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GENERAL MAXIMUM LIKELIHOOD EMPIRICAL BAYES
ESTIMATION OF NORMAL MEANS

BY WENHUA JIANG AND CUN-HUI ZHANG1

Rutgers University

We propose a general maximum likelihood empirical Bayes (GMLEB)
method for the estimation of a mean vector based on observations with i.i.d.
normal errors. We prove that under mild moment conditions on the unknown
means, the average mean squared error (MSE) of the GMLEB is within an
infinitesimal fraction of the minimum average MSE among all separable es-
timators which use a single deterministic estimating function on individual
observations, provided that the risk is of greater order than (logn)5/n. We
also prove that the GMLEB is uniformly approximately minimax in regu-
lar and weak �p balls when the order of the length-normalized norm of the
unknown means is between (logn)κ1/n1/(p∧2) and n/(logn)κ2 . Simulation
experiments demonstrate that the GMLEB outperforms the James–Stein and
several state-of-the-art threshold estimators in a wide range of settings with-
out much down side.

1. Introduction. This paper concerns the estimation of a vector with i.i.d.
normal errors under the average squared loss. The problem, known as the com-
pound estimation of normal means, has been considered as the canonical model or
motivating example in the developments of empirical Bayes, admissibility, adap-
tive nonparametric regression, variable selection, multiple testing and many other
areas in statistics. It also carries significant practical relevance in statistical appli-
cations since the observed data are often understood, represented or summarized
as the sum of a signal vector and the white noise.

There are three main approaches in the compound estimation of normal means.
The first one is general empirical Bayes (EB) [27, 30], which assumes essentially
no knowledge about the unknown means but still aims to attain the performance of
the oracle separable estimator based on the knowledge of the empirical distribution
of the unknowns. Here a separable estimator is one that uses a fixed deterministic
function of the ith observation to estimate the ith mean. This greedy approach,
also called nonparametric EB [26], was proposed the earliest among the three, but
it is also the least understood, in spite of [28–30, 36–38]. Efron [15] attributed this
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situation to the lack of applications with many unknowns before the information
era and pointed out that “current scientific trends favor a greatly increased role for
empirical Bayes methods” due to the prevalence of large, high-dimensional data
and the rapid rise of computing power. The methodological and theoretical chal-
lenge, which we focus on in this paper, is to find the “best” general EB estimators
and sort out the type and size of problems suitable for them.

The second approach, conceived with the celebrated Stein’s proof of the inad-
missibility of the optimal unbiased estimator and the introduction of the James–
Stein estimator [22, 31], is best understood through its parametric or linear EB
interpretations [16, 17, 26]. The James–Stein estimator is minimax over the en-
tire space of the unknown mean vector and well approximates the optimal linear
separable estimator based on the oracular knowledge of the first two empirical mo-
ments of the unknown means. Thus, it achieves the general EB optimality when
the empirical distribution of the unknown means are approximately normal. How-
ever, the James–Stein estimator does not perform well by design compared with
the general EB when the minimum risk of linear separable estimators is far dif-
ferent from that of all separable estimators [36]. Still, what is the cost of being
greedy with the general EB when the empirical distribution of the unknown means
is indeed approximately normal?

The third approach focuses on unknown mean vectors which are sparse in the
sense of having many (near) zeros. Such sparse vectors can be treated as mem-
bers of small �p balls with p < 2. Examples include the estimation of functions
with unknown discontinuity or inhomogeneous smoothness across different parts
of a domain in nonparametric regression or density problems [13]. For sparse
means, the James–Stein or the oracle linear estimators could perform much worse
than threshold estimators [12]. Many threshold methods have been proposed and
proved to possess (near) optimality properties for sparse signals, including the uni-
versal [13], SURE [14], FDR [1, 2], the generalized Cp [3] and the parametric EB
posterior median (EBThresh) [24]. These estimators can be viewed as approxima-
tions of the optimal candidate in certain families of separable threshold estimators,
so that they do not perform well by design compared with the general EB when
the minimum risk of separable threshold estimators is far different from that of all
separable estimators [38]. Again, what is the cost of being greedy with the general
EB when the unknown means are indeed very sparse?

Since general EB methods have to spend more “degrees of freedom” for non-
parametric estimation of its oracle rule, compared with linear and threshold meth-
ods, the heart of the question is whether the gain by aiming at the smaller general
EB benchmark risk is large enough to offset the additional cost of the nonparamet-
ric estimation.

We propose a general maximum likelihood EB (GMLEB) in which we first
estimate the empirical distribution of the unknown means by the generalized max-
imum likelihood estimator (MLE) [25] and then plug the estimator into the oracle
general EB rule. In other words, we treat the unknown means as i.i.d. variables
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with a completely unknown common “prior” distribution (for the purpose of de-
riving the GMLEB, whether the unknowns are actually deterministic or random),
estimate the nominal prior with the generalized MLE, and then use the Bayes rule
for the estimated prior. The basic idea was discussed in the last paragraph of [27]
as a general way of deriving solutions to compound decision problems, although
the notion of MLE was vague at that time without a parametric model and not
much has been done since then about using the generalized MLE to estimate the
nominal prior in compound estimation.

Our results affirm that by aiming at the minimum risk of all separable esti-
mators, the greedier general EB approach realizes significant risk reduction over
linear and threshold methods for a wide range of the unknown signal vectors for
moderate and large samples, and this is especially so for the GMLEB. We prove
that the risk of the GMLEB estimator is within an infinitesimal fraction of the gen-
eral EB benchmark when the risk is of the order n−1(logn)5 or greater depending
on the magnitude of the weak �p norm of the unknown means, 0 < p ≤ ∞. Such
adaptive ratio optimality is obtained through a general oracle inequality which also
implies the adaptive minimaxity of the GMLEB over a broad collection of regu-
lar and weak �p balls. This adaptive minimaxity result unifies and improves upon
the adaptive minimaxity of threshold estimators for sparse means [1, 14, 24] and
the Fourier general EB estimators for moderately sparse and dense means [38].
We demonstrate the superb risk performance of the GMLEB for moderate sam-
ples through simulation experiments, and describe algorithms to show its compu-
tational feasibility.

The paper is organized as follows. In Section 2, we highlight our results and
formally introduce certain necessary terminologies and concepts. In Section 3 we
provide upper bounds for the regret of a regularized Bayes rule using a predeter-
mined and possibly misspecified prior. In Section 4 we prove an oracle inequality
for the GMLEB, compared with the general EB benchmark risk. The consequences
of this oracle inequality, including statements of our adaptive ratio optimality and
adaptive minimaxity results in full strength, are also discussed in Section 4. In
Section 5 we present more simulation results. Section 6 contains some discussion.
Mathematical proofs of theorems, propositions and lemmas are given either right
after their statements or in the Appendix.

2. Problem formulation and highlight of main results. Let Xi be indepen-
dent statistics with

Xi ∼ ϕ(x − θi) ∼ N(θi,1), i = 1, . . . , n,(2.1)

under a probability measure Pn,θ , where θ = (θ1, . . . , θn) is an unknown signal
vector. Our problem is to estimate θ under the compound loss

Ln(̂θ, θ) = n−1‖θ̂ − θ‖2 = 1

n

n∑
i=1

(θ̂i − θi)
2(2.2)
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for any given estimator θ̂ = (θ̂1, . . . , θ̂n). Throughout this paper, the unknown
means θi are assumed to be deterministic as in the standard compound decision
theory [27]. To avoid confusion, the Greek θ is used only with boldface as a de-
terministic mean vector θ in R

n or with subscripts as elements of θ . A random
mean is denoted by ξ as in (2.3) below. The estimation of i.i.d. random means is
discussed in Section 6.3.

We divide the section into seven subsections to describe (1) the general and re-
stricted EB, (2) the GMLEB method, (3) the computation of the GMLEB, (4) some
simulation results, (5) the adaptive ratio optimality of the GMLEB, (6) the adaptive
minimaxity of the GMLEB in �p balls and (7) minimax theory in �p balls.

Throughout the paper, boldface letters denote vectors and matrices, for exam-
ple, X = (X1, . . . ,Xn), ϕ(x) = e−x2/2/

√
2π denotes the standard normal den-

sity, L̃(y) =
√

− log(2πy2) denotes the inverse of y = ϕ(x) for positive x and
y, x ∨ y = max(x, y), x ∧ y = min(x, y), x+ = x ∨ 0 and an 	 bn means
0 < an/bn + bn/an = O(1). In a number of instances, log(x) should be viewed
as log(x ∨ e). Univariate functions are applied to vectors per component. Thus,
an estimator of θ is separable if it is of the form θ̂ = t (X) = (t (X1), . . . , t (Xn))

with a predetermined Borel function t (·). In the vector notation, it is convenient to
state (2.1) as X ∼ N(θ , In) with In being the identity matrix in R

n.

2.1. Empirical Bayes. The compound estimation of a vector of determinist
normal means is closely related to the Bayes estimation of a single random mean.
In this Bayes problem, we estimate a univariate random parameter ξ based on
a univariate Y such that

Y |ξ ∼ N(ξ,1), ξ ∼ G, under PG.(2.3)

The prior distribution G = Gn which naturally matches the unknown means
{θi, i ≤ n} in (2.1) is the empirical distribution

Gn(u) = Gn,θ (u) = 1

n

n∑
i=1

I {θi ≤ u}.(2.4)

Here and in the sequel, subscripts n,θ indicate dependence of distribution or prob-
ability upon n and the unknown deterministic vector θ .

The fundamental theorem of compound decisions [27] in the context of the �2
loss asserts that the compound risk of a separable rule θ̂ = t (X) under the proba-
bility Pn,θ in the multivariate model (2.1) is identical to the MSE of the same rule
ξ̂ = t (Y ) under the prior (2.4) in the univariate model (2.3):

En,θLn(t (X), θ) = EGn

(
t (Y ) − ξ

)2
.(2.5)

For any true or nominal priors G, denote the Bayes rule as

t∗G = arg min
t

EG

(
t (Y ) − ξ

)2 =
∫

uϕ(Y − u)G(du)∫
ϕ(Y − u)G(du)

(2.6)
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and the minimum Bayes risk as

R∗(G) = EG

(
t∗G(Y ) − ξ

)2
,(2.7)

where the minimum is taken over all Borel functions. It follows from (2.5) that
among all separable rules, the compound risk is minimized by the Bayes rule with
prior (2.4), resulting in the general EB benchmark

R∗(Gn) = En,θLn(t
∗
Gn

(X), θ) = min
t (·) En,θLn(t (X), θ).(2.8)

The general EB approach seeks procedures which approximate the Bayes rule
t∗Gn

(X) or approximately achieve the risk benchmark R∗(Gn) in (2.8).
Given a class of functions D , the aim of the restricted EB is to attain

RD(Gn) = inf
t∈D

En,θLn(t (X), θ) = inf
t∈D

EGn

(
t (Y ) − ξ

)2
,(2.9)

approximately. This provides EB interpretations for all the adaptive methods
discussed in the Introduction, with D being the classes of all linear functions
for the James–Stein estimator, all soft threshold functions for the SURE [14],
and all hard threshold functions for the generalized Cp [3] or the FDR [1].
For the EBThresh [24], D is the class of all posterior median functions t (y) =
median(ξ |Y = y) under the probability PG in (2.3) for priors of the form

G(u) = ω0I {0 ≤ u} + (1 − ω0)G0(u/τ),(2.10)

where ω0 and τ are free and G0 is given [e.g., dG0(u)/du = e−|u|/2].
Compared with linear and threshold methods, the general EB approach is greed-

ier since it aims at the smaller benchmark risk: R∗(Gn) ≤ RD(Gn) for all D . This
could still backfire when the regret

rn,θ (̂tn) = En,θLn(̂tn(X), θ) − R∗(Gn)(2.11)

of using an estimator t̂n(·) of the general EB oracle rule t∗Gn
(·) is greater than

the difference RD(Gn) − R∗(Gn) in benchmarks, but our simulation and oracle
inequalities prove that rn,θ (̂tn) = o(1)R∗(Gn) uniformly for a wide range of the
unknown vector θ and moderate/large samples.

