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The EM Algorithm in Genetics, Genomics
and Public Health
Nan M. Laird

Abstract. The popularity of the EM algorithm owes much to the 1977 pa-
per by Dempster, Laird and Rubin. That paper gave the algorithm its name,
identified the general form and some key properties of the algorithm and es-
tablished its broad applicability in scientific research. This review gives a
nontechnical introduction to the algorithm for a general scientific audience,
and presents a few examples characteristic of its application.
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1. INTRODUCTION

Incomplete data arise in many different settings in
the empirical sciences. An obvious example of incom-
plete data is missing data, where multiple measure-
ments are made on each subject, but some subjects
are not observed on all measurements. Many applica-
tions are more subtle and consist of problems where the
observed data only shed light on “hidden” or “latent”
traits which are of primary interest. This frequently oc-
curs in the engineering setting with reconstruction or
indirect measurement, such as medical imaging with
emission and transmission tomography. The example
from public health that is diagrammed in Box 4 is an-
other example of indirect measurement. Many appli-
cations involve locating clusters of observations with
similar features; distinguishing features are functions
of the observed data, but cluster membership must be
inferred. Such problems occur prominently in bioinfor-
matics and speech recognition. Finally, some statisti-
cal models, such as variance components or random
effects, can be reformulated as missing data problems
simply to make computations easier, even though no
data are missing.

Here we discuss the EM algorithm (Dempster, Laird
and Rubin, 1977, henceforth DLR), which is designed
for computations in a broadly defined incomplete data
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setting; it is widely used in many different areas in the
empirical sciences. There are numerous applications
(Smith, 1957; Hasselblad, 1966; Baum et al., 1970; Or-
chard and Woodbury, 1972, to mention a few) of the
algorithm that predate the DLR paper, but that paper
described some key features of the algorithm that un-
derlie its widespread popularity. First was the recog-
nition of the generality of the algorithm, and a proba-
bilistic definition of incomplete data that can be applied
very broadly in different settings. Secondly, the paper
provided a simple and intuitive description of the al-
gorithm and named it “Expectation–Maximization,” or
EM for short, to reflect the two steps that comprise its
essential nature. There are many technical descriptions
of the algorithm and its properties (see, e.g., McLach-
lan and Krishnan, 1997), and a variety of generaliza-
tions. The purpose of this note is to provide an intu-
itive description of how the algorithm works and give
four short examples from genetics, genomics and pub-
lic health.

We first give a heuristic characterization of the algo-
rithm; the remainder of the introduction discusses its
formulation in more detail. The essential idea of the
EM is to postulate the availability of additional data
(e.g., the values of the missing measurements in the
missing data setting) that make the estimation problem
easy. The EM then proceeds by alternating between
two steps: “fill in the additional data (E-step)” and “es-
timate the parameters using the filled in data (M-step).”
This two-step process is repeated until convergence.
DLR put the algorithm on a rigorous foundation by
spelling out how the two steps should be implemented
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in a general setting and showing that it maximizes an
objective function.

To describe the algorithm, the first task is to identify
a “complete data” version of the problem. This is of-
ten the most creative part of the application, since once
a complete data analogue has been identified for the
observed data, the application of the EM is straightfor-
ward. There generally will not be a unique representa-
tion for the complete data, but often there is an “obvi-
ous” one. For example, in the case of missing data, the
complete data is best described as the observed data,
plus the missing observations; in this way, the complete
data specifies a complete set of measurements for each
subject. In other settings, the complete data will consist
of the data that are observed plus some additional infor-
mation that would make the problem easy; the bioin-
formatics example we describe in Box 3 and clustering
examples in general fall into this category. At one ex-
treme, the complete data is sometimes best described
as just the missing data, because the observed data pro-
vides no additional information when the missing data
are available. As an example, consider our first exam-
ple (Box 1) of estimating gene frequencies. It would be
straightforward to estimate the frequencies of different
gene variants (termed alleles), if we directly observed
individual genotypes; in the absence of genotype in-
formation, we use data on traits related to the geno-
type. Here the complete data are the observed genetic
traits and the genotypes of individuals in the sample
(Box 1), but if we know the genotypes, the observed
traits contribute no additional information about gene
frequencies.

Having identified the complete data, we can now de-
lineate the E- and M-steps of the algorithm. Although
logically the E-step precedes the M-step in the compu-
tations, hence EM, conceptually it is easier to define
the M-step first.

