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Abstract: We consider independent random variables (r.v.’s) with a com-
mon mean g that either satisfy Lindeberg’s condition, or are symmet-
ric around p. Present forms of existing functional central limit theorems
(FCLT’s) for Studentized partial sums of such r.v.’s on DJ0, 1] are seen to
be of some use for constructing asymptotic confidence intervals, or what
we call functional asymptotic confidence intervals (FACD’s), for p. In this
paper we establish completely data-based versions of these FCLT’s and
thus extend their applicability in this regard. Two special examples of new
FACP’s for p are presented.
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1. Introduction and main results

Estimating an unknown mean of a population has been a prominent classical
problem in statistics. Perhaps, the most famous and influential work on this
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subject is “Student” (1908) that celebrated its centennial last year. Facing the
problem of an accurate interval estimation of a mean of a small random sample
drawn from a normally distributed population with an unknown variance, W.S.
Gosset (“Student”), among other things, concluded the exact distribution of
the 1/4/n — 1 multiple of what is now known as the Student statistic, or the
so-called t—random variable with n — 1 degrees of freedom.

Estimating a common mean of several populations has also been an outstand-
ing statistical problem. It is frequently posed in the context of finite samples.
A considerable amount of the literature in this regard treats the case of sev-
eral normal populations with unknown and possibly unequal variances (cf., e.g.,
Graybill and Deal (1959), Normwood and Hinkelmann (1977), Pal and Kim
(1997), and further references in these papers).

The present paper deals with asymptotic confidence interval estimation of a
common mean of unspecified populations. Let {Z;,7 > 1} be a sequence of inde-
pendent, but not necessarily indentically distributed, random variables (r.v.’s)
with a common mean p. We will consider two kinds of such r.v.’s, those with
finite positive variances that satisfy Lindeberg’s condition, and Z;’s that are
symmetric around g and do not necessarily have finite variances.

The studies of the present paper were motivated in part by the problems the
author faced in the context of linear error-in-variables models, when establish-
ing functional asymptotic confidence intervals for the slope in such models in
Martsynyuk (2008).

1.1. Review of invariance principles for Student processes based on
independent random variables

Case of random variables satisfying Lindeberg’s condition
Suppose that 4 = 0 and 0 < VarZ; = 02 < 0o, i > 1. Consider the Student

statistic

Z?:l Zl/\/ﬁ
(Ciei(Zi = Z)2/(n — 1)1/’
with Z :=n=1Y" | Z;, n > 1. In view of (1), one can define a Student process
in D|0, 1] space as follows:

Tn(Zla < aZn) =

(1)

i 2,/ .
i (Zi —2)2)(n— 1)1/ St>4

where the time function K, (-) is defined as

Tﬁ(Zla < aZn) =

K,(t):= sup {s), <tsh}, 0<t<1, (3)
0<m<n
with .
s2:=0 and s ::Za?, m > 1. (4)
i=1

In (2), we put Z?:l Z; = 0.
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Csorgd, Szyszkowicz and Wang (2003, 2004), among other things, study self-
normalized partial sums and a corresponding process in D|0, 1] for the above
{Zi,i > 1}, namely

27'11 Zi t ZKfl(t) Zi
Vn(Zl,...,Zn) = —=——+— and Vn(Zl,...,Zn) == (5)
(21:1 23)1/2 (21:1 23)1/2

On assuming that the Lindeberg condition for Z;’s is satisfied, that is

for each € >0, $,°> EZ}l{z,5s,) — 0, asn— oo, (6)

=1

where 14 denotes the indicator function of set A, as a consequence of a well-
known result of Prohorov (1956, Theorem 3.1), they conclude (cf. Proposition
2.2 combined with Remark 2.6 in Csorgd et al. (2004)):

ViZi,...,Z,) BW({t) on (D[0,1],p), n — oo, (7)

where {W(t),0 < t < 1} is a standard Wiener process, and p stands for the sup-
norm metric on D[0, 1]. The weak convergence in (7) is a weak invariance prin-
ciple, and it amounts to the following functional central limit theorem (FCLT)
(cf., e.g., Sections 3.3 and 3.4 in Csorgd (2002)):

h(VHZ1,. . Z0)) B RW (L), 1 — oo, (8)

for all functionals h : D[0,1] — IR that are D-measurable and p-continuous,
or p-continuous except at points forming a set of Wiener measure zero on
(D[0,1], D), where D is the sigma-field of subsets of D[0,1] generated by the
finite-dimensional subsets of D0, 1].

