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Abstract: Upper bounds for rates of convergence of posterior distributions
associated to Gaussian process priors are obtained by van der Vaart and van
Zanten in [14] and expressed in terms of a concentration function involving
the Reproducing Kernel Hilbert Space of the Gaussian prior. Here lower-
bound counterparts are obtained. As a corollary, we obtain the precise
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1. Introduction

In the Bayesian non-parametrics literature, several general results about poste-
rior consistency (see e.g. [1]) and posterior rates of convergence (see for instance
[5; 13]) are now available. Roughly, the rate of convergence of the posterior is
generally thought of as an εn as small as possible such that the posterior prob-
ability of the ball centered at the true f0 and of radius εn still tends to 1 in
probability. In this context a natural question is, starting from a fixed prior,
what is the actual rate of convergence of the posterior ? The tools proposed in
the cited articles often allow to get an upper bound for this posterior rate.

Also, from the practical point of view, non-parametric type priors are now
commonly used in applications, as an example the book [12] presents applica-
tions of Gaussian priors in machine learning. In non-parametric situations many
priors will not lead to optimal rates; in some cases the corresponding posterior
will still converge at some reasonable rate towards the true parameter or func-
tion; in other cases the convergence might be extremely slow or consistency
might even fail. Determining the precise rate of convergence of the posterior
can then help in choosing the type of prior adapted to the practical situation
or in adjusting the prior parameters.

Given a class of functions, upper bounds for the rate are clearly optimal if they
coincide with the minimax rate of convergence over the class. In the case where
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the upper bound is slower than the optimal rate, one would like to establish a
bound from below for the rate. If both upper and lower bounds match, say up
to some constant or logarithmic factor, then the exact rate of convergence of
the posterior remains determined. In this paper, the issue of obtaining a lower
bound for the posterior rate is considered in the case of Gaussian priors. Though
the focus will be mainly on the class of Gaussian priors, the methodology we
introduce can be used in some cases to obtain lower bounds for other priors as
well. In particular, we shall derive a lower bound result for a non-Gaussian prior
in a specific example.

The organization of the paper is as follows. In the next section, we enounce
our main result on lower bounds in a general framework and give its proof.
This result is applied in Section 3 to obtain lower bounds in two nonparametric
models: the Gaussian white noise model and the problem of density estimation,
with respectively Gaussian series priors and Riemann-Liouville priors. For the
latter prior, upper bounds are also obtained which extend previous results of
[14]. Technical results are gathered in Section 4. Concluding remarks are given
in Section 5.

Let us introduce some notation. For any real numbers a, b, we denote by
a ∧ b their minimum and by a ∨ b their maximum. We define Hellinger’s dis-
tance h(f, g) between two probability densities f and g by the L2-distance be-
tween the root densities

√
f and

√
g. Let K(f, g) =

∫

f log(f/g)dµ stand for
the Kullback-Leibler divergence between the two non-negative densities f and
g relative to a measure µ. Furthermore, we define the additional discrepancy
measure V2(f, g) =

∫

f | log(f/g) − K(f, g)|2dµ. Let L2[0, 1] be the space of
square integrable functions on the interval [0, 1], equipped with the L2-norm

‖f‖2 = (
∫ 1

0
f2dµ)1/2. Let C0[0, 1] denote the space of continuous functions on

[0, 1] equipped with the supremum norm ‖ · ‖∞. Let Cβ [0, 1] denote the Hölder
space of order β of all continuous functions f that have β continuous derivatives,

for β the largest integer strictly smaller than β, with the βth derivative f(β)

being Lipshitz-continuous of order β−β . This means that there exists a positive
constant C, which might depend on the function f , such that

|f(β)(y) − f(β)(x)| ≤ C|y − x|β−β ∀ x, y ∈ [0, 1].

2. Lower bound result

Let (X (n),A(n), P
(n)
f ; f ∈ F) be a sequence of statistical experiments with ob-

servations X(n), where the parameter set F is a subset of a Banach space B (for
instance L2[0, 1] or C0[0, 1]) and n is an indexing parameter, usually the sample
size. We put a prior distribution Π on f . In this paper we consider the case
where the prior is the law of a Gaussian process taking almost surely its values
in B (see below). We are interested in properties of the posterior distribution

Π(·|X(n)) under P
(n)
f0

, where f0 is the “true” function. We denote by E0 the
expectation under the latter distribution. For any sequence ε > 0 let us define
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a Kullback-Leibler neighborhood of f0 as

BKL(f0, ε) =
{

f : K(P
(n)
f0

, P
(n)
f ) ≤ nε2, V2,0(P

(n)
f0

, P
(n)
f ) ≤ nε2

}

.

In this work Gaussian processes Z are supposed to be centered and tight
measurable random maps in the Banach space (B, ‖ · ‖). We refer to [15] for
an overview of basic properties of these objects. Let H be the Reproducing
Kernel Hilbert Space (RKHS) of the covariance kernel of the process. We will
generally assume that f0 belongs to the support of the prior in B, which for
Gaussian process priors is nothing but the closure of H in B, see for instance
[15], Lemma 5.1.

First let us review the key upper-bound results obtained in [14], where the
authors show that for Gaussian priors an upper-bound for the concentration rate
of the posterior can often be obtained in a simple way from the so-called con-

centration function of the Gaussian process. This quantity is defined as follows.
For any ε > 0, let

ϕf0
(ε) = inf

h∈H:‖h−f0‖<ε
‖h‖2

H
− logP(‖Z‖ < ε) (1)

Assume that the norm ‖ · ‖ on B is comparable to a metric d appropriate to
the statistical problem (often, d is a distance for which certain tests exists,
which allows to apply the theory presented in [5]; for instance, in i.i.d. settings,
one might choose Hellinger’s distance). Here “comparable” means that the ball
{f ∈ F , ‖f −f0‖ ≤ εn} should be included in the ball for d around f0 of radius
cεn and also in the Kullback-Leibler neighborhood BKL(f0, cεn) defined above,
for some c > 0. The authors in [14] prove that if εn → 0 satisfies

ϕf0
(εn) ≤ nε2

n, (2)

then the posterior contracts at the rate εn for the distance d, in that for large
enough M > 0, E0Π(f : d(f, f0) ≤ Mεn | X(n)) → 1 as n → ∞.

