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Birgitte B. Rgnn® and Ib M. Skovgaard"
3Genmab a/s
b University of Copenhagen

Abstract. Alignment of curves by nonparametric maximum likelihood esti-
mation can be done when the individual transformations of the time axis is
assumed to be of a parametric form, known up to some individual unobserved
random parameters. We suggest a fast algorithm, based on a Laplace approx-
imation, to find the nonparametric maximum likelihood estimator (NPMLE)
for the shape function. We find smooth estimates for the shape functions
without choosing any smoothing parameters or kernel function and we es-
timate realizations of the unobserved transformation parameters that align
the curves to satisfy the eye. The method is applied to two data examples
of electrophoretic spectra on feta cheese samples and on wheat samples, re-
spectively. A small simulation study indicates reasonable robustness against
assumptions regarding the error covariance function.

1 Introduction

When data from a process evolving in time is recorded the variation between repli-
cations is both in amplitude and phase. Here amplitude refers to the (vertical) vari-
ation in the response variable, whereas the variation in phase is meant to cover
the differences between the individual timing of the curves. The individual trans-
formed time may correspond to biological time, physical time or some artificial
time depending on circumstances of the experiment that might vary beyond the
control of the researcher. An example of replicated process data is shown in the
left panel of Figure 1, where nine electrophoretic spectra of the same feta cheese
are plotted versus time. The technique used is capillary electrophoresis. Thus, the
x-axis represents the time of migration through the capillary and the y-axis repre-
sents intensity, reflecting the concentration of the substance with the given migra-
tion time. There are 412 observations for each samples. The data are seen in the
left panel of Figure 1.

Since the 9 samples were highly variable in their level of intensity, background
intensity was initially removed before plotting and further analysis. This was done
using the same method as in Glasbey, Vali and Gustafsson (1995). The data were
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Figure 1 Two examples of observed electrophoretic spectra: capillary electrophoresis with nine
samples of feta cheese (left) and isoelectric focusing with 11 samples of wheat (right). One sample
is enhanced in each plot.

collected to obtain information on the protein profile of feta cheese and replica-
tions were made to determine which features were real and which were artifacts
occurring only in some replicates due to disturbances from other sources than the
cheese. Here horizontal variation between replications is unavoidable due to the
nature of experiment. The variation in phase seems to be by far the most substan-
tial and the cross-sectional mean clearly is a poor estimator of the shape function
of the protein profile, since it will be less peaky than any of the nine individual
curves. The feta cheese experiment is described in detail in Wium, Kristiansen and
Quist (1998).

Another sample of curves was recorded to characterize variety of wheat. Elec-
trophoretic spectra of ten different varieties of wheat were made by isoelectric
focusing on eleven different plates. The eleven spectra of variety number one are
shown in the right panel of Figure 1. Here the x-axis represents the isoelectric
pH-value for the substance, not time.

It is difficult to see much in the figure due to the substantial variation in phase
between the individual curves. The features of the eleven curves differ more than
the features of the nine feta cheese curves, and the variation in amplitude, the
“measurement” error on the signal, is of significant size in the wheat data. Both
types of variation must be accounted for in order to obtain a meaningful estimator
for the shape function of interest. For details on the wheat experiment and data see
Jensen et al. (1995).

Data of the type above can be modeled by a smooth function evolving in time,
subject to individual transformations of the time axis, and measured with noise,

Yij =mig; (1)} + eij, (1.1)