Csorgé et al. (20041) also show (cf. their Proposition 2.3) that one can redefine
mean zero {Z;, ¢ > 1} as in (6) on a richer probability space together with a
sequence of independent standard normal r.v.’s {Y;, ¢ > 1}, such that

Kan(t)
sup \V.H(Zy,..., Z, 12011- =op(l), m— co. 9)
0<t<1
Since 5,1 2K 5y, 2 ( 25 KM 52y 10 < ¢ < 1, and, on account of
(6), supg<s< |5,,? ZK, 062y < s 22maxi<j<, 07 — 0, n — oo, then by

using the Lévy modulus of contmulty of a Wiener process (cf., e.g., Csorgé and
Révész (1951)), supgepe; [W (5,2 50" 02) = W(t)| = op(1), n — oco. The
latter nearness combined with the notion of an FCLT on (D[0, 1], p) results in

0
st Y o¥s BwW(t) on (D[0,1],p), n— oo (10)

=1
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Consequently, in view of (10), the sup-norm approximation in probability in
(9) implies (8), that is the FCLT in (7). Moreover, although the main foci of
this paper are FCLT’s and their application to constructing asymptotic confi-
dence intervals, upcoming statements of the FCLT’s in Lemma 1 and our main
Theorem 1 will be accompanied by corresponding sup-norm approximations in
probability in (c¢) parts of Lemma 1 and Theorem 1, as by proving these ap-
proximations and using (10), we also establish the FCLT’s 4 la (8).

The results in (7) and (9) almost immediately yield Lemma 1 with the cor-
responding analogues for the Student process T} (Z1, ..., Zy,) of (2).

Lemma 1. Let {Zl, i > 1} be independent mean zero r.v.’s with finite positive
variances VarZ; = o2, i > 1. Assume also the Lindeberg condition as in (6).
Then, as n — o0,

(a’) Tﬁo(zla"'azn)g]\](oato)a o € (05 1]7

(b) T4(Zy,.... Z2) B W(t) on (D[0,1],p);

¢) we can redefine {Z;, i > 1} on a richer probability space together with a
sequence of independent standard normal r.v.’s {Y;, i > 1} such that

—~

K (t)

¢ -1
sup T (Z1, ..., Zn E 0;Y;| = op(1),
0<t<1

where K, (t) and s, are as in (3) and (4).

Case of symmetric random variables

Consider now independent symmetric mean zero r.v.’s {Z;,7 > 1} that do not
necessarily have finite variances. For such r.v.’s, Egorov (1996) proves that, as
n — 0o,

ViZy, ..., Zy) B N(0,1) if and only if %50. (11)
=1 “1

Aiming at a generalization of (11) for an appropriate D[0, 1] version of V,,(Z1, . . .,
Zyn), Csorgd et al. (2003) introduce the self-normalized partial sums process

K (t) 7
‘Art . Z
n(Zla"'aZn>' (Z 122)1/25

where the time function I/(\'n(t) is a suitable analogue of K, (t) of (3) for the
r.v.’s Z;’s with not necessarily finite variances, namely

0
K,(t) := sup {222<t222}, 0<t<1, Y Z7:=0. (13)
1=1

0<m<n =1

0<t<l, (12)
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Csorgd et al. (2003, Theorem 2) show that, as n — oo,

2
maxXj<i;<n Zi P

Vi Zy,...,Z.) 2W(t) on (D[0,1],p) if and only if — g 0
i=14i
(14)
In view of V!(Z1,...,Z,), one can define and study the Student process
Y Rn(t) 7
THZy, .o Z) = — lel_ 21/\/5 =, 0<t<1, (15)
i (Zi = 2)2/(n = 1)V
with K, (t) of (13). It is not hard to see that
- ViZy,..., %0
T Zy, ..., Zn) = V21, Zn) 0<t<1. (16)

VO —V2(Z1, ..., Zn) [(n—1)

Hence, if TE(Zy, ..., Zy) or V(Zy, ..., Z,) has an asymptotic distribution, then
so does the other, and these distributions coincide. Consequently, (14) also holds
true for T (Zy, ..., Zy).