These results mean that for Gaussian priors an upper-bound on the rate of
the posterior is obtained as soon as the next two quantities are controlled

ϕA
f0

(ε) = inf
h∈H:‖h−f0‖<ε

‖h‖2
H
, ϕB(ε) = − logP(‖Z‖ < ε). (3)

The first term measures how well elements in the RKHS H of the Gaussian
process can approximate the true function. Note in particular that if f0 happens
to be in H, this term simply remains bounded. The second term, which does
not depend on f0, is the so-called small ball probability of the Gaussian process.
Small ball probabilities have been studied in many papers in the probability
literature and precise equivalents as ε → 0 of ϕB(ε) are available for many
classes of Gaussian processes, see for instance [11]. Yet at first sight it is not
obvious to see why the concentration function ϕf0

should appear in the study
of posterior rates. Lemma 2 below answers, at least partially, this question.

Let us conclude the overview of upper-bound results with an example. In
a context of density estimation, if one chooses Brownian motion as prior on
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continuous functions, the rate εn depends on the Hölder regularity β of the true
f0 as follows. If β ≥ 1/2, then εn can be chosen equal to n−1/4, whereas if
β < 1/2 the rate εn must be in n−β/2 to satisfy (2), see Section 4.1 in [14] or
Theorem 3 below. Thus, up to constants, the rate is optimal in the minimax
sense if β = 1/2. However, for all other values of β, the obtained rate is below
the minimax rate which is n−β/(2β+1). Thus it is natural to ask whether the
rate of concentration for Brownian motion is really the one described above or
if in fact the posterior contracts faster.

Let us now define a notion of lower bound for a given prior Π on F . Let d
be a distance on the parameter space. We say that the rate ζn is a lower bound
for the concentration rate of the posterior distribution Π(·|X(n)) in terms of d
if, as n → +∞,

E0Π(f : d(f, f0) ≤ ζn | X(n)) → 0. (4)

This mainly means that ζn is too fast for the posterior measure to capture
mass in the ball of radius ζn around f0. The aim is then to prove that such a
result holds for ζn as large as possible. In the sequel, we will be able to prove
in some examples that the posterior puts asymptotically all its mass inside a
ring of the type {f ∈ F , mnεn ≤ d(f, f0) ≤ εn}, for mn either a small enough
constant or slowly decreasing (e.g. of logarithmic order), see Section 3. Note also
that a lower bound in the sense of Definition (4) will not be an upper-bound
for the same distance, so our definition is, in a way, in a strict sense. But it
seems to us to be the most natural one, for symmetry reasons with respect to
upper-bound definitions, and also in view of the aforementioned ‘ring’-behavior.
It would also be interesting to be even more precise about the behavior of the
posterior: for instance, if asymptotically the posterior sits on a ring for a distance
d, to see how the mass is distributed inside this ring. However, the presently
available techniques, including the ones of this paper, give only results up to
constants, so this would probably require introducing new techniques or refining
the mentioned ones.

Theorem 1 below establishes a lower bound for the concentration rate of the
posterior Π(·|X(n)) for Gaussian priors in terms of the norm ‖ · ‖ of the Banach
space. Its proof relies on two basic ideas. The first one is that, roughly, if the
prior probability puts very little mass (in some sense) on a certain measurable
set, then the posterior probability of this set is also small. The following lemma
is Lemma 1 in [6] (see also Lemma 5 in [1]).

Lemma 1. If αn → 0 and nα2
n → +∞ and if Bn is a measurable set such that

Π(Bn)/Π(BKL(f0, αn)) ≤ e−2nα2
n,

then E0Π(Bn | X(n)) → 0 as n → +∞.

The second ingredient is a general result about Gaussian priors which gives
control from above and below of non-centered small ball probabilities associated
to the process in terms of ϕ. For a proof, see for instance [9] or [15], Lemma 5.3.
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Lemma 2. Let Z be a Gaussian process in B with associated RKHS H. Assume

that f0 belongs to the support of Z in B. Then for any ε > 0,

ϕf0
(ε) ≤ − logP(‖Z − f0‖ < ε) ≤ ϕf0

(ε/2).

In view of this result, it seems natural to see the concentration function
ϕf0

appear when studying rates of contraction for Gaussian processes, since
the latter function gives a direct control on how much mass the prior puts on
neighborhoods of the true function. The following lemma now states some useful
properties of ϕf0

. In particular, it implies that this function has an inverse ϕ−1
f0

.

Lemma 3. Let Z be a non-degenerate centered Gaussian process in (B, ‖ · ‖).
For any f0 in B, the associated concentration function ε → ϕf0

(ε) is strictly

decreasing and convex on (0, +∞). In particular, it is continuous on (0, +∞).

This lemma is proved in Section 4. We can now state our first Theorem.

Theorem 1. Let Z be a Gaussian process with associated distribution Π on the

space (B, ‖ · ‖). Let the data X(n) be generated according to Pf0
and assume that

f0 belongs to the support of Π in B. Let αn → 0 such that nα2
n → +∞ and

Π(BKL(f0, αn)) ≥ exp(−cnα2
n) for some c > 0. Suppose that ζn → 0 is such

that ϕf0
(ζn) ≥ (2 + c)nα2

n. Then, as n → +∞,

E0Π(‖f − f0‖ ≤ ζn | X(n)) → 0.

Proof. Due to Lemma 2, it holds Π(‖f−f0‖ ≤ ζn) ≤ exp(−ϕf0
(ζn)). Combining

this with the assumption on the KL-type neighborhood, one gets that

Π(‖f − f0‖ ≤ ζn)

Π(BKL(f0, αn)
≤ exp(−ϕf0

(ζn) + cnα2
n).

The assumption on ϕf0
(ζn) ensures that the last display is further bounded

from above by exp(−2nα2
n). An application of Lemma 1 with the choice of set

Bn = {f ∈ F , ‖f − f0‖ ≤ ζn} leads to E0Π(Bn| X(n)) → 0.