Zhang [36] proposed a general EB method based on a Fourier infinite-order
smoothing kernel. The Fourier general EB estimator is asymptotically minimax
over the entire parameter space and approximately reaches the general EB bench-
mark (2.8) uniformly for dense and moderately sparse signals, provided that the
oracle Bayes risk is of the order n−1/2(logn)3/2 or greater [36]. Hybrid general
EB estimators have been developed [38] to combine the features and optimality
properties of the Fourier general EB and threshold estimators. Still, the perfor-
mance of general EB methods is sometimes perceived as uncertain in moderate
samples [24]. Indeed, the Fourier general EB requires selection of certain tuning
parameters and its proven theoretical properties are not completely satisfying. This
motivates our investigation.
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2.2. The GMLEB. The GMLEB method replaces the unknown prior Gn of the
oracle rule t∗Gn

by its generalized MLE [25]

Ĝn = Ĝn(·;X) = arg max
G∈G

n∏
i=1

fG(Xi),(2.12)

where G is the family of all distribution functions and fG is the density

fG(x) =
∫

ϕ(x − u)G(du)(2.13)

of the normal location mixture by distribution G.
The estimator (2.12) is called the generalized MLE since the likelihood is used

only as a vehicle to generate the estimator. The G here is used only as a nominal
prior. In our adaptive ratio and minimax optimality theorems and oracle inequality,
the GMLEB is evaluated under the measures Pn,θ in (2.1) where the unknowns θi

are assumed to be deterministic parameters.
Since (2.12) is typically solved by iterative algorithms, we allow approximate

solutions to be used. For definiteness and notation simplicity, the generalized MLE
in the sequel is any solution of

Ĝn ∈ G ,

n∏
i=1

fĜn
(Xi) ≥ qn sup

G∈G

n∏
i=1

fG(Xi)(2.14)

with qn = (e
√

2π/n2) ∧ 1, although the theoretical results in this paper all hold
verbatim for less stringent (2.14) with 0 ≤ log(1/qn) ≤ c0(logn) for any fixed
constant c0. Formally, the GMLEB estimator is defined as

θ̂ = t ∗̂
Gn

(X) or equivalently θ̂i = t ∗̂
Gn

(Xi), i = 1, . . . , n,(2.15)

where t∗G is the Bayes rule in (2.6) and Ĝn is any approximate generalized
MLE (2.14) for the nominal prior (2.4). Clearly, the GMLEB estimator (2.15)
is completely nonparametric and does not require any restriction, regularization,
bandwidth selection or other forms of tuning.

The GMLEB is location equivariant in the sense that

t ∗̂
Gn(·;X+ce)(X + ce) = t ∗̂

Gn(·;X)
(X) + ce(2.16)

for all real c, where e = (1, . . . ,1) ∈ R
n. This is due to the location equivariance of

the generalized MLE: Ĝn(x;X + ce) = Ĝn(x − c;X). Compared with the Fourier
general EB estimators [36, 38], the GMLEB (2.15) is more appealing since the
function t ∗̂

Gn
(x) of x enjoys all analytical properties of Bayes rules: monotonicity,

infinite differentiability and more. However, the GMLEB is much harder to ana-
lyze than the Fourier general EB. We first address the computational issues in the
next section.
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2.3. Computation of the GMLEB. It follows from the Carathéodory’s theo-
rem [9] that there exists a discrete solution of (2.12) with no more than n + 1 sup-
port points. A discrete approximate generalized MLE Ĝn with m support points
can be written as

Ĝn =
m∑

j=1

ŵj δuj
, ŵj ≥ 0,

m∑
j=1

ŵj = 1,(2.17)

where δu is the probability distribution giving its entire mass to u. Given (2.17),
the GMLEB estimator can be easily computed as

θ̂i = t ∗̂
Gn

(Xi) =
∑m

j=1 ujϕ(Xi − uj )ŵj∑m
j=1 ϕ(Xi − uj )ŵj

,(2.18)

since t∗G(x) is the conditional expectation as in (2.6).
Since the generalized MLE Ĝn is completely nonparametric, the support points

{uj , j ≤ m} and weights {ŵj , j ≤ m} in (2.17) are selected or computed solely to
maximize the likelihood in (2.12). There are quite a few possible algorithms for
solving (2.14), but all depend on iterative approximations. Due to the monotonic-
ity of ϕ(t) in t2, the generalized MLE (2.12) puts all its mass in the interval
I0 = [min1≤i≤n Xi,max1≤i≤n Xi]. Given a fine grid {uj } in I0, the EM-algorithm
[11, 35]

ŵ
(k)
j = 1

n

n∑
i=1

ŵ
(k−1)
j ϕ(Xi − uj )∑m

�=1 ŵ
(k−1)
� ϕ(Xi − u�)

(2.19)

optimizes the weights {ŵj }. In Section 6.2, we provide a conservative statistical
criterion on {uj } and an EM-stopping rule to guarantee (2.14).

We took a simple approach in our simulation experiments. Given {Xi,1 ≤ i ≤
n} and with X0 = 0, we chose the grid points {uj } as a set of multipliers of ε =
max0≤i<j≤n |Xi − Xj |/999 with uj = uj−1 + ε and the range

−j0ε = u1 − ε < min
0≤i≤n

Xi ≤ u1, um = (m − j0)ε ≤ max
0≤i≤n

Xi < um + ε

with an integer j0 ∈ [1,m]. This ensures uj0 = 0 as a grid point and 999 ≤ m ≤
1000. We ran 100 EM-iterations (2.19) in our simulations. We have tried to op-
timize both the support points {uj } and weights {ŵj } in the EM-algorithm, but
gained limited improvements.

The GMLEB estimator (2.18) depends slightly on the initialization of the
EM-algorithm due to the nonuniqueness of the GMLEB estimator and the
fixed number of EM-iterations in our implementation. Since the generalized
MLE (2.12) is unique only up to the values of {fĜn

(Xi), i ≤ n}, different
EM-initializations lead to different versions of Ĝn, which then result in differ-
ent values of t ∗̂

Gn
(Xi) in (2.18). This nonuniqueness persists even when we run
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infinitely many EM-iterations. Nevertheless, our theoretical results hold for all
versions of the GMLEB.

We consider two options in our simulation experiments. The first option initial-
izes the weights with the uniform distribution ŵj = 1/m. The second option takes
into consideration of the possible sparsity of the signal by putting a good starting
mass at uj0 = 0:

ŵj0 = ω̂0, ŵj = 1 − ω̂0

m − 1
, j 
= j0.(2.20)

We estimate the proportion of zeros within the n means by a Fourier method,

ω̂0 = 1

n

n∑
j=1

ψ(Xj ;hn), ψ(z;h) =
∫

hψ0(ht)et2/2 cos(zt) dt

as in [32, 33], where ψ0 is a density function with support [−1,1] and hn =
{κ(logn)}−1/2 is the bandwidth, κ ≤ 1. In our simulation experiments, the uni-
form [−1,1] density is used as ψ0 and κ = 1/2. To distinguish the two options of
initializing the EM-algorithm, we reserve the name GMLEB for the uniform ini-
tialization and call (sparse-) S-GMLEB the estimator with the initialization (2.20)
when we report simulation results.

2.4. Some simulation results. Johnstone and Silverman [24] reported results
of an extensive simulation study of 18 threshold estimators, including eight op-
tions of their EBThresh, the SURE and adaptive SURE [14], the FDR [1] at three
levels, three block threshold methods [7, 8] and the soft and hard threshold at the
universal threshold level

√
2 logn. In their simulations, the overall best performer

is the EBThresh using the posterior median for the prior (2.10) with the double
exponential dG0(u)/du = e−|u|/2 and the MLE of (ω0, τ ).

In Table 1, we display our simulation results under exactly the same setting as
in [24] for nine estimators: the James–Stein, the EBThresh [24] using the double
exponential dG0 in (2.10) and the MLE of (ω0, τ ), the SURE [14], the FDR [1] at
levels q = 0.01 and q = 0.1, the GMLEB (2.15) with the uniform initialization, the
S-GMLEB with the initialization (2.20), the F-GEB and HF-GEB as the Fourier
general EB [36] and a hybrid [38] of its monotone version with the EBThresh. In
each column, boldface entries denote the top three performers other than the hybrid
estimator. We also display as “Best” the best of the simulation results in [24] over
the 18 threshold estimators and as Oracle the average simulated risk of the oracle
Bayes rule t∗Gn

in (2.8).
These simulation results can be summarized as follows. The average �2 loss

of the S-GMLEB happens to be the smallest among the nine estimators, with the
S-GMLEB and GMLEB clearly outperforming all other methods by large margins
for dense and moderately sparse signals. For very sparse signals, the S-GMLEB,
the EBThresh, the GMLEB and the FDR estimators yield comparable results, and
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TABLE 1
Average total squared errors ‖θ̂ − θ‖2 for n = 1000 unknown means in various binary models
where θj is either 0 or μ with the number of nonzero θi = μ being 5, 50 or 500. The “Best”

stands for the best simulation results in Table 1 of Johnstone and Silverman [24].
Each entry is based on 100 replications

# nonzero 5 50 500

μ 3 4 5 7 3 4 5 7 3 4 5 7

James–Stein 45 76 113 199 312 442 556 716 822 889 933 954

EBThresh 37 34 20 8 212 151 103 74 862 873 792 653
SURE 42 64 73 75 416 609 215 214 835 834 842 828
FDR (0.01) 43 54 29 6 388 299 132 57 2587 1322 667 520
FDR (0.1) 42 38 21 13 278 163 115 99 1162 744 662 640

GMLEB 39 34 23 11 157 105 58 14 459 285 139 18
S-GMLEB 32 28 17 6 150 99 54 10 454 282 136 15

F-GEB 94 94 89 88 223 185 135 103 520 363 237 131
HF-GEB 37 34 20 8 197 150 99 72 499 334 192 83

“Best” 34 32 17 5 201 156 95 52 829 730 609 505
Oracle 27 22 12 0.8 144 93 46 3 443 273 128 8

they all outperform the Fourier general EB and James–Stein estimators. Compared
with the oracle, the regrets of the S-GMLEB and GMLEB are nearly fixed con-
stants. Since the oracle prior (2.4) has a point mass at 0 in all the models used to
generate data in this simulation experiment, the S-GMLEB yields slightly better
results than the GMLEB as expected. The hybrid estimator correctly switches to
the EBThresh for very sparse signals.

These simulations and more presented in Section 5 demonstrate the computa-
tional affordability of the proposed GMLEB. The most surprising aspect of the
results in Table 1 is the strong performance of the both versions of the GMLEB for
the most sparse signals with 0.5% of θi being nonzero, since the GMLEB is not
specially designed to recover such signals (and threshold estimators are).

2.5. Adaptive ratio optimality. Our theoretical results match well with the
supreme performance of the GMLEB in our simulation experiments. We describe
here the adaptive ratio optimality of the GMLEB and in the next section the adap-
tive minimaxity of the GMLEB in �p balls.

The adaptive ratio optimality holds for an estimator θ̂ : X → R
n if its risk is

uniformly within a fraction of the general EB benchmark

sup
θ∈
∗

n

En,θLn(̂θ , θ)

R∗(Gn,θ )
≤ 1 + o(1)(2.21)

in certain classes 
∗
n ⊂ R

n of the unknown vector θ , where Ln(·, ·) is the average
squared loss (2.2), Gn,θ = Gn is the empirical distribution of the unknowns in (2.4)
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and R∗(Gn) is the general EB benchmark risk (2.8) achieved by the oracle Bayes
rule t∗Gn

(X).

THEOREM 1. Let X ∼ N(θ , In) under Pn,θ with a deterministic θ ∈ R
n. Let

t ∗̂
Gn

(·) be the GMLEB in (2.15) with an approximate solution Ĝn satisfying (2.14).
Let Gn = Gn,θ and R∗(G) be as in (2.4) and (2.7). Then,

En,θLn(t
∗̂
Gn

(X), θ)

R∗(Gn)
=

En,θ‖t ∗̂Gn
(X) − θ‖2

mint En,θ‖t (X) − θ‖2 ≤ 1 + o(1)(2.22)

for the compound loss (2.2), provided that for certain constants bn

nR∗(Gn)

(
√

logn ∨ maxi≤n |θi − bn|)(logn)9/2
→ ∞.

In particular, if maxi≤n |θi − bn| = O(
√

logn) and nR∗(Gn)/(logn)5 → ∞,
then (2.22) holds.

For any sequences of constants Mn → ∞, Theorem 1 provides the adaptive
ratio optimality (2.21) of the GMLEB in the classes


∗
n = {θ ∈ R

n :R∗(Gn,θ ) ≥ Mnn
−1(logn)9/2(√logn ∨ ‖θ‖∞

)}
.