M-step: The way we define the complete data de-
termines the M-step of the algorithm. At the M-step,
we obtain our estimates of the parameters of interest
assuming we have observed the possibly hypotheti-
cal “complete data.” Formally the M-step (for Maxi-
mum likelihood) uses the complete data to obtain max-
imum likelihood estimates of the parameters. In many
instances, this will be simple, familiar statistics, that
is, means, variances and covariances, or proportions;
each of the four examples we will discuss is based on a
complete data multinomial likelihood and just requires
estimating probabilities from sample frequencies at the
M-step. Exactly how this M-step is carried out depends

upon the application, but it is worth noting that the ease
of computations depends in large measure on defin-
ing the complete data so that performing the M-step
is easy.

E-step: Once the M-step is done, we have interim
estimates of the relevant parameters which can now be
used, along with the observed data, to calculate ex-
pected values for the “missing data,” or technically,
computing the expected log-likelihood of the complete
data. Again, the exact nature of the E-step (for comput-
ing the Expected log-likelihood) is application depen-
dent; in each of the examples we discuss, the E-step
involves the computation of conditional probabilities.
These two steps are iterated until convergence. Al-
though the algorithm is not guaranteed to maximize
the likelihood function, it has some attractive numer-
ical properties. These include increasing the likelihood
at each iteration and a guarantee that the parameter es-
timates will remain in the boundary space, that is, prob-
abilities will always be between 0 and 1, and variance–
covariance matrices will be positive semi-definite.

2. EXAMPLES FROM GENETICS

The genetics literature is replete with examples
of the EM. Before genotypes were readily available
via modern technologies, the EM was often used to
estimate gene frequencies from data on associated
Mendelian traits. An individual’s genotype consists of
a pair of alleles, one inherited from each parent. Even
when the genotypes of individuals are observed, there
are still many important estimation problems with nat-
urally occurring incompleteness, especially if it is im-
portant to determine which allele is inherited from
which parent. One example is the reconstruction of
haplotypes, that is, the set of alleles at different loci
all lying on the same chromosome, from pairs of alle-
les at the different loci. A second example that we will
discuss is estimating allele sharing in a pair of affected
siblings.

Gene Counting

Box 1 illustrates using the EM algorithm for estimat-
ing the three allele frequencies at the ABO hemoglobin
locus. When the genotype data are directly observed,
estimation is referred to as gene counting, because one
simply counts the number of alleles of each type, and
divides by the total number of alleles. Gene counting
with the observed genotype data is shown in the M-step
of Box 1, where the number of individuals (possibly
unobserved) with each genotype is denoted as gAA,
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gAB , etc., and the observed number of individuals with
each blood type are denoted as tA, tB , etc. For an auto-
somal chromosome, each person contributes two alle-
les, hence the denominator of each estimated frequency
is 2n, where n is the total number of subjects.

The E-step takes into account the known relation-
ships between blood type and genotype given in the
top of Box 1, namely a person with blood type A
must be either AA or AO, and similarly for blood
type B, but blood types AB or O identify genotypes
uniquely. For the E-step, we assume the allele fre-
quencies are known and fixed at the values estimated
at the previous M-step, and use them to calculate the
P(genotype|blood type).

The EM algorithm consists of cycling through the
two steps, alternately estimating the allele frequencies
assuming the allele counts are observed, then updating
the expected allele counts, assuming that the frequen-
cies are known. We can start with either the E- or the
M-step, depending upon whether it is easier to start
with a guess about the frequencies or with a guess
about the genotype counts. Note that in the iterations,
the genotypes used at the M-step are expected, com-
puted at the previous E-step; the allele frequencies used
to compute the conditional expectations at the E-step
are likewise those updated at the previous M-step.

Box 1B provides a numerical example to illustrate
the algorithm, using hypothetical, but not unrealistic
blood counts from a sample of 600 subjects. We start

the iterations by setting the frequencies to be 1/3 each.
Computing the expected genotype frequencies at the
E-step uses the assumption of Hardy Weinberg equi-
librium to calculate the probability of genotype fre-
quencies, given allele frequencies. Hardy Weinberg as-
sumes that allele frequency is the same for everyone in
the population and random mating, hence the two alle-
les of an individual are independent. Simple inspection
of the observed data suggests that our initial frequen-
cies are not very good estimates, but the algorithm con-
verges in only a few iterations. For actual data exam-
ples and further discussion of using the EM for gene
counting, see Lange (2002), Chapter 12.