where the jth observation of curve i at time point #; is denoted Y;;, the common
shape function is denoted m, the individual time transformation is denoted g; and
the error term is denoted e¢;;.
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Several structural assumptions on the time transformation might be reasonable
for practical applications. Estimation of the transformations with few assumptions
can be done nonparametrically, for example, by so-called dynamic time warping,
considered in Wang and Gasser (1997), Ramsay and Li (1998), Ramsay and Sil-
verman (1997) and more recently by Brumback and Lindstrom (2004) and Liu
and Miiller (2004). The above papers study statistical aspects of fitting the individ-
ual time transformations by time warping, an idea originally introduced within the
engineering literature; see the above papers for references. When both the shape
function, m, and the individual time transformations, g;, i = 1, ..., n, are esti-
mated nonparametrically the horizontal variation must be separated from the verti-
cal. Otherwise, features of the shape function can be absorbed in the time transfor-
mations and visa versa. In some applications the focus might be on transforming
observed curves to match a reference curve, hence nonparametric estimation of the
transformation is clearly a method allowing for a flexible class of transformations.
In other applications, as the two examples introduced above, the focus is on estima-
tion of the common shape function, hence the transformations of the time axes are
merely experimental noise and might therefore be modeled parametrically with the
parameters considered as nuisance parameters. This can be done within the frame-
work of self-modeling regression, which spans a wide class of regression models.
The models similar to model (1.1), when the time transformation is assumed to be
parametric, g; () = g, (t), are models of this type. Here the time transformation
is assumed to be the same, up to some parameter 6;, for all individuals. Several
suggestions have been made on how to estimate the parameters in self-modeling
regression; see, for example, Lawton, Sylvestre and Maggio (1972), Stiitzle et al.
(1980), Kneip and Gasser (1992) and Kneip and Engel (1995). The very simple
special case of model (1.1), where the individual time axes are assumed to be the
observed time axis subject to individual rigid shifts, g;” Y(t) =t — 6;, has been
studied in Rgnn (2001). The interpretation of the time transformations as experi-
mental variation has been adopted and the shift parameters have been modeled as
unobserved nuisance parameters with some known distribution. A nonparametric
maximum likelihood approach has been followed, inspired by the applications of
this approach within event history analysis; see, for example, Gill (1989), Fern-
holz (1983), Groeneboom and Wellner (1992), Murphy (1995) and Parner (1998).
This approach has been generalized to transformations involving more parameters
in Decker, Rgnn and Jgrgensen (2000) and Gervini and Gasser (2005) where the
nonparametric score equation for the shape function has been shown to lead to a
fairly simple equation, immediately suggesting an iterative algorithm for estima-
tion. The calculations involved are, however, substantial and while Gervini and
Gasser (2005) suggest a simulation based estimation procedure, we show in the
present paper that simple and accurate approximations lead to a relatively fast and
reliable estimation procedure.

The approach from the latter three above-mentioned references is based on a
nonparametric maximum likelihood estimation (NPMLE) for model (1.1) with a
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parametric time transformation, g;(t) = gy, (¢), where g is a known function of
the p-dimensional transformation parameter 6;. The transformation parameters
are considered to be unobserved random variables, and their distribution enters
the likelihood as a penalty on extreme transformations. To approximate the crit-
ical terms in the algorithm, a Laplace approximation to the crucial integral is
suggested and the expressions leading to an approximate NPMLE of the shape
function are worked out. We then apply the algorithm to the feta cheese data and
the wheat data and show in a small simulation study that the method also works
well in situations where the assumptions from the working model are not met. The
present paper deals with estimation of the shape function, but the proposed algo-
rithm also provides estimates for the parameters of the time transformation and
the set of smooth, aligned curves. Hence, the method can serve as pre-processing
of data prior to functional analysis by principal component analysis or following
approaches described in, for example, Brumback and Rice (1998), Ramsay and
Silverman (2002) or Anselmo, Dias and Garcia (2005). The latter uses methods
from Ramsay and Li (1998) as a step in the functional data analysis process. The
wheat profiles presented represent 1 out of 10 varieties and the aim of the study
was to classify the profiles. Good alignment of the profiles was essential to achieve
successful classification. Similarly, protein profiles of plant seed oil have been suc-
cessfully classified by the method proposed in the present paper; see Decker, Rgnn
and Jgrgensen (2000). Note that, as in Rgnn (2001), an advantage of the method is
that the degree of smoothing is controlled by the data through the probability that
a given data point contributes to the function value in question. The present work
was introduced in the unpublished thesis Rgnn (1998).