This is a consequence of an oracle inequality for the GMLEB t̂n = t ∗̂
Gn

in Sec-
tion 4.2, which uniformly bound from the above

r̃n,θ (̂tn) =
√

En,θLn(̂tn(X), θ) −√R∗(Gn)(2.23)

in terms of the weak �p norm of θ . The quantity (2.23) can be viewed as the regret
for the minimization of the square root of the MSE, instead of (2.11). Clearly,
rn,θ (̂tn)/R

∗(Gn) ≤ o(1) iff r̃n,θ (t
∗̂
Gn

)/
√

R∗(Gn) ≤ o(1). A more general version

of Theorem 1 is given in Section 4.3.
In the EB literature, the asymptotic optimality of θ̂ is defined as

Gn
D−→ G ⇒ En,θLn(̂θ , θ) − R∗(Gn) → 0(2.24)

for deterministic vectors θ ∈ R
n [27, 36]. In the EB model

(Yi, ξi) i.i.d., Yi |ξi ∼ N(ξi,1), ξi ∼ G, under PG(2.25)

with data {Yi}, the EB asymptotic optimality is defined as

lim
n→∞EG

n∑
i=1

(̂ξi − ξi)
2/n = R∗(G).(2.26)

We call (2.21) adaptive ratio optimality since it is much stronger than both notions
of asymptotic optimality in its uniformity in θ ∈ 
∗

n and its focus on the harder
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standard of the relative error, due to R∗(Gn) ≤ En,θLn(X, θ) = 1. The difference
among these optimality properties is significant for moderate samples in view of
some very small R∗(Gn) ≈ Oracle/1000 in Table 1.

Theorem 1 is location invariant, since the GMLEB is location equivariant
by (2.16) and R∗(Gn) is location invariant by (2.8). Thus, if θi = bn for most
i ≤ n, the GMLEB performs equally well whether bn = 0 or not. Moreover, if
θi ∈ B ∀i for a finite set B ⊂ R, the GMLEB adaptively shrinks toward the points
in B [19]. This is evident in Table 1 for #{i : θi = 7} ∈ {50,500} with B = {0,7}.
In fact, if #{x :x ∈ Bn} = O(1) and minBn�x 
=y∈Bn |x − y| → ∞, then Gn(Bn) = 1
implies R∗(Gn) → 0. Threshold methods certainly do not possess these location
invariance and multiple shrinkage properties.

2.6. Adaptive minimaxity in �p balls. Minimaxity is commonly used to mea-
sure the performance of statistical procedures. For 
 ⊂ R

n, the minimax risk for
the average squared loss (2.2) is

Rn(
) = inf
θ̃

sup
θ∈


En,θLn(̃θ , θ),(2.27)

where the infimum is taken over all Borel mappings θ̃ : X → R
n. An estimator is

minimax in a specific class 
 of unknown mean vectors if it attains Rn(
), but
this does not guarantee satisfactory performance since the minimax estimator is
typically uniquely tuned to the specific set 
. For small 
, the minimax estimator
has high risk outside 
. For large 
, the minimax estimator is too conservative
by focusing on the worst case scenario within 
. Adaptive minimaxity overcomes
this difficulty by requiring

supθ∈
n
En,θLn(̂θ , θ)

Rn(
n)
→ 1(2.28)

uniformly for a wide range of sequences {
n ⊂ R
n, n ≥ 1} of parameter classes.

Define (regular or strong) �p balls as


p,C,n =
{
θ = (θ1, . . . , θn) :n−1

n∑
i=1

|θi |p ≤ Cp

}
.(2.29)

The quantity C in (2.29), called length-normalized or standardized radius of the �p

ball, is denoted as η in [1, 12, 24], where adaptive minimaxity in �p balls with C =
Cn → 0 and p < 2 is used to measure the performance of estimators for sparse θ .
The following theorem establishes the adaptive minimaxity of the GMLEB in �p

balls with radii C = Cn in intervals diverging to (0,∞). This covers sparse and
dense θ simultaneously. Adaptive minimaxity of the GMLEB in weak �p balls is
discussed in Section 4.3.



1658 W. JIANG AND C.-H. ZHANG

THEOREM 2. Let X ∼ N(θ , In) under Pn,θ with a deterministic θ ∈ R
n. Let

θ̂ = t ∗̂
Gn

(X) be the GMLEB in (2.15) with an approximate solution Ĝn satisfy-

ing (2.14). Let Ln(·, ·) be the average squared loss (2.2) and Rn(
) be the min-
imax risk (2.27). Then, as n → ∞, the adaptive minimaxity (2.28) holds in �p

balls (2.29) with 
n = 
p,Cn,n, provided that

n1/(p∧2)Cn

(logn)κ1(p)
→ ∞,

Cn

n
(logn)κ2(p) → 0,(2.30)

where κ1(p) = 1/2+4/p+3/p2 for p < 2, κ1(2) = 13/4, κ1(p) = 5/2 for p > 2,
and κ2(p) = 9/2 + 4/p.

Theorem 2 is a consequence of the oracle inequality in Section 4.2 and the
minimax theory in [12]. An outline of this argument is given in the next section.
An alternative statement of the conclusion of Theorem 2 is

lim
(n,M)→(∞,∞)

sup
C∈Cp,n(M)

supθ∈
p,C,n
En,θLn(t

∗̂
Gn

(X), θ)

Rn(
p,C,n)
= 1,

where Cp,n(M) = [Mn−1/(p∧2)(logn)κ1(p), n/{M(logn)κ2(p)}]. In Section 4.3,
we offer an analogues result for weak �p balls. The powers κ1(p) and κ2(p) of
the logarithmic factors in (2.30) and in the definition of Cp,n(M) are crude. This
is further discussed in Section 6.

Adaptive and approximate minimax estimators of the normal means in �p balls
have been considered in [1, 3, 12, 14, 24, 36, 38]. Donoho and Johnstone [14]
proved that as (n,Cn) → (∞,0+), with nC

p
n /(logn)p/2 → ∞ for p < 2,

Rn(
p,Cn,n) = (1 + o(1))min
t∈D

max
θ∈
p,Cn,n

En,θLn(t (X), θ),(2.31)

where D is the collection of all (soft or hard) threshold rules. Therefore, adap-
tive minimaxity (2.28) in small �p balls 
n = 
p,Cn,n can be achieved by thresh-
old rules with suitable data-driven threshold levels. This has been done using the
FDR [1] for (logn)5/n ≤ C

p
n ≤ n−κ with p < 2 and any κ > 0. Zhang [38] proved

that (2.28) holds for the Fourier general EB estimator of [36] in 
n = 
p,Cn,n for
C

p
n

√
n/(logn)1+(p∧2)/2 → ∞.

A number of estimators have been proven to possess the adaptive rate min-
imaxity in the sense of attaining within a bounded factor of the minimax risk.
In �p balls 
p,Cn,n, the EBThresh is adaptive rate minimax for p ≤ 2 and
nC

p
n ≥ (logn)2 [24], while the generalized Cp is adaptive rate minimax for p < 2

and 1 ≤ O(1)nC
p
n [3]. It follows from [3, 38] that a hybrid between the Fourier

general EB and universal soft threshold estimators is also adaptive rate minimax
in 
p,Cn,n for 1 ≤ O(1)nC

p
n .

The adaptive minimaxity as provided in Theorem 2 unifies the adaptive mini-
maxity of different types estimators in different ranges of the radii Cn of the �p
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balls with the exception of the two very extreme ends, due to the crude power
κ1(p) of the logarithmic factor for small Cn and the requirement of an upper bound
for large Cn. The hybrid Fourier general EB estimator achieves the adaptive rate
minimaxity in a wider range of �p balls than what we prove here for the GMLEB.
However, as we have seen in Table 1, the finite sample performance of the GMLEB
is much stronger. It seems that the less stringent and commonly considered adap-
tive rate minimaxity leaves too much room to provide adequate indication of finite
sample performance.

2.7. Minimax theory in �p balls. Instead of the general EB approach, adaptive
minimax estimation in small �p balls can be achieved by threshold methods, pro-
vided that the radius is not too small. However, since (2.31) does not hold for fixed
p > 0 and C ∈ (0,∞), threshold estimators are not asymptotically minimax with

n = 
p,C,n in (2.28) for fixed (p,C). Consequently, adaptive minimax estima-
tions in small, fixed and large �p balls are often treated separately in the literature.
In this section, we explain the general EB approach for adaptive minimax estima-
tion, which provides a unified treatment for �p balls of different ranges of radii.
This provides an outline of the proof of Theorem 2. Minimax theory in weak �p

balls will be discussed in Section 4.3.
We first discuss the relationship between the minimax estimation of a determin-

istic vector θ in �p balls and the minimax estimation of a single random mean
under an unknown “prior” in Lp balls. For positive p and C, the Lp balls of dis-
tribution functions are defined as

Gp,C =
{
G :
∫

|u|pG(du) ≤ Cp

}
.

Since Gp,C is a convex class of distributions, the minimax theorem provides

R(Gp,C) = min
t

max
G∈Gp,C

EG

(
t (Y ) − ξ

)2 = max
G∈Gp,C

R∗(G) ≤ 1(2.32)

for the estimation of a single real random parameter ξ in the model (2.3), where
R∗(G) is the minimum Bayes risk in (2.7). Thus, since Gn = Gn,θ ∈ Gp,C for θ ∈

p,C,n, the fundamental theorem of compound decisions (2.5) implies that (2.32)
dominates the compound minimax risk (2.27) in �p balls:

Rn(
p,C,n) ≤ inf
t (x)

sup
θ∈
p,C,n

En,θLn(t (X), θ) ≤ R(Gp,C) ≤ 1.(2.33)

Donoho and Johnstone [12] proved that as Cp∧2 → 0+∣∣∣∣ R(Gp,C)

Cp∧2{2 log(1/Cp)}(1−p/2)+ − 1
∣∣∣∣→ 0(2.34)

and that for either p ≥ 2 with Cn > 0 or p < 2 with nC
p
n /(logn)p/2 → ∞,∣∣∣∣Rn(
p,Cn,n)

R(Gp,Cn)
− 1
∣∣∣∣→ 0.(2.35)
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In the general EB approach, the aim is to find an estimator t̂n of t∗Gn
with small

regret (2.11) or (2.23). If the approximation to t∗Gn
in risk is sufficiently accurate

and uniformly within a small fraction of R(Gp,Cn) for θ ∈ 
p,Cn,n, the maximum
risk of the general EB estimator in 
p,Cn,n would be within the same small fraction
of R(Gp,Cn), since the risk of t∗Gn

is bounded by R∗(Gn,θ ) ≤ R(Gp,Cn) for θ ∈

p,Cn,n. Thus, (2.35) plays a crucial role in general EB.

It follows from (2.23), (2.32) and (2.29) that

sup
θ∈
p,C,n

√
En,θLn(̂tn(X), θ) ≤ sup

θ∈
p,C,n

r̃n,θ (̂tn) +
√

R(Gp,C).(2.36)

Thus, by (2.34) and (2.35), the adaptive minimaxity (2.28) of θ̂ = t̂n(X) in �p balls

n = 
p,Cn,n is a consequence of an oracle inequality of the form

sup
θ∈
p,Cn,n

r̃n,θ (̂tn) = o(1)
√

Jp,Cn(2.37)

with Jp,C = min{1,Cp∧2{1 ∨ (2 log(1/Cp))}(1−p/2)+}. In our proof, (2.34) and
the upper bound R(Gp,C) ≤ 1 provide infC R(Gp,C)/Jp,C > 0. Although Jp,C

provides the order of R(Gp,C) for each p via (2.34), explicit expressions of the
minimax risk Rn(
p,C,n) for general fixed (p,C,n) or the minimax risk R(Gp,C)

for fixed (p,C) with p 
= 2 are still open problems.

3. A regularized Bayes estimator with a misspecified prior. In this section,
we consider a fixed probability PG0 under which

Y |ξ ∼ N(ξ,1), ξ ∼ G0.(3.1)

Recall [5, 28] that for the estimation of a normal mean, the Bayes rule (2.6) and its
risk (2.7) can be expressed in terms of the mixture density fG(x) as

t∗G(x) = x + f ′
G(x)

fG(x)
, R∗(G) = 1 −

∫ (
f ′

G

fG

)2

fG,(3.2)

in the model (2.3), where fG(x) = ∫ ϕ(x − u)G(du) is as in (2.13).
Suppose the true prior G0 is unknown but a deterministic approximation of it,

say G, is available. The Bayes formula (3.2) could still be used, but we may want
to avoid dividing by a near-zero quantity. This leads to the following regularized
Bayes estimator:

t∗G(x;ρ) = x + f ′
G(x)

fG(x) ∨ ρ
.(3.3)

For ρ = 0, t∗G(x;0) = t∗G(x) is the Bayes estimator for the prior G. For ρ = ∞,
t∗G(x;∞) = x gives the MLE of ξ which requires no knowledge of the prior. The
following proposition, proved in the Appendix, describes some analytical proper-
ties of the regularized Bayes estimator.



