, Yl)) =0 the full-data situation of Appendix A.2, the relevant
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Hilbert space#¢°Ps, say, in which observed-data influ- It is straightforward to show tha&; and B, are uncor-
ence functions are elements is now that of all mean-related, whence it follows that, @& (A — B1 — B2)?} =
zero, finite-variance random functions(0), with E{(A — B1)%} + E{(A — B2)%} — E(A?) under these
analogous inner product and norm, that is, such func-conditions, this minimization is equivalent to minimiz-
tions depending on the observed data. The key is toing the variances ofA — By and A — B, separately.
identify the appropriate linear subspaces#fs (e.g., BecauseB; and B, are uncorrelated, they define or-
°bsk say) to deduce a representation of the influencethogonal subspaces ¢#°0S, so that these minimiza-
functions, which in the general semiparametric model tions may be viewed as finding the separate projections
is a considerably more complex and delicate enterpriseof A onto these subspaces. Thus, as for the full-data
than for full-data problems. case in Section A.2, we wish to fird™® (x4, Y1) and

We noted in Section 2.2 that, for purposes of de- geff(lY(Xl, Y1, X2, Z) such that, for alh® andg(l)/,
riving estimators forg based on the observed data,

it suffices to identify observed-data influence func- E([ RZ(Yz—M(zl))

tions for estimators fo;uél) and u(zo) separately. We dm (X1, Y1, X2, Z)

now justify this claim. It is immediate from the defi- (Z—9)  eiw

nition (2) of an influence function that the differences - {Th (X1, Yl)”

of all observed-data influence functions for estimators

for ugl) andu(zo) are influence functions for observed- ) @h(l)(Xl, Y1)) =0,
data estimators fg8. Conversely, we may show that all 8
observed-data influence functions for estimatorsgor RZ (Y — (1))
can be written as the difference of observed-data in- ([ 2~ 12
o (X1, Y1, X2, 7Z)

fluence functions for estimators qu(zl) and M(zo). In

particular, ifo1(0) andgo(0) are any observed-data — ¢ (X1, ¥4, X2, Z)

. . . 1 0

|anuenc_e fluncr;uons for estlmatgrs qu%l) and /? ), . (R — (X1, Y1, X2, Z)}}
respectively, thep1(0) — ¢o(0) is an influence func- 57(X1. Y1, X2. Z)

tion for 8 by the above reasoning. By Result A.1 it fol-

lows that any observed-data influence function for an gD (X1, Y1, X2, Z)
estimator forg can be written ag1(0) — ¢o(0) + (R — (X1, Y1, X2, Z))
¥ (0), wherey (0) € 'Sk, We may rewrite this as S r (X Y1 Xa. 2) > =0

{01(0) + ¥ (0)} — po(0). However, by Result A.1
{¢1(0) + ¥ (0)} is an observed-data influence func- A conditioning argument as in Section A.2 using
tion for an estimator forS”, concluding the argument.  E(RIX1,Y1, X2, Y2, Z) = 7(X1, Y1, Xp,Z) under
MAR then leads to (14). In (14%¢™@" does not de-
A.4. DERIVATION OF THE EFFICIENT OBSERVED pend onx®™®, and #*MD is identical to the opti-
DATA INFLUENCE FUNCTION mal full-data choice in (4). These featurased not
. . i hold for general semiparametric models; in particular,
Robins, Rotnitzky and Zhao (1994) provide a gen- e choice ofp” (V) in (11) that yields the efficient
fsral mechamsr_n for deducing the form of the eff|C|en_t observed-data influence function witbt be the ef-
influence function. In the pretest—posttest problem this ¢ iant full-data influence function in general. Here,

aplproach ey be used to find the optimal choices for s js 5 consequence of the simple pretest—posttest
A andg®" in (13) given in (14). However, because gy cture.
this mechanism is very general, for a simple model as

in the_prete;t—po;ttest problem itis more dlrec'F and in- A.5. DEMONSTRATION OF (17)
structive to identify these choices via geometric argu-
ments, as we now demonstrate. The form of the influence function (17) whepn

We wish to determing®f® andg®f@’ such thatthe  in (16) is estimated follows from a general result shown
variance of (13) is minimized; that is, writing (13) as by Robins, Rotnitzky and Zhao (1994). In particular,
A — B1— By,asE(A — B1— By) =0, we wish to min- Robins, Rotnitzky and Zhao showed precisely that,
imize E{(A — B1 — B»)?}. Geometrically, this is equiv-  in our context, the influence function for the estima-
alent to finding the projection of onto the subspace tor for M(zl) found by deriving an estimator fqu(zl)
of J£°0S of (mean-zero) functions of the for®y + B>. from the influence function/ (X1, Y1, X2, R, RY>, Z)
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in (15) (assumingr D is known) and then substituting
an estimator fory, wherey is estimated efficiently
(e.g., by ML), is the residual from projection of
¥ (X1, Y1, X2, R, RY>, Z) onto the linear subspace
of #°PS spanned by the score for. To demon-
strate this, consider the special case of IWCC in
(10), that is, (15) withx® = ¢ = 0. Supposey
is estimated by ML from data witlx = 1 only. The
score fory is S, (X1, Y1, X2, Z; y0) =d(X1, Y1, X2) -
(R — 7MW (X4, Y1, X2: y0)}Z and the relevant linear
subspace of#°"S is {BS, (X1, Y1, X2, Z; yo) for all
(p x s) matricesB}. Here, b, 1) = 0 and the projec-
tion of ¥ onto this spacepBoS, (X1, Y1, X2, Z, yo0),
say, must satisfy

E“ RZ(Y2— ")

87D (X1, Y1, X2 y0)

- BOS]/(X].’ Y].a XZ, Z’ VO)}

. BS, (X1, Y1, X2, Z, Vo)] 0

for all B. By a conditioning argument similar to those
in Appendices A.2 and A.4, we may firRh and show
the projection is equal to the second term in the influ-
ence function

1
RZ(Y2— n5”)
st D (X1, Y1, X2)
—d" (X1, Y1. X2)A 3 by

(A.8)

{R—7MV (X1, Y1, X2)}Z
1)

and that (A.8) is (17) in this special case.

As noted in Section 3.5, for choices bfY andg®
other than the optimal ones, estimatipngeven if it is
known leads to a gain in efficiency. Geometrically this
is because (17) is the residual found from projection
of ¥ onto a linear subspace G£°0s,

A.6. DEMONSTRATION OF DOUBLE
ROBUSTNESS PROPERTY 2

We must show that the right-hand side of (18) con-
verges in probability te.s" if the truex @ is replaced
by an incorrect modefr*. Multiplying and dividing
each term by: and usingny/n — §, that the second
term converges in probability to zero is immediate by
the independence df and (X1, Y1). The first term
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converges in probability to

E{ RZY> }
dr*(X1, Y1, X2)
- E{
dm*(X1, Y1, X2)
ZrnD (X1, Y1, X2)
by a conditioning argument similar to those above.
Similarly, the third term converges to

Zr W (X1, Y1, X2) v }
_ E{
Sm* (X1, Y1, X2)

E(Y2|Xq, Y1, X, Z)}

E[Z{n“) (X1, Y1, X2) — 7% (X1, Y1, X2))
8*(X1, Y1, X2)

E(Y2|X1, Y1, X2, Z>}

using ZE(Y2|X1, Y1, X2, Z = 1) = ZE(Yo|X1, Y1,
X2, Z). Thus, their difference converges EF{E(ZY>|
X1, Y1, X2,2)}/6 = E{ZE(Y2|2)}/§ = E(Y2|Z = 1)
as in Section 3.2.
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Comment

Hyonggin An and Roderick Little

We congratulate the authors on a very useful arti- We have a PSM (Predictive Statistical Modeling) ma-
cle. The semiparametric approaches of Robins and co<chine that we like, which has a flexible set of options,
workers have attracted considerable attention amongsome of which we have figured out how to use, and oth-
theoretically-inclined statisticians, but it appears to us ers which have not attracted our attention sufficiently
that the difficulties of understanding exactly how to for us to try to master them. The Robins Company
implement the approach in real problems has deterredhas now developed a new spiffy SPDRWEE (Semi-
many practitioners from applying the methods. This Parametric Doubly Robust Weighted Estimating Equa-
application of the methods to a common issue in bio- tion) model, which beguiles us with offers of increased

statistical analysis is thus most welcome, and we arePoWer and flexibility. The only problem is that the in-
pleased to have the opportunity to comment. struction manual is even more complicated than the one

Our attitude to the methodology mirrors the situation for otur cur(rjetnr;t n;qdlel, Wdh'Ch }[Nﬁ have {ESI begun tg |
of a consumer at an electronics store who is trying to master, an € dials and switches on th€ new mode

keep apace with the advances in electronic wizardry. ?re located in different places. (_)ur question (particu-

ar from the author whose capacity to absorb new ideas
. has been regrettably tarnished by age) is whether the
Hyonggin An is Assistant Professor, Department  new modelis a major breakthrough, or whether we can
of Biostatistics, University of lowa, 200 Hawkins  continue to live with the current model.

Drive, lowa City, lowa 52242-1009, USA (e-mail: Our PSM machine’s approach to the pretest—posttest
hyonggin-an@uiowa.edu). Roderick Little is Richard  trial without missing data is to regress the outcome
D. Remington Collegiate Professor of Biostatistics, on the treatment dummy and baseline covariates that
Department of Biostatistics, University of Michi- are predictive of the outcome. Parametric modeling of