2 A model for randomly time-transformed curves

The shape invariant model corresponding to randomly time-transformed curves is
given by

mi(s) =mig;' ()},

where m; is the ith curve, 6; is the ith transformation parameter, gg, is the transfor-
mation function and m is the shared shape function, defined on some interval, J,
on which also the transformations, gg, are defined. The transformation parameter
6; is assumed to follow a distribution with continuous density function, fp, and
compact support supp( fyp) = ® C R”. The mean of the distribution is assumed to
correspond to no transformation, gz (#) =t for all t € R, where § = E(6;). Each
transformation, gg, is assumed to be strictly increasing in ¢,

0
a—gg(s)>0 forallse J CR,0 €0,
s
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and hence a strictly increasing inverse, g, ! exists. In some settings other con-
straints on the transformation may be natural. If, for example, each curve repre-
sents the growth curve of an individual, the observed time axis represents the age
of the individual. The biological age, which corresponds to the transformed ob-
served age, must be O in the same point as the observed age for biological age to
be meaningful. Thus, depending on the situation, boundary conditions on g, such
as go (o) = to for all 6 and some fixed point #p, may be natural.

Observations from the above model obtained at deterministic time points may
be subject to further random variation modeled as the error term ¢;; in the equation

Yij =migy (tij)} + eij, 2.1)
where the observation of the ith individual at the jth point in time denoted Y;; and
the corresponding time point is denoted #;;,i € {1,...,n}and j € {1,..., N}. The

error terms, e;;, are assumed to be independent, normally distributed with mean 0
and variance o 2. This assumption is rarely realistic, but since it is used to derive the
estimator of the mean, essentially by introducing a penalty on the residual vertical
deviations, it is not as prohibitive as it may seem.

3 Nonparametric maximum likelihood estimation

The infinite-dimensional parameter we want to estimate is the shared shape func-
tion. The NPMLE for the shape function is the shape function that maximizes the
likelihood function. The log-likelihood function, as a function of the parameter of
interest, m, is

(m) = ilog{ A in|9(M)f9(M)dM}

i=1

n
=3 tog( [ @nod) M exp| =5 1 —mlg; )R] - fatwr du)

i=1 © 20
where fp(u) and fy,9(u) denote the density functions for the distribution of the
transformation parameter and the density function of the observations from the
ith curve given the transformation parameter, both evaluated in the p-dimensional
vector u. The N-dimensional vectors Y, t;, g, (t;) and m{ 8u 1(#/)} have elements
Yij, tijs &4 L j)and m{g, L i)}, respectively. Furthermore, the usual norm of an
N-dimensional vector v € RY is denoted |[v|| = (3 j v?)l/ 2 and the integration is
with respect to the usual Lebesgue measure on R”.

In Decker, Rgnn and Jgrgensen (2000) and Gervini and Gasser (2005) the
infinite-dimensional score function of m has been derived and shown to be zero
at m = m if and only if

N ~
?:1 Zj:] Yijfzij|Yi (1)
N 2
;1:1 Zj:l fZ,‘j|Yi(t)

m(t) = (3.1)
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where

Zij =gy (i)
denotes the time-point corresponding to 7;; by the back-transformation given by U.
Existence of a solution, 7, to the equation above has been shown only for compact
parameter space, essentially ruling out an infinite-dimensional model. However,
an approximate solution may well exist and be found by the algorithm.

Noting that the posterior densities on the right-hand side of the equation, f ZijlYi»
are estimates depending on the shape function m itself, an obvious choice is to iter-
ate the computation of the right-hand side of the equation, plugging in the current
estimate of m. This is what is done in Rgnn (2001) for the case of rigid shifts of the
curves, and in Decker, Rgnn and Jgrgensen (2000) and Gervini and Gasser (2005)
in the present case. More precisely the algorithm consists of the following:

A. Initialization:

— Decide on a grid of time points on which the score equation shall be fulfilled,
for example, the grid of observation points, #1, ..., x.

— Calculate an initial estimate, r71¢, of the smooth function m, for example, as
the cross-sectional mean.

B. Iteration:

— Calculate estimates for the weight functions, w;; (7x—1)(t), by plugging in
the estimate of the smooth function from the previous step i _1.

— Find values of a new estimate, 71, of the smooth function on the grid by the
weighted mean of observations obtained from the score equation,

Foy 0 Yijbij (R ()
Py S i (R (1)

Values of the new estimate in any time point can then be found by for exam-
ple cubic spline interpolation between the grid points.

mg(r) = (3.2)

The estimator i (¢) is a Nadaraya—Watson type kernel estimator, where any obser-
vation Y;; contributes according to the likelihood of the corresponding time point,
t;j, to be transformed into 7, measured in the empirical posterior distribution of the
transformation parameters given data. Hence the width of the kernel is determined
by certainty in data of the time transformations.

