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Comment on article by Blackwell and Buck

John Haslett∗ and Andrew Parnell†

1 Introductory remarks

It is a pleasure to discuss not just an interesting paper but in fact an excellent project:
the successful infiltration of a body of physical science by modern Bayesian methods.
The story of that project is a classical mix of cutting edge statistical methodology
combined with years of dogged ground work, carefully building credibility in the right
places. It is a most suitable story for a Case Studies meeting.

From the point of view of Statistics per se, this project is an instance of a wider
theme. From a theoretical point of view the theme is of an underlying stochastic process -
here a Gaussian random walk - given which the likelihoods of the observations decompose
multiplicatively reflecting conditional independence. MCMC provides an algorithm for
the inversion. From the point of view of environmental statistics, the wider theme is
of ‘data synthesis’ - scraps of data scattered through space and time, being of variable
quality, and brought together for inference by the underlying latent process, taken to
be ‘smooth’ in some sense, and modelling assumptions of conditional independence.

We believe that projects such as this add to the credibility of the wider Statistics
community, and this Case Studies paper should assist in developing both wider themes.
We expand below on some examples, necessarily reflecting some of our work, some of
which is collaborative with Professor Buck. The applied theme, which we address first, is
of course much wider than environmental statistics, but my pointers in other directions
will be weaker.

2 Scraps

In the present paper the scraps are data on 14C from objects that contain information
on calendar age. The underlying space-time process is the varying amount of 14C in
the past atmosphere. In this specific context the spatial dimension plays no role, as
the atmosphere is supposed to achieve perfect mixing of 14C. Studies in which we have
been involved include eg Haslett et al. (2006) where the focus is the climate of the
past atmosphere of Ireland for the past ∼13,000 years for example, or more generally
of regions such as Europe. Now the scraps are proxies: eg pollen in cores extracted
from lake sediment, where changes in the relative frequencies of different types of pollen
reflect vegetation response to climate change.

The objective of palaeoclimate reconstruction is more accurately described as using
modelling to reduce the uncertainties about past climate. A key step is to regard past
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climate as smoothly changing in time and in space; care is needed however, for it seems
clear that there have been relatively sudden changes in climate. We discuss below a
non-Gaussian random walk.

A further part of that uncertainty rests with the attribution of age to samples via
a depth age functional relationship, where typically only a few samples are 14C dated.
Here the underlying process is the sedimentation rate at a point in space. Now we note
that the depth age relationship must be monotone, and another non-Gaussian process
is needed.

In the present paper note also that the data are of qualitatively different types, in-
cluding tree rings and 14C measured by very different types of technology. Some samples
have (supposedly well defined) calendar ages; others the authors describe as ‘floating
sequences’. In these latter, the durations in calendar years (relative age) are (suppos-
edly) known, even though it is not possible to state with authority the absolute ages.
Indeed, one of the major achievements of this work is the inclusion within the inference
process of such data. It is difficult to imagine how, without such an approach, the 14C
community might have used, and been persuaded to use, such sources of information.
Indeed relative age is often as important as absolute age to the substantive science and
is in some ways easier to quantify, given the right modelling; see Figure 2 in the present
paper.

Climatologists, for example, are often more interested in past rates of climate change
than in the absolute date of, for example, the rapid transition to the Holocene at the end
of the last glacial period. For instance, the authors of the recent IPCC report on climate
change observe that “During the last glacial period, abrupt regional warming (probably
up to 16◦C within decades (my emphasis) over Greenland) occurred repeatedly over the
North Atlantic region” (Jansen et al. 2007).

Going further, how much data are the authors not using? It seems clear that the
14C community has been rigorous in the selection of data upon which the calibration
curve has been built, using only high quality data with well defined calendar ages. But
the boundaries have been pushed, and the authors describe how, in 2004, it became
possible to use ‘aggregated’ data spanning a small range of calendar years; the method-
ology of Section 5.3 outlines the approach. But we suspect that the community has
rejected truly vast amounts of data carrying some information on calendar age. See, for
example, the process of translating relatively poor 14C information into calendar ages,
with appropriate caveats, as conducted by the IntCal group and their collaborators.
Could (possibly large amounts of) data with relatively poor calendar age precision play
any constructive role?