Lemma 2. Let {Z;,i > 1} be independent mean zero symmetric r.v.’s. Then,
ffl(Zl, ey Zn) 2>I/V(t) on (D[0,1], p) if and only if maxi<i<n, Z2/> 1 Z? il 0,

as n — Q.

1.2. Main results: functional asymptotic confidence intervals for a
common mean of independent random variables

Case of random variables satisfying Lindeberg’s condition

Consider independent r.v.’s {Z;,i > 1} with a common mean p and finite pos-
itive variances that satisfy Lindeberg’s condition. As a consequence of the (a)
part with tg = 1 of Lemma 1, T,,(Z1 — p,..., Zn — p) KA N(0,1), n — oo.
Since the Student statistic T,,(Z1 — pu, . . ., Z,, — i) does not contain the typically
unknown variances o2, as compared to the expression s;' > | (Z; — p) in the
usual statement of the classical Lindeberg-Feller central limit theorem (CLT),
the above CLT for T,,(Z1 — , . . ., Zn — ) can be used for asymptotic confidence
interval (CI) estimation of the mean p.

The data-based Studentized FCLT in the (b) part of Lemma 1 provides a
source of further asymptotic CI’s, or what we call functional asymptotic CI’s
(FACT’s), for u. For example, since the sup-functional supy<;<; |- | on DJ0, 1] is
p-continuous, from the (b) part of Lemma 1 we conclude

sup |T8(Z1 — .., Zn — )| 2 sup [W(B)|, n—oo,  (17)
0<t<1 0<t<1
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and the latter convergence in distribution yields a 1 — « size FACI for u as
follows:

ny " (Zi—2)? n> " (Z;—27)?
D> I Y O D CIn LAY D D i ]
| | 18
k:1 k ) k 3 ( )

where P (supg<;<; [W(t)| > a) = a, 0 < o < 1. The distribution function of the
I.V. SUpy<s<q |W(t)] can be found, for example, in Csorgé and Révész (1981),
as well as in Csorgd and Horvath (1984) where it is also tabulated.

In construction of the FACT (18) for u, due to the very nature of the sup-
functional supg<,< | - | on D[0, 1], the time function K, (t) of (3) of T (Z, —
Uy ..., Zn — ) was employed only to the extent of using its values 0,1,...,n.
However, when dealing with some other appropriate functionals in regard of
constructing FACT’s for u from the FCLT in (b) of Lemma 1, the jump points
s3/s2% of the step-function K, (t) may also enter the picture. These jump points
are typically unknown, unless Z;’s have equal variances and s2/s2 = k/n. To
resolve this problem, we replace K, (t) with its “empirical”, data-based version

m

Kn(t):= sup {Z(Zi—%z’sinj(zi—?)z’}, 0<t<1, (19)

osmsn = i=1

where Z?:l(zi — Z)? := 0, and establish our main Theorem 1, an analogue of
Lemma 1 for the Student process

Z£n1(t) Zi/\/n
O (Zi —2)2)(n— 1)1/ 0<t<1Ll (20)

Without loss of generality, Theorem 1 is stated under the assumption that p = 0.

Tﬁ(zla < aZn) =

Theorem 1. Let {Z;, i > 1} be independent mean zero r.v.’s with finite positive
variances VarZ; = o2, i > 1. Assume also the Lindeberg condition as in (6).
Then, as n — oo,

(a) T(Z1, ..., Za) 2 N (0, 1), to € (0,1];

(b) Ti(Z1,..., Zy) > W(t) on (D[0,1],p);

¢) we can redefine {Z;, i > 1} on a richer probability space together with a
sequence of independent standard normal r.v.’s {Y;, i > 1} such that

—

K, (t)
sup Tfl(Zl,...,Zn)—s;I Z 0;Y;| = op(1),
0<t<1 =

where K, (t) and sy, are as in (3) and (4).