4 Approximation to the empirical posterior transformation density

In the present section a Laplace-type approximation is introduced to approximate
the crucial quantities needed in equation (3.1) such that its solution becomes com-
putationally feasible. An even simpler approximation is also given, based on a
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normal approximation to the empirical posterior distribution of the transformation
parameter for each curve. The two approximations are given in equations (4.1)
and (4.3), respectively.

In each step of the algorithm we need to estimate the weight functions for a
given shape function, given as

wij(t) = fz;;1v, (1).
However, the calculation of this empirical posterior density of the transformed time
given data is highly demanding. The empirical posterior density of the transforma-
tion parameter given data is
frio=ufo) — Qmo?) "N exp(b;u))
Jo frip=vfo)dv  [o(2ma?)~N/2exp{b;(v)}dv
= cexp(—b;(u)),

fory,(u) =

where c is the normalizing constant and

1 N
bi(w) == D [Yie = migy ()} +logl fo @)}
o7 k=1

For this situation, with a posterior parameter-density of the form above, Tierney,
Kass and Kadane (1989) give a Laplace-type approximation to a posterior density
of a (smooth) function, g say, of the parameter; in our case

gij(u) = g, ' (ti)).
Their approximation, calculated at the estimated function 71, reads
Fz10 () & )~V Bij (1) exp{—b; (il (1)) + bi (i17)}, @.1)
where i;;(t) minimizes b;(u) subject to the condition g;;(u) =t while i; is the
unconstrained minimum, and where B;;, G;; and A;; are defined by
Bij (1) = |Gij Gy ()|~ |g] (liij (1)) Gij G (1)~ g gy ()T 712
x |6} @i)|'2,
Gij(iij (1)) = by (@ (1)) — (1) g/} (i (1)),

81 i ()b i (1))"
8 (1) g i ()T
Here and throughout this section we use a prime to indicate a (vector) derivative
with respect to the argument of the function.

Notice the interpretation that i; is the empirical posterior mode estimate of the

transformation parameter for curve i while i;;(¢) similarly estimates this parame-
ter given that 7;; is transformed to ¢.

Aij(t) =
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Tierney, Kass and Kadane (1989) prove their formula to give an asymptotic ap-
proximation of high accuracy when the exponent, b; (), is proportional to some n
going to infinity. The crucial point here is that the exponent is well approximated
by a quadratic in the neighborhood of the minimum where the contribution to the
integral matters. In our experience from examples like the ones presented in this
paper, this is a very good approximation.

There is one remaining computational problem: the minimum must be found
for each curve, i, for each combination of estimation point, ¢, and observation
point, #;;. However, for the large majority of these terms the contribution to the
sum will be negligible because the empirical posterior probability may essentially
rule out a transformation mapping ¢ to the vicinity #;;. Thus, as a first part, we
truncate the sum over j to those values of ;; that are in the neighborhood of

tij = gij(i;),

the unconstrained estimate of the transformed value of ¢.
Second, we may for each j use a Taylor series expansion of i;;(¢) as a function
of t around #; j- The resulting Taylor series expansion to first order is

~ . a . R
uij(t) ~ui + —u;j(r) (t —tij),
ot —

where the derivative may be shown to be

a1y @) glan"
ot 1=fjj gl{j(’:‘i){b//(ﬁi)}ilgl{j(ﬁi)T.

The only minimizations required for this method are one for each curve, leading
to the estimated transformation ;.

Although the Laplace approximation is generally fast and accurate, the large
number of data points often available in the warping problems calls for an even
simpler and faster candidate approximation. Approximating the empirical poste-
rior density of Z;; given Y; by a normal distribution with mean #; and inverse
variance b} (i;), we get

(4.2)

~ _ 1 N
Fautn = @)~ 21D exp| 3 Dt~ 2. (4.3)
where
D = {g];@an®" @) "¢}

We recommend that in each particular problem both approximations are tried for
speed and accuracy, although the latter (simpler) approximation has been excellent
in the examples we have tried.
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Linear back-transformations including a shift

Simplifications for 8(¢) arise for certain models. Consider back-transforms of the
type

85 (1) =01+ 0rar(t) 4 -+ 0pa, (1),

where ay(t) for k =1, ..., p are known functions. Polynomial back-transforma-
tions with ag (t) = t*~!, as we shall use in the examples, are of this form.
Define the p-vector

at)=,ax(1),...,ap)).

