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Abstract: Multiple hypothesis testing often encounters composite nulls
and intractable alternative distributions. In this case, using p-values that
are defined as maximum significance levels over all null distributions (“pmax”)
often leads to very conservative testing. We propose constructing p-values
via maximization under linear constraints imposed by data’s empirical dis-
tribution, and show that these p-values allow the false discovery rate (FDR)
to be controlled with substantially more power than pmax.
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1. Introduction

In multiple hypothesis testing, much research has been carried out on the case
of simple nulls, where the data associated with true nulls follow a common dis-
tribution [8, 12]. On the other hand, the case of composite nulls, where the data
associated with true nulls may follow different distributions, is often encountered
and challenging.

Typically, for a multiple testing procedure, p-values are the only accessible
information [14, 19, 20, 23, 31]. Thus, how p-values are defined is important
to the performance of the procedure. For composite nulls, p-values are usually
defined as maximum significance levels over all null distributions, resulting in
conservative tests [19]. On the other hand, a Bayesian approach is possible [12],
which assumes that there is a known mixture probability distribution on true
nulls. Under the assumption, the overall distribution associated with true nulls
can be obtained as a weighted integral of the null distributions, which essentially
reduces testing on composite nulls to testing on simple nulls.

The article aims to develop an approach in between the above two. Its premise
is that there exists a mixture probability distribution on true nulls, however, it
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is unknown. In general, in cases like this, it is an important issue how to get
extra information from data [7, 8]. One way is to assume that there is specific
knowledge on both the null and alternative distributions, so that a few param-
eters suffice their characterization. Under the assumption, the parameters can
be estimated from data [17]. However, in exploratory studies, oftentimes the
goal is to identify novel signals with no prior knowledge on how they might look
like; that is to say, no parametric forms of the alternative distribution can be
presumed. In this case, there can be a wide choice of mixture probability dis-
tributions and alternative distributions. Roughly speaking, given a candidate
mixture probability distribution, all the misfits to the data can be attributed
to false nulls. This makes consistent estimation of the mixture probability dis-
tribution infeasible. At the same time, although there can be many different
distributions associated with false nulls, since they and their composition are
intractable, it is suitable to treat the data associated with false nulls as being
sampled from a single, intractable, overall distribution.

From the above position, we shall study the case where there are only a finite
number of null distributions. This case may serve as an approximation to the
case where there are infinitely many null distributions; see the discussion in Sec-
tion 6. Meanwhile, in pattern classification, it is common to deal with a finite
number of distributions [4, 15]. On the one hand, for patterns that are known,
their respective distributions can be learned beforehand as null distributions.
On the other, in a novel environment, the composition of these patterns may
be intractable due to the presence of false nulls, i.e., unknown novel patterns.
Regardless of the specifics, the basic point is that the mixture of the null distri-
butions is dominated by the empirical distribution of the data, except for a small
error. As a result, the p-values can be defined via maximization over a range of
linear combinations of the null distributions, with the coefficients constrained
by the empirical distribution.

The foremost goal of the article is the construction of constrained p-values.
These p-values can be used like any other p-values for multiple testing. To eval-
uate their efficacy, one has to choose an error criterion. We select the FDR
due to the interest it has received in literature. There have been several FDR
controlling procedures proposed with the aim to improve power [1, 10, 30]. We
shall study the FDR control and power of some of these procedures based on
the constrained p-values.

In the next section, we set up basic assumptions and review some FDR con-
trolling procedures. In Section 3, we describe the initial step of the construction
of constrained p-values, i.e., to get p-values under individual nulls. We also for-
mulate some common types of p-values in ways that motivate the construction.
In Section 4, we introduce two types of constrained p-values and state some
results on the FDR control based on the p-values. Unfortunately, the proofs of
the results are a bit involved, so we put them in the Appendix. In Section 5, we
conduct numerical study on the FDR control and power of several procedures
based on the constrained p-values and compare the results to other types of
p-values. Section 6 concludes with some discussion.
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2. Preliminaries

2.1. Distributional assumptions

Let {Fθ, θ ∈ Θ} be a family of distributions on Rd. We make the following
assumptions. First, given observations X1, . . . , Xn ∈ Rd, the nulls to be tested
are

Hi : Xi ∼ Fθ for some θ ∈ Θ.

Second, the distribution under false nulls is a single distribution G 6∈ {Fθ}, the
population fraction of false nulls among the nulls is a ∈ (0, 1), and Θ is endowed
with a probability measure ν. Third, X1, . . . , Xn are sampled as follows. First,
draw η1, . . . , ηn i.i.d. ∼ µ = aδ∗ + (1− a)ν, where δ∗ is the point mass at ∗, an
element not in Θ. Then conditional on the ηi’s, draw Xi independently, such
that if ηi = ∗, then Xi ∼ G and otherwise Xi ∼ Fηi

. A null Hi is true if and
only if ηi ∈ Θ. The model is usually referred to as a random mixture model. We
will refer to Fθ as a null distribution, and ν the mixture probability distribution
of true nulls.

We will make two further assumptions. First, since Xi ∼ F =
∫

Fθν(dθ)
under true Hi, if ν is known, composite nulls can be reduced to simple nulls,
which is not a case of our focus. Therefore, we shall assume that ν is unknown.
Second, we assume that no specific knowledge on G is known, such as its para-
metric form. This is especially intended for the case where Θ is finite. Indeed, in
the case where G is known, for n ≫ 1, both a and ν as well as the parameters
characterizing G can be estimated, e.g., by MLE, which effectively reduces the
testing problem into one only involving simple nulls.

As an example, in many cases, the nulls are of the form Hi : θi > 0 or
Hi : θi ∈ [−δ, δ], where θi is a shift parameter, and there is little knowledge about
the null distributions. Typically, one will then sample multiple observations and
use their z-statistic to test each Hi. This way of testing underlies the belief that
the z-statistic closely follows some N(µ, 1), hence placing itself under the mixture
model. At the same time, under the normal approximation, except for special
cases, the z-statistics associated with false nulls follow an unknown mixture of
normal distributions, so the assumption that G is unknown still applies.

2.2. Step-up procedure for FDR control

Step-up (SU) procedures are widely used for multiple testing [16, 20, 28]. If
p(1) ≤ · · · ≤ p(n) are sorted p-values, then an SU procedure rejects and only
rejects nulls whose p-values have ranks no greater than R = max{i : p(i) ≤ ci:n},
with max ∅ := 0, where c1:n, . . . , cn:n are certain critical values [11].

To conduct multiple tests, one first has to specify an error criterion. There
are quite a few such criteria available and a major line of research is to improve
power while controlling the error [24, 25]. We shall use FDR as the error cri-
terion. Several SU procedures have been proposed to control the FDR, all of
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which set ci:n = ρ(i/n) for some function ρ. Perhaps the most well-known such
procedure is the Benjamini-Hochberg procedure that uses ρ(t) = αt, where α is
the target FDR control level [1]. The procedure will be coded as BH. We shall
also consider a few of its variants that aim to improve power.

The first variant is proposed by Storey, Taylor and Siegmund in [30]. Let

F̂DR
∗

λ(t) =
1 {t ≤ λ} π̂∗

0(λ)t

[R(t) ∨ 1]/n
+ 1 {t > λ}

where λ ∈ (0, 1) is a parameter, R(t) = #{i : pi ≤ t}, and

π̂∗
0(λ) =

#{i : pi > λ} + 1

(1− λ)n
.

The procedure rejects and only rejects nulls whose p-values have ranks no greater

than R = max{i : F̂DR
∗

λ(p(i)) ≤ α}. The procedure is an SU procedure, with

ρ(t) =
αt

π̂∗
0(λ)

∧ λ. (2.1)

It will be coded as STS.
We shall also consider the SU procedures proposed by Finner, Dickhaus, and

Roters in [10]. Fix parameter κ ∈ (0, 1] and let fα(t) = t/{t(1 − α) + α}. The
procedures take ρi(t) = f−1

α (t)1 {t ≤ fα(κ)} + gi(t)1 {t > fα(κ)}, i = 1, 2, 3,
respectively, with

g1(t) =
t− fα(κ)

f ′
α(κ)

+ κ, g2(t) =
κt

fα(κ)
, g3(t) ≡ κ. (2.2)

The procedures will be coded as F1, F2, and F3, respectively.
Recall that for multiple testing, if R is the number of rejected nulls and V

that of rejected true nulls, then FDR = E [V/(R ∨ 1)]. By definition, if there are
n nulls in total and N of them are true, then power = E[(R−V )/{(n−N)∨1}].
Clearly, R − V ≤ n−N , so power ≤ 1.