Linkage Example

Linkage analysis is widely used to find the chromo-
somal location of a hypothesized gene affecting some
trait of interest. Simply put, linkage refers to the rela-
tive position of two genetic locations; if they are physi-
cally “close” on the same chromosome, the two loci are
said to be linked. If they are on the same chromosome,
but distant, or if they are on different chromosomes,
they are said to be unlinked. The EM has many applica-
tions in linkage analysis; here we consider its use in es-
timating allele sharing of affected siblings. When two
loci are unlinked, Mendel’s laws of inheritance holds
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independently for the two loci, and one can easily cal-
culate the probability of allele sharing between two sib-
lings at a genetic locus. In particular, the probability
that both siblings inherit the exact same alleles from
both their parents (allele sharing is 2) is 1

4 . The prob-
ability that they each inherit two different alleles from
both parents (or allele sharing is zero) is also 1

4 , and
the probability that they inherit the same allele from
exactly one parent (allele sharing is 1) is 1

2 . This type
of allele sharing is called identity-by-descent (IBD) to
indicate that the alleles are shared because the sibs have
obtained the same copy from a common parent.

To implement a linkage analysis, we obtain data on
a genetic locus, called marker data, that we hypothe-
size is close to a genetic locus that affects our disease
of interest. If both siblings are affected with the same
genetic disease, and the marker and the disease locus
are linked, we expect they are likely sharing at least
one allele, inherited from the same parent, at the un-
observed disease locus. Further, if the locus underlying
the disease is linked to the marker, independent trans-
mission at the 2 loci does not hold. Rather, we expect
that the allele sharing probabilities at the marker differ
from 1

4 , 1
2 , 1

4 , in the direction of increased sharing. To
test this, we estimate the probabilities of sharing 0, 1
or 2 alleles under HA, π0, π1, π2 say, from the sam-
ple of affected sib pairs and compare them to the allele
sharing probabilities under the null hypothesis of no
linkage, 1

4 , 1
2 , 1

4 .
Estimation of the allele sharing frequencies under

the alternative of linkage between the marker and the
disease locus is straightforward if we could observe
the IBD sharing directly; we would simply count the
number of affected sibs pairs sharing 0, 1 or 2 alleles,
and divide by the number of affected sib pairs. This
is illustrated in the M-step of Box 2 where the com-
plete data IBD counts are denoted as Z0, Z1 and Z2.
As illustrated in Box 2, one cannot always infer IBD
sharing from data on parental and offspring genotypes;
it depends upon the pattern of alleles which are ob-
served. The “complete data” illustrates a setting where
we can always deduce IBD sharing, that is, the parents
have four distinct alleles. The “observed data” shown
in Box 2 illustrates two situations where we cannot. In
general, the “observed data” are a pattern of sharing,
for example, either 0 or 1, 1 or 2, etc., together with
the observed parental genotypes. The M-step is based
on a multinomial likelihood, assuming that we observe
IBD for each sib pair, and the E-step provides expecta-
tions of the multinomial counts, by computing the ex-
pected allele sharing for each pair conditional on their

observed pattern of sharing, and adding over pairs. The
conditional probability of IBD sharing is obtained from
Bayes rule

P(IBD = j |observed data)

∝ P(observed data|IBD = j)πj for j = 0,1,2,

where πj has been estimated at the M-step; and
P(observed data|IBD = j) is calculated from the ob-
served data on parents and child’s genotypes (Risch,
1990).

Risch (1990) also extends the EM to the setting
where parental data are missing, but now one must
first have an estimate of parental allele frequencies.
Kruglyak et al. (1995) extended the algorithm to cover
multipoint analyses with complex pedigrees as well as
additional markers, but the basic idea of using EM to
estimate IBD probabilities under HA remains the same.