gan, 1420 Washington Heights, Ann Arbor, Michigan the baseline covariates should suffice, since the ran-
48109-2029, USA (e-mail: rlittle@umich.edu). domization ensures balance with the respect to these
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variables, so misspecification of the parametric model thors’ claim that this approach is not widely used by
may slightly reduce efficiency but will not lead to bias. practitioners surprises us, since our experience is that
In principle we believe that baseline variables should it is widely used in the pretest—posttest context. As with
be adjusted since they are causally prior to the treat-any model there are dangers of misspecification of the
ment; the question of whether to adjust for pretest val- form of the regression model, but mixed models allow
ues and/or their interactions with treatment dummies random effects to model the association between the
is a model selection issue. The authors state that “norepeated measures over time without adjusting them
general consensus has emerged regarding the preferreid the analysis. We do not pursue this approach in de-
approach,” but the methods covered in this commenttail here, since there are intermediate variables other
all fall under the general rubric of regression model- than CD4 that are not naturally modeled by a repeated-
ing, and there can be no “general consensus” any moremeasures approach.
than one can make general rules about which variables A parametric PSM approach to the problem is to
to include in any real-world regression. We see no needimpute the outcomes based on the baseline and inter-
to change our existing modeling philosophy to address mediate variables, and compute the regression of the
these variable selection issues, since they are not aneutcome on the treatment dummy and baseline co-
swered by the Robins et al. theory any more than in thevariates using the filled-in data. A general approach
PSM framework. is to apply multiple imputation (MI), with imputa-
We now turn to the problem of missing data in the tion uncertainty assessed by Rubin’s Ml combining
outcome variable. With no intervening variables, and rules; in this simple setting we simply imputed con-
assuming MAR, the incomplete cases carry no infor- ditional means and assessed uncertainty by bootstrap-
mation for the regression and can be discarded (seeping the whole procedure (e.g., Little and Rubin, 2002,
e.g., Little and Rubin, 2002, Section 2.3). The regres- Chapter 5). The imputation step can be achieved us-
sion modeling of the resulting complete cases needsing a normal model, or more flexible MI methods such
more attention to parametric assumptions, to the ex-as the sequential imputation algorithms in IVEWARE
tent that the balance from randomization has been(Raghunathan et al., 2001) or MICE (van Buuren and
disturbed, but the problem is still essentially one of Oudshoorn, 1999). This analysis takes advantage of an
regression, so we see nothing very new here. (Twoattractive feature of MIl, namely that the imputation
minor quibbles: the authors’ “pairedtest” method  model does not have to be the same as the analysis
is actually an unpaired test on the posttest—pretest model. Here the imputation model conditions on the
differences; and contrary to the authors’ statement,intermediate variables, but the final regression model
complete-case regression methods allow missingnessloes not.
to depend on the covariates included as predictors, and This approach relies on a correct specification of the
hence do not assume MCAR.) imputation model, particularly if there are a lot of miss-
With intervening variables, the incomplete cases po- ing data—the analysis model is protected by the bal-
tentially carry information about the missing outcomes, ance from the randomization. What to do if we want to
but including them as predictors in the regression avoid such parametric assumptions? With a single co-
model is inappropriate since they are post-treatmentvariate one might base imputations on a smooth non-
variables. To illustrate, we ran a regression of the out- parametric function of the covariate, such as a kernel
come on the complete cases that included the covari-regression model (e.g., Cheng, 1994). However, with
ates and intermediate variables (namely, wt, HIV, prior, multiple predictors nonparametric specification of the
Karn, CD§),, CD8&?2, CD4y, CD4y?, CD82), CD82)?, imputation model is subject to the so-called “curse of
CD42,, CD42y?, offtrt and treatment). This yielded dimensionality,” which inhibits the ability to fit spline-
a treatment effect for the data in question of 31.14 like regression models without assumptions of additiv-
(SE 7.93), which is quite a bit lower than other esti- ity, as are made in generalized additive models.
mates, and we expect is biased downwards by the in- We recently proposed a semiparametric approach
appropriate adjustment for the intermediate variables. that addresses the “curse of dimensionality” within the
The question, then, is how to include the information PSM framework, which we call propensity spline pre-
in the incomplete cases without adjusting for the inter- diction (Little and An, 2004). In this approach, the
mediate variables in the final regression. If the latter are propensity to be missing is modeled by a logistic re-
earlier measures of the outcome, such as intermediatgyression of the missing-data indicator on the baseline
CD4, then this can be achieved by a parametric linearand intermediate variables. The missing outcomes are
mixed model, fitted by maximum likelihood—the au- then imputed by a penalized spline on the estimated
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propensity (Eilers and Marx, 1996). Other predictors treatment effect of 52.76 (Bootstrap SE11.64),
are also regressed on penalized splines of the responsand the propensity spline prediction approach yields
propensity, and the residuals from these regressionsan estimated treatment effect of 52.37 (Bootstrap
are added parametrically to the imputation model. The SE=10.92). These estimates are not very different
key idea is that the relationship between the outcomefrom the IWCC method, which yields a treatment ef-
and the propensity to respond needs to be modeledect of 54.69 (SE=11.79), or the SPDRWEE method,
correctly to avoid bias, and hence an estimate of thewhich yields an estimate of 57.24 (SE10.20). The
propensity to respond is included nonparametrically question of which method is better cannot be answered
in the prediction model. The other variables can be by comparing results for a single data set, but our pre-
added parametrically to increase precision; since re-diction approaches are more comparable to the au-
spondents and nonrespondents are balanced with rethors’ methods than the ANCOVA and paireeest
spect to these variables conditional on the propensitymethods in the authors’ Table 1, since they make full
score, misspecification of the parametric form does notuse of the observed information and capitalize on the
result in bias. Little and An (2004) discuss a “double observed covariates.
robustness property” for this method, and claim that We suggest that the existing principles of regression
propensity spline prediction obviates the need for the modeling, made more robust by the propensity spline
“calibration” correction in the SPDRWEE approach.  prediction, provide good answers for the problem de-
In the application described, the PSM approach with scribed, without the need for a new “unified frame-
a parametric imputation model yields an estimated work” of inference.

Comment

Babette A. Brumback and Lyndia C. Brumback

1. INTRODUCTION sence of dependence on the conditional variance of the
posttest data. This prompts us to compare the SPEE
to shrinkage estimators (Lehmann and Casella, 1998)
that not only rely on conditional means of the posttest

rcllltata, but also make use of conditional variances. To

of us has seen such a concrete and accessible accou : : .
of the semiparametric efficiency results of Robins and gradually build a better.understa}ndlng of the SPEE, in
our Section 2 we restrict attention to data only on a

colleagues. The focus on the pretest—posttest problem :
with MAR posttest data coincides with a problem we pretest score, a continuous posttest score and treatment

have met several times in practice. In studying the fassignment. In Section 3 we consider data only on an

ideas presented, we have spent much time scrutinizindtntermec''ate t_est score,la (;ontl_nuozs pods_ttest scdo_re and
the semiparametric efficient estimator (SPEE) given by reatment assignment. In Section 4 we discuss dimen-

the authors’ equation (18) and paying special atten-Sion rgo_luction via_the probabili'ty of miss?ngness and
tion to its reductions under some commonplace sim- apply it in conjunction with a shrinkage estimator to re-

plifying restrictions. One of the most conspicuous fea- 2nalyze the ACTG 175 data. We conclude with a sum-

tures of the SPEE, under any circumstances, is an abMary of the questions we have raised and answered, as
well as some additional unanswered questions for the

authors.

We are grateful to the Editor, George Casella, for
the opportunity to discuss this elucidating paper by
Davidian, Tsiatis and Leon. It is the first time either

Babette A. Brumback is Associate Professor, Di-
vision of Biostatistics, Department of Health Ser-
vices Research, Management, and Policy, University
of Florida, Gainesville, Florida 32611, USA (e-mail: We first focus on the SPEE under the restriction that
bbrumback@phhp.ufl.edu). Lyndia C. Brumback is Re- the posttest dat&> are MAR conditional on pretest
search Assistant Professor, Department of Biostatis- data Y7 and treatment assignmeft, and that data
tics, University of Washington, Seattle, Washington on additional baseline covariatég and intermediate
98195-7232, USA (e-mail: lynb@u.washington.edu). variablesX» are irrelevant.

2. AUXILIARY DATA ON Y71 ONLY
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2.1 Connection with Lord’s Paradox confusion as to the exact form of the SPEE: in work-
ing with (1), it is unclear whether we should handle
the regression& (Y>|Y1, Z =1) and E(Y2|Y1, Z = 0)
separately or first reduce their subtractiogtand then
estimate in any way we wish.

Were one to discard data from participants miss-
ing Y>, the statistical model for the remainder would be
structurally identical to that for causal inference mod-
els with ignorable (Stone, 1993) treatment assignment
conditional onY;. Because the missingness mecha- 2.2 Comparison with Shrinkage Estimators
nism depends only o, andZ, and not on posttreat-  \ye next assume that no posttest data are missing and
ment variables, the complete-case data could just ashat y; can be dichotomized intd; = 0 or ¥y = 1
well have been generated by randomizing treatmentyyithout loss of information for estimating. Under
assignmeng within (possibly infinitesimal) strata de- these conditions, the SPEE mél) simply equals the

fined by Y;. The latter scenario was contemplated unweiahted mean df in the treatment aroup. that is
by Lord (1967), who identified a paradox that would g 2 group. ’

sometimes occur if, perchance, statistician A con- (1/n1) Y ZiYai.
trasted the distribution of the change scate— Y, i

acrossZ, whereas statistician B contrasted the condi- Similarly the SPEE fom(zo) equals the unweighted
tional distribution of the posttest score given the pretest mean ofY» in the control group.

score,Y>|Y1, acrossZ. Consider an idealized example  Although the SPEE is efficient in many circum-
iNnwhichE(Y, - Y1|Z=1) - E(Y>—-Y1|Z=0)=0 stances, it is not always. As we next demonstrate,
but E(Y2|Y1,Z = 1) — E(Y2]Y1,Z =0) = g > 0. some scenarios give way to a preference for estima-
In this case, statistician A would conclude no differ- tors that take into account the conditional variance
ence, while statistician B would conclude a positive of Y», for example, shrinkage estimators, which shrink
effect 8 of treatment. The paradox resolves when one imprecise cluster means toward precise cluster means
recognizes that1 not only confounds the effect & when the means are close relative to their variability.
onY», but also confounds the effect @fon the change  For simplicity and without loss of generality, we fo-
scoreY,> — Y1. Thus Lord’s paradox is really just an cus during the remainder of this subsection on esti-

instance of Simpson’s paradox, witi(Y2 — Y1|1Z = mation of ;.5”. Rather than using the SPEE, which
1) —EXY>—Y1]Z=0)=0but E(Yo — Y1|Y1,Z = assigns weightz; /n1, j =0,1,mo=)_; Z;(1 - Y1),
1)—EY,—Y1|Y1,Z=0)=8 > 0. m1 =Y, Z;Y1;, to each cluster mean, that is, to
The IWCC estimator would make use of essen-
tially the same data available to statisticians A and B, Yoo = (Z Zi(1— Yli)YZi)/mO
and would consistently estimatg. The IWCC es- i
timator relies on a correct model for eithé(R = and
1|Y1, Z) or P(Z = 1]Y1, R = 1), but does not need
to model E(Y»|Y1, Z). The SPEE, on the other hand, Yor= (Z Zi Y1 Y2,~>/m1
uses models foE (Y2|Y1, Z). Suppose these are cor- i

rectly modeled withE (Y2|Y1, Z = 1) = 81 + oYy and
E(Y2]Y1, Z = 0) = Bo + aY1, so that the true effect is
B = B1— Bo. Based on these models, the SPEE reduce

in the calculation ofu(zl), one might try instead

a weighted average of the two cluster means with
S\Neights proportional to their inverse variances. Prefer-

to ably, a compromise will be sought and determined by
Binitial + E[(Y2 — pr—aY)R/7D|Z =1] the distance between the two cluster means relative to
N ©) their variances.
— E[(Y2— o—aY)R/x™|Z=0]. Specifically, we propose the compromise estimator

The SPEE makes use of additional data from persons(CE) for Mél) which can be derived under the mixed
with missingY> in the computation ofinitiai, Which effects model

technically equals Yo = Xugl) +Uu+e,
(1) (/)Y (E(Y2lY1,Z=1) - E(Y2|Y1, Z=0)), with X the vector of ones (1), us” a fixed effect,
all i U a two-column matrix with first column contain-

where the sum is over all individuals, including those ing indicators(1 — Y1) and second column contain-
with missingY>. We observe with this example how the ing indicatorsY1, u a vector of two random effects
various modeling choices fat (Y»|Y1, Z) can lead to  independent of one another and ea®lio, rz/wj),
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TABLE 1

Comparison of CE and SPEE (of ,ugl)

) in terms of mean squared error (mq = mq = n1/2,08 = 02/2)

Yoo Y21 72 o2 ny CE SPEE M SEce M SEspee
0 0 0 1 1000 0 0 M00667 0.00075
0 001  25e—05 1 1000 (0034 0005 Q000669 0.00075
0 01 0.0025 1 1000 46 Q05 000073 0.00075
0 1 025 1 1000 ® 05 0.00075 0.00075

w; =m;/n1, j=0,1ande the vector of error terms,

Table 1). Because the univariate mean is admissible

assumed independent of one another and of the ran{Lehmann and Casella, 1998), there must be a region

dom effects, with distributionV (0, o—g> for observa-
tions withY7 = 0 and N (O, 012) for observations with
Y1=1.