3. Significance levels defined via nested regions

3.1. P-values under individual null distributions

To construct suitable p-values for composite nulls, we need to first consider how
to define p-values under individual Fθ. These p-values are the basic “building
blocks”. Let {Dt ⊂ Rd : t ∈ R} be a family of Borel sets such that

D1. the family is increasing and right-continuous, i.e. Dt =
⋂

s>tDs for any t;

D2.
⋃

tDt = Rd; and
D3. G(

⋂

tDt) = Fθ(
⋂

tDt) = 0, θ ∈ Θ.
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For each t, denote the probabilities of Dt under G and Fθ by

ψ(t) = G(Dt), φθ(t) = Fθ(Dt). (3.1)

By D1–D3, ψ(t) and φθ(t) are nondecreasing and right-continuous, with ψ(−∞) =
φθ(−∞) = 0 and ψ(∞) = φθ(∞) = 1. Define

s(x) = inf{t : x ∈ Dt}, si = s(Xi), i = 1, . . . , n. (3.2)

By D2, s(x) <∞ is well-defined, and by D3, si > −∞ almost surely. Denote

Rn(t) =

n
∑

i=1

1 {Xi ∈ Dt} . (3.3)

The next result is basic. Its part (1) implies that φθ(si) can be used as p-values
of Xi under Fθ and part (3) shows that Rn(t)/n is the empirical distribution of
si. Apparently, the p-values depend on Dt. While the selection of Dt can have a
strong effect on multiple testing [5], the issue is beyond the scope of the article.

Proposition 3.1. Under D1–3, (1) given θ, if Xi ∼ Fθ, then si ∼ φθ, (2)
s1, . . . , sn are i.i.d. ∼ Q, with Q(t) = (1− a)

∫

φθ(t) ν(dθ) + aψ(t), and (3) for
any t, si ≤ t ⇐⇒ Xi ∈ Dt and hence Rn(t) =

∑

1 {si ≤ t}.

Remark. (1) If the index set of a nested family {Dt, t ∈ I} is an interval
I 6= R, then, by defining Ds =

⋂

t∈I Dt for s ≤ inf I and Ds = Rd for s ≥ sup I,
we can extend the nested family to one with index set R, so that the discussion
in the subsequent sections still applies.

(2) In single hypothesis tests, nested rejection regions are usually indexed
by significance level. As already seen, other indices can be used as well, which
is sometimes more natural and avoids potential problems caused by different
regions having the same significance level. As an example, let Xi be real-valued.
If we set Dt = (−∞, t], then si = Xi and φθ(si) = Fθ(si), the lower-tail proba-
bility of Xi. If we set Dt = [−t,∞), then si = −Xi and φθ(si) = Fθ([−si,∞)) =
Fθ([Xi,∞)), the upper-tail probability of Xi. For Fθ continuous at 0, if we set
Dt = [−t, t] for t ≥ 0 and Ds = {0} for s < 0, then almost surely, si = |Xi| and
φθ(si) = Fθ([−si, si]).

3.2. Maximum significance levels as p-values

The function
Mmax(t) = sup

θ
φθ(t)

is nondecreasing with Mmax(−∞) = 0 and Mmax(∞) = 1. By Proposition
3.1, Mmax(si) is the maximum significance level of Xi over all possible null
distributions, which is a conventional p-value under composite nulls [19]. We
henceforth denote pi,max =Mmax(si).
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It is known that using pi,max as p-values, BH and its variants in (2.1) and (2.2)
can control the FDR [3, 10, 30]. The issue here is the power of the procedures
using pi,max. This will be studied in the simulations in Section 5.

Observe that Mmax(t) can be written as

Mmax(t) = sup
µ

∫

φθ(t) dµ(θ), (3.4)

where the supremum is taken over all possible measures µ on Θ with µ(Θ) ≤ 1. If
no information is available on ν or a, then the above unconstrained supremum is
justified. If, on the other hand, it is known that ν and a satisfy certain conditions,
then, by constraining the supremum with the conditions, it is possible to get
significance levels closer to pi,mix, hence improving the performance of multiple
testing. Here pi,mix =Mmix(si), with

Mmix(t) = (1− a)

∫

φθ(t) dν(θ). (3.5)

Indeed, since
∫

φθ(t) dν(θ) is the probability of Dt under the mixture of the null
distributions, it is known that by using pi,mix as the p-values, the power of BH
is maximized when the FDR is controlled at a target level [2, 13, 29].

Remark. Since for a > 0, the largest possible value of pi,mix is 1 − a < 1,
strictly speaking, pi,mix are not significance levels. Nevertheless, for convenience,
we shall still refer to them as significance levels or p-values.

4. Constructing p-values via constrained maximizations

4.1. Outlines

Henceforth, we consider the case where Θ is a finite set {θk, k = 1, . . . , L}.
Then the probability measure ν can be specified by

ν = (ν1, . . . , νL)
⊤, with νk = ν{θk}.

(Henceforth, boldfaced letters denote L-dimensional vectors.) Denote

φk(t) = φθk(t), ∆ = {c ∈ [0, 1]L : c1 + · · ·+ cL ≤ 1}.

Let si = s(Xi) as in (3.2). From Proposition 3.1, s1, . . . , sn are i.i.d. ∼ Q,
with

Q(t) = (1− a)ν⊤φ(t) + aψ(t),

and their empirical distribution function is Fn(t) = Rn(t)/n, where Rn is as in
(3.3). Now (3.4) and (3.5) can be rewritten as

Mmax(t) = max
k

φk(t) = sup{c⊤φ(t) : c ∈ ∆},

Mmix(t) = (1− a)ν⊤φ(t) = sup{c⊤φ(t) : c = (1− a)ν}.

At the same time, we still have pi,max =Mmax(si) and pi,mix =Mmix(si).
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6

Fig 1. Constraints based on empirical distribution. Since a and ν are unknown, the graph of
(1− a)ν⊤φ(t) is intentionally missing.

The expressions forMmax andMmix suggest a general approach to construct-
ing p-values, that is, by constrained maximization of c⊤φ(si). Certainly, we hope
to get some kind of p-values not so conservative as pi,max but still conservative.
Meanwhile, the closer we can make the p-values to pi,mix, the better. What
constraints can be used then?

A straightforward idea is to find a suitable C ⊂ ∆ and define p-values as

sup{c⊤φ(si) : c ∈ C}.

Under the above considerations, we need (1 − a)ν ∈ C ( ∆, which sometimes
can be satisfied. For example, if it is known for sure that a ≤ a0, then, as
(1−a)ν ∈ ∆′ = {c ∈ ∆ : c1+ · · ·+cL ≥ 1−a0}, one can set C = ∆′. In general,
however, are there constraints that are available under more general conditions?

It turns out that by exploiting properties of empirical distributions, a lot of
constraints can be obtained. To get the constraints, we assume that φ1, . . . , φL
and ψ are continuous.

The constraints can be roughly divided into two types, as described next; see
Fig. 1 for reference.

4.1.1. First type

Since Q(t)− (1− a)ν⊤φ(t) = aψ(t) is increasing in t, the following inequalities

c⊤[φ(t)− φ(s)] ≤ Q(t)−Q(s), t > s ≥ −∞ (A)
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hold for c = (1− a)ν, with s = −∞ corresponding to c⊤φ(t) ≤ Q(t). If Q were
observable, the inequalities could serve as constraints on the maximization of
c⊤φ(t). Since Q is in fact unobservable, we need to find an observable function
Q̃ as a substitute. In general, Q̃ has to be made from the data so it will have
some fluctuations. With this in mind, we should expect a new set of inequalities

c⊤[φ(t)− φ(s)] ≤ Q̃(t)− Q̃(s) + “margin of error”, t > s ≥ −∞, (B)

which have to meet two criteria with high probability. First, the inequalities
should hold for (1−a)ν, so that the resulting p-values are conservative. Second,
the constraints imposed by (B) should not be too lax comparing with (A). Since

sup
t

|Fn(t)−Q(t)| P→ 0, as n→ ∞,

a good choice for Q̃ seems to be Fn, where 0 < ǫn ≪ 1 such that, with high
probability, Fn(t)−Fn(s)+ ǫn ≥ Q(t)−Q(s) for t > s ≥ −∞. Using probability
inequalities, such ǫn can be found. Then the inequalities in (B) become

c⊤[φ(t)− φ(s)] ≤ Fn(t)− Fn(s) + ǫn, t > s ≥ −∞. (4.1)

In practice, for the infinitely many inequalities in (4.1), one has the freedom
of choice. If, for example, only c⊤φ(t) ≤ Fn(t) + ǫn are used as constraints due
to concerns about computational cost, then c⊤1 φ(t) and c⊤2 φ(t) in Fig. 1 are
functions satisfying the constraints.

Remark. (1) Under the constraints in (4.1), it is possible that c⊤φ(t) > Q(t),
as seen from the graphs of c⊤2 φ and Q in Fig. 1.

(2) For different t, the value of c that maximizes c⊤φ(t) may be different.
For example, in Fig. 1, for t around s(i), c2 is a more plausible maximizer than
c1, whereas for t around s(n), the opposite is true.

4.1.2. Second type

Since the constraints in (4.1) are meant to be satisfied with high probability by
all pairs s < t simultaneously, they are not necessarily very tight for particular
values of t. It is possible to replace some of the constraints with tighter ones
based on local properties of the empirical distribution. Since the tails of a sample
are often handled more carefully than its other part in hypothesis tests, we shall
focus on s(i) with i ≪ n. However, the discussion applies equally well to any
small set of si.