To illustrate when construction of FACI’s for a not necessarily zero p call
for the FCLT as in the (b) part of Theorem 1, we consider convergence in

distribution of two special functionals of T (Z; — u, ..., Z, — p) in Examples 1
and 2.
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Example 1. For a fixed to € (0, 1], we consider fﬁ“ (Z1 =y .y Zp— ), one of
the simplest p-continuous functionals of Tﬁ (Z1i—py ..y Zp—p). As a consequence
of the FCLT in (b) of Theorem 1, or directly by (a) of Theorem 1, we obtain
the following 1 — « size FACI for u:

12 -7)?

Zfiﬂl(tﬂ)z —za2vT0 M ZK (tO)Z +20/2v0 ny "

3

Kn(to) Kn(to)

21
where z, /2 is the 100(1 — a/2)"" percentile of the standard normal distribut(ion>
The FACI in (21) is completely data-based, as Ky (to) is computable. Indeed, if
to =1, then Kn(to) = n, while for ¢ty € (0,1) and a given sample Z1, ..., Z,, we
can find ko, 0 < ko < n — 1, such that 323, (% — 2)*/ Y1, (% — 2)? < 1y <
SRtz = Z)2) S (Zi — Z)2, and consequently, K, (to) = ko. We also note
that (21) is well-defined, as by (42) below, max;<;<,(Z; —Z)?/ > 1 (Zi—Z)? il
0 and hence, (Z, — Z)%/ 1 (Zi — Z)? < to (or K, (to) # 0) with probability

approaching one, as n — 0.

Example 2. The integral functional fol dt on DI0,1] is p-continuous, as for

. 1
any f(t) and g(t) in D[0,1], | fy f(t)dt = [, g(t)dt] < supo<,<y |£(8) = g(¢)]. Tn
view of this and the FCLT in (b) part of Theorem 1, as n — oo,

/1 THZy = phy ., T — p)dt 2 /1 W(t)dt 2 N(0,1/3). (22)
0 0

By noting that

U = S v e R T
‘/0 Tn(Zl /L,...,Zn /L)dt_kZ:l kJrl(Zi:l( Z; — )/(n—l))1/2’

with —0
Zy — 2
I/k::(k—)_ 1<k<n

Yia(Zi-2)r T T

we obtain a 1 — « size FACI for p with the lower and upper bounds given by

(23)

_ ny " (Zi—2Z)2
SohTi Ve Yim Zi T 2R Z#

Zk:l Vit1k

where P (|N(0,1/3)| > z4/2/V3) = .

It would naturally be desirable to investigate individual and comparative
performances, such as the expected lengths for example, of the obtained FACI’s
for p in (18), (21) and (24).

: (24)
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Case of symmetric random variables

Consider independent symmetric r.v.’s Z; with a common, not necessarily zero,
mean p. Lemma 2 remains true for such Z;’s if Z;,..., Z, are replaced with
Z1— ..., Zyn — pin its statement. However, in the thus stated Lemma 2, the
time function of T/(Zy — 1, . . ., Zy — j1) becomes supy«,men{ S 1,(Zi — p)? <
t> " (Z; — p)*}, a function of an unknown . Hence, such an FCLT is not
necessarily of immediate use for construction of various FACI’s for p, just like
the FCLT of (b) of Lemma 1 when it is applied to independent mean p r.v.’s
Z; satisfying Lindeberg’s condition (cf. the lines preceding (19)). To extend the
applicability of the FCLT of Lemma 2 in this regard, we first establish our main
Theorem 2 for the Student process T)(Zy — i, ..., Zy, — p) as in (20), a data-

based version of Lemma 2 that uses K, (t) of (19) instead of the above noted
time function of T(Zy — p, ..., Zp — ).

Theorem 2. Let {Z;,i > 1} be independent symmetric r.v.’s with a common
mean . Then, for TL(Zy, ..., Zn) as in (20), TL(Zy— i, . . ., Zn—p1) z W (t) on
(D[0,1], p) if and only if maxi<i<n(Z; — )2 /> 0 (Zi — p)* il 0, as n — oo.