Straightforward calculation shows that the CE

of M(Zl)

with weights proportional to
1
12/wo + 0/ mo
for clusterY; =0 and to
1
12/w1 + 0?/my

for clusterY; = 1. If the two cluster means are equal,
thent2 = 0 and the CE weights proportionally to the

inverse variance of each cluster mean. For example

when 002 = (712/2, mo =m1 =n1/2 andt2 =0, we
weight observations wittv, = 0 twice as much as
those withY1 = 1. However, when the cluster means
are far apartrz/wj is large relative th.Z/mj, and the
CE weights proportionally tav;, exactfy as the SPEE

would do. For situations in between, the CE compro-
mises between the two estimators based on the siz
of Tz/w]‘ (which measures the distance between the

two cluster means) and thejz/mj (the variance of
each cluster mean).

Why is the CE sometimes preferable to the SPEE?
It allows for a smaller mean squared error under some
circumstances, even when normality is not assumed
and a nearly equivalent mean squared error under other

circumstances. Continuing with our example, in which
mo = my = n1/2 andog = 02/2, whent2 = 0 the
mean squared error of the SPEE(IE4)012/n1, while
that of the CE is only(2/3)012/n1, and both estima-
tors are unbiased. Wher? > 0 the CE is biased in

for 72 in which the unconditional MSE of the SPEE is
less than that of the CE, but the table does not show
it. This is because we approximated the MSE by not
accounting for the estimation of. We leave as a con-

equals the weighted average of cluster meanslecture for future study that the CE is itself admissible.

Note that for Table 1 we estimated as the variance
of (Y20,/wo, Y21,/w1).

What is the relevance of this discussion for the gen-
eral case with missing posttest data? We again find
that the SPEE will tend toward an unweighted aver-

age of the weighted individual observatioﬁﬁ/nim,
whereas the CE will compromise based on the con-
ditional variance so as to reduce the mean squared
error when the conditional mean is constant. Which
estimator should we prefer in practice? This is a dif-
ficult question, mostly because in practice the condi-
tional variances as well as the conditional means must
be estimated, often leading to great uncertainty associ-

ated with either choice.

3. AUXILIARY DATA ON X, ONLY

In this section we shift focus to the case of posttest

é}lataYg MAR conditional on intermediate dafé, and

treatment assignme, with pretest dat&; and addi-
tional baseline covariates; irrelevant.

It is generally well known that conditioning on a
variable that is affected by treatment and then sub-
sequently affects the posttest can induce bias, typi-
cally by canceling out the indirect effect. However,
'if the missing data depend on an intermediate vari-
able, we can neither ignore it in the analysis nor treat
it identically as a pretreatment variable. How does
SPEE recognize an intermediate variable from a base-
line variable? The difference is encoded in the model-
ing assumption thaf 1I (Y1, X1) and the absence of
the assumption thaf 11 X». We also observe that,

small samples, but its mean squared error (MSE) is lessenters the estimating equation only in the case of miss-
than that of the unbiased SPEE, until the sample size ising posttest data; otherwise, the third term of the SPEE
large enough that the CE almost equals the SPEE (seequals zero.
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We note that ifY> = X5, the SPEE ofl;él) equals 4.2 An Alternative Methodology and its

(1/n1)Y; Zi X5 . If insteadY» = X2 + ¢, the estimator Application to ACTG 175
becomes We next combine the dimension reduction based
1 (¢i 1 on Q, the shrinkage methodology outlined in Sec-
- ZZiRim + - Y ZiXa. tion 2.2, and a generalization of (2) to reanalyze the
i ! i

ACTG 175 data.

Thus, if Yo; is observed, we upweight its residual, ef- _ BY the argument in Section 4.1, the MAR assump-
fectively making multiple copies, and we add one copy 10N allows us to est|matéf[Y2|Qt; Z :dl] u3|gg thed
to the correspondingz; and the others t5;, corre-  duantity E[¥2|Q, Z =1, R = 1] based on observe
sponding to missind;. Then we average. The overall data only. Thus, we find that we can estimate’ via
effectis to impute missing valué%; based orX; and (3) E[Y2|Z=1]=E|z=1E[Y2|Q.Z=1,R=1],
one of the observeg .

In general, we can make use of the MAR assumption
to unbiasedly estimat;egl) via the equation

similarly to (2). That is, we first regres on Q us-

ing complete case data in the treated group and then

we average the predictions based on this model using

(2) E[Y2|Z=1= Exyz1E[Y2|X2. Z=1, R =1]. the distribution ofQ on everyone in the treated group,
including those with missind». This gives us an un-

It is important to recognize that the outer expectation biased estimator of:y” that is easy to compute, but

is taken with respect to the conditional distribution of that is not necessarily efficient for two reasons. The

X5|Z = 1 rather thanX»|Z = 1, R = 1. The MAR as- first is that by reducing the data vi@ we lose the

sumption allows us to condition ok = 1 in the inner ~ @bility to use the rest ok, Y1, X for efficiency pur-

expectation, because is independent of» given X poses. The second is that using shnnkage estimators

and Z. We use the inner expectation to prediet  [0F E[Y2|0. Z =1, R = 1] orin the averaging of that

given X, and Z = 1 based on the observed data, and quantity with respect t@g|z—1 can lead to efficiency

then we average over these predictions based on th@ains, asin Sec_tlon 2.2. - .
distribution of X5|Z = 1 in the complete data set. In It is computationally more difficult but still theoret-

. " ically feasibl incr fficiency either in
this procedure we both condition oty and then un- :]ir)é tﬁjs b.:: t:ﬁe esi'rer)]zstf)r?o C(f) fgaf.; E EZ‘SU: J
condition onX>, but in a way that does not leave us ol : : fo™ IS, Dy Ing

back with the obviously flawed estimatéiY,|Z = 1, estimation on
R=1]. E[Y2|Z =1]

(4)
_E _LE[Y2|0.A.Z=1R=1
4. COMPARATIVE ANALYSIS OF ACTG 175 ©.aiz=1E112[Q ]

rather than on (3), or by using shrinkage ideas that

4.1 Dimension Reduction via the Probability compromise between averaging with respect to

of Missingness Q|Z =1 (to produce an unbiased estimator) and av-
eraging with respect to the inverse of V& Q,
Z =1,R = 1] (to produce an estimator that would
be efficient and unbiased £[Y2|Q,Z = 1, R = 1]
o . : did not depend onQ). One could also combine the
univariate dataQ = (X1, Y1, X2, Z) when imputing ., approaches, trading between an average based
the missing posttest scores. That is, rather than imput-, (0,A)|Z = 1 and one based on the inverse of
ing Y> with a high-dimensional model fdf (Y>| X1, Y1, Var(Ys|0, A, Z=1,R=1].
X2,Z) and Va(Yz|Xy, Y1, X2, Z), we can instead For expository purposes, we reanalyze the ACTG
impute based on a simpler model fdt(Y2|Q, Z) 175 data based o@ only (i.e., lettingA be empty).
and VaKY2|Q, Z). The proof is straightforward: that e first estimater (X1, Y1, X2, Z) exactly as did the
Y2 is MAR conditional on(X3, Y1, X2, Z) and that  authors, to obtainQ. We then focus on estimating
(X1, Y1, X2, Z) is a known function implies thak» E[Y2|Q, Z, R = 1] within each treatment group sep-
is MAR conditional onQ andA, for A any function of  arately. The scatterplots in Figure 1 sh&wversusQ
(X1,Y1, X2, Z). within each treatment group, and the rug plots detail

A consequence of assuming a known model for
(X1, Y1, X2, Z) is that for each participant, the mul-
tivariate data(Xy, Y1, X2, Z) can be reduced to the
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the distribution of Q|Z for all individuals (and not  matesuS"” at 3247. The estimate of is thus 483. We
just those withR = 1). Interestingly, for each treat- approximate the standard error as
ment group the scatterplot separates into two distinct

2 2 2 2
clusters. It turns out that the contribution of tbé- {238°x 0.4°4+9.8° x 0.6
treatment variable overwhelms that of the other vari- 2 2 2 211/2
. ) . : 1 ) ) ) =125
ables in the calculation a@. When we dichotomiz€ +1157x 0.35°+6.0° < 0657} S
into Q = 1 (originalQ > 0.6), Q is identical to one mi- To calculate the CE, instead of weighting by, for ex-

nusoff-treatment for all but five people. For ease of il-  ample, 04 and 06 in the Z = 0 group, we estimate?
lustration, we use the dichotomized version®@fThis and weight proportionally to /At2/0.4+ 23.8%) and
leads to the statistical summary in Table 2. 1/(1%/0.6+9.8%). We estimater? as 3126. Since
We first compute the estimator (3), which weights TZ/wJ. is so much larger thanjz/mj in each cluster,
each cluster mean according to the total number of ob-the CE is effectively identical to (3).
servations, as follows. Faf = 0, the 0 = 0 cluster Itis interesting to compare the CE, which equals 48.3
mean is weighted by 2)832=0.40 and theQ =1 wjth a standard error of 12.5, to the authors’ SPEE,
mean is weighted by.80. Thus (3) estimatesy’ at  which equals 57.24 with a standard error of 10.2, and
2418 x 0.4 4 2995 x 0.6 = 2764. For Z = 1, the the authors’ ANCOVA, which equals 64.54 with a stan-
Q = 0 cluster mean is weighted by 561607=0.35  dard error of 9.33. The ANCOVA estimator uses data

and theQ =1 mean is weighted by.65. This esti-  on complete cases only. Perhaps because these partic-
ipants tend to have® = 1, the ANCOVA estimator is
TABLE 2 close to the estimator obtained by incorrectly stratify-
Control Group  Treatment Group ingonQ =1, WhICh gives 362 — _299.5 = (_53.2. The
0=0 Q=1 Q=0 Q=1 CE seems to incorporate more information from the
0 = 0 group than does the SPEE. Perhaps if we were
Mean of¥; 2418 2935 2539 3627 to treat Q continuously, we would find an estimator
SE of mean oft» 238 9.8 115 6.0 .
Number nonmissing, 66 255 200 821 clos_gr to the SP_EE, or perhaps we ne_ed to incorporate
Total number 213 319 562 1045 additional covariates, rather than lettidgbe empty.