The idea is as follows. Since c⊤φ(s(i)) ≤ Q(s(i)) is satisfied by c = (1− a)ν,
if we can find zi, such that with high probability, Q(s(i)) ≤ zi for all i ≤ mn,

where mn ≪ n, then, instead of c⊤φ(s(i)) ≤ Fn(s(i)) + ǫn, we can impose

c⊤φ(s(i)) ≤ zi, i ≤ mn. (4.2)
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To find such zi, note that Q(si) are i.i.d. ∼ Unif(0, 1) as Q = (1− a)ν⊤φ+
aψ is continuous by our assumption. Therefore, Q(s(1)), . . . , Q(s(n)) have the
same joint distribution as S1/Sn+1, . . . , Sn/Sn+1, where Si = ξ1 + · · · + ξi ∼
Gamma(i, 1), with ξk i.i.d.∼ Exp(1) [27, Ch. 8]. Since Sn+1/n→ 1 almost surely
as n → ∞, given 0 < β < 1, for n ≫ 1, with high probability, Q(s(i)) ≤ γi,
where γi is some random variable following Gamma(i, 1/(nβ)). Thus zi can
be set equal to a high percentile of the Gamma distribution. In order for the
constraints in (4.2) to be stronger than their counterparts in (4.1), one needs
to have zi < Fn(s(i)) + ǫn, which has to be checked on a case-by-case basis for
specific choice for ǫn.

4.2. Construction of p-values

To design concrete ways to construct p-values using the foregoing constraints, a
principle we will follow is that a viable construction should yield p-values that
are an increasing function of si. The increasing monotonicity naturally holds
for φk(si), as they are p-values under individual null distributions. However, as
different sets of constraints may be applied to different observations in calcu-
lating their p-values for composite nulls, the increasing monotonicity does not
automatically hold and should be checked for specific constructions.

It is impossible to use all of the foregoing constraints as there are infinitely
many of them. Besides, we need to take into account computational cost. The
constraints we shall use can be divided into 3 categories. First, some “hard”
constraints on c = (c1, . . . , cL), the most basic ones being ck ≥ 0 and

∑

ck ≤ 1.
Second, upper bounds on c⊤φ(si) derived from (4.1) or (4.2), depending on the
rank of si in s1, . . . , sn. Third, upper bounds on c⊤[φ(t) − φ(s)], where s < t
belong to some pre-selected finite set of “check points”.

We need to set some parameters first. To impose hard constraints on c, fix a
closed set ∆′ ⊂ ∆, which must be known for sure to contain (1 − a)ν. In most
cases, ∆′ = ∆ for lack of direct information about ν. To set the margin of error
in the constraints of the form (4.1), fix ǫn > 0 such that ǫn → 0 as n → ∞.
To impose constraints involving c⊤[φ(t) − φ(s)], let Tn be a finite set of check
points. To set zi in (4.2), fix β ∈ (0, 1) and mn such that mn ≪ n for large n.

Denote by Γ̄∗(z; a) the z-th upper -tail quantile of Gamma(a, 1) and define

ui =

{

Γ̄∗ (1/n; i) /(βn), if i ≤ mn,

Fn(s(i)) + ǫn otherwise, and
(4.3)

Since by assumption Q is continuous, with probability 1, si are distinct from
each other and Fn(s(i)) = i/n.

Sequential construction. Denote by pi,seq the p-value of si constructed in
this way. Then pi,seq =Mn,seq(si), where for any t,

Mn,seq(t) =

{

sup
{

c⊤φ(t) : c ∈ ∆′ ∩ Cn,seq(t)
}

, if ∆′ ∩Cn,seq(t) 6= ∅,
1, otherwise,

(4.4)
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with Cn,seq(t) being the set of c ∈ ∆ satisfying the following conditions,

1) c⊤φ(s(j)) ≤ uj for all s(j) ≥ t; and

2) Fn(t2)− Fn(t1) + ǫn ≥ c⊤[φ(t2)− φ(t1)] for t1, t2 ∈ Tn with t ≤ t1 < t2.

Global construction. Denote by pi,glb the p-value of si constructed in this
way. Then pi,glb =Mn,glb(si), where for any t,

Mn,glb(t) =

{

sup
{

c⊤φ(t) : c ∈ ∆′ ∩Cn,glb

}

, if ∆′ ∩Cn,glb 6= ∅,
1, otherwise,

(4.5)

with Cn,glb being the set of c ∈ ∆ satisfying the following conditions,

1) c⊤φ(s(j)) ≤ uj for all j = 1, . . . , n; and

2) Fn(t2)− Fn(t1) + ǫn ≥ c⊤[φ(t2)− φ(t1)] for all t1, t2 ∈ Tn with t1 < t2.

Remark. (1) Since Cn,seq(t) and Cn,glb are convex closed subsets of ∆ and
contain 0, the suprema in the definitions of Mn,seq and Mn,glb are attainable.
Each of Cn,seq(t) and Cn,glb has the property that if c belongs to it, then so
does any d with 0 ≤ di ≤ ci.

(2) For every given t, unlikeMmax(t) andMmix(t), bothMn,seq(t) andMn,glb(t)
depends on s1, . . . , sn and hence are random.

(3) The first construction is dubbed “sequential” because each pi,seq is com-
puted based on sj ≥ si: if we imagine that si are input one by one, starting
with the largest one, then pi,seq can be computed only after all sj > si have
been input. The second construction is dubbed “global” because each pi,glb is
computed based on all sj . While presumably imposing stronger constraints, the
global construction has a higher computational cost.

(4) In both constructions, the constraints are linear, allowing each p-value to
be computed by linear programming. It is easy to see that both allow parallelized
computation of the p-values.

4.3. Application to FDR control

Once pi,seq and pi,glb are computed, they can be applied to testing procedures
just as pi,mix and pi,max are. In this section, we state some theoretical results
on the FDR control by BH based on pi,seq and pi,glb.

The first result deals with pi,seq. The tool for its proof is the optional sampling
theorem (cf. [30]) and the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [21].

Theorem 4.1. Suppose φ1, . . . , φL and ψ are continuous and α < 1− a. Then
for n ≥ 1, provided exp(−2nǫ2n) ≤ 1/2, BH based on pi,seq attains

FDR ≤ α+ rn + E[1 {R > 0} /(R ∨ 1)],

where rn = 2(1 + |Tn|) exp(−2nǫ2n) +mn[1/n+ (βe1−β)n+1].
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The bound contains terms in addition to α. For appropriate ǫn and Tn, the
term 2(1 + |Tn|) exp(−2nǫ2n) is o(1) as n → ∞. Since βe1−β < 1, if mn = o(n),
then rn = o(1). Under certain conditions, R is of the same order as n. Thus,
the bound shows the FDR can be asymptotically controlled at α. On the other
hand, the simulations in Section 5 indicate that usually the realized FDR is
substantially lower than α, which is perhaps not surprising because pi,seq ≥
pi,mix.

Unlike the above result, the optional sampling theorem has not been able to
apply to pi,glb. We will settle for an asymptotic result. For S, T ⊂ R, denote
δ(S, T ) = sup{|s − t|, s ∈ S, t ∈ T }. A sequence of finite sets Sn is said to be
increasingly dense in T if for any r > 0, δ(Sn, T ∩ [−r, r]) → 0 as n→ ∞.

Theorem 4.2. Suppose 1) φ1, . . . , φL and ψ are continuous and 2) as n→ ∞,
ǫn → 0, nǫ2n → ∞, mn = o(n), and Tn is increasingly dense in R.

Let Γ0 = {c ∈ ∆ : Q(t) − Q(s) ≥ c⊤[φ(t) − φ(s)], −∞ ≤ s < t}. Define
m(t) = sup{c⊤φ(t) : c ∈ ∆′ ∩ Γ0} and t∗ := sup {t ∈ R : m(t) ≤ αQ(t)}. If
there is t0 < t∗, such that m(t) < αQ(t) on (t0, t∗), then BH based on pi,glb
attains limn→∞ FDR ≤ α and is asymptotically equivalent to the procedure that
rejects Hi if and only if si ≤ t∗.

The result is based on the observation that as n → ∞, Mn,glb(t) → m(t)
under certain metric as well as a fixed point argument [12].

5. Numerical study

5.1. Setup

We next use simulations to compare the performances of multiple testing when
different types of p-values are used. In the study, we only consider multiple tests
for univariate observations. Given a data distribution Q = (1− a)

∑L
k=1 νkFk +

aG and X1, . . . , Xn i.i.d. ∼ Q, the nulls to be tested are Hi: “Xi ∼ Fk for
some k”, i = 1, . . . , n. We use Fk(Xi) as the p-values under individual null
distributions; cf. the remark at the end of Section 3.1. The parameters of the
data distributions used in the study are listed in Table 1.