Then g;;(u) is linear in u with derivative a(#;;) so that
B(t) = (a(tip){b" i)y a@ )TV @) V2 @V (44)

and Gij =b".

Estimation of the variance and covariance parameters

We have, so far, neglected the estimation of the transformation parameters. In many
applications we might only fix the distributions up to the residual variance, o2, and
the covariance matrix of the transformation parameters, ¥. Approximate maxi-
mum likelihood estimates for these variance parameters can be calculated in each
step of the above algorithm and used in the calculations of the weight functions.
Differentiation of the log-likelihood function with respect to the error variance in
combination with a Laplace approximation similar to those used in the previous
section leads to the usual estimate of the error variance as the mean squared resid-
ual

1 n
A2 ~ 2
67 =—>>"|IYi — g (t)}II*.
nN i ’
By a similar argument we arrive at the plug-in type estimate of the covariance
matrix for the transformation parameters,

~ 1< R
== - &)@ —8)".
i
Whether the sum should rather be divided by n — 1 seems less important with data
as the two examples, where the many features of the individual curves ensure a
very peaky empirical posterior distribution.
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Prediction of the transformation parameters

The unobserved random variables, corresponding to the individuals considered in
the study, are estimated by their conditional mean given data,

0; = E(9|Y;).

In order to calculate an explicit expression for the above conditional mean we will
have to calculate integrals similar to the integrals in the weight function. Hence,
again we need Laplace-type approximations, and we find that

f; ~ arg min b; (u),

or, in other words, we use the conditional (or empirical posterior) mode. Thus, the
realization of the unobserved random transformation variables for the curve i, is
estimated by i;, a quantity we need to calculate anyway to obtain an estimator for
the shape function.

S Examples

Various parametric time transformations may be considered in practical data anal-
ysis. The nine curves in the feta cheese example introduced above can be modeled,
with the simplest possible individual transformation, namely individual shifts,

ge_l(s):s—e.

In Rgnn (2001), the shape function for the protein profile was estimated, when the
shifts were assumed to follow a slightly truncated normal distribution. The analysis
indicated that the transformation with individual shifts is too simple to fit the data
perfectly. The resulting alignment is seen in the left panel of Figure 2.

Feta cheese data: alignment by rigid shifts Feta cheese data: alignment by linear warps
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Figure 2 The nine aligned profiles for the feta cheese example (grey) together with the estimated
shape function (enhanced). The transformation alignment used is a rigid shift (left) and linear (right).
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A transformation that allows for stretching as well as shifting might be pre-
ferred. This two-dimensional transformation can be parameterized as follows:

g (5) =61 +62(s — 5), (5.1)

where the time scale has been centered to avoid too strong dependence between
the two transformation parameters. The transformation parameters are assumed to
follow a two-dimensional normal distribution

- {(0)3

in principle truncated to a (large) set giving monotone transformations. The esti-
mates of the residual standard deviation and the standard deviations of 61 and 6,

are 0 = 0.046, fln =0.030, fzz = 0.016, while the estimate of the correlation
between the two transformation parameters is 0.0988. These results were obtained
using the Laplace approximation (4.1), but virtually identical results were obtained
using the even simpler and faster normal approximation (4.3). Thus, the deviations
in the standard relative deviations given above were all less than 1 percent, and the
gain in speed was about a factor five.

The estimated protein profile is shown, together with the aligned data profiles, in
the right panel of Figure 2. Comparison of the two plots shows that the alignment
as well as the estimated profile are clearly sharper with the linear alignment. The
estimated individual linear time transformation is seen to align each of the nine
protein profiles almost perfectly. Thus, the linear transformation model seems to
fit the feta cheese data extremely well. It is also seen that the estimator is a smooth
function that contains all the features present in all the nine curves. False peaks,
occurring only in one curve each, are not visible in the estimator. Furthermore,
the height of the peaks is close to the average height of the nine individual peaks,
which is also a desirable property of an estimator.