Because the variance &b seems to depend ary in
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the authors’ figure, it would be interesting to do further intent-to-treat parameter been chosen as the target of
analyses lettingd = Y1. This would raise many prac- inference? This is most likely for ease of illustration,
tical issues for calculating the CE; for instance, with but it would be of further interest to apply methods for
three clusters rather than two, should one shrink two noncompliance [e.g., as discussed by Robins (1994)]
of the three cluster means together if they are “close” to assess treatment efficacy rather than programmatic
relative to their variances, or would one only shrink in effectiveness.

the scenario that all three cluster means are close to one Second, how would the methodology of Robins and
another? With a continuous and/orQ, we move from colleagues unfold if the class of influence functions
a discrete number of clusters to the continuous settingwere narrowed to include only those withi(¢ (W)]

in which a finite basis must be selected. The practical V) = 0 for V some subset oV ? For example, in the

issues become even more complex. authors’ analysig/ could beY;. How would the ef-
ficient estimator for the class df (¢ (W)) = 0 relate
5. SUMMARY AND ADDITIONAL QUESTIONS to that for the class 0E(¢(W)|V) =07 Additionally,

were we to narrow the class of influence functions in

Our discussion has explored the SPEE under somehijs way, would the authors then recommend conduct-
commonplace simplifying restrictions. We have also jng conditional (onv) or unconditional inference?
compared the SPEE to shrinkage estimators based on Thjrd, we wonder about the practical issues associ-
a dimension reduction via the probability of missing- ated with model choice in computation of the SPEE.
ness. We briefly discussed the incorporation of other The authors comment in Section 5 that by basically us-
covariates via (4). This leaves as a question for future ing larger component models (in calculating the con-
research how to seleet to calculate efficient estima-  ditional expectations), one will obtain more efficient
tors, which might be considered parallel to the problem results. Why, mathematically, might this be so? Surely
of estimating the unknown conditional expectations there must be a breakdown of this phenomenon in prac-
during computation of the SPEE. Furthermore, there tical sample sizes. Related to this, could the SPEE
remain several practical issues alluded to at the end ofbe derived via our (4)? Equation (4) produces robust
Section 4 that involve shrinkage whéhand/orA are estimators: when) is misspecified but the equation
continuous. still holds, we achieve consistency. Also, could bas-

We conclude our discussion with three additional ing estimation on (4) lead to straightforward transfer
questions for the authors. First, given that many of the of model choice procedures designed for standard re-
participants in ACTG 175 go off treatment, why has an gression?

Comment

Geert Molenberghs

1. INTRODUCTION ceived to be complicated and lacking unification. Third
and equally related, the academic research community

dol i< oh ed by th L lated i is divided between two rather opposing schools: the
odology Is characterized by three main, interrelated IS- . qihgod-oriented school of Rubin and co-workers,

sues. First, biopharmaceutical and other practice stiIIOn the one hand, and the weighting-based school of

sticks to amazingly simplistic and generally incorrect Robins, Rotnitzky’ and co-workers, on the other hand.

methods. Second and related, more advanced methodg, -hanges between these two school can certainly be

ology, such as methods valid when data are miss-gntertaining, but when debates are too fierce and go on

ing at random and missing not at random, are per-for tog long, the winner is likely to be a third party. In
this case, the third party may well Ibast observation

Geert Molenberghsis Professor of Biostatistics, Center carried forward (LOCF), complete case analysis (CC)

for Statistics, Limburgs Universitair Centrum, Univer- and related simplistic methods.

sitaire Campus, B-3590 Diepenbeek, Belgium (e-mail: The tremendous merit of this paper is that it ad-

geert.molenberghs@luc.ac.be). dresses these problems in a very successful way, using

The existing research area of incomplete data meth-
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sound yet accessible methodology. The authors steer Of course, the developments do not have to be re-
clear of controversies merely rooted in principle and, stricted to the pretest—posttest study, not even in its
instead, present a unifying framework. The use of the broadest interpretation, since Robins’ theory holds
pretest—posttest setting, which in the authors’ conceptvery generally. However, by making this deliberate
of the term encompasses almost every longitudinal set-choice, a framework has been selected, which is wide
ting (and, as such, the term may sound more limited put helps to fix ideas and focus. This contribution will
than it is supposed to be), allows clear and understand-elp bring proper incomplete data methodology closer
able illustration of the concepts developed. The paperto the board room, even though experience dictates that
nicely illustrates how simple methods, such as two- it still may take a while before it is routinely embraced
sample, paired tests and analysis of covariance, can py, for example, the biopharmaceutical industry and
be correct but inefficient with complete data, butin ad- the regulatory authorities, and implemented in clinical
dition inconsistent when some data are missing. This, trials. However, a remark is necessary here. The drug
and motivation why more advanced weighting methods gevelopment process is costly in economic, time con-
are useful, is done by presenting Robins’ framework symption and ethical terms. It is therefore imperative
in a clear and accessible way, deferring more complextq |gok for the most optimal strategy ievery aspect
technical details to the Appendix. The Appendix in- of drug development. How then, could one advocate
cludes the intricate method of double robustness, onyhe yse of grossly simplistic and incorrect statistical
which an accessible and insightful perspective is of- methodology, in conjunction the most sophisticated

fered. The position of likelihood-based score equations 5 advanced biological, molecular, pharmacokinetic,
is described as well, pointing to the advantages of effi- pharmacological and clinical knowledge?

ciency as well as to the dangers that arise from an in-" 1,5 more than ever, it is necessary to incessantly
creased ITEIfslipeCOIIflgatlog ”Ski 't_Woglg Zaver:)een NICE reiterate that simplistic methods such as LOCF and
to see a likelinood-based analysis added to the one pré- - 516 15 he avoided (Mallinckrodt, Clark, Carroll

Semed by_ the authors, in_particulqr an analysis Qf theand Molenberghs, 2003; Molenberghs et al., 2004),
relationship between starting from "?f_'“‘?”ce fu_n_ctlo_ns, especially because less than adequate reports of the re-
?onr mi”%r;%ga:ﬁ%ﬁ;gtﬁgﬁu;ﬁbabmsm specification verse still abound in certain areas of the scientific liter-

' ' ature (Shao and Zhong, 2003). The usefulness of CC,
for example, is put to rest in Section 3.2 of the subject
article. Of course, a properly weighted version of CC is

The applicability of the results is wider than might consistent, but still inefficient. This would seem to be
be understood from a narrow interpretation of pretest—sufficient reason to forget about it altogether, and shift
posttest designs. In fact, most longitudinal settings areto consistent and optimal or, pragmatically, sufficiently
embraced by calling the last measurement of interestefficient methods.
the posttest measurement and considering intermittent
ones as auxiliary measurements, in line with the de- 3. REBUILDING OUR INTUITION
velopment in the paper. The work is also important to _
shed light on the longstanding and still confusing dis-  The authors establish very clearly that, under MAR,
cussion on how to deal with baseline measurements:the use of intermediate measurements, grouped in-
ignore them, treat them as covariates, treat them as out!0 X2, is important both for validating the MAR as-
comes, subtract them from the measurement of inter-sumptions and for increasing efficiency. While this is
est and hence provide absolute differences or use thenintuitively obvious to those familiar with missing data
to calculate relative differences instead. The strong ad-work, it generally is not true, due to the fact that re-
vantage of the authors’ developments is that their opin- Sults for situations with complete data are different.
ion is rooted, not in subjective judgment, school of This is one of those instances where results under com-
thought, preference or custom, but rather in the objec-plete (balanced) data differ from their incomplete data
tive results derived from optimality theory. It hopefully counterparts. For example, the basic result for a multi-
will slow down the stream of publications that tackle variate normal sample that the mean and variance es-
this issue in an ad hoc, situation-based and subjectivetimators have independent sampling distributions does
fashion. Indeed, one is sometimes under the impres-not hold under incomplete data, except under missing
sion that each team that designs a clinical study feelscompletely at random (MCAR). Itillustrates that MAR
obliged to reinvent the wheel regarding this issue. and MCAR results do differ in important ways, even

2. THE PRETEST-POSTTEST STUDY
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though one would be inclined, especially in a likeli- Treatment of test'maITAfBLZé-:i:S ek CD4 counts

. . reatmen €eCl | estor W counts ror
hood Cont?Xt_’ to consider the split between MAR and ACTG 175, based on a longitudinal analysis of the CD4 profiles
MNAR (missing not at random) as the really impor-
tant one. The dependence between mean and variancgata Basdine CD4 Estimate SE
estimators is related to the fact thatY»| X1, Y1, Z =

c) — u(zc) provides an intuitively appealing correction cc ngiijtuesdtecj :lo 5795 1151 'gg
to the estimating equations and, hence, in particular to sy profiles Unadjusted 59.18 9.98
the likelihood equations. It can be seen as an “expectedail profiles Adjusted 61.14 8.71

residual” in terms of information obtained on a sub- N - s moludes efher T - | avail

. . . iy e OTE. € analysis Includes eitner the completers only or all avall-
Ject prior to the final measuremeri. As a result, itis able subjects. The treatment effect is based on the difference at
Clear that expected means and OPSGrVed means need . 5 weeks, adjusted either for covariates or for covariates with,
be different at the posttest occasion when not all mea-in addition, the baseline CD4 measurement.

surements are obtained.

complete. The CD4 profile, made up of the three avail-
4. LIKELIHOOD ANALYSIS OF CASE STUDY able CD4 measurements (baseliner8veeks, 965