GENERAL MAXIMUM LIKELIHOOD EB 1661

PROPOSITION 1. Let L̃(y) =
√

− log(2πy2), y ≥ 0, be the inverse function of
y = ϕ(x). Then, the value of the regularized Bayes estimator t∗G(x;ρ) in (3.3)
is always between those of the Bayes estimator t∗G(x) in (2.6) and the MLE
t∗G(x;∞) = x. Moreover, for all real x⎧⎪⎨⎪⎩ |x − t∗G(x;ρ)| = |f ′

G(x)|
fG(x) ∨ ρ

≤ L̃(ρ), 0 < ρ ≤ (2πe)−1/2,

0 ≤ (∂/∂x)t∗G(x;ρ) ≤ L̃2(ρ), 0 < ρ ≤ (2πe3)−1/2.
(3.4)

REMARK 1. In [36], a slightly different inequality(
f ′

G(x)

fG(x)

)2 fG(x)

fG(x) ∨ ρ
≤ L̃2(ρ), 0 ≤ ρ < (2πe2)−1/2,(3.5)

was used to derive oracle inequalities for Fourier general EB estimators. The exten-
sion to the derivative of t∗G(x;ρ) here is needed for the application of the Gaussian
isoperimetric inequality in Proposition 4.

The next theorem provides oracle inequalities which bound the regret of us-
ing (3.3) due to the lack of the knowledge of the true G0. Let

d(f, g) =
(∫

(f 1/2 − g1/2)2
)1/2

(3.6)

denote the Hellinger distance. The upper bounds assert that the regret is no greater
than the square of the Hellinger distance between the mixture densities fG and fG0

up to certain logarithmic factors.

THEOREM 3. Suppose (3.1) holds under PG0 . Let t∗G(x;ρ) be the regularized
Bayes rule in (3.3) with 0 < ρ ≤ (2πe2)−1/2. Let fG be as in (2.13).

(i) There exists a universal constant M0 such that

[EG0{t∗G(Y ;ρ) − ξ}2 − R∗(G0)]1/2

≤ M0 max{| logρ|3/2, | log(d(fG,fG0))|1/2}d(fG,fG0)(3.7)

+
{∫ (

1 − fG0

ρ

)2

+
(f ′

G0
)2

fG0

}1/2

,

where R∗(G0) = EG0{t∗G0
(Y ) − ξ}2 is the minimum Bayes risk in (2.7).

(ii) If
∫
|u|>x0

G0(du) ≤ M1| logρ|3ε2
0 and 2(x0 + 1)ρ ≤ M2| logρ|2ε2

0 for a
certain ε0 ≥ d(fG,fG0) and finite positive constants {x0,M1,M2}, then

EG0{t∗G(Y ;ρ) − ξ}2 − R∗(G0)
(3.8)

≤ 2(M0 + M1 + M2)max(| logρ|3, | log ε0|)ε2
0,

where M0 is a universal constant.
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REMARK 2. For G = G0 (3.7) becomes an identity, so that the square of the
first term on the right-hand side of (3.7) represents an upper bound for the regret
of using a misspecified G in the regularized Bayes estimator (3.3) instead of the
true G0 for the same regularization level ρ. Under the additional tail probability
condition on G0 and for sufficiently small ρ, (3.8) provides an upper bound for the
regret of not knowing G0, compared with the Bayes estimator (3.2) with the true
G = G0.

REMARK 3. Since the second term on the right-hand side of (3.7) is increasing
in ρ and the first is logarithmic in 1/ρ, we are allowed to take ρ > 0 of much
smaller order than d(fG,fG0) in (3.7), for example, under moment conditions
on G0. Still, the cubic power of the logarithmic factors in (3.7) and (3.8) is crude.

The following lemma plays a crucial role in the proof of Theorem 3.

LEMMA 1. Let d(f, g) be as in (3.6) and L̃(y) =
√

− log(2πy2). Then,∫ (f ′
G − f ′

G0
)2

fG ∨ ρ + fG0 ∨ ρ
≤ e22d2(fG,fG0)max(L̃6(ρ),2a2)(3.9)

for ρ ≤ 1/
√

2π , where a2 = max{L̃2(ρ) + 1, | logd2(fG,fG0)|}.
PROOF OF THEOREM 3. Let

‖g‖h =
{∫

g2(x)h(x) dx

}1/2

be the L2(h(x) dx) norm for h ≥ 0. Since t∗G0
is the Bayes rule, by (3.3)

[EG0{t∗G(Y ;ρ) − ξ}2 − EG0{t∗G0
(Y ) − ξ}2]1/2

= ‖f ′
G/(fG ∨ ρ) − f ′

G0
/fG0‖fG0

(3.10)

≤ r(fG,ρ) + ‖(1 − fG0/ρ)+f ′
G0

/fG0‖fG0
,

where r(fG,ρ) = ‖f ′
G/(fG ∨ ρ) − f ′

G0
/(fG0 ∨ ρ)‖fG0

.
Let w∗ = 1/(fG ∨ ρ + fG0 ∨ ρ). For G1 = G or G1 = G0,∫ ( f ′

G1

fG1 ∨ ρ
− 2f ′

G1
w∗
)2

fG0 ≤
∫ ( f ′

G1

fG1 ∨ ρ
|fG − fG0 |w∗

)2

fG0

≤ L̃2(ρ)

∫
(fG − fG0)

2w2∗fG0

due to |f ′
G1

|/(fG1 ∨ ρ) ≤ L̃(ρ) by (3.4). Since (
√

fG + √fG0)
2w∗ ≤ 2 and

w∗fG0 ≤ 1, we find

r(fG,ρ) ≤ 2‖(f ′
G − f ′

G0
)w∗‖fG0

+ 2L̃(ρ)‖(fG − fG0)w∗‖fG0

≤ 2‖f ′
G − f ′

G0
‖w∗ + 2L̃(ρ)

√
2d(fG,fG0).
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Thus, (3.7) follows from (3.10) and (3.9).
To prove (3.8) we use Lemma 6.1 in [38]:∫

fG0<ρ

(
f ′

G0

fG0

)2

fG0

≤
∫
|u|>x0

G0(du) + 2x0ρ max{L̃2(ρ),2} + 2ρ

√
L̃2(ρ) + 2

≤ (M1 + M2)| logρ|3ε2
0,

due to | logρ| ≥ L̃2(ρ) ≥ 2. This and (3.7) imply (3.8). �

4. An oracle inequality for the GMLEB. In this section, we provide an ora-
cle inequality which bound the regret (2.23) and thus (2.11) of using the GMLEB
t ∗̂
Gn

in (2.15) against the oracle Bayes rule t∗Gn
in (2.8). We provide the main ele-

ments leading to the oracle inequality in Section 4.1 before presenting the oracle
inequality and an outline of its proof in Section 4.2. Section 4.3 discusses the con-
sequences of the oracle inequality, including a sharper version of Theorem 1 and
the adaptive minimaxity in weak �p balls.

4.1. Elements leading to the oracle inequality. It follows from the fundamen-
tal theorem of compound decisions (2.5) that for separable estimators θ̂ = t (X),
the compound risk is identical to the MSE of ξ̂ = t (Y ) for the estimation of a
single real random parameter ξ under PG in (2.3), so that Theorem 3 provides an
upper bound for the regret of the regularized Bayes rule t∗G(X;ρ) in terms of the
Hellinger distance d(fG,fGn) and ρ > 0. We have proved in [39] a large devia-
tion upper bound for the Hellinger distance d(fĜn

, fGn). We will show that the
GMLEB estimator t ∗̂

Gn
(X) is identical to its regularized version t ∗̂

Gn
(X;ρn) for cer-

tain | logρn| 	 logn when the generalized MLE (2.12) or its approximation (2.14)
are used. Still, t ∗̂

Gn
(X;ρn) is not separable, since the generalized MLE Ĝn is based

on the same data X. A natural approach of deriving oracle inequalities is then to
combine Theorem 3 with a maximal inequality. This requires in addition an en-
tropy bound for the class of regularized Bayes rules t∗G(x;ρ) with given ρ > 0 and
an exponential inequality for the difference between the loss and risk for each reg-
ularized Bayes rule. In the rest of this section, we provide these crucial components
of our theoretical investigation.

4.1.1. A large deviation inequality for the convergence of an approximate gen-
eralized MLE. Under the i.i.d. assumption of the EB model (2.25), Ghosal and
van der Vaart [20] obtained an exponential inequality for the Hellinger loss of the
generalized MLE of a normal mixture density in terms of the L∞ norm of θi .
This result can be improved upon using their newer entropy calculation in [21].
The results in [20, 21] are unified and further improved upon in the i.i.d. case and
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extended to deterministic θ = (θ1, . . . , θn) in weak �p balls for all 0 < p ≤ ∞ in
[39]. This latest result, stated below as Theorem 4, will be used here in conjunction
of Theorem 3 to prove oracle inequalities for the GMLEB.

The pth weak moment of a distribution G is

μw
p (G) =

{
sup
x>0

xp
∫
|u|>x

G(du)

}1/p

(4.1)

with μw∞(G) = inf{x :
∫
|u|>x G(du) = 0}. Define convergence rates

ε(n,G,p) = max
[√

2 logn,
{
n1/p

√
lognμw

p (G)
}p/(2+2p)]√ logn

n
(4.2)

= max
[√

2 logn

n
,

{√
logn

μw
p (G)

n

}p/(2+2p)]√
logn

with ε(n,G,∞) = {(2 logn) ∨ (
√

lognμw∞(G))}1/2√(logn)/n.

THEOREM 4. Let X ∼ N(θ , In) under Pn,θ with a deterministic θ ∈ R
n.

Let fG and Gn be as in (2.13) and (2.4), respectively. Let Ĝn be a certain approxi-
mate generalized MLE satisfying (2.14). Then, there exists a universal constant x∗
such that for all x ≥ x∗ and logn ≥ 2/p,

Pn,θ {d(fĜn
, fGn) ≥ xεn} ≤ exp

(
− x2nε2

n

2 logn

)
≤ e−x2 logn,(4.3)

where εn = ε(n,Gn,p) is as in (4.2) and d(f, g) is the Hellinger distance (3.6).
In particular, for any sequences of constants Mn → ∞ and fixed positive α and c,

εn 	

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−p/(2+2p)(logn)(2+3p)/(4+4p),

if μw
p (Gn) = O(1) with a fixed p,

n−1/2(logn)3/4{M1/2
n ∨ (logn)1/4},

if Gn([−Mn,Mn]) = 1 and p = ∞,

n−1/2(logn)1/(2(2∧α))+3/4,

if
∫

e|cu|αGn(du) = O(1) and p 	 logn.

REMARK 4. Under the condition G([−Mn,Mn]) = 1 and the i.i.d. assump-
tion (2.25) with G depending on n, the large deviation bound in [20] provides the
convergence rate εn 	 n−1/2(logn)1/2{Mn ∨ (logn)1/2}, and the entropy calcula-
tion in [21] leads to the convergence rate εn 	 n−1/2(logn)

√
Mn. These rates are

slower than the rate in Theorem 4 when Mn/
√

logn → ∞.

REMARK 5. The proof of Theorem 4 is identical for the generalized MLE
(2.12) and its approximation (2.14). The constant x∗ is universal for qn =
(e

√
2π/n2) ∧ 1 in (2.14) and depends on supn | logqn|/ logn in general.
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4.1.2. Representation of the GMLEB estimator as a regularized one at data
points. The connection between the GMLEB estimator (2.15) and the regularized
Bayes rule (3.3) in Theorem 3 is provided by

t ∗̂
Gn

(X) = t ∗̂
Gn

(X;ρn), ρn = qn/
(
en

√
2π
)
,(4.4)

where qn is as in (2.14). This is a consequence of the following proposition.

