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KERNEL DIMENSION REDUCTION IN REGRESSION1

BY KENJI FUKUMIZU, FRANCIS R. BACH AND MICHAEL I. JORDAN

Institute of Statistical Mathematics, INRIA—Ecole Normale Supérieure
and University of California

We present a new methodology for sufficient dimension reduction
(SDR). Our methodology derives directly from the formulation of SDR in
terms of the conditional independence of the covariate X from the response Y ,
given the projection of X on the central subspace [cf. J. Amer. Statist. As-
soc. 86 (1991) 316–342 and Regression Graphics (1998) Wiley]. We show
that this conditional independence assertion can be characterized in terms of
conditional covariance operators on reproducing kernel Hilbert spaces and
we show how this characterization leads to an M-estimator for the central
subspace. The resulting estimator is shown to be consistent under weak con-
ditions; in particular, we do not have to impose linearity or ellipticity con-
ditions of the kinds that are generally invoked for SDR methods. We also
present empirical results showing that the new methodology is competitive in
practice.

1. Introduction. The problem of sufficient dimension reduction (SDR) for
regression is that of finding a subspace S such that the projection of the covariate
vector X onto S captures the statistical dependency of the response Y on X. More
formally, let us characterize a dimension-reduction subspace S in terms of the
following conditional independence assertion:

Y ⊥⊥ X|�SX,(1)

where �SX denotes the orthogonal projection of X onto S. It is possible to show
that under weak conditions the intersection of dimension-reduction subspaces is it-
self a dimension-reduction subspace, in which case the intersection is referred to as
a central subspace [5, 6]. As suggested in a seminal paper by Li [23], it is of great
interest to develop procedures for estimating this subspace, quite apart from any
interest in the conditional distribution P(Y |X) or the conditional mean E(Y |X).
Once the central subspace is identified, subsequent analysis can attempt to infer a
conditional distribution or a regression function using the (low-dimensional) coor-
dinates �SX.
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The line of research on SDR initiated by Li is to be distinguished from the large
and heterogeneous collection of methods for dimension reduction in regression in
which specific modeling assumptions are imposed on the conditional distribution
P(Y |X) or the regression E(Y |X). These methods include ordinary least squares,
partial least squares, canonical correlation analysis, ACE [4], projection pursuit
regression [12], neural networks and LASSO [29]. These methods can be effective
if the modeling assumptions that they embody are met, but if these assumptions do
not hold there is no guarantee of finding the central subspace.

Li’s paper not only provided a formulation of SDR as a semiparametric infer-
ence problem—with subsequent contributions by Cook and others bringing it to
its elegant expression in terms of conditional independence—but also suggested
a specific inferential methodology that has had significant influence on the en-
suing literature. Specifically, Li suggested approaching the SDR problem as an
inverse regression problem. Roughly speaking, the idea is that if the conditional
distribution P(Y |X) varies solely along a subspace of the covariate space, then
the inverse regression E(X|Y) should lie in that same subspace. Moreover, it
should be easier to regress X on Y than vice versa, given that Y is generally low-
dimensional (indeed, one-dimensional in the majority of applications) while X

is high-dimensional. Li [23] proposed a particularly simple instantiation of this
idea—known as sliced inverse regression (SIR)—in which E(X|Y) is estimated
as a constant vector within each slice of the response variable Y , and principal
component analysis is used to aggregate these constant vectors into an estimate of
the central subspace. The past decade has seen a number of further developments
in this vein. Some focus on finding a central subspace, for example, [9, 10], while
others aim at finding a central mean subspace, which is a subspace of the central
subspace that is effective only for the regression E[Y |X]. The latter include princi-
pal Hessian directions (pHd, [24]) and contour regression [22]. A particular focus
of these more recent developments has been the exploitation of second moments
within an inverse regression framework.