Before commenting on this result, let us state a direct consequence of it.
If the rate εn satisfies (2) and if the norm ‖ · ‖ combines correctly with the
Kullback-Leibler divergence, so that for some d > 0, it holds

Π(BKL(f0, dεn)) ≥ Π(‖f − f0‖ < 2εn),

see Section 3 or [14] for some examples, then due to Lemma 2 we obtain that
Π(BKL(f0, dεn)) ≥ exp(−nε2

n). Hence according to Theorem 1,

ζn = ϕ−1
f0

((1 + 2d2)nε2
n)

is a lower bound for the rate of convergence.
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Furthermore, if ϕf0
is “nicely varying” (see below, this depending of course on

the particular function f0), then one expects to be able to chose ζn of about the
same order as εn (e.g. ζn = εn/ log n or even ζn = εn/K for K large enough).
For instance, if ϕ−1

f0
is of regular variation in the neighborhood of +∞, then

ζn(f0) is at least εn/K, for some K large enough.
Thus we complement the result of [14], where the upper bound part was

obtained, by proving a lower bound counterpart. Note also that interestingly, to
prove Theorem 1, just the lower bound of Lemma 2 is used. By contrast, note
that the main ingredients of the proof of the upper bound in [14] are Borell’s
inequality and the upper bound of Lemma 2. Note also that the assumptions of
Theorem 1 are mainly in terms of the prior, the model coming in only through
the Kullback-Leibler neighborhood.

As stated Theorem 1 can be used for Gaussian priors only. However, it illus-
trates well how the simple Lemma 1 can successfully be applied to obtain lower
bounds for the concentration rate. In fact, when dealing with general priors, one
can try to apply Lemma 1 directly. This idea enables us to obtain a lower bound
result for a non-Gaussian prior (though constructed from Gaussian priors) fur-
ther in this paper, see Theorem 3. This approach seems to be useful to get lower
bounds for general priors in other contexts as well. Further contributions on this
question are in preparation and should be available soon.

Another interesting question is how to get more explicit estimates of the rates
εn and ζn in terms of the class of functions the true f0 belongs to and of the
“regularity” α of the process in some sense (for Brownian motion and Hölder
classes we would have α = 1/2). In the next section, we address this question
in some simple cases.

3. Applications

3.1. The L2-setting and Gaussian series priors

Let {εk}k≥1 be an orthonormal system in L2[0, 1], being chosen for simplicity
equal to the trigonometric basis ε1 = 1 and for k ≥ 1, ε2k(·) = cos(2πk·) and
ε2k+1(·) = sin(2πk·). The Sobolev ball Fβ,L of order β > 0 and radius L > 0 is

Fβ,L = {f ∈ L2[0, 1], f =
∑

k≥1

fkεk and
∑

k≥1

k2βf2
k ≤ L2}.

Gaussian series priors. Let {αk}k≥1 be a sequence of independent standard
normal random variables and let {σk}k≥1 be some square-integrable sequence
of real numbers. For simplicity let us choose σk = k−1/2−α for some α > 0. Let
us define Π as the probability distribution generated by

Xα(·) =

+∞
∑

k=1

σkαkεk(·). (5)

This defines a process with sample paths in B = L2[0, 1]. The RKHS H
α of

Xα in B is H
α = {∑k≥1 hkσkεk, (hk)k≥1 ∈ l2}, equipped with the norm
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‖∑

k≥1 hkσkεk‖2
Hα

=
∑

k≥1 h2
k, see for instance [15], Theorem 4.2. Since the

support of the process in L2 is then the closure of H
α in L2, it is easy to check

that the support is in fact L2 itself. Furthermore, the small ball probabilities
ϕB for this process have a well-known behavior, that is − logP(‖Xα‖2 < ε) is
of the order of ε−1/α as ε → 0, see for instance [8], Theorem 4.

Gaussian white noise model. To simplify the formulation of the upper-bound
results, we will assume that we are in a particularly simple model, namely the
Gaussian white model. In this model the data X(n) is given by

dX(n)(t) = f(t)dt +
1√
n

dW (t), t ∈ [0, 1], (6)

for some f in L2[0, 1] and W standard Brownian motion. Let us denote, for any
positive real numbers α and β,

rα,β
n , n− α∧β

2α+1 . (7)

In the sequel the notation . is used for “smaller than or equal to a universal
constant” and & is defined similarly.

Theorem 2. Let β > 0, L > 0 and suppose the data is generated according to

(6). Let the prior process be defined by (5) with α > 0. Let f0 be in Fβ,L and

let the rate rα,β
n be defined by (7). Let εn and ζn be such that

ϕf0
(εn) ≤ nε2

n and ζn ≤ ϕ−1
f0

(9nε2
n).

Then for M large enough,

E0Π(ζn ≤ ‖f − f0‖2 ≤ Mεn | X(n)) → 1,

as n → +∞. For any f0 in Fβ,L, one can choose εn such that εn . rα,β
n and,

if α ≤ β, one can choose ζn such that ζn & rα,β
n . Furthermore, if β < α, there

exists f0 in Fβ,L such that, for p > 1 + β/2 and M large enough, as n → +∞,

E0Π(rα,β
n log−p n ≤ ‖f − f0‖2 ≤ Mrα,β

n | X(n)) → 1.

The first convergence result is essentially a consequence of Theorem 3.4 in
[14] for the upper-bound and of Theorem 1 for the lower bound. The second
part of the statement reveals that there are indeed functions in the class such
that the posterior rate is rα,β

n , up to a log-factor if β < α. In this sense the rate
can be said to be optimal (up to a log-factor) over Fβ,L.

It is interesting to compare these results to the ones obtained by [17] and
[2], where the authors also study estimation in model (6) from the Bayesian
perspective. Both works obtain the upper-bound result on εn for priors defined
by (5) by different methods but they do not consider the question of optimality
of the rate rα,β

n when α 6= β. In [2], the focus is on the question of adaptation
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when one puts also a prior on α and the authors obtain the minimax rate for
the resulting prior for unknown β under some conditions. In [17], an interesting
observation about non-optimality is made, but in a rather different direction
than ours, the author noting that though the prior (5) leads to the minimax
rate for α = β, both the prior and the posterior put mass zero on the Sobolev
space {f = (fk)k≥1,

∑

k≥1 k2βf2
k < +∞} the true function f0 belongs to.