For the wheat data, inspection of the profiles quickly reveals that rigid shifts
are not sufficient to align the profiles (not shown). In the left panel of Figure 3 we
see the aligned spectra together with the estimated shape function, using the linear
transformation (5.1).

The linear transformation is seen to align the major features in the center of
the observed interval very well, whereas the smaller bumps near the end of the
observed interval are out of order. Using instead a quadratic transformation model
given by

85 (5) =01 4 02(s — 5) + 03(s — 5)2, (5.2)

we obtain the aligned spectra shown in the right panel of Figure 3. The quadratic
transformation gives an almost perfect alignment of the data, although local fine-
tuning on a very small scale might be desirable in a few instances.
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Wheat data: alignment by linear warps Wheat data: alignment by quadratic warps
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Figure 3 The 11 aligned profiles for the wheat example (grey) together with the estimated shape
function (enhanced). The transformation alignment used is linear (left) and quadratic (right).

Thus, it is seen that in these realistic examples the model and the algorithm
together provide a very satisfactory solution to the alignment of the curves and to
the estimation of the common function.

The time per iteration for the two examples were between 2 and 4 seconds per
iteration, using the (faster) normal approximation (4.3), and the convergence cri-
teria were met after 33 iterations for the wheat data and 30 iterations for the feta
cheese data. The algorithm was implemented in the statistical software R on a
standard laptop. Visually, convergence was obtained after less than 10 iterations,
but the stopping criteria were rather strict, demanding a relative change less than
0.0001 for all parameters including the transformation parameters and the func-
tion, m, evaluated on a fine grid. Finally, the hardest criterion to meet was an
absolute change less than 0.01 in twice the negative log-likelihood, which involves
the sum of squared errors for the entire set of observations and had a magnitude in
the order 10000.

For comparison the we tried the function register. £d from the R-package
fda, Ramsay (2007), which is based on methods from Ramsay and Li (1998)
and used by Anselmo, Dias and Garcia (2005). Memory problems arose when
a fine-scale representation matching the number of observations were attempted.
With a representation of 100 base-vectors, alignment of one curve against another
took 10 minutes and did not align even the major peaks correctly in the cases we
tried. A reason is probably the large flexibility in the nonparametric class of time
transformations. More knowledge of the function might well have helped as other
representations and user choices may be made, but the method seems to be more
directed towards smoother functions than the examples presented here.

6 Simulation study

The parametric transformation of the x-axis seems to align the profiles from the
above examples very well. However, the working model assumptions of indepen-
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dent errors are clearly not satisfied and also the assumption on normally distributed
transformation parameters is an idealization, of course. Since the result is an es-
timation method, and not a statistical analysis involving probability calculations,
the assumptions behind the likelihood function do not necessarily lead to poor es-
timation, but, at worst, to inefficiency compared to an ideal estimation method.
To get some information of the sensitivity of the NPMLE to the distributional as-
sumptions we made a small simulation study, with serial correlation, exponentially
distributed error or exponentially distributed transformation parameters.

The feta cheese data were used as inspiration for the simulation and the esti-
mated shape function under the model with random shifts was applied as the true
shape function mg. Data from the following four models for the errors and the
random shifts were simulated:

1. The working model: independent normally distributed errors with standard de-
viation o = 0.031 and independent normally distributed random shifts with
standard deviation w = 0.26.

2. Autoregressive process of order 1 with autocorrelation p = 0.89 and marginal
standard deviation o = 0.031 for the errors and independent normally dis-
tributed random shifts with standard deviation w = 0.26.

3. Independent exponentially distributed errors with standard deviation 0.031 and
independent normally distributed random shifts with standard deviation w =
0.26.

4. Independent normally distributed errors with standard deviation o = 0.031
and independent exponentially distributed random shifts with standard devi-
ation 0.26.

These cases were chosen to reflect various kinds of discrepancies from the working
model without altering the signal-to-noise ratio.