Maximum likelihood is given its proper place as Weeks), is modeled in terms of treatment, CD8 and
a standard approach under MAR, which neverthelessthe same baseline covariates as in Section 1.1. The ef-
suffers from the risk of misspecification, since more fect of the baseline covariates is allowed to differ with
model elements need to be specified. However, in manymeasurement Qccasion. Pra_ctically, a trivariate normal
settings it is sufficient to specify the joint distribution Model—a special case of a linear mixed-effects model
of (Y1, Y2|X1, X2, Z) or of (Y1, X2, Y2| X1, Z), rather (Ve.rbeke and I\_/Iolenberghs, 2000) with unstructured
than of V = (X1, Y1, X2, Y2, Z) in full. Such a speci-  Variance—covariance matrix—is assumed.
fication may not be unreasonably difficult in practice, Based on this model, the treatment effect at week
and mild departures from MAR are likely not to distort 96+5 can be considered directly (termed Unadjusted
the inferences terribly much. While this may sound a In Table 1, i.e., only covariate adjusted) or after fur-
bit pragmatic, the same is true when it comes to prac- ther conditioning the final CD4 measurement on b4
tical implementation of the methods laid out in the Which is very easy using standard multivariate normal
article; see, for example, Section 5 on practical im- results. This analys_ls is termed Adjus_ted in _Table 1,
plementation, where a pragmatic view is offered, in and the corresponding standard error is obtalneo_l from
line with standard modeler practice. Thus, arguably the the delta method. Note that the estimate of the adjusted
likelihood approach could be added to the tool kit for analysis, using all proflle_s, is relatively small compared
the analysis of pretest—posttest designs, together witHo all other analyses, which is to be expected. The stgn—
the methodology advocated by the authors. In fact, dard errors from the complete case analyses are hlgrj,
when considered jointly, a reasonable route to sensi-2 concern that augments concern about the method's
tivity analysis unfolds. The choice between methods 'Nconsistency.
is driven by a judgment between sensitivity and effi-
ciency, which can vary from problem to problem. Such 5. CONCLUDING REMARKS
a pragmatic attitude is more fruitful than sticking, atall ~ Thus, to conclude, the paper convincingly restates
cost and based on principle, to a single mode of analy-that we should forget about the CCtest and other
sis. This debate is reminiscent of the Bayesian versuspopular methods, shows that IWCC is consistent but
frequentist argument, where a comparable shift from ainefficient and that the newly proposed method per-
dogmatic to a pragmatic standpoint has been observedforms best. Using the expectation 8§ given other
It is therefore nice that the theory laid out here encom- information, in the proper way indicated in the paper,
passes both fully parametric and semiparametric mod-increases efficiency. In this regard, double robustness
els, as detailed in Section 2.2. does not need to be seen as something magic or ex-

To supplement the analyses in Table 1 of the manu-travagant, but rather as a carefully picked set of es-
script, our Table 1 presents the results of four likeli- timating equations that leads to increased efficiency
hood-based longitudinal analyses. For comparison’sand a decreased risk for an inconsistent result. The au-
sake, a completers-only analysis complements thethors rightfully refer to this as “estimators for practical
analyses by including all profiles, complete and in- use with good properties.” In addition, a full likelihood
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analysis is possible, but one has to be aware of the mis-n a likelihood context, need to be specified sufficiently
specification risk. In fact, all “good” methods are based correctly.

on using information from baseline measurements and Through their methodological developments, but in
covariates, from intermediate covariates as well as in- particular also through the illustration with ACTG 175,
termediate measurement occasions. The (regressionthe authors have shown that correct methods, while
models that capture such information, either to formu- not completely trivial, are more than feasible in prac-
late weights, or in a longitudinal or multivariate model tice.

Comment

Joseph L. Schafer and Joseph D. Y. Kang

We would like to thank the authors for a well writ- model the relationships between the auxiliary vari-
ten and thoughtful article. They have given us a clear ables and the response propensities. Parametric ap-
explanation of the theory of Robins, Rotnitzky and proaches based on maximizing the incomplete-data
Zhao, especially with regard to considerations of effi- log-likelihood (Little and Rubin, 2002) or multiple im-
ciency and double robustness. We also appreciate theiputation (Rubin, 1987) explicitly model the relation-
willingness to share their data, which has allowed us ships betweeX andY». The new method presented in
to evaluate the performance of their new method andthis article models both sets of relationships, but then
compare it to some parametric alternatives. allows one of these two models to be wrong through

The crux of the problem is as follows. The parameter the interesting feature of double robustness. The new
of interest,B, is an aspect of the conditional distribu- method is similar in flavor to classical model-assisted
tion of Y2 given Z and Y1, but missingness for, is procedures for sample surveys, such as ratio and re-
related not only ta(Z, Y1) but also toX = (X1, X>2). gression estimation; those procedures are most effi-
Simple procedures like thetest and ANCOVA may  cient when the underlying model is approximately true
be biased because they fail to account for the depen-but retain their unbiasedness regardless.
dence ofR on X. Even if the X variables were not While examining these data, we found that the ap-
related toR, we would still want to make use of them parent bias in the-test and ANCOVA estimators is
to improve efficiency because of their ability to pre- due largely to one variable: off-treatment status. Sub-
dict the missing values of>. Variables that are not  jects who went off treatment were six times more likely
really of interest except for the fact that they are poten- on the odds scale to have missing values ¥githan
tially correlated with missingness and/or missing out- those who did not. In the control group, the average
comes have sometimes been called auxiliary variablesCD4 count at 985 weeks for those who went off
(Collins, Schafer and Kam, 2001; Allison, 2002). treatment was 64 points lower than for those who re-

How can we use the auxiliary variables? One way mained on treatment. In the treament group, the corre-
is simply to condition on them in the analysis. Un- sponding difference was 110. We are not entirely sure
der MAR, good estimates of the distribution 8  what the off-treatment status variable means, but it ap-
given Y1, Z and X are available from the complete pears to measure the subjects’ compliance with the as-
cases. For a randomized study, however, condition-signed regimen. Thus we need to emphasize that the
ing on the postrandomization outcomks hinders us  paramete measures the causal effect of intention to
from making causal inferences about the effect of the treat (ITT), not the effect of the treatment actually re-
treatment. Simple weighting methods such as IWCC ceived. This study provides an excellent example of
- how dropout is often strongly related to noncompliance
Joseph L. Schafer is Associate Professor and and how neglecting to account for that relationship can
Joseph D. Y. Kang is Research Assistant, Department bias the usual ITT estimators (Frangakis and Rubin,

of Statistics and The Methodology Center, Pennsyl- 1999). At the same time, it suggests that some alterna-
vania Sate University, University Park, Pennsylva- tives to the ITT effect are worth investigating.
nia 16802, USA (e-mail: jls@stat.psu.edu, dyk109@ The authors’ new method is a big improvement over

psu.edu). IWCC, which can never perform very well because it
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makes use of{ only through its association witRR, models to the treatment and control groups with effects
ignoring the direct relationships betwe&nandY,. In for weight, HIV symptoms, prior antiretroviral ther-
fact, the inefficiency of IWCC worsens as the potential apy, Karnofsky score, off-treatment status, and linear
for bias grows. As the correlation betwe&nand R and quadratic effects for CD4 and CD8 at baseline and
becomes stronger, IWCC assigns greater weight to20+5 weeks. We generated ten imputations, computed
the shrinking pool of respondents who3e values the r-test and ANCOVA estimators for each imputed
most closely resemble those of the nonrespondentsdata set, and combined the results by Rubin’s (1987)
The IWCC can remove nonresponse bias related,to  well-known method for scalar estimands. Estimates
but in terms of efficiency it tends to break down when from ther test and ANCOVA were 57.86 and 57.22,
bias corrections are needed most. respectively, with standard errors of 9.48 and 9.62—
One issue that we will address is how the new nearly identical to those from the new method.
method compares to parametric alternatives. A para- We also ran simulations to see how the methods per-
metric approach does not need to model the full joint form over repeated sampling from an artificial popula-
distribution of (X1, Y1, X2, Y2, Z). With multiple im- tion that mimics the observed data but does not corre-
putation (MI), we only need to build a reasonable spond exactly to our imputation model or the models
model for Y2 given X1, Y1, X2 and Z. The compu-  used by the authors to compute th&s andé,’s. We
tations for Ml are simple. Suppose, for example, that created samples in the following way. First, we boot-
we are willing to assume for imputation purposes that strapped(X1, Y1), drawing these variables from their
Yoi ~ N(Ul'n, &), whereU; is a vector of covariates  joint empirical distribution. Next, we sef = 1 with
derived fromXy;, Y1;, X2 and Z;. First, we would  probability 0.75 for each subject, aiid= 0 otherwise.
compute the least-squares estimabmsed onthe com-  Then we generate@X», Y», R) given (X1, Y1, Z) from

plete cases. Next, we would draw a sequence of regressions with coefficients chosen to
closely resemble estimates from the original sample.

£ = (Z Ri (Yo — U,-Tﬁ)2>/v, Details of these regressions are shown in our Table 1.

i Note in particular the large effects of off-treatment sta-

tus onY> andR. By repeated simulation of very large
samples { = 10°), we found that the actual treatment
effect in this population ig ~ 53.7.

For the simulation, we drew 1000 samples of size

-1 n = 2139, and computed estimates and standard er-
) rors by the paired test, ANCOVA, IWCC, the new

method and MI. We were not exactly sure how the au-

Finally, draw Y3 ~ N(UIn* &*) for all cases that thors computed the standard error for IWCC; we could
haveR; = 0. Repeating the procedure a small number not reproduce their value from the original data, so we
of times (e.g., ten) produces answers that are reasondecided to omit it. For MI, we imputed the missing val-
ably efficient. In practice, the regressorslin need to ues ten times and analyzed the imputed data sets by the
be chosen thoughtfully based on analysis of the com-paired: test and ANCOVA. The results from these two
plete cases. The assumption of normality is less cru-methods were nearly identical, so we report only those
cial, because post-imputation analyses like titest ~ from ANCOVA.
or ANCOVA are not highly sensitive to distributional Results from this simulation are summarized in our
shape and because this assumption affects only the imTable 2. Not surprisingly, the simple pairedtest
puted values of> rather than the entire sample. Many and ANCOVA estimators are substantially biased.
alternatives to normality are available, such as apply- The IWCC, the new method and the MI have no dis-
ing a transformation t&,;, bootstrap resampling of the  cernible bias even though the underlying models are
empirical residualgYy; — UiTn*) in the final step ofthe  slightly misspecified. The new method has greater ef-
imputation or switching to a generalized linear model. ficiency [lower root mean squared error (RMSE)] than

Using the authors’ data, we imputed the missing IWCC. The MI estimator is slightly less efficient than
values of Y2 under a normal regression model even the new method, with about 1.5% greater RMSE, but
though this variable is clearly nonnormal. We used its efficiency can be improved by increasing the num-
the same mean structure that the authors assumed fober of imputations. Nominal 95% confidence intervals,
E(Y>|X1,Y1, X5, Z). That is, we fit separate linear computed as the estimate plus or minus 1.96 standard

whereV denotes a random? variate with degrees of
freedom)_; R; — dim(U;); next, drawn* from a nor-
mal distribution centered dtwith covariance