Remark 1. If α ≤ β, the precise rate of convergence of the posterior is, up to
constants, equal to rα,α

n = n−α/(2α+1). If α > β, more information on f0 (for
instance about the rate of decrease of its Fourier coefficients) is needed to evalu-
ate the RKHS-approximation term and eventually obtain an explicit expression
of the rate, see for example the special “worst-case” function f0 considered in
the proof of the theorem.

Remark 2. It is natural to ask whether it is possible to avoid the log-factor for
the lower bound. The answer is yes if one allows sequences of functions: it can
be checked that there exists a sequence f0,n in Fβ,L, where the function f0,n

has only one properly chosen non-zero Fourier coefficient, such that, for M large
enough, Ef0,n

Π(rα,β
n /M ≤ ‖f − f0,n‖2 | X(n)) tends to 1 as n → +∞.

Proof of Theorem 2. The fact that the posterior concentrates in a ball of radius
Mεn for the ‖ · ‖2-norm is the conclusion of Theorem 3.4 in [14]. The explicit

upper-bound for εn is obtained as follows. Denoting fK =
∑K

k=1 f0,kεk(·), note
that fK belongs to H

α. Since f0 belongs to Fβ,L, it holds

‖fK − f0‖2
2 =

∑

p≥K+1

f2
0,p ≤ K−2β

∑

p≥K+1

p2βf2
0,p ≤ L2K−2β

‖fK‖2
Hα =

K
∑

p=1

p1+2αf2
p,0 ≤ K(1+2α−2β)∨0

K
∑

p=1

p2βf2
p,0 ≤ L2K(1+2α−2β)∨0.

Let us now choose K = ε
−1/β
n . The last display then implies that the approxi-

mation part ϕA
f0

(εn) of the concentration function is at most ε
−(1+2α−2β)/β∧0
n .

On the other hand, the small ball probability ϕB(εn) is at most constant times

ε
−1/α
n for n large enough as noted at the beginning of this Section. Hence

ϕf0
(εn) . ε−1/α

n + ε−(1+2α−2β)/β∧0
n .

If we choose nε2
n equal to the latter quantity we get εn . n−α∧β/(2α+1) = rα,β

n .
To obtain the lower bound result, we apply Theorem 1. Simple calculations

reveal that for model (6), the set BKL(f0, ε) coincides with {f, ‖f − f0‖2 < ε},
see Lemma 6 in [6] and thus Π(BKL(f0, 2εn)) = Π(‖f −f0‖2 ≤ 2εn). Now apply
the remark after Theorem 1 to obtain that if ϕf0

(εn) ≤ nε2
n, then any ζn such

that ϕf0
(ζn) ≥ 9nε2

n is a lower bound for the rate. To obtain a more explicit
form for ζn, we distinguish the cases α ≤ β and β ≤ α.

In the case α ≤ β, let us use the fact that

ϕf0
(ζn) ≥ − logΠ(‖f‖2 < ζn) & ζ−1/α

n ,
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where the last inequality is obtained using the asymptotics of the small ball
probability of Xα. Thus the condition ϕf0

(ζn) ≥ 9nε2
n is satisfied if ζn is equal

to constant times n−α/(2α+1) = rα,α
n , since εn can be chosen equal to constant

times rα,β
n = rα,α

n .
In the case α > β, let us define f0 by specifying its Fourier coefficients as

f−1
0,k = k1/2+β(1 + logk)1/2 log logk, (k ≥ 1).

Note that the series
∑

k2βf2
0,k converges so without loss of generality one can

assume that f0 belongs to Fβ,L (otherwise consider af0 for a > 0 small enough).
Moreover, one just needs to prove the lower bound result, the upper-bound
resulting from what precedes. In the remainder of the proof the rate εn is thus
taken equal to Crα,β

n for some constant C > 0.
Let us denote ζn = δnεn, where δn → 0 is to be chosen, and let us bound

from below ϕf0
(ζn). We have ϕf0

(ζn) ≥ ϕA
f0

(ζn). Let h be in the RKHS H
α of

the prior with ‖h − f0‖2 < ζn. Then, for any k(n) ≥ 1, using the inequality
(x + y)2 ≥ x2/2 − y2 valid for all reals x and y,

‖h‖2
H

=
∑

k≥1

k1+2αh2
k ≥

k(n)
∑

k=1

k1+2α(hk − f0,k + f0,k)2

≥ 1

2

k(n)
∑

k=1

k1+2αf2
0,k −

k(n)
∑

k=1

k1+2α(hk − f0,k)2.

That is, with the notation S(K) =
∑K

k=1 k1+2αf2
0,k, using that ‖h− f0‖2 < ζn,

‖h‖2
H
≥ 1

2
S(k(n)) − k(n)1+2αζ2

n. (8)

Let us choose k(n) = n1/(1+2α) log n and δn = log−p n for some p > 0. Using the
explicit form of the f0,k’s, one obtains, denoting ln = log logn, that S(k(n)) &
k(n)1+2α−2βl−2

n log−1 n. Thus

S(k(n)) & nε2
nl−2

n log2α−2β n

k(n)1+2αζ2
n = nε2

n log2α+1−2p n.

Since α > β, the first of these two terms is of larger order than nε2
n. As soon as

2p > 1+2β, it is also of larger order than the last term in the preceding display.
Minimizing Equation (8) in h, we conclude that in this case,

ϕA
f0

(ζn) & nε2
nl−2

n log2α−2β n.

Thus ϕf0
(ζn) divided by nε2

n tends to infinity. In view of the Remark after
Theorem 1, we obtain that ζn = δnεn is a lower bound for the rate, which
concludes the proof.
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3.2. The C0[0, 1]-setting and Riemann-Liouville type priors

In this subsection we obtain new upper and lower bounds for posterior rates in
the following model of density estimation. The observations X1, . . . , Xn are a
random sample from a positive density f0 on the interval [0, 1]. Let us denote
w0 = log f0, so that f0 = ew0 .