Throughout, the target FDR control level is α = 0.25, and, unless otherwise
specified, the fraction of false nulls is a = 0.05. To calculate pi,seq and pi,glb, in

(4.3), we set ǫn =
√

lnn/n, β = 0.95, mn = n1/5, and in (4.4) and (4.5), we let

Table 1

Parameters of the data distributions for the simulation study. tn,c denotes the noncentral t
distribution with n df and noncentrality c

F1, . . . , FL ν1, . . . , νL G
1 N(0, 1), N(−1, 1), N(−2, 1) .75, .15, .1 N(−4, 1)
2 t20, t20,−1, t20,−2 .75, .15, .1 t20,−4

3 N(0, 1), N(−1, 1), N(−2, 1) .6, .25, .15 N(−4, 1)
4 N(0, 1), N(−1, 1.5), N(−2, 1.5) .75, .15, .1 N(−4, 1)
5 N(−i, 1), i = 0, . . . , 4 .65, .15, .1, .05, .05 N(−5, 1)
6 N(5 − i/5, 1), i = 0, . . . , 25 1/26 N(−1, 1)
7 N(5− i/20, 1), i = 0, . . . , 100 ∝ {i ∨ (100 − i) + 0.05}, N(−1, 1)
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Tn be a set of ⌊(lnn)2⌋ equally spaced points that begins with X(1) and ends
with X(n), and set ∆′ = {c ∈ ∆ :

∑

ck ≥ 1− a0}, with a0 = 1 or 0.1.
For each data distribution, the simulation proceeds as follows. First, 1000

samples are drawn, each one consisting of n i.i.d. Xi. Then, for each sample,
different types of p-values are evaluated and different procedures are applied to
the p-values. Finally, measures of performance are estimated by averaging over
the samples. All the simulations are conducted in R language [22]; pi,seq and
pi,glb are computed by the R linear programming package glpk.

5.2. Performances of BH based on different p-values

We apply BH to pi,seq, pi,glb, pi,max and pi,mix, respectively, with pi,seq and pi,glb
being computed by setting ∆′ = ∆ in (4.4) and (4.5). The power and FDR are
estimated by the sample averages of (R−V )/(n−N) and V/(R∨1), where N , R
and V are the total numbers of true nulls, rejected nulls, and rejected true nulls,
respectively. For the first six data distributions (cf. Table 1), we use n = 5000;
for the last one, due to high computational intensity, we use n = 2000.

As seen from Table 2, each type of the p-values allows BH to control the FDR.
On the other hand, pi,mix yields substantially higher power than the others,
while pi,seq and pi,glb yield substantially higher power than pi,max. To get an
idea why this is the case, we compare the plots of the p-values. Since BH tests
nulls by comparing np(i)/i and α, where p(i) is the ith smallest p-value of a
given type, it is informative to graph np̄(i)/i vs i/n, where p̄(i) is the sample
average of p(i). As Fig. 2 shows, for small i/n, np(i),seq/i and np(i),glb/i are
similar, explaining why the performances of BH are similar when it is applied
to the two types of constrained p-values. At the same time, both np(i),seq/i and
np(i),glb/i are substantially lower than np(i),max/i and increase more rapidly
than np(i),mix/i, which explains the differences in power of BH when it is applied
to these different types of p-values. Thus, when νk are intractable, by utilizing
properties of empirical processes to reduce over-evaluation of p-values, the power
of BH can be significantly increased.

We also look at how linear programming works in the evaluation of the con-
strained p-values. For each p(i),seq or p(i),glb, denote by c1,(i), . . . , cL,(i) the co-
efficients obtained by the corresponding optimization in (4.4) or (4.5). Unlike
the p-values, the coefficients exhibit very different patterns (Fig. 3). For each k,

Table 2

Power (top) and FDR (bottom) of BH based on different types of p-values

1 2 3 4 5 6 7
pi,seq 4.93E-1 2.34E-1 4.52E-1 5.29E-4 4.64E-2 1.97E-2 3.39E-2
pi,glb 4.93E-1 2.33E-1 4.52E-1 5.29E-4 4.63E-2 1.96E-2 3.40E-2
pi,max 2.21E-1 3.59E-2 2.30E-1 4.71E-5 3.66E-3 3.78E-3 6.23E-3
pi,mix 7.70E-1 6.35E-1 6.86E-1 1.41E-1 4.47E-1 2.16E-1 5.66E-1

pi,seq 8.56E-2 8.14E-2 1.02E-1 6.65E-2 6.18E-2 5.46E-2 1.42E-2
pi,glb 8.55E-2 8.14E-2 1.02E-1 6.65E-2 6.18E-2 5.48E-2 1.42E-2
pi,max 2.66E-2 2.46E-2 3.79E-2 2.05E-2 1.02E-2 1.39E-2 2.15E-3
pi,mix 2.38E-1 2.40E-1 2.36E-1 2.42E-1 2.36E-1 2.37E-1 2.35E-1
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Fig 2. np̄(i)/i vs i/n for pi,seq (“lp-sequential”), pi,glb (“lp-global”), pi,max (“max”), and
pi,mix (“mix”).
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Fig 3. ck,(i) vs i/n, where c1,(i), . . . , cL,(i) are the coefficients corresponding to p(i),seq (left)
or p(i),glb (right).
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Table 3

Powers of BH based on constrained p-values; cf. section 5.3 for detail. For each type of
p-value, the 1st and 2nd rows are the sample mean and SD of (R−V )/(n−N), respectively

1 2 3 4 5 6 7
pi,seq 4.93E-1 2.34E-1 4.52E-1 5.29E-4 4.64E-2 1.97E-2 3.39E-2

5.40E-2 6.57E-2 5.37E-2 2.20E-3 3.32E-2 1.88E-2 3.56E-2
pi,glb 4.93E-1 2.33E-1 4.52E-1 5.29E-4 4.63E-2 1.96E-2 3.40E-2

5.40E-2 6.57E-2 5.37E-2 2.20E-3 3.32E-2 1.88E-2 3.56E-2
p′i,seq 5.39E-1 2.96E-1 4.78E-1 8.50E-4 4.67E-2 1.98E-2 3.42E-2

5.16E-2 6.88E-2 5.29E-2 2.87E-3 3.33E-2 1.90E-2 3.58E-2
p′
i,glb 5.39E-1 2.96E-1 4.78E-1 8.50E-4 4.67E-2 1.98E-2 3.42E-2

5.16E-2 6.88E-2 5.29E-2 2.87E-3 3.33E-2 1.90E-2 3.58E-2

when i/n is small, the two types of ck,(i) are similar. However, as i/n increases,
for p(i),seq, all but one ck,(i) become 0, while for p(i),glb, a more complicated
combination of ck,(i) emerges. This difference may be partially due to how lin-
ear programming is implemented by the software used. However, it also suggests
that ck cannot be used as suitable estimates of νk.

5.3. Effects of stronger hard constraint

Observe that in Fig. 3,
∑

k ck,(i) ≤ 0.4 for small i/n. Since a = 1 −∑

ck, this
means that in the evaluation of the constrained p-values, 0.6 is counted as a
feasible value of a, which is too high comparing to the true value a = 0.05.
This suggests that, by imposing more constraints on

∑

ck, the power may be
improved. We therefore simulate the scenario where it is known that a ≤ 0.1.
In this scenario, the hard constraint becomes c ∈ ∆′ = {c ∈ ∆ :

∑

ck ≥ 0.9}.
Denote by p′i,seq and p′i,glb the p-values evaluated under the extra constraint.

Table 3 compares the powers of BH when it is applied to pi,seq, pi,glb, p
′
i,seq and

p′i,glb, respectively. For each type of the p-values, the sample SDs of (R−V )/(n−
N) are also shown. For some of the data distributions (1–3), there is a small but
significant increase in power when BH is applied to p′i,seq and p′i,glb, while for the
other data distributions, there is no significant difference. Fig. 4 shows the plots
of np(i)/i for the 1st and 5th data distributions. Since all the rejected nulls are
associated with i≪ n, we only compare the plots for i ≤ 0.05n. Like p(i),seq and
p(i),glb, the plots for p

′
(i),seq and p′(i),glb are very close to each other. On the other

hand, for the 1st data distribution, the latter two are significantly lower than
the former two, which explains the improved power of BH when it is applied to
p′i,seq and p′i,glb. Finally, as Figs. 3 and 5 show, the new hard constraint on c

substantially changes ck(i).

5.4. Comparisons between BH and its variants

For multiple testing on simple nulls with independent p-values, STS (2.1) and
F1–3 (2.2) are more powerful than BH [10, 30]. They are also easy to implement.
Since constrained p-values are computationally costly, one may ask if they can
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Fig 4. np̄(i)/i vs i/n, with i/n ≤ 0.05. Plots with open symbols are for pi,seq and pi,glb; those
with closed symbols are for p′i,seq and p′

i,glb. See section 5.3 for detail.
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Fig 5. ck,(i) vs i/n, where c1,(i), . . . , cL,(i) are the coefficients to attain p′
(i),seq

(left) or

p′
(i),glb

(right). See section 5.3 for detail.
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Table 4

Powers of STS (top), F1–3 (bottom) based on different types of p-values; cf. section 5.4 for
detail