For each model 100 data sets consisting of 10 shifted profiles were simulated.
The NPMLE assuming independent normally distributed errors and shifts were
calculated for each simulated data set as described in the present paper. The es-
timation procedure converged for all data sets and the 100 estimated NPMLEs
and their mean are plotted together with the true profile m¢ in Figure 4. As the
NPMLEs are only well defined up to a shift, the 100 NPMLEs were aligned by
rigid shifts before plotting.

It is seen that the profile is remarkably well estimated in all cases; in particular
the negligible bias in the estimation of the peaks is noteworthy. This latter conclu-
sion follows since the dashed white line, representing the true curve, virtually falls
on top of the mean of the 100 estimates, represented by the black line.

Plots of the 100 estimated shifts were made against the 100 true shifts together
with identity lines for all four simulation scenarios in Figure 5. The estimated and
the true shifts showed almost perfect agrement, suggesting that the algorithm is ro-
bust towards misspecification of the distribution of the transformation parameters.
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Simulated data: Working model Simulated data: AR(1) error process
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Figure 4 The 100 estimated functions (grey) together with their mean (thick black line) and the
true function (dashed white line) for each of the four simulation models.

Estimated vs true shift parameters

Estimated shifts

True shifts

Figure 5 The 100 estimated shifts versus the true shifts together with the identity line for four sim-
ulation scenarios. The vertical line is placed at zero, and the four cases have been shifted vertically
together with the identity line drawn for each case.
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Closer inspection reveals reflections of the choice of error structure of the sim-
ulations in the four cases, but the important message here is that this does not
interfere with the alignment of the curves or with the estimation of the shape func-
tion.

7 Discussion

The algorithm used here to obtain the estimator of the shape function generalizes
the proposal for rigid shifts from Rgnn (2001), and starts from the same working
model and score equation, (3.1), as in Gervini and Gasser (2005), but their method
of computation differs from ours by using simulations to compute the conditional
means needed for the weights in the iterative calculation of (3.1). Optimization
based on simulations is highly time consuming and it is hardly feasible to obtain
the precision achieved in the examples. Our claim, originating from Rgnn (1998)
and Decker, Rgnn and Jgrgensen (2000), is that a Laplace approximation solves
the problem accurately and efficiently in many problems among which are the
feta cheese and wheat data. In fact, for these examples the normal approximation
to the empirical posterior distribution solves the problem equally well and even
more efficiently. Computations may still be a challenge, however, because of the
complexity of the problem, and numerical problems may arise when data are very
sharply peeked, as with the feta cheese data. Therefore one should be somewhat
liberal with the convergence criteria, at the same time allowing for the possibility
that an exact solution may not exist.

The two successful applications indicate that a good estimator for the shape
function is found and that the alignment of the replicated curves is done in a
satisfactory manner. The working assumption of independent normal errors is
still in conflict with data obtained from real experiment, but the simulations sug-
gest that the alignment works well anyway, and the estimated shape function is
equally sharp as when the working model holds true. Generalization to more mod-
els with dependence is an obvious future reseach challenge. However, the reduc-
tion of the score equation to the iterated Nadaraya—Watson type kernel smoothing
scheme (3.2) is not possible without the independence and entirely different algo-
rithms should probably then be used.

The examples furthermore show that simple parametric transformations are suf-
ficient for accurate alignment in these realistic examples, but also that it is impor-
tant to consider other transformations than rigid shifts. When the alignment is part
of a classification procedure it is important that the class of transformations used
is not so rich that different shape functions, from different varieties, for example,
easily align to look similar. This is avoided by use of low-dimensional parametric
transformations.

The aligned profiles look even better if the profiles were preprocessed by re-
moval of background. This was done in the feta cheese example but was avoided
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in the wheat example to show that the alignment method is largely insensitive to
such pre-processing. Thus, both examples were tried with and without background
removal, with similar results.

Gervini and Gasser (2005) show that when the space of shape functions is com-
pact, the estimate of the shape function converges at the rate of 1/,/n towards
the true shape function, when the sup-norm is used. The compactness assumption,
however, essentially rules out a nonparametric model, because a compact set is
either of finite dimension or is very fragmented by being everywhere thin. That
is, for no function in the model is any neighborhood of this function contained in
the model. We conjecture, on the basis of results in Stone (1980), that when the
parameter space is infinite-dimensional, the asymptotic rate will be slower in the
same way as for nonparametric regression.
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