Now let us explain how we construct a prior on positive densities f , fol-
lowing the approach considered in [14]. To any continuous function w on the
interval [0, 1], we associate the density pw (that is a nonnegative function which
integrates to 1) defined by

pw(s) =
ew(s)

∫ 1

0
ew(u)du

, s ∈ [0, 1].

Let W be a Gaussian process defining a prior Πw on C0[0, 1]. Then the quantity
pW defines a random (non-Gaussian) density. The corresponding prior on the
set of densities is denoted by Πpw

. As Gaussian prior W we choose the process
Xα

t defined below.
First, let us define the Riemann-Liouville process of parameter α > 0 as

Rα
t =

∫ t

0

(t − s)α−1/2dB(s), t ∈ [0, 1], (9)

where B is standard Brownian motion. Then the process prior, which we call
the Riemann-Liouville type process (RL-type process), is defined as

Xα
t = Rα

t +

α+1
∑

k=0

Zktk, t ∈ [0, 1],

where Z0, . . . , Zα+1, Rt are independent, Zi is standard normal and Rα
t is the

Riemann-Liouville process of parameter α. Note that if α = 1/2 then Rα
t is

simply standard Brownian motion and if {α} = 1/2, with {α} ∈ [0, 1) the
integer part of α, then Rα

t is a k-fold integrated Brownian motion. It can be
checked that the support in C0[0, 1] of Xα

t is the whole space C0[0, 1] (it is in
fact in order to get the whole space as support that one adds the polynomial
part), see [14], Section 4 and Theorem 4.3.

Let us denote by ϕw0
the concentration function associated to the process

Xα
t and the continuous function w0. Upper-bounds on ϕw0

used in the proof of
the next Theorem to get explicit upper bound rates are obtained in Section 4.1.

Theorem 3. Suppose that w0 = log f0 belongs to the Hölder class Cβ [0, 1] for

some β > 0 and let the prior on densities be the distribution Πpw
of pXα , where

Xα is a Riemann-Liouville type process of parameter α > 0. Then there exist

finite constants C1, C2 > 0 such that, if εn and ζn are such that

ϕw0
(εn) ≤ nε2

n and ζn ≤ C1ϕ
−1
w0

(C2nε2
n),
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then for M large enough, as n → +∞,

E0Πpw
(h(f, f0) ≤ Mεn | X(n)) → 1,

E0Πpw
(‖f − f0‖∞ ≥ ζn | X(n)) → 1,

where h is Hellinger’s distance. Moreover, one can choose εn such that εn . rα,β
n

if {α} = 1/2 or α does not belong to β + 1/2 + N and εn . n−β/(2α+1) log n
otherwise.

These results describe in a rather complete way the rate of convergence of
the posterior for the prior Πpw

constructed from the Riemann-Liouville prior,
for all values of the parameter α in (0, +∞). Also, from the upper-bounds point
of view, it improves on Theorem 4.3 in [14], where α = β is needed.

Note that, while upper-bound rates are obtained for Hellinger’s distance, the
lower bounds are in terms of the uniform norm. To obtain the lower bounds,
the uniform norm is in a way the most natural (and easiest) distance to work
with since it is the norm on the Banach space where the prior lives and in
the proof, the idea will be indeed to apply Lemma 1 with sets of the form
Bn = {f, ‖f − f0‖∞ ≤ ζn}. For upper-bounds, Hellinger’s distance is a rather
natural choice since it is a natural testing distance for i.i.d. observations in view
of the theory of [5]. A natural extension of our results would be to obtain results
in terms of a common distance on the parameter space. While such a refinement
is beyond the scope of the present contribution, we hope that future papers will
answer this type of question.

In the above Theorem, explicit bounds for εn are obtained using explicit
upper-bounds for the concentration functions obtained in Section 4.1. It should
also be possible to obtain explicit bounds for ζn in the spirit of those of Theo-
rem 2 by bounding the concentration function from below. One difficulty here
with respect to Theorem 2 is the presence of the extra polynomial part in the
definition of the process, which makes the evaluations even for the small ball
term more difficult. We will not further discuss this issue here but note only
that in some simple cases, an explicit expression for ζn follows quite directly
from what precedes.

Remark 3. For Brownian motion released at zero Xt = Bt + Z0, by a slight
adaptation of the preceding, one can obtain an explicit evaluation of ζn and
show that if f0 is smooth enough, more precisely if β ≥ 1/2, there exist a
constant m such that, as n → +∞,

Πpw
(‖f − f0‖∞ ≥ mn−1/4|X(n)) → 1.

Note that Xt is almost the RL-type process with α = 1/2 except for the term
tZ1. It can still be checked that the support in C0[0, 1] of this process is the full
space C0[0, 1], see [14], Theorem 4.1, and that Theorem 3 still holds, following
the same proof. We always have ϕf0

(ε) ≥ ϕB(ε) = − logP(‖X‖∞ < ε). But
on the event that ‖X‖∞ < ε, we have |X0| = |Z0| < ε thus ‖B‖∞ < 2ε.
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Using the behavior of the small ball probability of Brownian motion, we obtain
that there exists a constant C such that ϕf0

(ε) ≥ Cε−2 for ε small enough
and thus ϕ−1

f0
(u) & u−1/2. Hence ζn can be chosen equal to constant times

(nε2
n)−1/2, where εn is the upper-bound rate obtained for Xt. By the smoothness

assumption on f0, the rate εn can be chosen equal to a constant times r
1/2,1/2
n =

n−1/4, which yields the announced result on ζn.
The following Lemmas are used in the proof of Theorem 3. The proof of

Lemma 4 can be found in Section 4.2.

Lemma 4. Let ϕw denote the concentration function associated to the process

Xα
t and the function w ∈ C0[0, 1] and let ρ denote both the real ρ and the constant

function equal to ρ. Then for any ε > 0,

ϕw0+ρ(ε) ≥ ϕw0
(ε) + ρ2 − 2(|w0(0)| + ε)|ρ|.

Lemma 5 (Lemma 3.1 in [14]). For any v, w elements of C0[0, 1],

h(pv, pw) ≤ ‖v − w‖∞e‖v−w‖∞/2

K(pv, pw) ∨ V (pv, pw) . ‖v − w‖2
∞e‖v−w‖∞/2(1 + ‖v − w‖∞)2.