To take a rather extreme case, joint work with Buck and others presents findings with
possible implications for calendar age determinations, based on pollen count data at four
locations in the British Isles. This studies the calendar dates, derived from 14C data,
of the sudden (from a climatological point of view) rise in Alder pollen, taken to signify
the onset of the Holocene. Denoting these calendar dates as θi; i = 1, 2, 3, 4 they offer
a distribution of D = max(θi) −min(θi), a measure of the simultaneity of this rather
dramatic climatological event. Although not as temporally well defined an event as
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a volcanic eruption, the IPCC evidence from Greenland ice for example (Jansen et al.
2007) that the very large climate transition took but a very few decades. It is thus
surprising that the width of a 95% HPD for D is perhaps 3,000 years, for the magnitude
of the climate change indicates that it must have occurred almost simultaneously across
the British Isles.

Indeed this surprise is a source of information itself, information that reflects, inter-
alia, on the 14C data from which it is derived. In saying this we recognize that calibration
uncertainties constitute but a part of the picture, in which a greater role must be played
by the uncertainties in the dynamics of plant ecology, which dynamics led the Alder to
expand from its refuges, encouraged by the new climate. But several thousand years?
More generally, are the authors aware of untapped sources of information? Can it be
tapped with their current methodology? If so, would the wider research community be
prepared to accept it?

What are the other untold stories of this project? Applied statistics, Bayesian or
not, must concern itself with data quality. We know for example that the determination
of 14C relies on another stage in calibration, that concerning the instruments in the labs
themselves. We are aware that this itself has been the subject of statistical scrutiny
(Scott 2003) and that outliers are not infrequently encountered. But what checks have
been conducted on the quality of the supposedly known calendar ages? More specifically,
and in the broader context of this type of Bayesian statistical modelling, what are the
routine tools - akin to tests for outliers and to studies of influence in regression - available
to applied Bayesian modellers of the caliber of the present authors? And what do they
think of these tools?

3 Processes

We turn now to the underlying technology, the use of suitably smooth stochastic pro-
cesses to act as joint prior. Note that the interest here, and in many of the other
applications mentioned, lies in the joint posterior. In this context, this means that the
authors wish to sample entire calibration curves en bloc; here it may be sufficient to
sample the curve at annual intervals. Effectively this amounts to what may be called
‘stochastic interpolation’, by which we mean (at least sometimes) generating functions
such as µ(θ) at a resolution in θ rather finer than the data per se can give guidance.
In some contexts this is called ‘down-scaling’. We are told that the radiocarbon com-
munity has not yet signed up to more than point-wise summaries; marginal samples for
each year would suffice for this. As we see, these are insufficient to deal with what the
authors describe as the covariances in Section 6.

In climate research we have referred to such joint samples as being entire climate
histories. They may be represented as (possibly multivariate) random functions in time
at a location in space. In principle we aspire to complete realisations, that is for all

times. In many applications samples at discrete time points will suffice, but sampling
at arbitrarily fine resolution is desirable. In fact we aspire to entire space-time climate
histories for Europe, which may be represented as a movie; but that is for another day.
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The key is that prior knowledge imposes a structure on such joint samples from the
posterior, and realisations are conditioned by data, perhaps loosely, at a finite number
of points on the curve.

Gaussian processes have long been used for processes which may be regarded as
evolving in time, for example Cox (1955). Nevertheless the area is still very active. One
line arises in the context of diffusions associated with stochastic differential equations.
In principle, studies of climate, past and future fall into this category, and indeed climate
models are now being used to guide palaeoclimate reconstructions. But such models are
still deterministic, and the use of deterministic models to help define stochastic process
priors is less clear. In this particular case the Gaussian random walk in discrete time,
as used here with constant variance for the increments, is amongst the simplest, and in
the present context it seems to be more than adequate as a prior.

Another line of research is that being pursued by Havard Rue in Trondheim
(Rue and Martino 2005). It presents the possibility of completely avoiding MCMC when
working with Gaussian Markov Random Fields (GMRF) a trivial example of which is
indeed the discrete random walk. The basic idea may be stated in terms that are not far
from the present study. Given a GMRF for µ(θ), with known variance parameters τ , and
[Y (θ)|µ(θ)] = Poisson(µ(θ)), then [µ(θ)|Y ] while not Gaussian, may be approximately
Gaussian. When τ is not known, integration with respect to [τ |Y ] may be achieved
numerically for low dimensional τ . It may therefore be that the establishment of the
calibration curve and its uncertainties may be achieved in a Bayesian setting without
MCMC.

The converse, the task of subsequently using it to determine [θ|14C data] may not
be so simple, as this distribution is manifestly non-Gaussian being possibly bimodal.
But it may provide short-cuts. In the wider context of its use in projects in time and/or
space (or more generally in a multidimensional space) it may be worth mentioning
some limitations of Gaussian process priors. Two processes mentioned above - climate
smoothness and the depth age relationship in cores - are not well catered for. Convenient
alternatives do exist.