1 2 3 4 5 6 7
pi,seq 4.72E-1 2.10E-1 4.30E-1 3.72E-4 4.03E-2 1.71E-2 2.84E-2
pi,glb 4.89E-1 2.25E-1 4.46E-1 4.03E-4 4.15E-2 1.74E-2 2.90E-2
pi,max 1.39E-1 1.40E-2 1.51E-1 2.36E-5 1.81E-3 2.06E-3 3.67E-3
pi,mix 7.83E-1 6.56E-1 7.01E-1 1.92E-1 4.77E-1 2.35E-1 5.85E-1

pi,seq 4.99E-1 2.37E-1 4.57E-1 5.46E-4 4.68E-2 1.98E-2 3.41E-2
pi,glb 4.99E-1 2.37E-1 4.57E-1 5.46E-4 4.68E-2 1.98E-2 3.41E-2
pi,max 2.23E-1 3.60E-2 2.32E-1 4.71E-5 3.66E-3 3.78E-3 6.22E-3
pi,mix 7.80E-1 6.48E-1 6.97E-1 1.52E-1 4.61E-1 2.21E-1 5.77E-1

be dispensed with by STS and F1–3. In the context of the study, the question
becomes, whether the power of these procedures when they are applied to pi,max

can be as high as the power of BH when it is applied to pi,seq or pi,glb.
To answer the question, we apply STS, F1, F2 and F3 to the p-values used

in Section 5.2. We set λ = 0.5 in (2.1) for STS and κ = 0.5 in (2.2) for F1–
3. Table 4 shows the powers of the procedures. The results from F1, F2, and
F3 are identical, so they are grouped together. Comparing with Table 2, it is
seen that the powers of BH, STS and F1–3 when they are applied to pi,max are
similar, and all are substantially lower than the power of BH when it is applied
to pi,seq and pi,glb. The following observations can also be made. First, when
these procedures are applied to pi,mix, STS consistently has more power than
the others. In contrast, when these procedures are applied to other types of the
p-values, STS has the lowest power. Second, F1–3 in general has a little more
power than BH when applied to each type of p-values. The results suggest that,
when a is small, how p-values are defined has a stronger influence on multiple
testing than how BH is modified, and variants of BH can have more or less
power depending on the p-values being used.

To see how the procedures perform when the fraction of false nulls becomes
larger, we repeat the simulations for moderate and large values of a, while
keeping the other parameters unchanged. Tables 5 and 6 display the powers of
the procedures in the simulations using the 6th set of parameters in Table 1.
Since all the procedures control the FDR at or below α = 0.25, the values of
FDR are omitted. As seen from the tables, for all the values of a, the power of
BH when it is applied to the constrained p-values is substantially higher then
the powers of STS and F1–3 when they are applied to pi,max. This again shows
that the constrained p-values cannot be dispensed with by the variants of BH.
The following observations can also be made. First, for each procedure, across
the values of a, the constrained p-values yield more power than pi,max, but less
power than pi,mix. Second, the powers of BH when it is applied to the two types
of constrained p-values are similar, even when a is large. This is also the case
for F2 and F3. In contrast, as a increases, STS gains more power from pi,glb
than from pi,seq, and even for moderate a, the gain is quite a lot. For F1, such
gain in power from pi,glb is obvious only for large a. Third, as a increases, both
STS and F1–3 become more powerful than BH when all of them are applied to
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Table 5

Powers of BH (top), STS (middle) and F1–3 (bottom) based on different types of p-values,
when a = 0.05k, k = 1, . . . , 6. Except for a, the parameters are identical to the 6th group in

Table 1. See section 5.4 for detail

a .05 .1 .15 .2 .25 .3
pi,seq 1.97E-2 4.56E-2 7.73E-2 1.18E-1 1.63E-1 2.05E-1
pi,glb 1.96E-2 4.56E-2 7.73E-2 1.18E-1 1.63E-1 2.05E-1
pi,max 3.78E-3 6.88E-3 1.13E-2 1.90E-2 2.95E-2 4.41E-2
pi,mix 2.16E-1 4.33E-1 5.82E-1 6.83E-1 7.54E-1 8.07E-1

pi,seq 1.71E-2 3.86E-2 6.53E-2 1.01E-1 1.41E-1 1.79E-1
pi,glb 1.74E-2 4.16E-2 7.58E-2 1.26E-1 1.91E-1 2.61E-1
pi,max 2.06E-3 3.14E-3 4.67E-3 7.66E-3 1.29E-2 2.14E-2
pi,mix 2.35E-1 4.85E-1 6.60E-1 7.79E-1 8.59E-1 9.15E-1

pi,seq 1.98E-2 4.60E-2 7.89E-2 1.23E-1 1.74E-1 2.25E-1
pi,glb 1.98E-2 4.60E-2 7.89E-2 1.23E-1 1.74E-1 2.25E-1
pi,max 3.78E-3 6.88E-3 1.13E-2 1.92E-2 3.01E-2 4.54E-2
pi,mix 2.21E-1 4.56E-1 6.28E-1 7.52E-1 8.41E-1 9.04E-1

Table 6

Powers of the same procedures as in Table 5 when a is large. Differing values associated
with F1 and F2–3 are marked by a and b respectively

a .4 .5 .6
pi,seq 2.96E-1 3.86E-1 4.76E-1
pi,glb 2.96E-1 3.86E-1 4.76E-1
pi,max 8.24E-2 1.27E-1 1.75E-1
pi,mix 8.75E-1 9.15E-1 9.41E-1

pi,seq 2.83E-1 4.41E-1 6.60E-1
pi,glb 4.38E-1 6.56E-1 8.84E-1
pi,max 5.36E-2 1.11E-1 2.02E-1
pi,mix 9.74E-1 9.95E-1 1.00

pi,seq 3.51E-1 5.08E-1 7.19E-1
pi,glb 3.51E-1 5.83E-1a, 5.08E-1b 1.00a, 7.19E-1b

pi,max 8.73E-2 1.41E-1 2.08E-1
pi,mix 9.72E-1 9.95E-1 1.00

the constrained p-values. The difference is large when a is large. On the other
hand, between STS and F1–3, the picture is more complicated. Depending on
the value of a, each one can be more powerful than the other when applied to
pi,glb. However, when applied to pi,seq or pi,max, F1–3 have more power, whereas
when applied to pi,mix, STS has more power, especially for moderate a (≤ .3).
In summary, for moderate or large a, pi,glb yields more power than pi,seq and
pi,max, and STS and F1 tend to have more power than the other procedures.

The above results indicate that for large a, the two types of constrained p-
value are no longer similar to each other. This is confirmed by Fig. 6. When
a = .5, the plots for pi,seq and pi,glb are significantly different. It is also worth
noting that in this case, for large i, p(i),glb are significantly smaller than p(i),mix.
The difference is also noticeable for a = 0.4 and even greater for a = 0.6 (results
not shown). This suggests that, even though a cannot be estimated consistently,
by exploiting the empirical distribution of observations, the linear programming
for pi,glb can impose strong constraints on feasible values of a. Of course, it
should be noted that this only occurs when a is large.
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Fig 6. np̄(i)/i vs i/n for different types of p-values in the simulations reported in Tables 5
and 6. The legend is identical to that of Figure 2.

Table 7

Power (top) and the FDR (bottom) of BH for different sample sizes; cf. section 5.5 for
detail

Distribution 6 Distribution 7
n 500 1000 2000 5000 500 1000 2000

pi,seq 4.12E-2 3.10E-2 2.53E-2 1.97E-2 4.66E-2 3.77E-2 3.39E-2
pi,glb 4.12E-2 3.10E-2 2.53E-2 1.96E-2 4.66E-2 3.77E-2 3.40E-2
pi,max 1.66E-2 1.03E-2 6.20E-3 3.78E-3 1.46E-2 9.79E-3 6.23E-3
pi,mix 2.61E-1 2.37E-1 2.29E-1 2.16E-1 5.68E-1 5.69E-1 5.66E-1

pi,seq 5.71E-2 5.73E-2 5.73E-2 5.46E-2 1.11E-2 1.54E-2 1.42E-2
pi,glb 5.71E-2 5.73E-2 5.72E-2 5.48E-2 1.11E-2 1.54E-2 1.42E-2
pi,max 1.96E-2 1.99E-2 1.58E-3 1.39E-2 2.17E-3 5.53E-3 2.15E-3
pi,mix 2.40E-1 2.39E-1 2.38E-1 2.37E-1 2.38E-1 2.37E-1 2.35E-1

5.5. Effects of sample size

Finally, we run simulations on BH with n = 500, 1000, 2000, and 5000 for
the first six distributions in Table 1, and n = 500, 100, and 2000 for the last
one. Table 7 shows the results for the 6th and 7th distributions. The results for
the others show similar patterns. Across all values of n, the FDR is controlled.
The power shows an decreasing trend when n increases. The trend is more
pronounced for pi,seq, pi,glb and pi,max than for pi,mix.

6. Discussion

We have only considered the case where the number of null distributions is
finite. Formally, it is straightforward to generalize the constrained maximiza-
tion to the case where there are infinitely many null distributions. Generally
speaking, however, the maximization will involve infinitely many degrees of
freedom and it is unclear how to accommodate this with a finite number of
observations. An alternative approach might be to partition the set of null dis-
tributions into a finite number of subsets and use the envelopes of the subsets



Z. Chi/Constrained p-values 289

to compute p-values. More specifically, given a partition Θ1, . . . ,ΘL of Θ, let
uk(t) = sup{φθ(t) : θ ∈ Θk} and lk(t) = inf{φθ(t) : θ ∈ Θk}. Then define, for
example, Mn(t) = sup c⊤u(t), where the supremum is taken over c ∈ ∆ such
that c⊤l(t) is dominated by the empirical distribution function. One issue is
how to select the partition. Too coarse partition will only yield loose constraints
on ck and too fine partition will result in many degrees of freedom. Either way,
the obtained Mn(t) may not be much different from unconstrained maximum
significance levels.