Proof of Theorem 3. The fact that any εn such that ϕw0
(εn) ≤ nε2

n is an upper
bound for the rate is Theorem 3.1 in [14]. Now Theorem 4 in the Appendix
enables to get the explicit expression of εn in terms of rα,β

n .
To obtain the lower bound result, we show that if ζn = C−1

3 ϕ−1
w0

(C1nε2
n) for

large enough constants C1 and C3 then Πpw
(‖f − f0‖∞ ≤ ζn) ≤ exp(−3nε2

n).
This is enough to obtain the lower bound statement, since then one can ap-
ply Lemma 1 with Bn = {f, ‖f − f0‖∞ ≤ ζn}. The prior probability on the
Kullback-Leibler type neighborhood is bounded from below using Lemma 5 to
obtain a neighborhood in terms of the ‖ ·‖∞-norm, and finally, due the fact that
the support of Xα in C0[0, 1] is the whole space C0[0, 1], Lemma 2 can be used.

Let An be the set {w ∈ C0[0, 1], ‖pw − f0‖∞ ≤ ζn}. Since ζn → 0 and
f0 ≥ ρ > 0 for some ρ > 0, it holds 2‖f0‖∞ ≥ pw ≥ ρ/2 > 0 on An for n large
enough. Since the logarithm is a Lipshitz function on the interval [ρ/2, 2‖f0‖∞],
one gets, on An, for some d > 0,

‖ logpw − log f0‖∞ ≤ d‖pw − f0‖∞ ≤ dζn.

Noting that

‖ logpw − log f0‖∞ = ‖ log
ew

∫

ew
− w0‖∞ = ‖w − w0 − log

∫

ew‖∞,

one obtains that, on An, it holds ‖w−w0−Zw‖∞ ≤ dζn, where Zw is a constant
function and |Zw| ≤ ‖w‖∞. We shall use the fact that with high probability,
this value is not too large. Note that if w is in An and ‖w‖∞ ≤ C

√
nεn then w
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belongs to ∪N
k=−NBk, where Bk = {w, ‖w−w0− ck‖∞ ≤ 2dζn} with ck = kdζn

and N the smallest integer larger than C
√

nεn/(dζn). Thus

Πpw
(‖f − f0‖∞ ≤ ζn) = Πw(‖pw − f0‖∞ ≤ ζn)

≤
N

∑

k=−N

Πw(‖w − w0 − ck‖∞ ≤ 2dζn) + Πw(‖w‖∞ > C
√

nεn).

It is an easy consequence of Borell’s inequality, see [3] or [16], Proposition A.2.1,
that Πw(‖w‖∞ > C

√
nεn) is bounded above by exp(−4nε2

n) for C large enough.
Now due to Lemma 2,

Πw(‖w − w0 − ck‖∞ ≤ 2dζn) ≤ exp(−ϕw0+ck
(2dζn)).

Let I1 be the set of indexes k such that |ck| ≤ 4|w0(0)| and I2 the set of indexes
such that |ck| > 4|w0(0)|. According to Lemma 4, we have for n large enough

ϕw0+ck
(2dζn) ≥







ϕw0
(2dζn) − 9|w0(0)|2, if k ∈ I1,

ϕw0
(2dζn) + c2

k/2, if k ∈ I2.

Thus for some C4 > 0, it holds

Πpw
(‖f − f0‖∞ ≤ ζn)

. ζ−1
n e9|w0(0)|2−ϕw0

(2dζn) +
∑

ζ−1
n .|k|.N

e−k2d2ζ2
n/2−ϕw0

(2dζn) + e−4nε2
n

≤ C4(ζ
−1
n e−ϕw0

(2dζn) + e−4nε2
n).

Using the behavior of the small ball probability for the process at stake, we have

that ϕw0
(2dζn) & ζ

−1/α
n hence for n large enough it holds ϕw0

(2dζn)+2 log ζn ≥
ϕw0

(2dζn)/2. Thus the last display is bounded from above by 2C4 exp(−4nε2
n)

as soon as ϕw0
(2dζn) ≥ 8nε2

n, which concludes the proof.

4. Appendix

4.1. Concentration function of RL-type processes: upper bounds

In this subsection, we establish an upper-bound result on the concentration
function of the RL-type process which is of independent interest and which is
used in the proof of Theorem 3 to get explicit upper bound rates.

First let us introduce the classical notion of fractional integral, whose defini-
tion is as follows. For α > 0 and f a continuous function on [0, 1], the fractional
integral of order α is defined as

Iα
0+f(t) =

∫ t

0

(t − s)α−1f(s)ds,
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for any t in [0, 1]. If t < 0, we set Iα
0+f(t) = 0.

We shall use the following two Lemmas, the second enabling to handle a
case discarded by the first one (namely the case where α + λ = 1). In the next
statement, the symbol ∗ stands for the usual convolution between functions.

Lemma 6 (Lemma 5.2 in [14]). Let λ ∈ [0, 1] and α ∈ [0, 1) be such that

α +λ ∈ (0, 2) and α +λ 6= 1. If f ∈ Cλ[0, 1] and g ∈ L1(R) has compact support

and satisfies
∫

g(u)du = 0 and, in the case that α +λ > 1, also
∫

ug(u)du, then

‖Iα
0+(f ∗ g)‖∞ .

∫

|u|α+λ|g(u)|du.

Lemma 7. Let δ ∈ (0, 1) and f ∈ Cδ [0, 1]. If g ∈ L1(R) has compact support and

satisfies
∫

g(u)du = 0 then

‖I1−δ
0+ (f ∗ g)‖2

2 .
∫

u2{1 + log2(1 + |u|−1)}g(u)2du.

The proof of Lemma 7 can be found in Section 4.2.

Theorem 4. Suppose f0 belongs to Cβ [0, 1], with β > 0. The concentration func-

tion ϕf0
associated to the process Xα

t satisfies, if 0 < α ≤ β, that ϕf0
(ε) =

O(ε−1/α) as ε → 0. In the case that α > β, as ε → 0,

ϕf0
(ε) =

{

O(ε−
2α−2β+1

β ) if {α} = 1/2 or α /∈ β + 1
2

+ N,

O(ε−
2α−2β+1

β log(1/ε)) otherwise.