PROPOSITION 2. Let f (x|u) be a given family of densities and {Xi, i ≤ n} be
given data. Let Ĝn be an approximate generalized MLE of a mixing distribution
satisfying

n∏
i=1

∫
f (Xi |u)Ĝn(du) ≥ qn sup

G

n∏
i=1

∫
f (Xi |u)G(du)

for certain 0 < qn ≤ 1. Then, for all j = 1, . . . , n

fĜn
(Xj ) =

∫
f (Xj |u)Ĝn(du) ≥ qn

en
sup
u

f (Xj |u).

In particular, (4.4) holds for f (x|u) = ϕ(x − u).

PROOF. Let j be fixed and uj = arg maxf (Xj |u). Define Ĝn,j = (1−ε)Ĝn+
εδuj

with ε = 1/n, where δu is the unit mass at u. Since f (x|u) ≥ 0, fĜn,j
(Xi) ≥

(1 − ε)fĜn
(Xi) and fĜn,j

(Xj ) ≥ εf (Xj |uj ), so that

1

qn

n∏
i=1

fĜn
(Xi) ≥

n∏
i=1

fĜn,j
(Xi) ≥ (1 − ε)n−1εf (Xj |uj )

∏
i 
=j

fĜn
(Xi).

Thus, fĜn
(Xj ) ≥ qn(1 − ε)n−1εf (Xj |uj ) with ε = 1/n, after the cancellation of

fĜ(Xi) for i 
= j . The conclusion follows from (1 − 1/n)n−1 ≥ 1/e. �

4.1.3. An entropy bound for regularized Bayes rules. We now provide an en-
tropy bound for collections of regularized Bayes rules. For any family H of func-
tions and semidistance d0, the ε-covering number is

N(ε,H , d0) = inf

{
N :H ⊆

N⋃
j=1

Ball(hj , ε, d0)

}
(4.5)

with Ball(h, ε, d0) = {f :d0(f,h) < ε}. For each fixed ρ > 0 define the complete
collection of the regularized Bayes rules t∗G(x;ρ) in (3.3) as

Tρ = {t∗G(·;ρ) :G ∈ G },(4.6)

where G is the family of all distribution functions. The following proposition,
proved in the Appendix, provides an entropy bound for (4.6) under the seminorm
‖h‖∞,M = sup|x|≤M |h(x)|.
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PROPOSITION 3. Let L̃(y) =
√

− log(2πy2) be the inverse of y = ϕ(x) as in

Proposition 1. Then, for all 0 < η ≤ ρ ≤ (2πe)−1/2,

logN(η∗,Tρ,‖ · ‖∞,M)
(4.7)

≤ {4(6L̃2(η) + 1
)(

2M/L̃(η) + 3
)+ 2

}| logη|,
where η∗ = (η/ρ){3L̃(η) + 2}.

4.1.4. An exponential inequality for the loss of regularized Bayes rules. The
last element of our proof is an exponential inequality for the difference between
the loss and risk of regularized Bayes rules t∗G(X;ρ). For each separable rule t (x),
the squared loss ‖t (X) − θ‖2 is a sum of independent variables. However, a direct
application of the empirical process theory to the loss would yield an oracle in-
equality of the n−1/2 order, which is inadequate for the sharper convergence rates
in this paper. Thus, we use the following isoperimetric inequality for the square
root of the loss.

PROPOSITION 4. Suppose X ∼ N(θ , In) under Pn,θ . Let tG(x;ρ) be the reg-
ularized Bayes rule as in (3.3), with a deterministic distribution G and 0 < ρ ≤
(2πe3)−1/2. Let L̃(ρ) =

√
− log(2πρ2). Then, for all x > 0

Pn,θ {‖t∗G(X;ρ) − θ‖ ≥ En,θ‖t∗G(X;ρ) − θ‖ + x} ≤ exp
(
− x2

2L̃4(ρ)

)
.

PROOF. Let h(x) = ‖t∗G(x;ρ) − θ‖. It follows from Proposition 1 that

|h(x) − h(y)| ≤ ‖t∗G(x;ρ) − t∗G(y;ρ)‖
≤ ‖x − y‖ sup

x
|(∂/∂x)t∗G(x;ρ)| ≤ L̃2(ρ)‖x − y‖.

Thus, h(x)/L̃2(ρ) has the unit Lipschitz norm. The conclusion follows from the
Gaussian isoperimetric inequality [4]. See page 439 of [34]. �

4.2. An oracle inequality. Our oracle inequality for the GMLEB, stated in
Theorem 5 below, is a key result of this paper from a mathematical point of view. It
builds upon Theorems 3 and 4 and Propositions 2, 3 and 4 (the regularized Bayes
rules with misspecified prior, generalized MLE of normal mixtures, representa-
tion of the GMLEB, entropy bounds and Gaussian concentration inequality) and
leads to adaptive ratio optimality and minimax theorems more general than Theo-
rems 1 and 2.

THEOREM 5. Let X ∼ N(θ , In) under Pn,θ with a deterministic θ ∈ R
n as

in (2.1). Let Ln(·, ·) be the average squared loss in (2.2) and 0 < p ≤ ∞. Let
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t ∗̂
Gn

(X) be the GMLEB estimator (2.15) with an approximate generalized MLE

Ĝn satisfying (2.14). Then, there exists a universal constant M0 such that for all
logn ≥ 2/p,

r̃n,θ (t
∗̂
G
(X)) =

√
En,θLn(t

∗̂
Gn

(X), θ) −√R∗(Gn)

(4.8)
≤ M0εn(logn)3/2,

where R∗(Gn) is the minimum risk of all separable estimators as in (2.8) with
Gn = Gn,θ as in (2.4), and εn = ε(n,Gn,p) is as in (4.2). In particular, for any
sequences of constants Mn → ∞ and fixed positive α and c,

εn 	

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−p/(2+2p)(logn)(2+3p)/(4+4p),

if μw
p (Gn) = O(1) with a fixed p,

n−1/2(logn)3/4{M1/2
n ∨ (logn)1/4},

if Gn([−Mn,Mn]) = 1 and p = ∞,

n−1/2(logn)1/(2(2∧α))+3/4,

if
∫

e|cu|αGn(du) = O(1) and p 	 logn.

REMARK 6. In the proof of Theorem 5, applications of Theorems 3 and 4
resulted in the leading term for the upper bound in (4.18), while the contributions
of other parts of the proof are of smaller order.

REMARK 7. The M0 in (4.8) is universal for qn = (e
√

2π/n2) ∧ 1 in (2.14)
and depends on supn | logqn|/ logn in general.

The consequences of Theorem 5 upon the adaptive ratio optimality and mini-
maxity of the GMLEB are discussed in the next section. Here is an outline of its
proof. The large deviation inequality in Theorem 4 and the representation of the
GMLEB in (4.4) imply that

‖t ∗̂
Gn

(X) − θ‖ ≤ ‖t ∗̂
Gn

(X;ρn) − θ‖IAn + ζ1n, ρn = qn

e
√

2πn
,(4.9)

where An = {d(fĜn
, fGn) ≤ x∗εn} and ζ1n = ‖t ∗̂

Gn
(X;ρn) − θ‖IAc

n
with x∗ =

x∗ ∨ 1. By (3.2) and Proposition 1, |t∗G(Xi;ρn) − θi | ≤ L̃(ρn) + |N(0,1)|, so that
Theorem 4 provides an upper bound for En,θζ

2
1n. By the entropy bound in Propo-

sition 3, there exists a finite collection of distributions {Hj, j ≤ N} of manageable
size N such that

ζ2n =
{
‖t ∗̂

Gn
(X;ρn) − θ‖IAn − max

j≤N
‖t∗Hj

(X;ρn) − θ‖
}

+
(4.10)
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is small and d(fHj
, fGn) ≤ x∗εn for all j ≤ N . Since the regularized Bayes rules

t∗Hj
(X;ρn) are separable and the collection {Hj, j ≤ N} is of manageable size, the

large deviation inequality in Proposition 4 implies that

ζ3n = max
j≤N

{‖t∗Hj
(X;ρn) − θ‖ − En,θ‖t∗Hj

(X;ρn) − θ‖}+(4.11)

is small. Since d(fHj
, fGn) ≤ x∗εn, Theorem 3 implies that

ζ4n = max
j≤N

√
En,θ‖t∗Hj

(X;ρn) − θ‖2 −√nR∗(Gn)(4.12)

is no greater than O(x∗εn)(logρn)
3/2, where R∗(Gn) is the general EB benchmark

risk in (2.8). Finally, upper bounds for individual pieces En,θζ
2
jn are put together

via

√
En,θ‖t ∗̂Gn

(X) − θ‖2 ≤√nR∗(Gn) +
√√√√√En,θ

( 4∑
j=1

|ζjn|
)2

.(4.13)

4.3. Adaptive ratio optimality and minimaxity. We discuss here the optimality
properties of the GMLEB as consequences of the oracle inequality in Theorem 5.

Theorem 5 immediately implies the adaptive ratio optimality (2.21) of the
GMLEB in the classes 
∗

n = 
∗
n(Mn) for any sequences of constants Mn → ∞,

where


∗
n(M) =

{
θ ∈ R

n :R∗(Gn,θ ) ≥ M(logn)3 inf
p≥2/ logn

ε2(n,Gn,θ ,p)

}
(4.14)

with Gn,θ = Gn as in (2.4) and ε(n,G,p) as in (4.2). This is formally stated in the
theorem below.

THEOREM 6. Let X ∼ N(θ , In) under Pn,θ with a deterministic θ ∈ R
n. Let

t ∗̂
Gn

(X) be the GMLEB estimator (2.15) with the approximate MLE Ĝn in (2.14).
Let R∗(Gn,θ ) be the general EB benchmark in (2.8) with the distribution Gn =
Gn,θ in (2.4). Then, for the classes 
∗

n(M) in (4.14),

lim
(n,M)→(∞,∞)

sup
θ∈
∗

n(M)

{En,θLn(t
∗̂
Gn

(X), θ)/R∗(Gn,θ )} ≤ 1.(4.15)

REMARK 8. Since the minimum of ε(n,Gn,θ ,p) is taken in (4.14) over p ≥
2/ logn for each θ , the adaptive ratio optimality (4.15) allows smaller R∗(Gn,θ )

than simply using ε(n,Gn,θ ,∞) does as in Theorem 1. Thus, Theorem 6 implies
Theorem 1.

Another main consequence of the oracle inequality in Theorem 5 is the adaptive
minimaxity (2.28) of the GMLEB for a broad range of sequences 
n ∈ R

n. We



GENERAL MAXIMUM LIKELIHOOD EB 1669

have stated our results for regular �p balls in Theorem 2. In the rest of the section,
we consider weak �p balls


w
p,C,n = {θ ∈ R

n :μw
p (Gn,θ ) ≤ C},(4.16)

where Gn,θ is the empirical distribution of the components of θ and the functional
μw

p (G) is the weak moment in (4.1). Alternatively,


w
p,C,n =

{
θ ∈ R

n : max
1≤i≤n

|θi |p
n∑

j=1

I {|θj | ≥ |θi |}/n ≤ Cp

}
.

THEOREM 7. Let X ∼ N(θ , In) under Pn,θ with a deterministic θ ∈ R
n. Let

Ln(·, ·) be the average squared loss (2.2) and Rn(
) be the minimax risk (2.27).
Then, for all approximate solutions Ĝn satisfying (2.14), the GMLEB θ̂ = t ∗̂

Gn
(X)

is adaptive minimax (2.28) in the weak �p balls 
n = 
w
p,Cn,n in (4.16), provided

that the radii Cn are within the range (2.30).

Here is our argument. The weak Lp ball that matches (4.16) is

G w
p,C = {G :μw

p (G) ≤ C}.
Let Jw

p,C(λ) = − ∫∞
0 (t2 ∧ λ2)d{1 ∧ (C/t)p}, which is approximately the Bayes

risk of the soft-threshold estimator for the stochastically largest Pareto prior in

Gp,C . Let λp,C =
√

1 ∨ {2 log(1/Cp∧2)}. Johnstone [23] proved that

lim
n→∞

Rn(

w
p,Cn,n)

R(G w
p,Cn

)
= 1(4.17)

for p > 2 with Cn → C+ ≥ 0 and for p ≤ 2 with nC
p
n /(logn)1+6/p → ∞, and

that R(G w
p,Cn

)/Jw
p,Cn

(λp,Cn) → 1 as C
p∧2
n → 0. Abramovich et al. [1] proved

Rn(

w
p,Cn,n)/J

w
p,Cn

(λp,Cn) → 1 for p < 2 and (logn)5/n ≤ C
p
n ≤ n−κ for all κ >

0. The combination of their results implies (4.17) for p ≤ 2 and C
p
n ≥ (logn)5/n.

Therefore, (4.17) holds under (2.30) due to pk1(p) = p/2+4+3/p > 5 for p < 2.
As in Section 2.7,

sup
θ∈
w

p,Cn,n

r̃n,θ (̂tn) = o(1)
√

Jp,Cn(4.18)

as in (2.37), due to Jp,Cn 	 R(Gp,Cn) ≤ R(G w
p,Cn

).