As is known, the local FDR can be used for multiple testing [9]. For simple
nulls, the local FDR is (1 − a)f0(x)/h(x), where f0 is the density under true
nulls and h the overall density of the data. If the number of null distributions
is finite with densities f1, . . . , fL, one could define a conservative local FDR as
ρ(x)/h(x), where ρ(x) = max{c⊤f(x): c ∈ ∆ and c⊤f ≤ h}. Furthermore, if the
dimension of the data is high, one could instead use the empirical distribution
of its low-dimensional transformations to get constraints.

The article only considers the case where the data collected for different nulls
are independent. Some progress has been made on multiple testing for time
series [17]. Since the constraints used here are derived from empirical marginal
distributions, they can also be applied to time series. At issue is the strength
of the constraints, which is determined by how well the empirical marginal
distribution approximates the underlying marginal distribution. For the i.i.d.
case, this can be resolved by the DKW inequality. For other cases, if similar
inequalities are available, then one may also get useful constraints.

Appendix

In this Appendix, the sup-norm of f ∈ C(R) will be denoted by ‖f‖.

A.1. Proof of Proposition 3.1

By Assumption D1, for any t,

si ≤ t ⇐⇒ Xi ∈ Ds for all s > t ⇐⇒ Xi ∈ Dt,

which not only gives (3) but also P{si ≤ t} = P{Xi ∈ Dt} = φθ(t) and hence (1).
From (1) and the random mixture model, (2) follows.

A.2. Proof of Theorem 4.1

To prove the result, we will employ a stopping time technique and also rely on
a few probability inequalities, esp. the DKW inequality [21]. Let

τ = sup {t : Mn,seq(t) ≤ α[Rn(t) ∨ 1]/n} ,
where Rn(t) is as in (3.3). We will show that BH is equivalent to a thresholding
procedure with τ as the cut-off, making it possible to apply the optional sampling
theorem. Together with a few probability inequalities, this will give Theorem 4.1.
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Recall that by assumption, φk and ψ are continuous. Denote F = ν⊤φ. Then
F ∈ C(R) and by Proposition 3.1, under true Hi, si are i.i.d. ∼ F .

Lemma A.1. Mn,seq is always nondecreasing with Mn,seq(−∞) = 0. Almost
surely, 1) Mn,seq is continuous at every t other than s1, . . . , sn and 2) Mn,seq is
left-continuous and has a right limit at each si.

Proof. If s < t, then Cn,seq(s) ⊂ Cn,seq(t) and φk(s) ≤ φk(t) for every k.
Therefore, Mn,seq(s) ≤Mn,seq(t). By φk(−∞) = 0, Mn,seq(−∞) = 0.

To show 1) and 2), it suffices to show a)Mn,seq is left-continuous and b)Mn,seq

is right-continuous at every t 6∈ S = {s1, . . . , sn} and has a right limit at every si.
a) Fix t. If 0 < t − u ≪ 1, then [u, t) has no point in Tn ∪ S. Thus

Cn,seq(u) = Cn,seq(t). Denote K = Cn,seq(t). It is not hard to see that K is com-
pact and c⊤φ(s) is uniformly continuous in (c, s) ∈ K×R. Then sup

c∈K c⊤φ(s)
is continuous in s, implying Mn,seq(u) → Mn,seq(t) as u ↑ t. Thus Mn,seq is left-
continuous.

b) Since Mn,seq is nondecreasing, it has a right limit at every t. It remains to
show that at t 6∈ S, Mn,seq is right-continuous. Given t 6∈ S, if 0 < u − t ≪ 1,
then [t, u) has no point in Tn ∪ S, thus Cn,seq(u) = Cn,seq(t). Then the right-
continuity follows from the same argument for the left-continuity.

Lemma A.2. (1) There is a nonrandom b0 > −∞, such that τ ≥ b0 absolutely.
(2) Almost surely, τ <∞. (3) Almost surely,Mn,seq(τ)∨(α/n) ≤ α[Rn(τ)∨1]/n.
Proof. (1) Since

Mn,seq(t) ≤ u(t) :=
∑

k

φk(t)

and φ is continuous with φ(−∞) = 0, τ ≥ b0 := sup {t : u(t) ≤ α/n} > −∞.
(2) Almost surely, u := s(n) ∨maxTn <∞. For t > u, Mn,seq(t) = sup{c⊤φ(t) :
c ∈ ∆′}. Since (1− a)ν ∈ ∆′ and 1− a > α, for all t≫ u, Mn,seq(t) > α, giving
τ < ∞. (3) follows from (1), (2) and that Mn,seq is left-continuous and Rn is
nondecreasing.

Lemma A.3. BH based on pi,seq rejects Hi if and only if si ≤ τ .

Proof. By definition, BH based on pi,seq rejects Hi if and only if si ≤ s(R),
where R = max{i : Mn,seq(s(i)) ≤ αi/n}, with max ∅ = 0. Clearly s(R) ≤ τ ,
so any Hi rejected by BH has si ≤ τ . On the other hand, suppose si ≤ τ .
Let j be the largest integer with s(j) ≤ τ . Then Mn,seq(s(j)) ≤ Mn,seq(τ) ≤
α[Rn(τ) ∨ 1]/n = αj/n, with the second inequality due to Lemma A.2. Thus
j ≤ R. As si ≤ s(j) ≤ s(R), Hi is rejected by BH.

Let N be the total number of true nulls. For each t, let Ft be the σ-field
generated by si and ηi that are “observable” in [t,∞), i.e.,

Ft = F(N, 1 {si ≥ s} , η̃i(s), s ≥ t, i = 1, . . . , n), where η̃i(s) =

{

ηi if si ≥ s,

ø if si < s,
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with ø 6∈ {∗}∪Θ denoting a value being missing. Then Rn(t−) = n−#{i : si ≥
t} and Vn(t−) = N −#{i : si ≥ t, ηi ∈ Θ} are Ft-measurable, where

Vn(t) =

n
∑

i=1

1 {Xi ∈ Dt, ηi ∈ Θ} . (A.1)

Likewise, for s ≥ t, Rn(s) and Vn(s) are Ft-measurable. It is seen that {Ft, t ∈
R} is a backward filtration, i.e., Ft ⊂ Fs for t > s.

Lemma A.4. For t ∈ R, Mn,seq(t) is Ft-measurable.

Proof. It suffices to show that given t and 0 ≤ z < 1, {Mn,seq(t) > z} ∈ Ft. Let
S be a dense countable subset of ∆′. Note that S ∩ Cn,seq(t) may not be dense
in ∆′ ∩Cn,seq(t). By the properties of Cn,seq(t) noted at the end of Section 4.2,
it can be seen that Mn,seq(t) > z if and only if for some fixed rational number
r > 0 and every k, there is c ∈ Tr,k = {c ∈ S : (c− 1/k)⊤φ(t) ≥ z + r − 2L/k}
such that (c − 1/k)+ ∈ Cn,seq(t), where 1 = (1, . . . , 1)⊤ and d+ stands for a
point with coordinates di ∨ 0. That is,

{Mn,seq(t) > z} =
⋃

r∈Q+

∞
⋂

k=1

⋃

c∈Tr,k

{(c− 1/k)+ ∈ Cn,seq(t)} ,

whereQ+ denotes the set of positive rational numbers. Since Tr,k is countable, by
the above expression, it suffices to show that for any c, the event {c ∈ Cn,seq(t)}
belongs to Ft, which follows easily from the definition of Cn,seq(t).

Lemma A.5. Fix t ∈ R. If F (t) > 0, then for any s ≤ t,

E[Vn(s−) | Ft] =
F (s)Vn(t−)

F (t)
, a.s.

Proof. We already know that Vn(t−) is Ft-measurable. It suffices to show

E[1EVn(s−)] = F (s)E[1EVn(t−)]/F (t), any E ∈ Ft. (A.2)

As t is fixed, it is more convenient to write Ft as

Ft = F(N, ŝi, η̂i, i = 1, . . . , n), where ŝi =

{

si if si ≥ t,

−∞ if si < t,
η̂i = η̃i(t).

Given E ∈ Ft, there is a Borel function f(x, ai, bi, i = 1, . . . , n) in x ∈
{1, . . . , n}, ai ∈ [−∞,∞), and bi ∈ Θ∪{∗}∪{ø}, such that 1E = f(N, ŝi, η̂i, i =
1, . . . , n) ([26], p. 172). Given I, J ⊂ {1, . . . , n}, let fIJ be a function only in ai
and bi with i 6∈ I as follows,

fIJ(ai, bi, i 6∈ I) = f(|I|+ |J |, ai, bi, i 6∈ I, ak = −∞, bk = ø, k ∈ I).

Since ŝi, η̂i are Ft-measurable, fIJ(ŝi, η̂i, i 6∈ I) is Ft-measurable. We claim

1EVn(s−) =
∑

I∩J=∅

AIJBI , (A.3)



Z. Chi/Constrained p-values 292

where for I, J ∈ {1, . . . , n},

AIJ = fIJ(ŝi, η̂i, i 6∈ I)
∏

i∈J

1 {si ≥ t, ηi ∈ Θ}
∏

i6∈I∪J

1 {ηi = ∗} ,

BI =
∏

i∈I

1 {si < t, ηi ∈ Θ} ×
∑

k∈I

1 {sk < s, ηk ∈ Θ}

=
∑

k∈I

1 {sk < s, ηk ∈ Θ}
∏

i∈I\{k}

1 {si < t, ηi ∈ Θ} .