It is appealing to replace the convergence maxi <j<n(Z; — )2 /> i, (Zi —p)? it
0 in Theorem 2 with the data-based one of max;<;<n(Z; —2)?/> 1 (Z; —Z)? i
0, as n_— 00, especially when concluding FACT’s for p via appropriate function-
als of T (Zy — p, ..., Zy, — p) of Theorem 2. Hence we present Corollary 1 that
amounts to a completely data-based version of Theorem 2.

Corollary 1. Let {Z;,i > 1} be independent symmetric r.v.’s with a common
mean p. Then TH(Zy — i, ..., Zn — 1) A W(t) on (D]0,1],p) if and only if
maxi<i<n(Z;i — Z)? />0 (Zi — Z)? i 0, as n — 0.

We note that, in view of Corollary 1, the FACI’s for p in (21) and (24) also
hold true for independent symmetric r.v.’s Z; with a common mean g and not
necessarily finite variances, provided that max;<;<,(Z; — 2)%/> 1 (Z; — Z)? il
0, as n — oo.

2. Proofs

Hereafter, notations op (1) and Op(1) stand for sequences of r.v.’s that, respec-
tively, converge to zero and are bounded in probability, as n — oo.

Proof of Lemma 1. In view of (10), the proof reduces to establishing the (c)
part of Lemma 1. On account of (7), supg<;<; [VE(Z1,...,Z,)| = Op(1) and
Vo(Z1,...,Z,) = Op(1). Moreover, we also have (9) with {Z;,i > 1} and
{Yi,i > 1} defined on the same probability space. Combining all this with a
representation for T (Z1, ..., Z,) d la (16), as n — oo, we arrive at

Kn(t)
V..., 2~ 2= %

Sn

Kn(t) Y
sup |T(Zy,. ..,Z@—M
0<t<1 Sn

< sup
0<t<1
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t 1 —
o e B ez e
= Op(l) +OP(1)OP(1) = Op(l). (25)

O

Next, we spell out a special case of Raikov’s theorem (cf. Theorem 4 on p.143
in Gnedenko and Kolmogorov (1954)), and then, establish auxiliary Lemma 4
that is required for the proof of Theorem 1.

Lemma 3. Let {Z;, i > 1} be independent mean zero r.v.’s with finite positive
variances VarZ; = o2, i > 1. Suppose also that the Lindeberg condition in (6)
is satisfied. Then,

s;2ZZi2£>1, n — oo, (26)
i=1

with s2 of (4).

Lemma 4. For {Z;, i > 1} as in Lemma 3,

sup (VU Zy,...,Zp) = V21, ..., Zn)| = 0p(1), n— oo, (27)
0<t<1
where the self-normalized partial sums processes VH(Zy, ..., Zy) and

YN/nt(Zl, oy Zp) are defined as follows: for 0 <t <1,

K (t) K (t)
t o2 S o> Z
Vn(Zl,,Zn)—W and Vn(Zl,,Zn)—W, (28)

with the time functions K, (t) and K,(t) as in (3) and (19).
Proof of Lemma 4. The scheme of this proof is motivated by the lines of the
proof of Theorem 2 in Rackauskas and Suquet (2001).

Let UL and U? be the respective C[0, 1] “Donskerized” versions of the D[0, 1]
processes V!(Zy,- -+, Zn) and VH(Zy,- -+, Z,). Namely, Ul and U, as contin-
uous functions of ¢, are linear respectively on the intervals [si/s2,s7,,/s2]
and [0, (Zi = 2)2) Y11 (Zi = 202, 5005 (20— 202 ) i1(Zi — Z)?) for each
k=0,1,---,n — 1, and both take values S-% | Z; /(3" Z?)'/2 respectively at
s2/s2 and ¥ (Zi—7)%) S0 (Zi=Z)%, k= 0,1,---,n, where s2 is defined in
(4), and 30 (Z; — Z)? :== 0 and Y°_, Z; := 0. Clearly,

maxi<i<n |Z;|
su VJZaaZn _U7tl Sniiia
Oﬁtgl ’ ( ! ) ’ (Zi:l ZE)I/Q

~ ~ maxj<i<n |Zi
VUZy,...,Z,) - Ul < ——==0 1
n( 1, 9 ) n| = (Zi:l 212)1/2

(29)

sup
0<t<1
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From Lindeberg’s condition in (6), for any € > 0, as n — oo,

-2 2
P(lrgl;g(n 1Zi] > 55n> < Z} P(1Zi] > es4) < (es0) Z} B(Z317,320,)) = 0.