5. More simulation results. In addition to the simulation results reported in
Section 2.4, we conducted more experiments to explore a larger sample size, sparse
unknown means without exact zero, and i.i.d. unknown means from normal priors.
The results for the nine statistical procedures and the oracle rule t∗Gn

(X) for the
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TABLE 2
Average of ‖θ̂ − θ‖2 :n = 4000, θi ∈ {0,μ}, #{i : θi = μ} = 20, 200 or 2000

# nonzero 20 200 2000

μ 3 4 5 7 3 5 7 3 5 7

James–Stein 175 298 446 790 1243 2229 2846 3261 3689 3829

EBThresh 145 120 63 377 861 404 290 3411 3118 2621
SURE 174 270 329 355 1725 827 827 3296 3317 3317
FDR (0.01) 175 202 103 26 1569 506 231 10,230 2607 2090
FDR (0.1) 161 138 70 48 1121 450 409 4578 2597 2563

GMLEB 141 115 68 30 624 215 43 1808 489 62
S-GMLEB 116 92 45 10 597 193 23 1791 479 53

F-GEB 243 231 166 156 739 353 229 1907 641 253
HF-GEB 145 120 63 377 694 286 159 1868 576 171

Oracle 110 84 40 3 587 186 16 1771 460 36

general EB are reported in Tables 2–4, in the same format as Table 1. Each entry is
based on an average of 100 replications. In each column, boldface entries indicate
top three performers other than the hybrid estimator or the oracle. Two columns
with μ = 4 are dropped to fit the tables in.

In Table 2 we report simulation results for n = 4000. Compared with Table 1,
F-GEB replaces EBThresh as a distant third top performer in the moderately sparse
case of #{i : θi = μ} = 200, and almost the same sets of estimators prevail as
top performers in other columns. Since the collections of Gn are identical in Ta-

TABLE 3
Average of ‖θ̂ − θ‖2: n = 1000, θi = μi + unif[−0.2,0.2], μi ∈ {0,μ}, #{i :μi = μ} =5, 50 or 500

#{μi �= 0} 5 50 500

μ 3 4 5 7 3 5 7 3 5 7

James–Stein 57 87 124 207 316 559 713 817 932 971

EBThresh 48 44 31 23 226 115 87 855 797 677
SURE 55 75 84 89 426 221 220 830 845 848
FDR (0.01) 56 62 37 20 395 137 72 2555 676 541
FDR (0.1) 53 49 34 27 289 130 116 1152 666 664

GMLEB 49 45 32 23 170 70 27 466 146 32
S-GMLEB 45 41 29 19 164 67 24 462 145 31

F-GEB 115 108 105 91 238 155 118 534 244 145
HF-GEB 48 44 31 23 210 113 85 509 203 101

Oracle 39 35 23 14 158 61 18 454 135 22
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TABLE 4
Average of ‖θ̂ − θ‖2: n = 1000, i.i.d. θj ∼ N(μ,σ 2)

σ 2 0.1 2 40

μ 3 4 5 7 3 5 7 3 5 7

James–Stein 92 92 92 93 665 670 665 970 982 975

EBThresh 1081 1058 1035 1020 1013 1032 1014 983 998 997
SURE 1006 1505 3622 13,146 988 1033 3514 983 998 996
FDR (0.01) 3972 2049 1169 999 2789 1599 1050 1661 1566 1427
FDR (0.1) 1555 1093 1002 998 1455 1096 999 1184 1161 1117

GMLEB 94 94 95 95 675 678 673 1001 1015 1009
S-GMLEB 97 98 99 98 678 681 675 1002 1015 1009

F-GEB 171 171 175 171 735 743 736 1107 1130 1122
HF-GEB 138 139 143 142 721 726 720 1067 1088 1079

Oracle 91 90 91 90 665 669 664 970 981 975

bles 1 and 2, the average squared loss ‖θ̂ − θ‖2/n should decrease in n to indicate
convergence to the oracle risks for each estimator in each model, but this is not the
case in entries in italics.

In Table 3, we report simulation results for sparse mean vectors without ex-
act zero. It turns out that adding uniform [−0.2,0.2] perturbations to θi does not
change the results much, compared with Table 1.

In Table 4, we report simulation results for i.i.d. θi ∼ N(μ,σ 2). This is the
parametric model in which the (oracle) Bayes estimators are linear. Indeed, the
James–Stein estimator is the top performer throughout all the columns and tracks
the oracle risk extremely well, while the GMLEB is not so far behind. It is in-
teresting that for σ 2 = 40, the EBThresh and SURE outperform GMLEB as they
approximate the naive θ̂ = X with diminishing threshold levels. Another interest-
ing phenomenon is the disappearance of the advantage of the S-GMLEB over the
GMLEB, as the unknowns are no longer sparse.

6. Discussion. In this section, we discuss general EB with kernel estimates of
the oracle Bayes rule, sure computation of an approximate generalized MLE and
a number of additional issues.

6.1. Kernel methods. General EB estimators of the mean vector θ can be di-
rectly derived from the formula (3.2) using the kernel method

θ̂ = t̂n(X), t̂n(x) = x + f̂ ′
n(x)

f̂n(x) ∨ ρn

,

(6.1)

f̂n(x) =
n∑

i=1

K(an(x − Xi))

nan

.
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This was done in [36] with the Fourier kernel K(x) = (sinx)/(πx) and
√

2 logn ≤
an 	 √

logn. The main rationale for using the Fourier kernel is the near optimal
convergence rate of f̂n − fGn = O(

√
(logn)/n) and f̂ ′

n − f ′
Gn

= O((logn)/
√

n),
uniformly in θ . However, since the relationship between f̂ ′

n(x) and f̂n(x) is not
as trackable as in the case of generalized MLE fĜn

, a much higher regularization
level ρn 	 √

(logn)/n in (6.1) were used [36, 38] to justify the theoretical results.
This could be an explanation for the poor performance of the Fourier general EB
estimator for very sparse θ in our simulations. From this point of view, the GMLEB
is much more appealing since its estimating function retains all analytic properties
of the Bayes rule. Consequently, the GMLEB requires no regularization for the
adaptive ratio optimality and adaptive minimaxity in our theorems.

Brown and Greenshtein [6] have studied (6.1) with the normal kernel K(x) =
ϕ(x) and possibly different bandwidth 1/an, and have proved the adaptive ratio op-
timality (2.21) of their estimator when ‖θ‖∞ and R∗(Gn,θ ) have certain different
polynomial orders. The estimating function t̂n(x) with the normal kernel, com-
pared with the Fourier kernel, behaves more like the regularized Bayes rule (3.3)
analytically with the positivity of f̂n(x) and more trackable relationship between
f̂ ′

n(x) and f̂n(x). Still, it is unclear without some basic properties of the Bayes
rule in Proposition 1 and Theorem 3, it is unclear if the kernel methods of the form
(6.1) would possess as strong theoretical properties as in Theorems 1, 2, 5, 6 and
7 or perform as well as the GMLEB for moderate samples in simulations [6].

6.2. Sure computation of an approximate general MLE. We present a con-
servative data-driven criterion to guarantee (2.14) with the EM-algorithm. This
provides a definitive way of computing the map from {Xi} to Ĝ in (2.14) and then
to the GMLEB via (2.18).

Set u1 = min1≤i≤n Xi , um = max1≤i≤n Xi , and

ε = (um − u1)/(m − 1), uj = uj−1 + ε.(6.2)

PROPOSITION 5. Suppose ε2{(um − u1)
2/4 + 1/8} ≤ 1/n with a sufficiently

large m in (6.2). Let w
(0)
j > 0 ∀j ≤ m with

∑m
j=1 ŵ

(0)
j = 1. Suppose that the

EM-algorithm (2.19) is stopped at or beyond an iteration k > 0 with

max
1≤j≤m

log
(
ŵ

(k)
j /ŵ

(k−1)
j

)≤ 1

n
log
(

1

eqn

)
.(6.3)

Then, (2.14) holds for Ĝn =∑m
j=1 ŵ

(k)
j δuj

.

Heuristically, smaller m provides larger minj ŵ
(k)
j and faster convergence of the

EM-algorithm, so that the “best choice” of m is

m − 2 < (um − u1)

√
n{(um − u1)2/4 + 1/8} ≤ m − 1.
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For maxi |Xi | 	 √
logn, this ensures the first condition of Proposition 5 with m 	

(logn)
√

n and ε 	 (n logn)−1/2. Proposition 5 is proved via the smoothness of the
normal density and Cover’s upper bound [10, 35] for the maximum likelihood in
finite mixture models.

6.3. Additional remarks. A crucial element for the theoretical results in this
paper is the oracle inequality for the regularized Bayes estimator with misspeci-
fied prior, as stated in Theorem 3. However, we do not believe that mathematical
induction is sharp in the argument with higher and higher order of differentiation
in the proof of Lemma 1. Consequently, the power κ1 in Theorems 2 and 7 is larger
than its counterpart more directly established for threshold estimators [1, 24]. Still,
the GMLEB performs as well as any threshold estimators in our simulations for the
most sparse mean vectors. As expected, the gain of the GMLEB is huge against
the James–Stein estimator for sparse means and against threshold estimators for
dense means.

It is interesting to observe in Tables 1–3 that the simulated �2 risk for the
GMLEB sometimes dips well below the benchmark

∑n
i=1 θ2

i ∧ 1 = #{i ≤ n : θi 
=
0} for the oracle hard threshold rule θ̂i = XiI {|θi | ≤ 1} [18], while the simulated �2
risk for threshold estimators is always above that benchmark.

An important consequence of our results is the adaptive minimaxity and other
optimality properties of the GMLEB approach to nonparametric regression under
suitable smoothness conditions. For example, applications of the GMLEB estima-
tor to the observed wavelet coefficients at individual resolution levels yield adap-
tive exact minimaxity in all Basov balls as in [38].

The adaptive minimaxity (2.28) in Theorems 2 and 7 is uniform in the radii C

for fixed shape p. A minimax theory for (weak) �p balls uniform in (p,C) can be
developed by careful combination and improvement of the proofs in [12, 23, 38].
Since the oracle inequality (4.8) is uniform in p, uniform adaptive minimaxity in
both p and C is in principle attainable for the GMLEB.

The theoretical results in this paper are all stated for deterministic θ =
(θ1, . . . , θn). By either mild modifications of the proofs here or conditioning on
the unknowns, analogues versions of our theorems can be established for the esti-
mation of i.i.d. means {ξi} in the EB model (2.25). Other possible directions of ex-
tension of the results in this paper are the cases of Xi ∼ N(θi, σ

2
n ) via scale change,

with known σ 2
n or an independent consistent estimate of σ 2

n , and Xi ∼ N(θi, σ
2
i )

with known σ 2
i .

APPENDIX

Here we prove Proposition 1, Lemma 1, Proposition 3, Theorems 5, 2 and 7,
and then Proposition 5. We need one more lemma for the proof of Proposition 1.
Throughout this appendix, �x� denotes the greatest integer lower bound of x,
and �x� denotes the smallest integer upper bound of x.
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LEMMA A.1. Let fG(x) be as in (2.13) and L̃(y) as in Proposition 1. Then,(
f ′

G(x)

fG(x)

)2
≤ f ′′

G(x)

fG(x)
+ 1 ≤ L̃2(fG(x)) = log

(
1

2πf 2
G(x)

)
∀x.(A.1)

PROOF. Since Y |ξ ∼ N(ξ,1) and ξ ∼ G under PG, by (3.2)

f ′
G(x)

fG(x)
= EG[ξ − Y |Y = x],

f ′′
G(x)

fG(x)
+ 1 = EG[(ξ − Y)2|Y = x].

This gives the first inequality of (A.1). The second inequality of (A.1) follows from
Jensen’s inequality: for h(x) = ex/2

h

(
f ′′

G(x)

fG(x)
+ 1
)

≤ EG

[
h
(
(ξ − Y)2)|Y = x

]= 1√
2πfG(x)

.