3. EXAMPLE FROM COMPUTATIONAL BIOLOGY:
FINDING MOTIFS

Computational Biology deals with the analysis of
data that comes from sequencing the DNA of humans
and other organisms. The specific sequence of the four
nucleotides which make up DNA, Adenine, Guano-
sine, Thymine and Cytosine, or A, G, C, T, for short,
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determine the function of genes and location of genes,
the process of RNA transcription, and the manufacture
of proteins essential for cell function. Understanding
many fundamental biological processes requires tools
to identify relatively short patterns of these four base
pairs embedded in long strings of base pairs (approx-
imately 3 billion in the entire human genome). The
problems are challenging and relevant to statisticians
because the sequences of interest may not be “exact.”
For example, the simple sequence consisting of two
specific base pairs, CG, is relatively rare in the DNA
of many organisms, because CG readily mutates to
TG. But mutation is suppressed in regions near specific
genes, forming CG rich islands, or stretches of DNA
that have more CG pairs than “usual.” One approach to
identifying GC rich islands is to treat strings of DNA
as realizations of Hidden Markov Models, with differ-
ent (unobserved) states corresponding to GC rich or
GC poor regions (Parida, 2008, Chapter 5.5; Jones and
Pevzner, 2004, Chapter 11). An EM algorithm to es-
timate the state and transmission probabilities was de-
veloped by Baum et al. (1970).

A related problem in computational biology where
EM is used is the identification of regulatory motifs.
Motifs are short sequences of base pairs, from 6 to
20 pairs in length, which have a similar pattern of base
pairs. Proteins bind to functional motifs located up-
stream of genes to encourage the process of RNA tran-
scription in the genes. Given a set of known genes, the
approximate location of the corresponding functional
motifs is known, however their exact sequences vary
because the protein binding process does not require
an exact sequence of base pairs.

The basic idea is illustrated in the top panel of Box 3.
Seven hypothetical DNA fragments are given an input
data (Jones and Pevzner, 2004, Chapter 4). The under-
lined portion of each sequence denotes the actual (un-
observed) motif. Here we assume there is only one mo-
tif in each input sequence, and it is known to be exactly
eight base pairs long. The exact DNA letters vary from
fragment to fragment, but two motifs are “more sim-
ilar” than two randomly selected sequences of eight
DNA letters. The problem can be defined probabilis-
tically by assuming that the probability corresponding
to a letter in a motif location is the same for every mo-
tif, but differs from nonmotif, or “background” DNA.
The objective is to characterize the general pattern of
DNA for the motifs as a “consensus” sequence.

A purely computational approach to this problem
is to pick a metric for measuring similarity between
eight letter sequences, such as the number of positions

that have the same letter across all fragments, and then
search for the set of eight letter sequences that op-
timizes the metric. This is a time consuming search,
since each possible alignment has to be considered, and
each fragment of X letters has X − 7 possible starting
points for the eight letter sequence; additionally it is
difficult to measure optimality of the solution.

Alternatively, one may utilize a probability model
for the fragment data, and use the EM (Lawrence and
Reilly, 1990). The data can be modeled as incomplete
because the motif locations are not observed. Concep-
tually, the missing data are seven indicator vectors, in-
dicating the starting point of each motif in each of
the seven fragments. The parameters to be estimated
are the frequencies of the four DNA letters in the mo-
tif and nonmotif positions. We assume a 4 × 8 matrix
of multinomial probabilities, one column for each po-
sition in a motif. Each element of the column gives
P(A), P(C), P(G) and P(T ) for the DNA letter in
each position of the motif. If we knew the location of
each motif in each fragment, we would estimate these
probability vectors via simple multinomial frequencies
for each position of the motif as is illustrated in the
M-step of Box 3.

We do not know the starting points of each motif, but
given the motif and background probabilities, one can
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readily calculate the conditional probability of any pos-
sible starting position for each fragment, by assuming a
priori that all possible starting values are equally likely
and evaluating the probability of each DNA sequence
for each assumed starting point. These probabilities of
each starting point for each motif are then used to com-
pute the expected multinomial counts needed for the
M-step, as shown in the E-step of Box 3.

At the conclusion of the iterations of the EM, we
have the matrix of estimated base pair probabilities for
each location. These can be used to compute a “consen-
sus sequence” by taking the base pair with the highest
frequency in each location of the motif. For example,
based on the frequencies computed at the M-step in
Box 4, the consensus sequence would be ATGCAACT.
At the conclusion of the EM we also have the proba-
bility of each alignment (determined by the estimated
starting points). This has been used to assign motif
locations to specific sequences. While the motif se-
quence frequencies can be well estimated with a large
number of fragments, in this formulation there is no
simplifying model for alignment probabilities, and the
number of possibilities grows exponentially with the
number of fragments. Hence alignments are unlikely to
be well estimated. This has led to interest in Bayesian
approaches based on Gibbs sampling (Lawrence et al.,
1993). The application of the EM described here, as
in many other settings, is sensitive to starting values;
see Parida (2008), Chapter 8.6. Generalizations of the
simple case discussed here which allow multiple types
of motifs and as well as multiple numbers per fragment
have been given in Cardon and Stormo (1992) and Bai-
ley and Elkan (1995).