(30)
On combining (26) and (30),
maxlgign |Z1| o
& e - orl), me e (31
In view of (29) and (31), in order to show (27), it suffices to prove that
sup |U! — ULl =o0p(1), n— occ. (32)
0<t<1

Let 6,,(t) be the random element of C[0, 1] that is linear in ¢ on the inter-
vals [s3/s2, 57,1 /s2] for each k = 0,1,...,n — 1, with 0, (s7/s}) = S (Zi —
Z)2) 3t ((Zi—Z)% k=0,1,...,n.Since supg<,<; UL —Ut| = SUPg<i<i |Ug"(t)—
173"“>| and U9 = Ut,0 <t <1, then (32) reads as

sup ’Ug"(t) —- Ut
0<t<1

=op(l), n— 0. (33)

For f(t) € C[0,1], let w(f(t);8) = supyy,_4,<s |f(t1) — f(t2)| be the modulus
of continuity of f(t). For any A > 0 and 0 < 0 < 1, we have

P ( sup (U — Ut > )\)

0<t<1
<P sup U = U] = A
0<E<1, [1—0, (1)) <supo< 1<y [1—0n (1)
SP(w(Ufl;(S)Z)\)—FP(Sup |t—9n(t)|>5>. (34)
0<t<1

By Theorem 3.1 in Prohorov (1956) and (26), Ut 2 W (¢) on (C[0, 1], p),n — oo,
and therefore, for the continuous functional w(-; ) on C[0,1] and any A > 0,

P(w(U};8) > A) — P(w(W(t);6) >A), n— oo (35)

In view of, for example, the Lévy modulus of continuity of a Wiener process
(cf., e.g., Csorgd and Révész (1981)), for any € > 0 there is 6 € (0, 1] such that

P(w(W(t);8) > \) <e. (36)

Taking into account (34)—(36), to complete the proof of Lemma 4, we only need
to verify that

sup [t —0,(t)] =op(l), n— oco. (37)
0<t<1
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To prove (37), we first write

Knt) 2 Kn(t) g2 §~Kn(0) 2
sup |t_9" (t)| < sup t— 21212 0 1+ sup 21:12 0 _ 21212 i
0<t<1 0<t<1 Sn 0<t<1 Sn Sn
sz iz -7
+ su = - =
02ie1 S5 s
Kn - Kn -
+ sup Zi:l(t)(zi — 2)2 _ Zi:l(t)(zi —_2)2
0<t<1 s S (Zi— Z)?
Kn(t) 7. _7)2
+ Os<ugl %El ((Z ! Z)l — Hn(t) = A1+ A+ A3+ Ay + As. (38)
<t< i=1\4i —

Concerning A;, we have

ZK"(t) o? max, <;j<n 02

o i<n O

Ay = sup |t — 1_12 L < ==+ —0, n—oo, (39)
0<t<1 Sh Sh

on account of Feller’s condition for Z;’s that is implied by Lindeberg’s one in
(6). From (7) and (26), | Y27, Zi|/sn = Op(1) and supge,<1 | Sin™ Zi| /50 =
Op(1). Using these facts together with (26) and (31), we have that for Az, Ay
and As in (38), as n — oo,

Zfinl(t) 72 ZKfl(t)(Zz‘ —7)?

2
Sn

2/ - 7, Enlt) 7.
S |Zl:1 | sup |Zl:1 |

NSn 0<t<1 Sn

As = sup

0<t<1 5721

s (k) 0o, 20 o), (40)

n Sn n n

N Zz‘K:nl(t)(Zi _ 7)2 Zf(:nl(t)(zi . 7)2 _ ’ Z?:l(zi _ 7)2
= su - — -
* ogtgl s2 S (Zi—=2) | T e
Z?:l Zi2 1 Z?:l Zi ’ OP(U
< ’T—l +E e =op(1l) + o =op(1), (41)
KWz, - Z)2 <n(Zi — 7)?
A5 — sup Zlil ( 2 _) —Hn(t) < maxlngzgn( 1_ )
0<t<1| Do (Zi — Z)? Yie1(Zi = 2)?
i ZF sn dmaxi<i<n 27
- S i (Zi = Z)? Z?:l z?
= (14o0p(1)(1+o0p(1))op(l)=o0p(1). (42)