£* (Z RU;UT

1
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TABLE 1
Population model used in simulations

X1, Y1:
(wt, HIV, Karn, prior, CD4g, CD8j) ~ empirical distribution
Z|X1,Y1:
Z ~ Bernoulli(0.75)
X2,Y2,R|X1,Y1,Z=0:
+/CD4yq ~ Normal with mean & — 1.2 prior+ 0.80,/CD4; — 0.233/CD8§, variance= 7.3
JCDB8,q~ Normal with mean B9+ 0.19 prior— 0.18,/CD4g + 0.81¥CD8& + 0.186,/CD4,, variance= 0.63
log( P (offtrt = 1)/ P (offtrt = 0)) = 6.9 — 0.56prior— 0.043Karn— 0.07.3/CD8&, + 0.09.¥/CD8,q — 0.03,/CD4y — 0.136,/CD4yq
+/CD4gg ~ Normal with mean G43,/CD4y — 0.30¥/CD&; + 0.75,/CD4,q — 0.30/CDg; — 1.3offtrt, variance= 16.6
log(P(R = 1)/ P(R = 0)) = 1.4 — 2.20fftrt
X0, Y2, R|1X1,Y1,Z=1:
/CD4,q ~ Normal with mean & — 0.48HIV — 1.1prior+ 0.034Karn+ 0.65,/CD4y — 0.16Y/CD8&, variance= 8.9
J/CD8g ~ Normal with mean 79+ 0.003wt+ 0.14HIV + 0.15prior— 0.15,/CD4g + 0.753/CD& + 0.15,/CD4,(, variance= 0.66
log( P (offtrt = 1)/ P (offtrt = 0)) = 4.6 — 0.33prior— 0.027Karn— 0.19¥CD& + 0.193CD8q + 0.01,/CD4, — 0.136,/CD4yq
/CDd4gg ~ Normal with mean-6.4 + 0.02wt+ 0.06Karn+ 0.25,/CD4 + 0.253/CD&; + 0.82,/CD4,q — 0.603/CD8&

— 2.50fftrt, variance= 12.7
log(P(R=1)/P(R=0)) = —1.0+ 0.4HIV + 0.03Karn+ 0.08¥CD&, — 0.10¥CD8g — 0.05,/CD4g + 0.02,/CD4,q — 1.90fftrt

errors, have actual coverage close to 95% for both the In some respects, this example is different from those
new method and MI. On average, the Ml intervals are we have typically seen in the social and behavioral sci-
a bit wider than the new method’s, due again to the fact ences, because the treatment effect is large and highly
that we are using only ten imputations. significant regardless of what we do. The signal-to-
The next question we considered is how the new noise ratio is so large that the biases in the naive meth-
method and MI respond to greater degrees of modelods that do not use the auxiliary variablesést and
misspecification. For the new method we removed ANCOVA) amount to a standard error or more. In our
the important off-treatment (offtrt) status variable first experience it is a bit unusual to find auxiliary variables
from the computation of thé’s, then from the¢,’s,  that are correlated with the missingness indicadp
then from both. For Ml we removed this variable from the degree exhibited in these data by the variable offtrt.
the imputation model. The performance of the modi- Eyen if such variables are present, we have found that
fied procedures is summarized in our Table 3. When they ysually do not interact with the covariates of in-
offtrt is removed from the_n model or th_eeq model terest (in this caseZ and Y1) and the responser)
glone, the new method still performs quite well, show—_ strongly enough to seriously degrade the performance
ing that the double robustness property works as it ot intervals and tests, except in situations with unusu-
should. When offtrt is removed from both, the new v jargen and very high power. In situations with less

method is biased, and MI without offtrt is biased 10 5er “the real advantage in using auxiliary variables
about the same degree. These biases are enough to drcf)

B not to reduce bias, but to increase efficiency. For ex-
the simulated coverage of the intervals to about 90%, ' y
which corresponds to a doubling of the Type 1 error

rate in a 0.05-level test. TABLE 3

Results from samples of size n = 2139with the off-treatment status
variable removed from missing-data procedures

TABLE 2
Results from samples of size n = 2139for average estimate (true
B~ 53.7), root mean squared error, percent coverage of nominal New* New! New*T mit
95%interval and average interval width Avg 539 538 58.6 59 2
RMSE 10.2 10.2 10.8 11.3
ttest  ANCOVA  IWCC  New Ml Coverage 91.9 93.9 89.9 90.4
Avg 62.9 61.5 53.7 538 539 Width 71.4 76.7 74.0 78.0
RMSE 13.9 12.9 11.5 10.2 10.4 ] ] + )
Coverage 83.4 87.3 _ 93.0 95.8 NOTE. New* removes it from computation _@Ef’s; New removes it
Width 79.1 80.3 _ 75.2 gag from computation 0B,’s; New*" removes it from computation of

both7’s andé;’s; and MiT removes it from the imputation model.
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ample, when subjects drop out of a longitudinal study, TABLE4

. . . Results from samples of size n = 400
intermediate measurements can be quite valuable for

predicting missing endpoints even if the dropout is ttex ANCOVA IWCC  New MI

completely at random.

: o .. Avg 616 60.2 52.5 525 526

To see how the methods perform in a s!tuatlon with pyvse 249 245 9.8 268 254
more noise, we repeated our simulation with a reducedcoverage 03 038 _ 907 968
sample size oft = 400; this leaves us with an average Width 183 186 — 180 218

of 100 subjects in the control group and 300 in the com-
bined treatment groups at baseline. Under these condi-I | q . ‘ I with
tions the power of an ordinary 0.05-level pairetest ~ 'arge-sample proceaure, It can work very well wi

with no dropout is about 85%, which seems plausible moderate or smal (e.g., Graham and Schafer, 1399).

) . . . In summary, this new method requires a plausi-
for a randomized trial. The results from this new simu- . -
. . . ) ble model for either the response propensities or the
lation are summarized in our Table 4. The paireatid

. X ) X — Yo relationships, and it will be most efficient when
ANCOVA estimators are just as biased as they Were e |atter js approximately true. Multiple imputation

with n» = 2139 in absolute terms, but these biases arepeeds a plausible model for the— ¥, relationships

now less consequential because the standard errors arg haye low bias and high efficiency. Either way, mod-
Iarger. The new method still has essentially no bias, bUte]ing 0fE(Y2|X1’ Y1, X5, R) is a good idea and should

it is less efficient than the “naive” methods and its cov- not be done haphazardly. The new method requires us
erage has begun to suffer. In this situation the expectedo fit three sets of regressions, whereas Ml requires one
number of respondents in the control and treatmentset of regressions plus simulation of random variates.
groups is about 60 and 185, respectively. One might The new method also requires the samples to be rather
think that samples of this size are large enough for alarge. Under the right conditions the new method per-
robust comparison of two means, but the asymptotic forms beautifully and we can wholeheartedly recom-
approximations of the new method seem to require mend it.
samples larger than those to which we are ordinarily
accustomed. With samples of= 400, the Ml method

still works well. This is consistent with what we have  This research was supported by Grant 1-P50-
found in other simulations—although technically a DA10075 from the National Institute on Drug Abuse.
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INTRODUCTION RESPONSE TO AN AND LITTLE

We thank all of the discussants for their thoughtful ~An and Little take the position that one may appeal
and insightful comments. We very much enjoyed read- {0 €xisting principles of regression modeling (PSM)

ing all of the discussions and we have learned a great2S the basis for methods for pretest-posttest analysis,
deal more about the interrelationships among differ- with or without data MAR. We do not disagree that

: . methods based on regression modeling are a useful ap-
ent perspectives on missing data problems from them.

While all di . touch i proach to these and more general problems. However,
Ihe a |s|cu55|_ons ouc o;ﬁsome common tNeMes, o pelieve that the distinction between the methods
each one also raises some different, Important ISSU€Sy 5 emerge from application of the semiparametric

Accordingly, we respond to the discussants’ commentSihegry of Robins, Rotnitzky and Zhao (1994, RRZ)
in turn, focusing mostly on several of these issues. Theand PSM methods is less profound than the debates in
relative length and extent of our responses to each disthe literature, which tend to feature “schools” (in the
cussion by no means reflect the relative importance ofwords of Molenberghs) that advocate one approach or
the comments. another and imply a sort of mutual exclusivity of the
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methods, would suggest. Our perspective is that ap-and propose to estimaje via the LS estimator fog
pealing to the semiparametric theory can in fact high- in (2). Suppose in truth
light and clarify formally the interrelationships among
methods. Indeed, the semiparametric theory character-(s)
izes the class of all consistent (RAL) estimatorsfor  which implies thatg = E(Y2|Z = 1) — E(Y|Z =
including the efficient one within this class. Accord- ) = + xp, wherep = P(Y1 =1|Z) = P(Y, = 1) by
ingly, we expect that many standard “nice” estimators randomization. Suppose further thAtR = 1|Y1, Ya,
may be represented as members of this class. Thus, wery — p(Rr = 1|y;) (the MAR assumption, with miss-
believe it is fruitful and instructive to view all methods ingness dependent on nondiﬁerentia”y by treatment
from the perspective of this theory, a theme we high- group) and thaP (R = 1|Y1 = y) = my,y=0,1.Then
light throughout. it is straightforward to show that the LS estimator for

An and Little have very nicely summarized in the jn (2) based on the complete cases only converges in

case where there are no intervening covariatga/hat  probability under the true relationship (3) not to the
can be expected via a PSM approach both with andquantity of interest =y + «p, but to

without missing data. As they point out, under ran-

domization methods for estimation gf= E(Y2|Z = v+ K{ P }

1) — E(Y2|Z = 0) based on least squares (LS) fitting mo(1—p) +m1p

of a (parametric) regression model #6(Y2| X1, Y1, Z) That is, the LS estimator based on the incorrect

will yield consistent inference even if the model is in- model (2) estimates a quantity that differs from that of

correct. Although this can be deduced from consider- jnterest by an amount that has to do with the difference

ing the regression model directly, it also can be seenpetween the population proportign= P (Y1 = 1) and

to follow from the semiparametric theory of influence (p71)/{mo(1— p) + 710} = P(Y1 = 1|R = 1), the pro-

functions. For example, if we assume portion among complete cases. Thus, this estimator
fails to incorporate required information dry from