Rather dramatic changes in climate have almost certainly happened in the past and
the use as a prior of the Normal distribution, with constant variance, most certainly
over-smoothes climate reconstruction (Haslett et al. 2006). Several avenues are open.
The simplest are long tailed Levy (independent increments) processes. The Normal
Inverse Gaussian family (Barndorff-Nielsen 1998) is particularly attractive, for it has a
well defined density and provides a smooth path from the Normal to the Cauchy. It
may be thought of as a scale mixing of independent Normal random variables, whose
variance is drawn from the Inverse Gaussian family. Other mixings (for example mixing
via draws from a χ2 distribution as in the t distribution as in Haslett et al. 2006) are
not infinitely divisible; this inhibits working with data that are observed only irregularly
in time.

The key to depth-age modelling is that the relationship is monotonic - deeper means
older; further this is one fact that we can rely on in a world where so many other sources
of information are subject to so much uncertainty. One approach: the sub-sampling of
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monotone sequences from the joint posterior of the random function of depth vs age,
based on a Gaussian prior, is extremely inefficient; especially so when the data (here
14C information constraining the curves) are well-spaced in the natural units of the
study, here being years. Simple monotone stochastic processes are rare; processes with
Gamma increments must be pure-jump processes in continuous time and are thus also
inappropriate. We have recently proposed a very convenient model for such a process
(Haslett and Parnell 2008)

One way to think of that way of modelling depth Y (t) as a random function of
time is as an integral over time of a sedimentation rate S(t). If we define S(t) as a
positive piecewise-constant process and equip random rates and durations with suitable
Exponential and Gamma distributions, the resultant process Y (t) can be thought of
as piecewise linear, including the possibility of almost flat patches. A Poisson process
determines the breakpoints, so it is Markov. Crucially it is possible to marginalize with
respect to this Poisson process, yielding a very simply described process. Indeed it
seems to be sufficient to deal with an even simpler independent increments process.

The method is implemented in the R package Bchron and is available for down-
load at http://lib.stat.cmu.edu/R/CRAN/. The software allows the user to create
chronologies based on different types of dated sediments (including but not exclusive to
14C dates), and produces posterior piece-wise linear functions as described above. Extra
uncertainty is accounted for in terms of the measurement of the depth of the sediment
and, more relevantly to this paper, by treating and correcting outlying radiocarbon de-
terminations. Key to the treatment of outliers is the ability to use certain parts of the
determination distributions according to their chronological information content.

4 Implementation

We are intrigued by the authors’ remarks that their algorithm may not be the most
efficient. We consider only the simplest case, with independent errors. Here 14C deter-
minations are denoted by a vector X whose elements can be modeled as Xi = µ(θi)+ui

where the zero-mean errors are independent and Gaussian. ThusX = µ(Θ)+U , where U
has known diagonal variance VU . The θ terms are unknown but we observe T = Θ+W ,
where W is also zero-mean with known variance matrix VW . We seek [µ(Θ), θ|X,T ] and
study it by marginalizing drawing samples from this distribution. The challenge arises
from the fact that the second moment structure of µ(Θ) depends on the unknown Θ.
But the full conditionals are

[µ(Θ)|X,T,Θ] = [µ(Θ)|X,Θ]

and
[Θ|X,T, µ(Θ)] = [Θ|T, µ(Θ)].

It seems that it should be possible to iterate between these, sampling sequentially for
Θ and µ(Θ), in Gibbs fashion, with block updating.

Indeed, it seems that this extension to the general case may be possible. Now Θ and
µ(Θ) are longer than X (to allow for the blocking, as in Section 5.2) and X = Aµ(Θ)+U
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for known A. Indeed as ‘floating sections’ yield 14C data of the form of contrasts
X(θ1)−X(θ2) and calendar age data of the form θ1−θ2, such an algorithm may also be
available. The parameter r is of course unknown, but they already use Gibbs here and
this should be possible within this formulation too. It is quite possible that we have
missed some subtlety here.

5 Conclusion

In conclusion, the authors have show-cased a successful and important application of
modern Bayesian modelling. They have enabled others to proceed to studies where 14C
dating uncertainties are just part of the battle. But more importantly, we hope their
work will encourage others - particularly but not exclusively environmental statisticians
- to rise the new challenges being presented by the availability of scraps of data in space
and time.
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