Now, in view of (38)—(42), it remains to show that

Zz‘K:nl(t) ‘71'2 Zz‘K:nl(t) Zi2

2 2
S5n S5n

As = sup =op(l), n— 0. (43)

0<t<1
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Let ~
zZ; = S;2Zi2]1{Zi2§s%}a (44)

K2

then by Lindeberg’s condition in (6) and the inequality

Tyt z

su =L
ozic1| 52 H
K (t)
< su CEZY)| 4525 221, yoe oy ts E(Z]lzs)
ogt%;( z; {22552} Z (72>52)
(45)
the proof of (43) narrows down to establishing
K (t)
sup Z (Z2 —EZ?)| =o0p(1), n— 0. (46)
o<t<1|

By the Ottavani-Skorohod inequality (cf., e.g., Shorack (2000)), for any a > 0,

Kn(t) k
su —EZ})|>4a| =P max 22— EZ?)| >4a
0<t21 Zl <1<k<n ;( )|z
P( 7:1(23—/223)’ > 2a)
< — e — . (47)
1= maxicren P[22 - EZ2) = i(Z2 — EZ2)| > 2a)
On account of the Linderberg condition in (6) and (26),
noo_ _ n Z2 n
(2 - 57| <= B2 S 2
1=1 n 1=1
+s;2ZE(Zi2]1{Z3>S%}) = op(1). (48)

i=1
If, additionally, for any a > 0,

k

M2} -EZ})| >

=1

1
< —
11%1]3§HP ( a) <3 for n large enough, (49)
then (46) follows from (47)—(49). For 7 € (0,1) and any a > 0,

k 2

> (Z; - EZ)

=1

k

> (Z; - EZ)

1<k<n ‘
1=1

>a> <a? max E

max P
1<k<n

=a? zn: E(Z? —EZ?)?<a™? zn: EZ}

=1 =1
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n

=24 4

=a S, E E (Z’L H‘{Z?<T2S%}U{T2S%§Z?§S%})
1=1

S CL727'2S;2 Z E (ZE]I{Z_2<7.252 }) + CL72S;2 Z E (ZEH{Z?Z‘r?s? })
i=1 i=1
20 1

<2077+ o, (50)
where the latter inequality holds for n large enough (depending on @ and 7) on
account of Lindeberg’s condition in (6). In (50), if @ > 2v/2, then 2a=27241/4 <
72/4 4+ 1/4 < 1/2 for any 7 € (0,1), while for 0 < a < 2v/2, by choosing
T =a/2V/?2, 2a7 2712 +1/4 = 1/2. Thus, for any a > 0, we achieve (49). This also
completes the proof of Lemma 4. O

Proof of Theorem 1. Having (10), we are only concerned with the proof of
the (c) part of Theorem 1. Representations for T (Z1, ..., Z,) and T (Zy, . .., Zy)
that rhyme with (16), the (c) part of Lemma 1, (27) of Lemma 4 and (7) result

in, as n — 00,

Ko (t) Ko (t)
sup Tle,...,Zn —S;l 0;Y;| < sup Tle,...,Zn —S;l 0. Y;
0 \Tal s s Ba) =t D oW\ < sup [Ta(Bas Zn) =t )
sWoci<1 |V Z1, -y Zn)=VHZ1, ... Zy)
+ ZOP(l)—‘rOP(l)OP(l):OP(l).