(1) E(2lX1, 11, 2) =0+ a1+ X1+ BZ, the entire population, leading to inconsistency. This ex-

the usual ANCOVA approach supplemented by adjust- ample highlights that a potential price of a pure PSM

ment for additional baseline covariates, the LS esti- approach is inconsistent inference. From the view of

mator for 8 in (1) may be shown to have influence the semiparametric theory, as such an estimator is in-

function in the class given in (3) of our paper and, consistent, it is not a member of the class of all (con-

E(Yo|Y1,Z)=ag+a1Y1+vZ +«kZY1,

hence, is consistent fof = E(Y2|Z = 1) — E(Y>| sistent) RAL estimators; hence it would not emerge as
Z = 0) even if (1) does not correspond to the true re- a candidate for inference gh
gression relationship. As An and Little discuss clearly, when missing-

When Y, is MAR and there are no intervening Ness depends on intervening covariates, it is neces-
covariatesX,, An and Little remind us that the in- sary to incorporate the information on them from the
complete cases do not contain information on the re-incomplete cases, but it is not appropriate to sim-
gressionE (Y| X1, Y1, Z), so if our interest is on the ply include these covariates in a regression model
regression relationship only, we may base inference onfor the outcome. They note that the general paramet-
the complete cases. However, the quantity of interest,fic PSM approach may be implemented by obtaining
B = E(Y2|Z = 1) — E(Y»|Z = 0), which may be de- imputed/predicted missing responsgg;); based on
rived from this regression, also depends on the distrib-a model forE(Y2| X1, Y1, X2, Z) = E(Y2| X1, Y1, X2,
ution of (X1, Y1, Z), which must be deduced from all Z. R =1) (so using complete cases only) and carrying
the data, as also noted by Brumback and Brumback.0ut & regression analysis to estimgteinder a model
Hence, a potential pitfall is that an incorrect regression for E(Y2|X1, Y1, Z) (which may in fact be incorrect as
model for the complete cases can lead to bias, a point2bove), substituting the imputed values for the missing
to which An and Little allude and one we feel is worth responses. For example, for the single mﬁgﬁ and a
demonstrating explicitly. For simplicity, assume no ad- linear model forE(Y2| X1, Y1, X2, Z = 1), the estima-
ditional covariatesX; and thatY; is binary. Suppose toris
we postulate

n n
) 1 A

(4) s’ =n E R'Yz'—i—g (1— R))e (i (-

2 E(Y2|Y1,Z) =05 +ajY1+BZ ? i=1 o i=1 R
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Regression imputation or multiple imputation (dis- yielding the estimator foo found by substituting
cussed by Schafer and Kang) may be used to obtainin (4) e, = Ej if m(Yy) = m;, which reduces
the ¢,(1);- They note that this requireB (Y2| X1, Y1, to fip = n—1 Zlel’jﬁj, ri =" Hrx(Yy) = nj}.
X2, Z) be correctly specified, raising concern over the This may be rewritten as

potential for bias associated with an incorrect paramet- K ~

ric model. As An and Little point out, nonparametric n—1|:z Z R (Y2 — Ej) n E’H
regression may address this concern at the expense of b g1

being subject to the “curse of dimensionality,” leading
them to propose the propensity spline prediction (PSP)(S) _ n_li’:[Ri{Yzi —egi} ]
method (Little and An, 2004), in which the imputation =

is based on, roughly, a model of the form, in the case

of u5Y, which we focus on hereE {Ya| (X1, Y1, X2, :”_1i:[ RiYai  Ri—7(Yu) (1)}'
Z = 1), A}, where A is a function of (X1, Y1, X2) Slr(Yw) n(ry) T
and this is estimated using splines. Brumback and
Brumback also discuss regression on the propensity
as a means of reducing dimensionality.

To illuminate the connection between PSP and t
class of RAL estimators derived in our paper, we ROy R v
reiterate that our proposed estimators follow from (Y2 —p2) 7( 1)E{Y2|n(Y1)},

making no assumptions on the joint distribution of (Y1) (Y1)

(X1, Y1, X2, Y2, Z) beyond independence ©K1,Y1)  which is of the form of those following from the RRZ
andZ along with an assumption on the form of, for ex- semiparametric theory for estimators for a single mean.
ample, in the case ofS"”, 7D (X1, Y1, X2). Although  Thus, we may conclude immediately thas is con-
in this case correct modeling & (Y»|X1,Y1,Z =1) sistent foruo and asymptotically normal with asymp-
and E(Y2|X1, Y1, X2, Z = 1) serves to enhance effi- totic variance that may be deduced from the influence
ciency, no assumptions on these regression relationfunction.
ships are required and, as long as the assumption It is important to recognize that this influence func-
on 7™ s correct, consistency is obtained regard- tion and those corresponding to PSP estimators in more
less of whether the regressions are modeled correctlygeneral settings belong to the class of influence func-
In the PSP approach, An and Little make an assump-tions for semiparametric RAL estimators because a
tion on 7@ (X1, Y1, X») but make no assumptions on nonparametrically consistent estimator for, in this case,
regression relationships such &§Y>|mw (X1, Y1, X2, E{Y>|m (Y1)} is used. If a parametric model were used
Z = 1), A}, instead modeling these nonparametrically. here, this would impose additional assumptions beyond
Thus, PSP is derived under the same conditions as théhose of a semiparametric model. By working directly
estimators in our paper. Accordingly, if PSP estimators with the class of influence functions indicated by the
are RAL, they must have influence functions in the theory, for example, in the simple example
class of influence functions given by the RRZ theory R(Yz—pu2) R —m(Yy)
and hence must be in the resulting class of estimators. () 7
In a simple special case where there is only one vari- _
able, we can show easily that the PSP estimator has in©n€ has greater latitude to chogs&1) to develop con-
fluence in the class that corresponds to consistent RALSIStent estimators. _
estimators. Suppose we consider just the data for one !N the general setup of our paper, whether the semi-
treatment group, have onlyry, ), and focus on es- parametnc_ efficient estlm_ator may be represented as
timation of E(Y) = 2. AssumeP (R = 1|Y1, Ya) = a PSP estimator or, equivalently, thther a PSP es-
P(R = 1|Y1) = 7 (Y1) is known and discrete, taking on tlmat_or m_ay be shO\_/vn to have the eff|C|en_t |anuer_1ce
valuesny, ..., 7k, say. Under these conditions the nat- functlon,.ls not readlly_ clear and would be interesting
ural nonparametric estimator fd#{Yz|(Yy) = 7;) to establish. An and_thtlg contend' that PSP addresses
e the curse of dimensionality, but this is only true when
the propensityr is correctly specified; indeed, to spec-
= _ 2 n(vy)=n; Ri¥2i ify 7 correctly also involves a curse. Whett) is cor-
I Zi:n(yli):ﬂj R, rectly modeled, basing inference instead on the class

j=1i:7‘[(Y1,')=7Tj

The first term in the second expression in (5) is the
“calibration” correction to which An and Little refer
(which in fact equals 0 in this simple example, but need
he . ) . . :
not in general). This estimator has influence function

g(Y1),
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of estimators in our paper ensures that the analyst doesppropriate approach to handling missing follow-up re-

not have to worry about the curse in the sense that,sponses.

while the construction of the PSP estimators requires Overall, we believe that semiparametric theory can

that regression relationships be modeled nonparametshed considerable insight on this and other problems,

rically for consistency, the form and double robustness and can suggest not only estimators that may be al-

property of our estimators ensure consistency even ifternatively motivated from a PSM perspective, but also

regression relationships are represented by incorrectprovide a formal framework in which to view these and

models. many other nice estimators. Through the lens of this
Viewing the PSP approach as a way to implement theory, one can observe that many seemingly disparate

estimators in the class following from the RRZ the- approaches share common themes.

ory, then we wonder whether it may in fact have some

pleasing empirical properties. Estimators in the class, RESPONSE TO BRUMBACK AND BRUMBACK

whose form incorporates inverse weighting explicitly, Brumback and Brumback first emphasize an im-

S;Sortant point that has been the source of some mis-
conception among practitioners, namely, that basing a
, O ; bretest—posttest analysis on change scores is not the
of An and Little that PSP “obviates the need for” the g5 e a5 basing it on a method that performs a regres-
calibration correction. _ sion adjustment fot'1. In doing so, they make an in-
Overall, however, it is notable that our estimators o reqting connection between this phenomenon, known

have a simple closed form that requires only that the 55| org's paradox, and the celebrated Simpson para-
analyst carry out familiar modeling exercises. More- dox, which has to do with difficulties with confound-
over, because the influence functions of ourestimatorsing that arise in, for instance, epidemiological studies

are readily available, calculation of closed form stan- highlighting the link between causal inference and in-
dard errors via the sandwich method is immediate. ference under MAR.
An and Little express surprise at our statements grumback and Brumback bring up an intriguing al-

that there is no general consensus on appropriate apgernative approach, which they discuss in the context

proaches to pretest—posttest analysis, particularly in theO]c estimation Ofu(zl) and the special case of no miss-

face of missing data, and that some of the approache%g data, no baseline or intervening covariatks, X»)

ey kst ofter o used by Drastoners. e iy Ingenera o 9 an () f our per
g y P the SPEE fomg) is

issues raised by An and Little and are indeed basing
their inferences on sound and sophisticated principles. ) i .
Our experience in the clinical trial, pharmaceutical and (6) &5 =n""D_{ZiY2i — (Zi — e},
regulatory settings, however, more closely mirrors that i=1
of Molenberghs. Statistical sections of study protocols wheres = n1/n andey,(1y; is the predicted value far
that propose complet(_e case (CC) analyses are combased on an estimator fdf(Yo;|Y1;, Z; = 1). In the
monplace in our experience; for exampleZ the protocol particular case wher#, is binary, as Brumk@ck and
for a recent HIV study states that the primary analy- Brumback point out, the obvious estimators Hpg for
sis will be based on “change in CB4cell count from E(Y5|Y1=0,Z =1)andY, for E(Yo|Y1=1,Z =1).
baseline” to the regular follow-up visit at 32 months Brumback and Brumback contend that the SPEE in this
(so based on the unfortunately named paireest setting is given by
method) and that." . patients who are lost to follow- "
up will not contribute to this comparison.” In our col- ~b_ -1 Vo: — mAY v

P P fi5” =nitY  ZiYsi =moY20/n1+m1Y21/n1,
laborations, we have routinely withessed debates over i—1
whether methods based on change scores (posttestwhiCh weights the estimators f@(Y2|V1 = v, Z = 1),
pretest) or ANCOVA should be used (a point addressed | 0. 1. by within-treatment proporti _
by Brumback and Brumback), whether failure of the y =" %0y samen. proporiono = mo/ 11

y foll I d ibuti il bi andwy = m1/n1. However, substituting’so and Y21
response to follow a normal distribution will bias re- ;, (g) followed by algebra shows that the SPEE is in
sults, whether adjustment for additional baseline co- fact qi b