4. EXAMPLE FROM PUBLIC HEALTH:
MONITORING AIR QUALITY

Many harmful exposures, radon or diesel emissions
for example, are characterized by having particles with
very small diameters (less than 0.4 micrometers). Parti-
cles this small cannot be directly measured, but having
estimates of particle sizes are important for monitoring
air quality. Several measurement devices have been de-
veloped to deal with this problem; here we discuss dif-
fusion batteries which operate on a principle of indirect
measurement. The basic principle is the same used for
positron emission tomography (PET scans) as well as
transmission tomography (Vardi, Shepp and Kaufman,
1985; Lange and Carson, 1984; Kay, 1997).

Diffusion batteries are designed to filter out parti-
cles of different sizes by passing a volume of aerosol

FIG. 1. Diagram of a diffusion battery. Reproduced from the TSI
Instruction Manual for Diffusion Battery Models 3040/3041.

through a succession of fine wire mesh screens, and
counting the number of particles remaining in the
aerosol at each stage. Figure 1 illustrates how the dif-
fusion battery works.

A fixed volume of air is drawn in through the en-
trance port, with only one of the exit ports open. The to-
tal number of particles passing through the exit port is
counted. Thus the observed data consists of 11 counts
of particles. The “zero port” counts the total number in
the volume of aerosol regardless of size, since there are
no screens before the zero port. The subsequent ports
have differing numbers of screens which increase the
probability that particles of different sizes are trapped
in the screens, and are thus not counted. The smaller
particles are more likely to be removed at the early
stages, since a particle’s diameter determines how fast
they move. The smaller particles are moving faster and
are more likely to hit a barrier (a screen), and become
trapped at the earlier stages. The larger particles are
sluggish; they tend to fall through the battery, only be-
coming trapped at the end stages of the battery where
there are many more screens. We estimate the distri-
bution of particle sizes from the total particle counts
measured at each port by dividing the particle size dis-
tribution into intervals, and estimating the proportions
in each interval.

A natural way to formulate an incomplete data prob-
lem in this setting is illustrated at the top of Box 4.
We define complete data as a 2-way array of counts of
particles in size category j exiting at the ith port, Zij ,
where i = 1,10 and j = 1,8 in our example. The un-
observed Zij can be modeled as independent Poisson
counts with E(Zij ) = P0wijfj , where fj are the fre-
quencies of the j th size category, and

wij = P(particle of size j exits at the ith port).

The wij are calculated from the known characteristics
of the diffusion battery. The observed counts exiting
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each port are just the row totals of the Zij , Pi , plus the
count at the zero port, P0. We note that under this set
up, the expected values of the observed counts follow
a simple linear model:

E(Pi) = P0
∑

j

wij × fj .

Thus estimation can be treated as a linear regression
problem where the fj ’s are the coefficients to be es-
timated and the wij ’s are the known predictors. Be-
cause the fj ’s are constrained to be positive, and
the errors are not normally distributed, ordinary least
squares does not work well. Typically, non-negative
least squares or Ridge regression have been used as al-
ternatives, but using the EM to obtain maximum likeli-
hood estimates under the Poisson model described be-
low represents a substantial improvement (Maher and
Laird, 1985).

The use of the EM for this application is illustrated
in Box 4. The column totals of the array, Nj , give
the number of particles in a given size category which
exit at all ports combined. Only the Nj ’s are needed
for the M-step, but taking the full array of counts as
complete data simplifies the calculations. The propor-
tions, say fj , in each size category are estimated from

the weighted frequencies fj = Nj/P0 × Wj . We use
weights,

Wj = P(particle of size j is counted at any port)

=
10∑

i=1

wij ,

because the complete data counts have been filtered ac-
cording to size.

At the E-step, we compute the expected values of
each Zij , conditioning on the observed row margins
and assuming the fj ’s are known.

Conclusion

This paper merely skims the surface of the multi-
tude of applications in diverse scientific areas where
the EM plays an important role, not just in the compu-
tations, but in the conceptualization of the problem as
well. This volume provides additional examples from
other areas of the empirical sciences.
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