This completes the proof. �

PROOF OF PROPOSITION 1. Since fG(x) = ∫ ϕ(x − u)G(du) ≥ 0, the value
of (3.3) is always between t∗G(x) and x. By Lemma A.1

|x − t∗G(x;ρ)| ≤ fG(x)

fG(x) ∨ ρ
L̃(fG(x)) ≤ L̃(ρ)

for ρ ≤ (2πe)−1/2, since L̃(y) is decreasing in y2 and y2L̃2(y) is increasing in
y2 ≤ 1/(2πe). Similarly, the second line of (3.4) follows from Lemma A.1 and

∂t∗G(x;ρ)

∂x
=
{

1 + f ′′
G(x)/fG(x) − {f ′

G(x)/fG(x)}2, fG(x) > ρ,
1 + f ′′

G(x)/ρ, fG(x) < ρ.

Note that L̃(fG(x)) ≤ L̃(ρ) for fG(x) ≥ ρ, and for fG(x) < ρ ≤ (2πe3)−1/2

0 ≤ 1 − fG(x)

ρ
≤ 1 + f ′′

G(x)

ρ
≤ 1 + fG(x)

ρ

(
L̃2(fG(x)) − 1

)≤ L̃2(ρ)

due to the monotonicity of y{L̃2(y) − 1} in 0 ≤ y ≤ (2πe3)−1/2. �

PROOF OF LEMMA 1. Let D = d/dx. We first prove that for all integers k ≥ 0
and a ≥ √

2k − 1,∫
{Dk(fG − fG0)}2 dx ≤ 4a2k

√
2π

d2(fG,fG0) + 4a2k−1

π
e−a2

.(A.2)
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Let h∗(u) = ∫ eiuxh(x) dx for all integrable h. Since |f ∗
G(u)| ≤ ϕ∗(u) = e−u2/2, it

follows from the Plancherel identity that∫
{Dk(fG − fG0)}2 dx = 1

2π

∫
u2k|f ∗

G(u) − f ∗
G0

(u)|2 du

≤ a2k

2π

∫
|f ∗

G(u) − f ∗
G0

(u)|2 du + 4

2π

∫
|u|>a

u2ke−u2
du

= a2k
∫

|fG − fG0 |2 dx + 4

π
ck,

where ck = ∫u>a u2ke−u2
du. Since (k − 1/2) ≤ a2/2, integrating by parts yields

ck = 2−1a2k−1e−a2 + {(k − 1/2)/a2}a2ck−1

≤ 2−1a2k−1e−a2
(1 + 1/2 + · · · + 1/2k−1) + 2−ka2kc0

≤ a2k−1e−a2

due to c0 ≤ a−1 ∫
u>a ue−u2

du = e−a2
/(2a). Since fG(x) ≤ 1/

√
2π ,∫

|fG − fG0 |2 dx ≤ ∥∥√fG +
√

fG0

∥∥2
∞d2(fG,fG0) ≤ 4√

2π
d2(fG,fG0).

The combination of the above inequalities yields (A.2).
Define w∗ = 1/(fG ∨ ρ + fG0 ∨ ρ) and �k = (

∫ {Dk(fG − fG0)}2w∗)1/2. Inte-
grating by parts, we find

�2
k = −

∫
{Dk−1(fG − fG0)}

{
Dk+1(fG − fG0)w∗ + (Dk(fG − fG0)

)
(Dw∗)

}
.

Since |(Dw∗)(x)| ≤ 2L̃(ρ)w∗(x) by Proposition 1, Cauchy–Schwarz gives

�2
k ≤ �k−1�k+1 + 2L̃(ρ)�k−1�k.

Let k0 be a nonnegative integer satisfying k0 ≤ L̃2(ρ)/2 < k0 + 1. Define k∗ =
min{k :�k+1 ≤ k02L̃(ρ)�k}. For k < k∗, we have �2

k ≤ (1 + 1/k0)�k−1�k+1, so
that for k∗ ≤ k0,

�1

�0
≤
(

1 + 1

k0

)
�2

�1
≤
(

1 + 1

k0

)k∗
�k∗+1

�k∗
≤ ek02L̃(ρ) ≤ eL̃3(ρ).

Since (f
1/2
G + f

1/2
G0

)2w∗ ≤ 2, we have �2
0 ≤ 2d2(fG,fG0). Thus, for k∗ ≤ k0

�1 ≤ eL̃3(ρ)
√

2d(fG,fG0).(A.3)

For k0 < k∗, �1/�0 ≤ (1 + 1/k0)
k�k+1/�k for all k ≤ k0, so that

�1

�0
≤
[

k0∏
k=0

{(1 + 1/k0)
k�k+1/�k}

]1/(k0+1)

(A.4)
= (1 + 1/k0)

k0/2{�k0+1/�0}1/(k0+1).
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To bound �k0+1 by (A.2), we pick the constant a > 0 with the a2 in (3.9), so

that a2 ≥ 2(k0 + 1/2) and e−a2 ≤ d2(fG,fG0). Since w∗ ≤ 1/(2ρ), an application
of (A.2) with this a gives

�2
k0+1 ≤ 1

2ρ

∫
{Dk0+1(fG − fG0)}2

≤ 2a2(k0+1)

ρ
√

2π
d2(fG,fG0)

(
1 + a−1

√
2/π
)
.

Since �2
0 ≤ 2d2(fG,fG0), inserting the above inequality into (A.4) yields

�1 ≤ (1 + 1/k0)
k0/2�

k0/(k0+1)
0 �

1/(k0+1)
k0+1

≤ (1 + 1/k0)
k0/2

√
2d(fG,fG0)a

(
1 + √

2/π

ρ
√

2π

)1/(2k0+2)

(A.5)

≤ √
e2d(fG,fG0)a

√
2(2πρ2)−1/(4k0+4).

Since | log(2πρ2)| = L̃2(ρ) < 2k0 + 2, (3.9) follows from (A.3) and (A.5). �

PROOF OF PROPOSITION 3. We provide a dense version of the proof since it
is similar to the entropy calculations in [20, 21, 39].

It follows from (3.3), (3.4) and Lemma A.1 that

|t∗G(x;ρ) − t∗H(x;ρ)| ≤ 1

ρ
|f ′

G(x) − f ′
H(x)| + L̃(ρ)

ρ
|fG(x) − fH (x)|,(A.6)

so that we need to control the norm of both fG and f ′
G.

Let a = L̃(η), j∗ = �2M/a + 2� and k∗ = �6a2�. Define semiclosed intervals

Ij = (−M + (j − 2)a,
(−M + (j − 1)a

)∧ (M + a)
]
, j = 1, . . . , j∗,

to form a partition of (−M − a,M + a]. It follows from the Carathéodory’s the-
orem [9] that for each distribution function G there exists a discrete distribution
function Gm with support [−M −a,M +a] and no more than m = (2k∗ +2)j∗ +1
support points such that ∫

Ij

ukG(du) =
∫
Ij

ukGm(du),

(A.7)
k = 0,1, . . . ,2k∗ + 1, j = 1, . . . , j∗.

Since the Taylor expansion of e−t2/2 has alternating signs, for t2/2 ≤ k∗ + 2

0 ≤ Rem(t) = (−1)k
∗+1

{
ϕ(t) −

k∗∑
k=0

(−t2/2)k

k!√2π

}
≤ (t2/2)k

∗+1

(k∗ + 1)!√2π
.
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Thus, since k∗ + 1 ≥ 6a2, for x ∈ Ij ∩ [−M,M], the Stirling formula yields

|f ′
G(x) − f ′

Gm
(x)|

≤
∣∣∣∣∫

(Ij−1∪Ij∪Ij+1)
c
(x − u)ϕ(x − u){G(du) − Gm(du)}

∣∣∣∣
(A.8)

+
∣∣∣∣∫

Ij−1∪Ij∪Ij+1

(x − u)Rem(x − u){G(du) − Gm(du)}
∣∣∣∣

≤ max
t≥a

tϕ(t) + 4a{(2a)2/2}k∗+1
√

2π(k∗ + 1)! ≤ aη + 4a(e/3)k
∗+1

2π(k∗ + 1)1/2

due to a ≥ 1. Similarly, for |x| ≤ M

|fG(x) − fGm(x)| ≤ η + (e/3)k
∗+1

2π(k∗ + 1)1/2 .(A.9)

Furthermore, since (e/3)6 ≤ e−1/2 and k∗ + 1 ≥ 6a2 ≥ 6, we have (e/3)k
∗+1 ≤

e−a2/2 = √
2πη, so that by (A.6), (A.8) and (A.9)

‖t∗G(·;ρ) − t∗Gm
(·;ρ)‖∞,M

≤ ρ−1
(
aη + 4ae−a2/2

2π
√

6a2

)
+ ρ−1L̃(ρ)

(
η + e−a2/2

2π
√

6a2

)
(A.10)

≤ ρ−1η
(
2L̃(η) + 5/

√
12π
)
.

Let ξ ∼ Gm, ξη = η sgn(ξ)�|ξ |/η� and Gm,η ∼ ξη. Since |ξ − ξη| ≤ η,

‖fGm − fGm,η‖∞ ≤ C∗
1η, ‖f ′

Gm
− f ′

Gm,η
‖∞ ≤ C∗

2η,

where C∗
1 = supx |ϕ′(x)| = (2eπ)−1/2 and C∗

2 = supx |ϕ′′(x)| = √
2/πe−3/2. This

and (A.6) imply

‖t∗Gm
(·;ρ) − t∗Gm,η

(·;ρ)‖∞ ≤ η

ρ
{C∗

2 + C∗
1 L̃(ρ)}.(A.11)

Moreover, Gm,η has at most m support points.
Let Pm be the set of all vectors w = (w1, . . . ,wm) satisfying wj ≥ 0 and∑m
j=1 wj = 1. Let Pm,η be an η-net of N(η,Pm,‖ · ‖1) elements in Pm:

inf
wm,η∈Pm,η

‖w − wm,η‖1 ≤ η ∀w ∈ Pm.

Let {uj , j = 1, . . . ,m} be the support of Gm,η and wm,η be a vector in Pm,η with∑m
j=1 |Gm,η({uj }) − w

m,η
j | ≤ η. Set G̃m,η =∑m

j=1 w
m,η
j δuj

. Then,

‖fGm,η − fG̃m,η
‖∞ ≤ C∗

0η, ‖f ′
Gm,η

− f ′̃
Gm,η

‖∞ ≤ C∗
1η,
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where C∗
0 = ϕ(0) = 1/

√
2π . This and (A.6) imply

‖t∗Gm,η
(·;ρ) − t ∗̃

Gm,η
(·;ρ)‖∞ ≤ η

ρ
{C∗

1 + C∗
0 L̃(ρ)}.(A.12)

The support of Gm,η and G̃m,η is �η,M = {0,±η,±2η, . . .} ∩ [−M − a,M + a].
Summing (A.10), (A.11) and (A.12) together, we find

‖t∗G(·;ρ) − t ∗̃
Gm,η

(·;ρ)‖∞,M

≤ (η/ρ)
[{2 + C∗

1 + C∗
0 }L̃(η) + 5/

√
12π + C∗

2 + C∗
1
]

≤ (η/ρ){2.65L̃(η) + 1.24} ≤ η∗.

Counting the number of ways to realize {uj } and wm,η, we find

N(η∗,Tρ,‖ · ‖∞,M) ≤
( |�η,M |

m

)
N(η,Pm,‖ · ‖1),(A.13)

with m = (2k∗ +2)j∗ +1, |�η,M | = 1+2�(M +a)/η�, a = L̃(η), j∗ = �2M/a +
2� and k∗ = �6a2�.

Since Pm is in the �1 unit-sphere of R
m, N(η,Pm,‖ · ‖1) is no greater than

the maximum number of disjoint Ball(vj , η/2,‖ · ‖1) with centers vj in the unit
sphere. Since all these balls are inside the (1 + η/2) �1-ball, volume comparison
yields N(η,Pm,‖ · ‖1) ≤ (2/η + 1)m. With another application of the Stirling
formula, this and (A.13) yield

N(η∗,Tρ,‖ · ‖∞,M) ≤ (2/η + 1)m|�η,M |m/m!
≤ {(1 + 2/η)

(
1 + 2(M + a)/η

)}m{
(m + 1)m+1/2e−m−1

√
2π
}−1(A.14)

≤ [(η + 2)
(
η + 2(M + a)

)
e/(m + 1)

]m
η−2me{2π(m + 1)}−1/2.