: given by

variates should even be undertaken and whether CC B B
or last observation carried forward (LOCF) is the more (7) ,z;” =roYoo/n +r1Yo1/n,

sociated small values af Y. The PSP representation
may lessen this effect, as suggested by the commen
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whererg =" (1 —Yy;) andry = > ; Y1;, which Brumback and Brumback end by posing several
weights by overall proportions. A similar expression questions. First, they question why we focus on an
obtains foru(zo). We highlight this to emphasize the intent-to-treat estimand. We do not disagree that an
important point that, even though we focus here on the analysis focused on treatment efficacy would be of in-
mean for the single treatment group with= 1, the terest. However, our emphasis on intent-to-treat reflects
SPEE gains efficiency by exploiting the information that this would be the standard analysis in the clini-
from both treatment groups. cal trial, pharmaceutical and regulatory setting. In the
This issue aside, Brumback and Brumback raise anevent where noncompliance in fact leads to missing-
interesting possibility, that of a so-called compromise ness (e.g., dropout), this view may be interpreted as
estimator (CE) based on shrinkage ideas. The versionfocusing on the estimand that would be of interest if
given in the discussion could likely be modified to ex- there were no missing data, and the analysis may then
ploit information from both treatments. Wher? is be interpreted as attempting to estimate this quantity in
known, the expression for the CE has smaller vari- the unfortunate circumstance that dropout did occur.
ance than (7), which is the sample mean o 1 if We are not entirely clear as to the motivation for
72 > 0 and has variance equal to that of (7¥#=0.  the second point raised by Brumback and Brumback.
As 72 would be unlikely to be known in practice but |n general, if one factorizes a likelihood in terms of
evidently was taken as such in the MSE comparisonsw|v and V, the component that correspondsitais
presented by the authors [the “estimate”w3fis the  orthogonal to the first term in the sense that parameters
variance of the chosen values B{Y;|Y1 =0,Z = 1) are variation independent, and then all resulting influ-
and E(Y>2|Y1 =1, Z = 1), which would not be known  ence functions for estimators for a parameter in the first
in practice], we do not have a sense of the extent toterm have influence functions that satisfy the condition

which the need to estimaﬁé would impact practi_cal E{p(W)|V}. Under these conditions, we would indeed
performance of the CE relative to (7) [or (6)] of thisre-  yacommend a conditional analysis.

joinder. We conjecture that the CE (witff estimated Finally, Brumback and Brumback ask about our
realistically from the data) may be a superefficient €s- yractical recommendation to include covariates in the
timator and hence is not regular; accordlngly,llt IS X regression models involved in computation of the pro-
cluded from the class of RAL estimators fﬂl(z) to posed estimator. Mathematically, including covariates
which the influence functions in (3) of our paper cor- should increase efficiency, which can be appreciated
respond. Nonetheless, this is not to say that it may notfrom a geometric perspective, because the influence
have desirable properties. The CE with estimated function can be viewed as a projection onto a lin-
is an intriguing idea that we believe deserves further o5, space spanned by the covariates. As the size of
study. _ o _ that space increases, the projection becomes smaller
Turning to the issue of handling intervening co- and hence has smaller variance. However, Brumback
variates X when Y2 is MAR, ignoring for simplic-  4ng Brumback raise the important point that there is a
ity X1, Y1 and from a perspective similar to that taken hreshold in practical problems above which including
by An and Ll'ttle’ Brumback and Brumback d%mon- additional, potentially unnecessary covariates in the
strate thatu$? = E(Y2|Z = 1) (and similarly u3”) models will lead to instability in smaller sample sizes
may be estimated by averaging(Y2|X2,Z = 1. (apoint raised also by Schafer and Kang). An interest-
R =1) over the distribution oX5|Z =1, that is, over  jng question for future research is the rate at which one
the entire population, not just among those with  should increase model complexity relative to sample
missing. They then propose a PSM approach based onj;e Brumback and Brumback end by posing several

regression modeling on the propensity score in a spiritjnriguing questions for future research, which we can-
similar to that of An and Little, with the additional not hope to address in this limited space.

twist of using the shrinkage-based CE for the regres-
sion modeling. However, this approach is not equiva-
lent to the PSP of An and Little, because Brumback and
Brumback base inference on their equations (3) and (4) We agree wholeheartedly with virtually all of

rather than an equation like our (4) in this rejoinder, Molenberghs’ comments. He has presented with con-
and we are uncertain as to how they implemented esti-siderably more eloquence than we could hope to
mation of the regression relationships (i.e., parametric achieve our position on handling missing data in prac-
or nonparametric modeling). tice, in general, and the pretest—posttest problem, in

RESPONSE TO MOLENBERGHS
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particular. He emphasizes that the continued, erroneousn the ACTG 175 scenario that compares the proposed
use of CC and LOCF analyses is likely in part a con- approach not only to popular estimators directly, but
sequence of the existence of competing “schools” in to one version (ANCOVA) where the missing were
the literature, a point with which we concur, and he filled in via multiple imputation (MI). In doing so,
provides compelling arguments to support our position they note in the same spirit as Molenberghs’ remark
that viewing methods pragmatically from the perspec- on maximum likelihood that the latter approach does
tive of semiparametric theory can lead to considerable not require full specification of the joint distribution of
insight. (X1, Y1, X, Y2, Z), which the remark in our paper er-
Molenberghs explicitly discusses likelihood analy- roneously suggested. The simulations illustrate several
sis, which we did not emphasize in our paper, pro- important points. Under ideal conditions (e.g., correct
viding yet another complementary perspective. He modeling), the proposed method based on the efficient
correctly points out that our implication that likelihood  influence function and the MI method achieve similar
methOdS I’equire SpeC|f|Cat|0n Of the fu” JO|nt diStribU' performance’ W|th perhaps a S“ght edge to the pro_
tion of (X1, Y1, X2, Y2, Z) is an overstatement; indeed, posed method, which echoes Molenberghs’ view that
only aspects (_)f_ this distribution must be specified (but ynger a pragmatic approach all “good” methods should
must be specified correctly). In fact, one way to con- yie|d similar inferences. Further simulations exhibit
trast our approach based on the RRZ theory to that ofconyincingly both the double robustness property and
maximum likelihood is alluded to by Molenberghs. As g potential for bias of the proposed approach when
we noted in our response to An and Little, the semi- pqih () and regression relationships figs are mod-
parametric RRZ theory takes the point of view that gjeq jncorrectly, and of the MI approach when the im-
one is willing to make assumptions on the probabili- putation model is incorrectly specified.
ties of observing’»> but not on regression relationships Schafer and Kang also report on a simulation that

for Y2, an approach that leads to the double rObusmess@tddr(—:‘sses the spirit of the comment by Brumback and

prc_)perty if one characterizc_as the_ regression reIaﬁon'BrumbaCk regarding performance in smaller samples.
ships correctly and to consistent inference regardless,rhe simulations with: = 400 demonstrate a potential

In a maximum likelihood approach, one instead makes itfall of the proposed methods, namely, that practical

assumptions on regression relationships such as thos
P 9 P erformance can be degraded when model complex-

noted by Molenberghs, and in fact need not even make:, . " . . o .
any assumptions on the ©(Xq, Y1, X2), ¢ = 0, 1. ity is fairly high and sample size is not too large. This

However, this comes at a price, because the regres__prompts us to issue a cautionary note that the operat-

sion relationships need to be specified, in the words of Nd characteristics of inverse-weighted methods in this

Molenberghs, “sufficiently correctly” to achieve unbi- setting, no_t on_Iy for the pretest—posttest problem, but
ased inference. when applied in other problems, need to be better un-

derstood. We conjecture that this is of particular con-
RESPONSE TO SCHAFER AND KANG cern when some of the (©) are very small. As noted
above, the PSP approach to implementing estimators

Schafer and Kang provide illuminating and help- in this class advocated by An and Little may offer bet-
ful perspectives on several issues. Like Brumback andter practical performance.

Brumback, they also raise the point of our focus on the
intent-to-treat estimand and provide an excellent dis- CLOSING COMMENTS
cussion of the biases that can arise when noncompli-
ance is related to dropout. Schafer and Kang also make e would again like to offer a strong vote of thanks
the connection between the semiparametric methoddo all the discussants. Their incisive comments have en-
we discuss and methods in the sample survey literature fanced tremendously the message and utility for prac-
which are, in fact, based on the same ideas, but whichtitioners we hope to achieve with this paper and raised
evolved from an entirely different perspective. Schafer many issues for further research.
and Kang also offer a very useful and intuitive explana-  In closing, we would like to bring up one additional
tion of the suboptimal performance of the IWCC esti- issue that did not arise in any of the discussions. All
mator relative to that of the proposed estimators basedthe methods discussed here rely on the validity of the
on the efficient influence function. MAR assumption. In settings whei®& is missing ex-

A welcome contribution by Schafer and Kang is the clusively due to dropout, the analyst may feel confident
extensive set of simulation studies they present basedadopting this assumption when sufficient information
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on reasons for dropout (e.d{;, X2) is available. One  CoLLINS, L. M., SCHAFER, J. L. and Kam, C.-M. (2001).
situation in which the MAR assumption would be sus- A'cornparison of inclusive and re§trictive strategies in modern
pect is in the case wher is missing due to the in- missing-data procedureBsychological Method§6330—351:
tervening death of a subject, where missingness due td='-ERS: P- H. C. .and MRx, B. D. (1996). Flexible smoothing
death may be related to underlying disease state. More with B-splines and penalties (with discussio&gtist. Sci. 11

. . . . S 89-121.
fundamentally, this scenario raises the_ philosophical IS- FraNGAKIS, C. E. and RBIN, D. B. (1999). Addressing compli-
sue of what a reasonable question of interest regarding  ¢ations of intention-to-treat analysis in the combined presence

the response really is. In the setting of ACTG 175, for of all-or-none treatment-noncompliance and subsequent miss-

example, wher@; andY> are CD4 count, it is natural ing outcomesBiometrika 86 365-379.
to ask the meaning of CD4 count if a subject has died. GRAHAM, J. W. and $HAFER, J. L. (1999). On the performance
If death is due to HIV, then it is not clear what CD4 of multiple imputation for multivariate data with small sam-

ple size. InSatistical Strategies for Small Sample Research

count at a subsequent time represents, whereas, in con-
9 P (R. Hoyle, ed.) 1-29. Sage, Thousand Oaks, CA.

j[raSt’ one may still enV|$|on CD4 posf[death for a sub- LEHMANN, E. L. and QA\SELLA, G. (1998).Theory of Point Esti-
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CD4 is strongly associated with poor prognosis with analysis of multivariate data with missing valueXatist.
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lution. Nonetheless, this seems somewhat unsatisfac- parisonsPsychological Bulletin 68 304-305.
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