This extends Theorem 4.3 in [14] in the case that α 6= β. There is an extra
difficulty in the case where α−β−1/2 is an integer and {α} is not 1/2, resulting
in the presence of the extra log-factor. Roughly, the difficulty arises from the
fact that, if α ∈ (0, 1) and λ ∈ [0, 1], the fractional integral Iα

0+ does map
Cλ[0, 1] → Cλ+α[0, 1] only if α +λ 6= 1, see [7]. Lemma 7 enables us to deal with
the case where α + λ = 1 is an integer.

Proof of Theorem 4. Let us denote by Z = Xα −Rα the polynomial part of Xα

and by H
α the RKHS of Rα. The proof is quite similar to the one of Theorem 4.3

in [14] and the starting point is identical. Using Theorem 2.3 in [14], the initial
step of the proof is to bound from above the concentration function ϕf0

(2ε) by
a multiple of the sum ϕf0−P (ε/2, Rα) + ϕP (ε/2, Z) with the polynomial P to
be chosen in the RKHS H

Z of Z. The spaces H
Z and H

α are known explicitly.
The space H

Z is the set of polynomials Pξ =
∑α+1

i=0 ξit
i equipped with the norm

‖Pξ‖2
HZ =

∑α+1
i=0 ξ2

i . The RKHS H
α is the space I

α+1/2

0+ (L2[0, 1]) with associated

norm ‖Iα+1/2
0+ f‖Hα = ‖f‖2/Γ(α +1/2), where Γ is the Gamma function, due to

Theorem 4.2 in [14].
Let us check that for the process Xα, the small ball term ϕB(ε) is bounded

above by a constant times ε−1/α for ε small enough. Indeed, it is known that for
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the Riemann-Liouville process Rα, the quantity − logP(‖Rα‖∞ < ε) behaves
as a constant times ε−1/α as ε → 0, see [10]. Moreover, for any integer k, the
quantity P(‖Zktk‖∞ < ε) behaves as a constant times ε, which by independence
of Z and Rα implies that − logP(‖Xα‖∞ < ε) is smaller than a constant times
ε−1/α for ε small enough.

Now we study the RKHS-approximation term ϕA
f0

(ε). There are different
cases depending on the value of {α} which are: {α} ∈ (0, 1/2), {α} ∈ (1/2, 1),
{α} = 0 and {α} = 1/2. We will focus on the first case, that is {α} ∈ (0, 1/2),
the other cases being similar. Also, we assume that α ≥ β, the case α < β being
similar though easier since the small ball term dominates in that case.

Thus we focus on the RKHS-approximation term ϕA
f0

(ε) in the case where
α ≥ β and {α} ∈ (0, 1/2). Let φ be a smooth, compactly supported kernel, of
sufficiently large order and for σ > 0 define φσ(t) = σ−1φ(t/σ). Since f0 ∈ Cβ ,
we have ‖f0−f0 ∗φσ‖∞ . σβ thus ‖{f0−P }−{f0∗φσ−P }‖∞ ≤ ε if σ = Cε1/β

for some constant C.
Let us write Taylor’s theorem in the form

f0 ∗ φσ(t) =

α
∑

k=0

(f0 ∗ φσ)(k)(0)

k!
tk + I

α+1/2
0+ I

1/2−{α}
0+ (f

(β)

0 ∗ φ
(α−β+1)
σ ).

For the polynomial P let us choose the polynomial part in the preceding display.
Its squared RKHS-norm ‖P ‖2

HZ is proportional to
∑α

k=0(f0 ∗ φσ)(k)(0)2. The

term of largest order is (f0 ∗ φσ)(α)(0)2 = f
(β)

0 ∗ φ
(α−β)
σ (0)2. Note that, since f0

is in Cβ, denoting by {β} the fractional part of β,

|f(β)

0 ∗ φ
(α−β)
σ (0)| = |

∫

{f(β)

0 (0 − s) − f
(β)

0 (0)}φ(α−β)
σ (s)ds|

≤
∫

|s|{β}φ
(α−β)
σ (s)ds . σβ−α.

Hence ‖P ‖2
HZ . σ2β−2α ≤ σ−1−2α+2β. Now notice that f0 ∗ φσ − P belongs to

H
α and has RKHS-norm proportional to ‖I1/2−{α}

0+ (f
(β)

0 ∗φ
(α−β+1)
σ )‖2. Thus, in

the case where 1/2− {α}+ {β} 6= 1, we can use Lemma 6 to get

‖I1/2−{α}
0+ (f

(β)

0 ∗ φ
(α−β+1)
σ )‖2

.

∫

|u|1/2−{α}+{β}σ−α+β−2|φ(α−β+1)(u/σ)|du . σ−1/2−α+β.

Thus ‖f0∗φσ−P ‖2
Hα . σ−1−2α+2β . ε−(2α−2β+1)/β. The small ball term ϕB be-

ing of smaller order, the concentration function is at most of order ε−(2α−2β+1)/β,
which concludes the proof in this case.

If 1/2− {α}+ {β} = 1, let us apply Lemma 7 to obtain

‖I1/2−{α}
0+ (f

(β)

0 ∗φ(α−β+1)
σ )‖2

2 . σ−2α+2β−1

∫

v2φ(α−β+1)(v){1+log2(1+
1

|σv| )}dv.
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Using the inequality 1 + (|σv|)−1 ≤ σ−1(1 + |v|−1) valid for 0 < σ < 1, one
obtains that the norm of f0 ∗ φσ − P in H

α is bounded by constant times
log(σ−1)σ−1/2−α+β, which concludes the proof.