Vi =V2(Z, .. Z)) [(n—1)
O

Proof of Theorem 2. Without loss of generality, we assume that p = 0.
In view of (11) and a version of (16) for T!(Z1,. .., Z,), it suffices to prove

that V(Z1, ..., Zn) 2 W(t) on (D[0,1], p) for VH(Zy, ..., Zn) of (28), assum-

ing that maxi<;<, Z22/> 1, Z? 20, as n — oo. The latter convergence in
distribution reduces to establishing that

sup \VH(Zy,..., Zn) = Vi Zy, ..., Zy)

0<t<1

=op(l), n— o0, (51)

where V;(Zl, ..., Zy) of (12) satisfies (14). By arguments similar to those used
for proving (27) of Lemma 4, (51) follows from

Ut — Ut

n

sup — op(1), n— oo, (52)

0<t<1

where U! and Ul are the respective C[0,1] (“Donskerized”) versions of the
DI0,1] processes V.H(Z1, ..., Zy) and VH(Zy, ..., Zy).

Consider the random broken line 7, (t) € C]0,1] that is linear in ¢ on the
intervals [SF , 22/ S0 72, SV 72/ 72] for each k = 0,1,...,n — 1,
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. k n k N2 n N2
with 772(21’:1 Zz/ Zi:l Zz2) - Zi:l(zi - Z)2/ Zi:l(zi - Z)2a k=0,1,....,n
Since U = Ul,0 <t <1, then (52) is equivalent to

sup ’Ufl —um®
0<t<1

=op(l), n— oo. (53)

Via lines similar to those in (34)—(36) and the weak convergence ﬁfl A W (t) on
(C10,1], p) that follows from the slightly modified proof of the FCLT in (14) for

Vi Zy, ..., Zy,) in Csorgd et al. (2003), the nearness in (53) is hinged on showing
that
sup [t —n,(t)] =op(1), n — co. (54)
0<t<1
We have

E"(t) 7. —7)? ) 7. _7)2
s [t—m(®) < sup [t— Zazi LiZ 2N mangin(Zi7)
0<t<1 0<t<1 Yoi(Zi = Z)? S (Zi —Z)?

= Bl +B2, (55)

where, due to (11), (31) and (14),

B, < imaxicicnZ7 Y 4 op(1)
- S22 ST (Zi—2)2 1-V2Zi,..., Zy)/n
op(1)
= o7 = oe(), 56
1+0p(1)/n r(1) (56)
and
K. (t) 2 K. (t) 2 But) (. _ 72
By < sup t—z | 4+ sup 21 21_21:171(12 )
0<t<1 Zl 1Z 0<t<1 Zi:l Z; Zi:l Z:

Zf( "Nz, - Z) ZiK:nl(t)(Zi_Z)2 < MaXicicn Z7

+ sup

oe<t| i1 ZF SiaZi=22 | T X2
2\V(Zy, ..., Zy)| =4 V,?(Zl,...,Zn)
+( - 0221 (Zyy .. Zn) +—n )
P Z)°
’ Z’L 1 Z2 - 1’
= Op(l) + (OPT()OP(U + 01;(1)> + Opn(l) = Op(l). (57)

O

Proof of Corollary 1. Let T¢(Zy — p, ..., Zn — 1) Z W(t) on (D[0,1],p),
n — oo. In view of Theorem 2 and a representation for T (Zy — p, ..., Zp — )
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a la (16), this FCLT yields maxi<i<n(Z; — )?/> 1 (Z; — u)* = op(1) and
i1 (Zi = )/ (i (Zi = w)*)'/? = Op(1), n — 0. Consequently,

maxi<icn(Zi — 2)* _ 2maxicicn(Zi — p)* + 2(Z — p)?
TiZi=2¢ T YLz —n(Z =)
2 (2= )Y S Zim ) 2072 (0L (2 =) (i (Zi=0)%) )
L=t (S0 - )/ (S (2 - ) )

_op(1)+n20p(1)
S it a000)

[N

Conversely, assume that maxi<;<,(Z; — 2)?/ > (Z; — Z)? = op(1), n —
00. According to Theorem 2, to conclude the FCLT for Tﬁ (Zh =ty ooy Zp— 1),
it suffices to show that, as n — oo, maxi<;<n(Z; —p)? />y (Zi — p)* = op(1).
As n — oo, we have

Hlaxlgign(zi — ,u)2 < 2maX1§i§n(Zi — 7)2 —+ 2(7 — ,u)2
Yim(Zi—w? T Y (%= Z)? +n(Z - p)?
2max1§i§n(Zi — 7)2 2

_ = 4=
DV AL n

= Op(l).
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