Assuming (A.3) is true for now, observe that for each fixed disjoint pair I and
J , AIJ and BI are independent, because AIJ is determined by (si, ηi, i 6∈ I),
while BI is determined by (si, ηi, i ∈ I). Furthermore, E(AIJ ) is independent of
the value of s, while by the continuity of F ,

E(BI) =
∑

k∈I

(1− a)|I|F (s)F (t)|I|−1 = |I| [(1− a)F (t)]|I|F (s)/F (t).

It follows that

E[1EVn(s−)] =
LF (s)

F (t)
, with L =

∑

I∩J=∅

E(AIJ ) |I| [(1− a)F (t)]|I|.

In particular, letting s = t, it is seen that L = E[1EVn(t−)] and (A.2) follows.
Finally, to prove (A.3), let I = {i : si < t, ηi ∈ Θ}, J = {i : si ≥ t, ηi ∈ Θ}.

Since I ∩ J = ∅,
1EVn(s−) =

∑

I∩J=∅

1EVn(s−)1 {I = I, J = J} .

Comparing to (A.3), it suffices to show that for every disjoint pair I and J ,

1EVn(s−)1 {I = I, J = J} = AIJBI . (A.4)

Since I ∪ J = {i : ηi ∈ Θ}, given disjoint I and J , if I = I and J = J , then

1E = f(N, ŝi, η̂i, i = 1, . . . , n)

= f(|I|+ |J |, ŝi, η̂i, i 6∈ I, ŝk = −∞, η̂k = ø, k ∈ I) = fIJ(ŝi, η̂i, i 6∈ I)

and Vn(s−) = |{k : sk < s, ηk ∈ Θ}| = ∑

k∈I 1 {sk < s, ηk ∈ Θ}. As a result,

1EVn(s−)1 {I = I, J = J}

= fIJ(ŝi, η̂i, i 6∈ I)

[

∑

k∈I

1 {sk < s, ηk ∈ Θ}
]

1 {I = I, J = J} .

On the other hand, by the definition of AIJ and BI ,

AIJBI = fIJ(ŝi, η̂i, i 6∈ I)

[

∑

k∈I

1 {sk < s, ηk ∈ Θ}
]

×
∏

i∈I

1 {si < t, ηi ∈ Θ}
∏

i∈J

1 {si ≥ t, ηi ∈ Θ}
∏

i6∈I∪J

1 {ηi = ∗} .
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By the definition of I and J ,
∏

i∈I

1 {si < t, ηi ∈ Θ}
∏

i∈J

1 {si ≥ t, ηi ∈ Θ}
∏

i6∈I∪J

1 {ηi = ∗} = 1

⇐⇒ I ⊂ I, J ⊂ I, and {1, . . . , n} \ (I ∪ J) ⊂ {1, . . . , n} \ (I ∪ J )

⇐⇒ 1 {I = I, J = J} = 1.

Therefore, (A.4) is proved.

Lemma A.6. Given δ > 0, let Z(t) = Vn(t−)/[F (t) ∨ δ]. Then {Z(t), Ft} is a
left-continuous backward supermartingale.

Proof. Since Vn(t−) is left-continuous and F (t)∨δ ≥ δ is continuous, Z(t) is left-
continuous. To show that {Z(t),Ft} is a backward supermartingale, it suffices
to show that for any s < t, E[Z(s) | Ft] ≤ Z(t). If Vn(t−) = 0, then Vn(s−) = 0
for any s ≤ t and E[Z(s) | Ft] = 0 = Z(t). If Vn(t−) > 0, then there has to be
F (t) > 0. By Lemma A.5,

E[Z(s) | Ft] = KVn(t−), with K =
F (s)

[F (s) ∨ δ]F (t) .

By 0 ≤ F (s) ≤ F (t), K ≤ 1/[F (t) ∨ δ], hence showing the claim.

In light of the Lemmas, our intention is to apply the optional sampling the-
orem to τ and {Z(t), Ft}. There is one minor problem with this, i.e., the index
t starts at ∞ instead of a finite value. We can get around the problem using
truncation. Let b0 be as in part (1) of Lemma A.2. For c > b0, define

τc = sup {t ≤ c : Mn,seq(t) ≤ α[Rn(t) ∨ 1]/n} .
By Lemma A.2, the set on the right hand side is nonempty, so τc is well-defined.
Furthermore, almost surely, for all c≫ 1, τc = τ .

Lemma A.7. For each c > b0, τc is a stopping time of the backward filtration
{Ft, t ≤ c}. Furthermore, for the Z(t) in Lemma A.6, E[Z(τc)] ≤ (1− a)n.

Proof. To show that τc is a stopping time of the backward filtration Ft, it suffices
to show {τc ≥ t} ∈ Ft for every t ≤ c. By the same argument for (3) of Lemma
A.2, Mn,seq(τc) ≤ α[Rn(τc) ∨ 1]/n. Therefore, {τc ≥ t} = {g(s) ≤ 0 for some
s ∈ [t, c]}, where g(s) = Mn,seq(s) − α[Rn(s) ∨ 1]/n. Since the latter event can
be reduced to {g(t) ≤ 0} ∪ {g(si) ≤ 0 for some si ∈ (t, c]}, it is in Ft.

Let Xt = −Z(c − t) and F̃t = Fc−t for 0 ≤ t ≤ c − b0 and T = c − τc.
By Lemma A.6, {Xt, F̃t, 0 ≤ t ≤ c − b0} is a right-continuous submartingale
with a last element Xc−b0 and T is a stopping time of {F̃t, 0 ≤ t ≤ c − b0}.
By the optional sampling theorem (cf. [18], Ch. 1, Thm 3.22), E(XT ) ≥ E(X0).
Consequently, E[Z(τc)] ≤ E[Z(c)] = E{Vn(c−)/[F (c) ∨ δ]} ≤ (1− a)n.

We shall need a few probability inequalities. To get the first one, for each t,
let

E(t) = {c ∈ ∆ : c satisfies conditions 1) and 2)}



Z. Chi/Constrained p-values 294

where the conditions are

1) c⊤φ(s(j)) ≤ Fn(s(j)) + ǫn for all s(j) ≥ t; and

2) Fn(t2)− Fn(t1) + ǫn ≥ c⊤[φ(t2)− φ(t1)] for t1, t2 ∈ Tn with t ≤ t1 < t2.

Lemma A.8. If exp(−2nǫ2n) ≤ 1
2 , then

P {(1− a)ν 6∈ E(t) for some t} ≤ 2(1 + |Tn|) exp(−2nǫ2n).

Proof. Recall Q ∈ C(R). By the DKW inequality in [21], for any λ > 0 with
exp(−2nλ2) ≤ 1

2 , P{supt[Q(t)−Fn(t)] ≥ λ} ≤ exp(−2nλ2). By (1−a)ν⊤φ ≤ Q,

P
{

(1− a)ν⊤φ(t) ≥ Fn(t) + λ for some t
}

≤ 2 exp(−2nλ2).

On the other hand, we will show that given x ∈ R,

P

{

sup
t≥x

{[Q(t)−Q(x)]− [Fn(t)− Fn(x)]} ≥ λ

}

≤ 2 exp(−2nλ2). (A.5)

Assuming (A.5) is true for now, it gives

P

{

Q(t)−Q(ti) ≥ Fn(t)− Fn(ti) + λ

for some ti ∈ Tn and t > ti

}

≤ 2|Tn| exp(−2nλ2).

Let λ = ǫn. By Q(t) − Q(ti) ≥ (1 − a)ν⊤[φ(t) − φ(ti)] for t > ti, the Lemma
follows.

It remains to get (A.5). Let y = Q(x). By quantile transformation,

sup
t≥x

{[Q(t)−Q(x)]− [Fn(t)− Fn(x)]}

∼ ξ = sup
s≥y

{s− y − [Gn(s)−Gn(y)]},

whereGn is the empirical distribution of Ui = Q(Xi) i.i.d. ∼ Unif(0, 1). Let Vi =
Ui−y+1 {Ui ≤ y}. Then Vi are i.i.d. ∼ Unif(0, 1) and ξ = sup0≤s≤1−y[s−G′

n(s)],
where G′

n is the empirical distribution of Vi. Applying DKW inequality to ξ, it
is seen that (A.5) follows.

To get the rest of the probability inequalities we need, let

E ′ =
{

c ∈ ∆ : c⊤φ(s(i)) ≤ Γ∗(1/n; i)/(βn) for all i ≤ mn

}

(A.6)

Lemma A.9. Let ui be defined as in (4.3). Then

P {(1 − a)ν 6∈ E ′} ≤ P
{

Q(s(i)) > ui for some i = 1, . . . ,mn

}

≤ mn

[

1/n+ (βe1−β)n+1
]

.