4.2. Proof of the Lemmas

Proof of Lemma 3. The concentration function ϕf0
is the sum ϕA

f0
+ ϕB of two

decreasing functions, see Equation (3). Let us show that ϕB is strictly decreasing
that is ϕB(ε) > ϕB(ε′) if ε′ > ε. It suffices to see that C = {γ ∈ B, ε < ‖γ‖ < ε′}
receives positive mass under the law of Z. Since Z is non-degenerate, its RKHS
H contains a non-zero element h1. For some λ > 0, the element λh1 ∈ H belongs
to the set C. Since C is an open set, there exists η > 0 such that the ball B(λh1 , η)
is included in C. Thus to obtain the strict monotonicity, it suffices to show that
the probability P(‖Z − h‖ < η) of an arbitrary open ball centered around an
element of h ∈ H is positive.

This can be proved as follows. Using Cameron-Martin change of variables
formula, see e.g. Lemma 3.2 in [15], it suffices to prove that any ball centered
at zero of positive radius receives positive mass under the law of Z. Since B is
separable, for any r > 0 the space B is the union of a countable number of balls
of radius r thus at least one of these balls say B(x, r) receives positive mass.
Let Z′ be an independent copy of the process Z, we have

0 < P(Z ∈ B(x, r))P(Z′ ∈ B(x, r)) ≤ P(Z − Z′ ∈ B(0, 2r)).

Now note that (Z −Z′)/
√

2 has the same distribution as Z (these are Gaussian
processes with the same covariance function) thus P(Z ∈ B(0, r)) is positive for
any r > 0.

Now just the convexity statement remains to prove. Using the fact that the
function h → ‖h‖2

H
is convex together with the definition of the infimum, one

gets that ϕA
f0

is convex. The fact that ϕB is convex is a consequence of the
general fact that the probability measure of a mean-zero Gaussian process is
log-concave, see for instance Lemma 1.1 in [4].

Proof of Lemma 4. First, let us check that for any h in the RKHS H of Xα
t ,

it holds ‖h‖2
H

= h(0)2 + ‖h − h(0)‖2
H
. We use the well-known fact that if a

process X is a sum of two independent centered Gaussian components V and
W , with supports B

V and B
W and RKHS H

V and H
W respectively, such that

B
V ∩ B

W = {0} and B
V is complemented by a closed subspace that contains

B
W , then the RKHS H of X is the direct sum of H

V and H
W and ‖hV +hW ‖2

H
=

‖hV ‖2
HV +‖hW ‖2

HW , see for instance Lemma 9.1 in [15]. We apply this fact to the
decomposition Xα

t = V +W , with V = Z0 and W = Xα
t −Z0, see Equation (9).

The support B
V is the set of all constant functions, while B

W is included in the
(closed) set of all continuous functions f with f(0) = 0. Since B

V ∩ B
W = {0},

the preceding result implies the announced decomposition.
Now note that

inf
h∈H, ‖h−w0−ρ‖∞<ε

‖h‖2
H

= inf
g∈H, ‖g−w0‖∞<ε

‖g + ρ‖2
H
.



I. Castillo/Lower bounds for posterior rates 1297

For any g belonging to the set defining the latter infimum,

‖g + ρ‖2
H

= ‖g + ρ − g(0) − ρ‖2
H

+ (g(0) + ρ)2

= ‖g − g(0)‖2
H

+ (g(0) + ρ)2 = ‖g‖2
H

+ 2g(0)ρ + ρ2.

Since ‖g − w0‖∞ < ε in particular we have |g(0) − w0(0)| < ε, which gives the
desired bound on the infimum and hence on the concentration function.

Proof of Lemma 7. From the proof of Theorem 14 in [7][p. 588], we know that
for any 0 ≤ t ≤ 1 and 0 < u ≤ t, it holds

|I1−δ
0+ f(t − u) − I1−δ

0+ f(t)| . u + u

∫ t/u

1

wδ{(w − 1)−δ − w−δ}dw.

Since δ ∈ (0, 1), the latter integral is bounded if t/u ≤ 2. If t/u > 2 we split
the integral in a part over [1, 2], which is bounded, and a part over [2, t/u]. For
the latter part, the mean value theorem gives |(w− 1)−δ −w−δ| ≤ (w− 1)−δ−1.
Thus using the inequality w ≤ 2(w−1) for w ≥ 2, we obtain that the integrand
is bounded from above by (w − 1)−1, which leads to

|I1−δ
0+ f(t − u) − I1−δ

0+ f(t)| . u(1 + log(1 + t/u)) (10)

But this also holds for t ≤ u since then by definition I1−δ
0+ f(t − u) = 0 and

we can use the preceding display with t = u to get that |I1−δ
0+ f(t)| . t .

u{1 + log(1 + t/u)}. Thus using Fubini’s theorem and then (10), one obtains
that for any t > 0 and any real u,

|I1−δ
0+ (f ∗ g)(t)| .

∫

|I1−δ
0+ f(t − u) − I1−δ

0+ f(t)||g(u)|du

.

∫

|u|{1 + log(1 + t/|u|)}|g(u)|du.

Hence by the Cauchy-Schwarz inequality

‖I1−δ
0+ (f ∗ g)‖2

2 .
∫ 1

0

(
∫

{1 + log(1 + t/|u|)}2u2g(u)2du

)

dt

.

∫

u2{1 + log2(1 + |u|−1)}g(u)2du.

5. Conclusion

We have defined a notion of lower bound for the rate of convergence of the poste-
rior distribution and given a scheme to obtain lower bounds in a nonparametric
framework when the prior is a Gaussian process. Lower and upper bound rates
turn out to be intimately related to the behavior of the concentration function
ϕf0

of the Gaussian process at the true f0. When f0 is smooth enough, the
small ball term in ϕf0

dominates and determines the rate. On the contrary,



I. Castillo/Lower bounds for posterior rates 1298

when the prior is much smoother than the function, the RKHS-approximation
term dominates and in general some extra information on f0 is needed in order
to determine the precise behavior of ϕf0

explicitly. In the framework of Section
3.1 we were able to obtain that known upper bound rates are, up to constants or
log factors, also lower bounds rates, thus leading to optimality of these rates up
to constants or log factors. In Section 3.2 we have obtained lower bound results
for the posterior rate when the prior is itself non-Gaussian (though constructed
from a Gaussian prior) using Lemma 1 directly. Since the proof of Theorem 1 on
Gaussian priors also relies on this result, our work also underlines the usefulness
of Lemma 1 in obtaining lower bound results.
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