Since m − 1 ≥ 12a2(2M/a + 2) = 24a(M + a) and a ≥ 1 ≥ 1/2 ≥ η,

(η + 2)
(
η + 2(M + a)

)
e ≤ 8{1/2 + 2(M + a)} ≤ m + 1.

Hence, (A.14) is bounded by η−2m with m ≤ 2(6a2 + 1)(2M/a + 3) + 1. �

PROOF OF THEOREM 5. Throughout the proof, we use M0 to denote a uni-
versal constant which may take different values from one appearance to another.
For simplicity, we take qn = (e

√
2π/n2) ∧ 1 in (2.14) so that (4.4) holds with

ρn = n−3.

Let εn and x∗ be as in Theorem 4 and L̃(ρ) =
√

− log(2πρ2) be as in Proposi-

tions 1 and 4. With ρn = n−3, set

η = ρn

n
= 1

n4 , η∗ = η

ρn

{3L̃(η) + 2}, M = 2nε2
n

(logn)3/2 .(A.15)
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Let x∗ = max(x∗,1) and {t∗Hj
(·;ρn), j ≤ N} be a (2η∗)-net of

Tρn ∩ {t∗G :d(fG,fGn) ≤ x∗εn}(A.16)

under the ‖ · ‖∞,M seminorm as in Proposition 3, with distributions Hj satisfy-
ing d(fHj

, fGn) ≤ x∗εn and N = N(η∗,Tρn,‖ · ‖∞,M). It is a (2η∗)-net due to
the additional requirements on Hj . Since M ≥ 4

√
logn and η = 1/n4 by (4.2)

and (A.15), Proposition 3 and (A.15) give

logN ≤ M0(logn)3/2M/2 ≤ M0nε2
n.(A.17)

We divide the �2 distance of the error into five parts:

‖t ∗̂
Gn

(X;ρn) − θ‖ ≤√nR∗(Gn) +
4∑

j=1

ζjn,

where ζjn are as in (4.9), (4.10), (4.11) and (4.12). As we have mentioned in the
outline, the problem is to bound En,θζ

2
jn in view of (4.13).

Let An and ζ1n be as in (4.9). Since x∗ = 1 ∨ x∗ ≥ 1 and nε2
n ≥ 2(logn)2

by (4.2), Theorem 4 gives Pn,θ {Ac
n} ≤ exp(−(x∗)2nε2

n/(2 logn)) ≤ 1/n. Thus,
since L̃2(ρn) = − log(2π/n6) with ρn = n−3, Proposition 1 gives

En,θζ
2
1n = En,θ

n∑
i=1

{(
t ∗̂
G
(Xi;ρn) − Xi

)+ (Xi − θi)
}2

IAc
n

≤ 2nL̃2(ρn)Pn,θ {Ac
n} + 2En,θ

n∑
i=1

(Xi − θi)
2IAc

n

≤ M0 logn + 2n

∫ ∞
0

min
(
P {|N(0,1)| > x},1/n

)
dx2.

Since P {N(0,1) > x} ≤ e−x2/2 and
∫∞

0 min(ne−x2/2,1) dx2/2 = 1 + logn,

En,θζ
2
1n ≤ M0 logn ≤ M0nε2

n.(A.18)

Consider ζ 2
2n. Since t∗Hj

(·;ρn) form a (2η∗)-net of (A.16) under ‖ · ‖∞,M and

|t∗G(x;ρ) − x| ≤ L̃(ρ) by Proposition 1, it follows from (4.10) that

ζ 2
2n ≤ min

j≤N
‖t ∗̂

Gn
(X;ρn) − t∗Hj

(X;ρn)‖2IAn

≤ (2η∗)2#{i : |Xi | ≤ M} + {2L̃(ρn)}2#{i : |Xi | > M}.
By (4.2), (nε2

n/ logn)p+1 ≥ n{√lognμw
p (Gn)}p , so that by (4.1) and (A.15)∫

|u|≥M/2
Gn(du) ≤

(
μw

p (Gn)

M/2

)p

(A.19)

≤
(

2nε2
n

M(logn)3/2

)p ε2
n

logn
= ε2

n

logn
.
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Thus, since η∗ = n−1{3L̃(n−4) + 2} and M ≥ 4
√

logn by (A.15) and (4.2),

En,θζ
2
2n ≤ n(2η∗)2 + 4L̃2(n−4)En,θ#{i : |Xi | > M}

≤ M0(logn)n

[
1

n2 +
∫
|u|≥M/2

Gn(du) + P
{|N(0,1)| > 2

√
logn

}]

≤ M0(logn)

(
1

n
+ nε2

n

logn
+ 2

n

)
.

Since nε2
n ≥ 2(logn)2 by (4.2), we find

En,θζ
2
2n ≤ M0nε2

n.(A.20)

Now, consider ζ 2
3n. Since L̃2(ρn) ≤ M0 logn, it follows from (4.11), Proposi-

tion 4 and (A.17) that

En,θζ
2
3n =

∫ ∞
0

Pn,θ {ζ3n > x}dx2

≤
∫ ∞

0
min
{
1,N exp

(−x2/(2L̃4(ρn))
)}

dx2(A.21)

= 2L̃4(ρn)(1 + logN) ≤ M0(logn)2nε2
n.

For ζ 2
4n, it suffices to apply Theorem 3(ii) with G0 = Gn, G = Hj , ρ = ρn =

n−3, x0 = M/2 and ε0 = x∗εn ≥ d(fHj
, fGn), since

ζ 2
4n ≤ nmax

j≤N

{
EGn{t∗Hj

(Y ;ρn) − ξ}2 − R∗(Gn)
}

(A.22)

by (4.12) and (2.5). It follows from (A.19) that the M1 in Theorem 3(ii) is no
greater than ∫

|u|≥M/2 Gn(du)

| logρn|3(x∗εn)2 ≤ ε2
n/ logn

(logn)3ε2
n

≤ M0.

Since M = 2nε2
n/(logn)3/2 by (A.15) and nε2

n ≥ 2(logn)2 by (4.2), the M2 in
Theorem 3(ii) is no greater than

2(M/2 + 1)ρn

(logρn)2(x∗εn)2 ≤ 2(nε2
n/(logn)3/2 + 1)/n3

(3 logn)2ε2
n

≤
√

logn + 1

n2(logn)4 ≤ M0

with ρn = n−3. Thus, by Theorem 3(ii) and (A.22)

ζ 2
4n ≤ M0n|(logρn)/3|3ε2

n = M0nε2
n(logn)3.(A.23)

Adding (A.18), (A.20), (A.21) and (A.23) together, we have

En,θ

( 4∑
j=1

|ζjn|
)2

≤ M0nε2
n(logn)3.

Since Ln(̂θ , θ) = ‖θ̂ − θ‖2/n, this and (4.13) complete the proof. �
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PROOF OF THEOREM 2. As we have mentioned, by (2.34), (2.35) and (2.36),
the adaptive minimaxity (2.28) with 
n = 
p,Cn,n follows from (2.37). By (4.1)
and (2.29), μw

p (Gn,θ ) ≤ C for θ ∈ 
p,C,n, so that by (4.2) and Theorem 5,
supθ∈
p,C,n

r̃n,θ (̂tn) ≤ εp,C,n(logn)3/2 with

ε2
p,C,n = max

[
2 logn, {nCp(logn)p/2}1/(1+p)](logn)/n.(A.24)

Thus, it suffices to verify that for sequences Cn satisfying (2.30),

ε2
p,Cn,n(logn)3/Jp,Cn → 0,(A.25)

where Jp,C = min{1,Cp∧2{1 ∨ (2 log(1/Cp))}(1−p/2)+} as in (2.37).

We consider three cases. For C
2∧p
n > e−1/2, Jp,Cn ≥ e−1/2 and

ε2
p,Cn,n(logn)3 = max

[
2(logn)5

n
, {Cn(logn)9/2+4/p/n}p/(1+p)

]
= o(1),

since κ2(p) = 9/2 + 4/p in (2.30).
For p < 2 and C

p
n ≤ e−1/2, Jp,Cn = C

p
n {2 log(1/C

p
n )}1−p/2, so that by (A.24)

ε2
p,Cn,n(logn)3/Jp,Cn

= max
[

2(logn)5

nC
p
n {log(1/C

p
n )}1−p/2

,
(logn)4+p/(2+2p)

(nC
p
n )p/(1+p){log(1/C

p
n )}1−p/2

]
.

Since the case C
p
n > n−1/2 is trivial, it suffices to consider the case C

p
n ≤ n−1/2

where

ε2
p,Cn,n(logn)3

Jp,Cn

	 max
[
(logn)4+p/2

nC
p
n

,
(logn)3+p/2+p/(2+2p)

(nC
p
n )p/(1+p)

]
.

Since 4 + p/2 ≤ pκ1(p) = 4 + 3/p + p/2 = (1 + 1/p){3 + p/2 + p/(2 + 2p)},
(2.30) still implies (A.25).

Finally, for p ≥ 2 and C2
n ≤ e−1/2, Jp,Cn = C2

n , so that

ε2
p,Cn,n(logn)3

Jp,Cn

= max
[

2(logn)5

nC2
n

,

{
Cn(logn)9/2+4/p

nC
2(1+1/p)
n

}p/(1+p)]
.

Since nC
1+2/p
n = n1/2−1/p(nC2

n)1/2+1/p , we need (logn)5/(nC2
n) → 0 for p > 2

and (logn)13/2/(nC2
n) → 0 for p = 2. Again (2.30) implies (A.25). �

PROOF OF THEOREM 7. Since the oracle inequality (4.8) is based on the
weak �p norm, the proof of Theorem 2 also provides (4.18). �

PROOF OF PROPOSITION 5. Let Ĝ∗
n be the exact generalized MLE as

in (2.12). Since ϕ(x) is decreasing in |x|, we have Ĝ∗
n([u1, um]) = 1. Let Ij =
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(uj−1, uj ] and I ∗
j = [uj−1, uj ] for j ≥ 2 and I1 = I ∗

1 = {u1}. Let Hm,j be sub-
distributions with support {uj−1, uj } ∩ I ∗

j such that

Hm,j (I
∗
j ) = Ĝ∗

n(Ij ),

∫
I∗
j

uHm,j (du) =
∫
Ij

uĜ∗
n(du),

(A.26)
1 ≤ j ≤ m.

Let j > 1 and x ∈ [u1, um] be fixed. Set xj = x − (uj +uj−1)/2 and t = u− (uj +
uj−1)/2 for u ∈ I ∗

j . Since |xj t | ≤ (um − u1)ε/2 ≤ n−1/2 ≤ 1,

−(1 − e−t2/2)exj t ≤ exj t−t2/2 − (1 + xj t) ≤ x2
j t2exj t−t2/2,(A.27)

where the second inequality follows from e−t2/2(1 − xj t) ≤ e−xj t . Since ϕ(x −
u) = ϕ(xj − t) = ϕ(xj ) exp(xj t − t2/2), (A.26) and (A.27) yield∫

Ij

ϕ(x − u)Ĝ∗
n(du) −

∫
I∗
j

ϕ(x − u)Hm,j (du)

≤
∫
Ij

x2
j t2ϕ(x − u)Ĝ∗

n(du) +
∫
I∗
j

(et2/2 − 1)ϕ(x − u)Hm,j (du)

≤ (um − u1)
2(ε/2)2

∫
Ij

ϕ(x − u)Ĝ∗
n(du)

+ (eε2/8 − 1)

∫
I∗
j

ϕ(x − u)Hm,j (du).

Let Hm = ∑m
j=1 Hm,j . Summing the above inequality over j , we find eε2/8 ×

fHm(x) ≥ (1 − η)fĜ∗
n
(x) with η = ε2(um − u1)

2/4 ≤ 1/n − ε2/8. Thus,

n∏
i=1

fHm(Xi)

fĜ∗
n
(Xi)

≥ e−nε2/8(1 − η)n ≥ e−n(ε2/8+η) ≥ e−1.(A.28)

Let Hm be the set of all distributions with support {u1, . . . , um} and Ĝn =∑m
j=1 ŵ

(k)
j δuj

. The upper bound in [10, 35] and (6.3) provide

sup
H∈Hm

n∏
i=1

fH (Xi)

fĜn
(Xi)

≤ max
j≤m

( w
(k)
j

w
(k−1)
j

)n

≤ 1

eqn

.

This and (A.28) imply
∏n

i=1 fĜ∗
n
(Xi) ≤ q−1

n

∏n
i=1 fĜn

(Xi). �
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