Proof. We follow the comment just below (4.2) and use the notation therein.
Given β ∈ (0, 1), let t = 1/β − 1 > 0. Then by exponential inequality (cf. [27],
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p. 852, Eq. (a)) for k ≥ 1, P{ξ1 + · · · + ξk ≤ βk} ≤ {Eet(β−ξ1)}k = (βe1−β)k.
For i = 1, . . . ,mn, since ui = Γ̄∗(1/n; i)/(βn), then

P
{

Q(s(i)) > ui
}

= P

{

∑i
k=1 ξk

∑n+1
k=1 ξk

>
Γ̄∗(1/n; i)

βn

}

≤ P

{

i
∑

k=1

ξk > Γ̄∗(1/n; i)

}

+ P

{

n+1
∑

k=1

ξk ≤ βn

}

≤ 1/n+ (βe1−β)n+1,

where the last inequality is due to
∑i

k=1 ξk ∼ Gamma(i, 1). It is then seen the
second inequality claimed in the Lemma holds. Since (1 − a)ν 6∈ E ′ implies
Q(s(i)) > Γ̄∗(1/n; i)/(βn) for some i ≤ mn, the first inequality also holds.

Proof of Theorem 4.1. First, by Lemma A.3, R = Rn(τ) and V = Vn(τ). Let
δ = α/[n(1−a)]. For c > b0, by Lemma A.7, E [Vn(τc−)/ {F (τc) ∨ δ}] ≤ (1−a)n.
Let c ↑ ∞. By dominated convergence,

E

[

Vn(τ−)

F (τ) ∨ δ

]

≤ (1 − a)n. (A.7)

On the other hand, let Γ = {(1− a)ν ∈ Cn,seq(t) for all t}. Then

FDR = E

[

V

R ∨ 1

]

= E

[

Vn(τ−)

R ∨ 1

]

+ E

[

Vn(τ)− Vn(τ−)

R ∨ 1

]

≤ E

[

Vn(τ−)

R ∨ 1
Γ

]

P(Γ) + P(Γc) + E

[

Vn(τ) − Vn(τ−)

R ∨ 1

]

.

By Lemma A.2, [nMn,seq(τ)/α] ∨ 1 ≤ R ∨ 1. On the other hand, by the
definition of Mn,seq, conditional on Γ, Mn,seq(τ) ≥ (1− a)F (τ). Thus, by (A.7),

E

[

Vn(τ−)

R ∨ 1
Γ

]

P(Γ) ≤ E

[

Vn(τ−)

{n(1− a)F (τ)/α} ∨ 1
Γ

]

P(Γ)

≤ α

n(1− a)
E

[

Vn(τ−)

F (τ) ∨ δ

]

≤ α.

It is easy to see that Cn,seq(t) ⊃ E(t) ∩ E ′. Therefore, by Lemmas A.8 and
A.9, P(Γc) ≤ 2(1 + |Tn|) exp(−2nǫ2n) + mn[1/n + (βe1−β)n+1]. Finally, note
that R = 0 implies Vn(τ) − Vn(τ−) = 0 while Vn(τ) − Vn(τ−) ≥ 2 implies at
least two true nulls have the same value of si, which is a null event. Therefore,
Vn(τ) − Vn(τ−) ≤ 1 {R > 0} a.s. This finishes the proof.

A.3. Proofs of Theorem 4.2

For each r ≥ 0, let

Γr =
{

c ∈ ∆ : Q(t)−Q(s) + r ≥ c⊤[φ(t)− φ(s)],−∞ ≤ s < t
}

.

It is easy to see that for 0 ≤ s < r, (1− a)ν ∈ Γs ⊂ Γr and Γs =
⋂

r>s Γr.
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Lemma A.10. Let r > 0. Then P{Γ0 ⊂ Cn,glb ⊂ Γr} → 1 as n→ ∞.

Proof. Let En = {‖Fn −Q‖ ≤ ǫn/2} and Ẽn = {Q(s(i)) ≤ ui, all i = 1, . . . ,mn},
where ui are defined as in (4.3). It is seen that En∩Ẽn implies Γ0 ⊂ Cn,glb. Since
Q ∈ C(R), the DKW inequality [21] gives P(Ec

n) ≤ 2 exp(−nǫ2n/2). As nǫ2n → ∞,
P(En) → 1. On the other hand, by Lemma A.9 and mn = o(n), P(Ẽc

n) → 0. It
follows that P{Γ0 ⊂ Cn,glb} ≥ P(En ∩ Ẽn) → 1.

Given r > 0, fix C > 0 and ε > 0, such that

max
k

[φk(−C) + 1− φk(C)] +Q(−C) + 1−Q(C) < r,

max
k

|φk(s)− φk(t)|+ |Q(s)−Q(t)| < r, if |s− t| < ε,

Denote by S the set of si and sp(Q) the support of Q [6]. Define event
E ′
n = {δ(S, [−C,C] ∩ sp(Q)) < ε}. We next show that, conditional on En ∩ E ′

n,

c⊤φ(t) ≤ Q(t) + 2ǫn + 2r, c ∈ Cn,glb. (A.8)

Indeed, if t ∈ [−C,C] ∩ sp(Q), then there is si with |t − si| < ε. For c ∈
Cn,glb, c⊤φ(t) ≤ c⊤φ(si) + maxk |φk(t) − φk(si)|. So by the selection of ε,
c⊤φ(t) ≤ Fn(si) + ǫn + r ≤ Q(si) + 2ǫn + r < Q(t) + 2ǫn + 2r. If t ≤ −C, then
c⊤φ(t) ≤ maxφk(−C) ≤ r ≤ Q(t) + r. If t ≥ C, then c⊤φ(t) ≤ 1 ≤ Q(t) + r.
Finally, if t ∈ [−C,C]\sp(Q), let z = inf{s ≥ t : s ∈ sp(Q) or s = ∞}. Since z is
either in [−C,C]∩sp(Q) or greater than C, c⊤φ(t) ≤ c⊤φ(z) ≤ Q(z)+2ǫn+2r.
Since Q is continuous, Q(z) = Q(t). Thus conditional on En ∩ E ′

n, (A.8) holds.
Similarly, it can be shown that if δ(Tn, [−C,C]) < ε, then conditional on En,

c⊤[φ(t2)− φ(t1)] < Q(t2)−Q(t1) + 3ǫn + 4r for t1 < t2.
As a result, En ∩ E ′

n implies Cn,glb ⊂ Γσ, where σ = 3ǫn + 4r. As n → ∞,
P(En ∩ E ′

n) → 1 and ǫn → 0. Since r is arbitrary, the proof is complete.

Lemma A.11. (1) Mn,glb(t), n ≥ 1, and m(t) are continuous. (2) As n→ ∞,

‖Mn,glb −m‖ P→ 0.

Proof. Denote Kn := ∆′ ∩ Cn,glb.
(1) If Kn = ∅, then by definition, Mn,glb(t) ≡ 1. On the other hand, if

Kn 6= ∅, then, since Kn is compact and φ ∈ C(R) is bounded, c⊤φ(t), c ∈ Kn

as a family of functions in t are equicontinuous and uniformly bounded. It follows
that Mn,glb ∈ C(R). Likewise, m ∈ C(R).

(2) Given ε > 0, there is r > 0 such that δ(Γ0,Γr) < ε. Conditional on
Γ0 ⊂ Cn,glb, m(t) ≤ Mn,glb(t) for all t. On the other hand, conditional on
Cn,glb ⊂ Γr, Kn 6= ∅ so for any t, there is c(t) ∈ Kn with Mn,glb(t) = c(t)⊤φ(t).
Meanwhile, there is c0(t) ∈ Γ0 such that |c(t)− c0(t)| ≤ ε. Then

|Mn,glb(t)− c0(t)
⊤φ(t)| ≤ |c(t)− c0(t)||φ(t)| ≤

√
Lε

=⇒ Mn,glb(t) ≤ c0(t)
⊤φ(t) +

√
Lε ≤ m(t) +

√
Lε.

Thus, {Γ0 ⊂ Cn,glb ⊂ Γr} ⊂ {0 ≤ Mn,glb(t) −m(t) ≤
√
Lε all t}. Because ε is

arbitrary, by Lemma A.10, ‖Mn,glb −m‖ P→ 0.
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Proof of Theorem 4.2. The proof follows closely the one in [12]. By the conti-
nuity of m and Q, for any 0 < ǫ < t∗ − t0,

δ = min

{

inf
t∈(t0+ǫ,t∗−ǫ)

[αQ(t)−m(t)], inf
t>t∗+ǫ

[m(t)− αQ(t)]

}

> 0.

Let Qn(t) = [Rn(t)∨1]/n. As n→ ∞, by ‖Qn−Q‖ P→ 0 and ‖Mn−m‖ P→ 0,
the probability that

min

{

inf
t∈(t0+ǫ,t∗−ǫ)

[αQn(t)−Mn(t)], inf
t>t∗+ǫ

[Mn(t)− αQn(t)]

}

≥ δ/2

tends to 1, implying P{|τ − t∗| ≤ ǫ} → 1. Therefore, τ
P→ t∗, which leads to the

last claim of the theorem. Since αQ(t) > m(t) ≥ 0 for some t < t∗, we have
Q(t∗) ≥ Q(t) > 0. Thus, by the Weak Law of Large Numbers and dominated
convergence,

FDR = E

[

Vn(τ)/n

Qn(τ)

]

→ (1− a)ν⊤φ(t∗)

Q(t∗)
≤ m(t∗)

Q(t∗)
= α,

where the last equality is due to the continuity of m and Q at t∗.
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