While the inverse regression perspective has been quite useful, it is not without
its drawbacks. In particular, performing a regression of X on Y generally requires
making assumptions with respect to the probability distribution of X, assump-
tions that can be difficult to justify. In particular, most of the inverse regression
methods make the assumption of linearity of the conditional mean of the covariate
along the central subspace (or make a related assumption for the conditional co-
variance). These assumptions hold in particular if the distribution of X is elliptic.
In practice, however, we do not necessarily expect that the covariate vector will
follow an elliptic distribution, nor is it easy to assess departures from ellipticity
in a high-dimensional setting. In general, it seems unfortunate to have to impose
probabilistic assumptions on X in the setting of a regression methodology.

Many of inverse regression methods can also exhibit some additional limitations
depending on the specific nature of the response variable Y . In particular, pHd
and contour regression are applicable only to a one-dimensional response. Also,
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if the response variable takes its values in a finite set of p elements, SIR yields
a subspace of dimension at most p − 1; thus, for the important problem of binary
classification SIR yields only a one-dimensional subspace. Finally, in the binary
classification setting, if the covariance matrices of the two classes are the same,
SAVE and pHd also provide only a one-dimensional subspace [7]. The general
problem in these cases is that the estimated subspace is smaller than the central
subspace. One approach to tackling these limitations is to incorporate higher-order
moments of Y |X [34], but in practice the gains achievable by the use of higher-
order moments are limited by robustness issues.

In this paper, we present a new methodology for SDR that is rather different
from the approaches considered in the literature discussed above. Rather than fo-
cusing on a limited set of moments within an inverse regression framework, we
focus instead on the criterion of conditional independence in terms of which the
SDR problem is defined. We develop a contrast function for evaluating subspaces
that is minimized precisely when the conditional independence assertion in (1) is
realized. As befits a criterion that measures departure from conditional indepen-
dence, our contrast function is not based solely on low-order moments.

Our approach involves the use of conditional covariance operators on repro-
ducing kernel Hilbert spaces (RKHSs). Our use of RKHSs is related to their use
in nonparametric regression and classification; in particular, the RKHSs given
by some positive definite kernels are Hilbert spaces of smooth functions that are
“small” enough to yield computationally-tractable procedures, but are rich enough
to capture nonparametric phenomena of interest [32], and this computational focus
is an important aspect of our work. On the other hand, whereas in nonparametric
regression and classification the role of RKHSs is to provide basis expansions of
regression functions and discriminant functions, in our case the RKHS plays a dif-
ferent role. Our interest is not in the functions in the RKHS per se, but rather in
conditional covariance operators defined on the RKHS. We show that these oper-
ators can be used to measure departures from conditional independence. We also
show that these operators can be estimated from data and that these estimates are
functions of Gram matrices. Thus, our approach—which we refer to as kernel di-
mension reduction (KDR)—involves computing Gram matrices from data and op-
timizing a particular functional of these Gram matrices to yield an estimate of the
central subspace.

This approach makes no strong assumptions on either the conditional distrib-
ution pY |�SX(y|�Sx) or the marginal distribution pX(x). As we show, KDR is
consistent as an estimator of the central subspace under weak conditions.

There are alternatives to the inverse regression approach in the literature that
have some similarities to KDR. In particular, minimum average variance estima-
tion (MAVE, [33]) is based on nonparametric estimation of the conditional covari-
ance of Y given X, an idea related to KDR. This method explicitly estimates the
regressor, however, assuming an additive noise model Y = f (X) + Z, where Z is
independent of X. While the purpose of MAVE is to find a central mean subspace,
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KDR tries to find a central subspace, and does not need to estimate the regressor
explicitly. Other related approaches include methods that estimate the derivative
of the regression function; these are based on the fact that the derivative of the
conditional expectation g(x) = E[y|BT x] with respect to x belongs to a dimen-
sion reduction subspace [18, 27]. The purpose of these methods is again to extract
a central mean subspace; this differs from the central subspace which is the fo-
cus of KDR. The difference is clear, for example, if we consider the situation in
which a direction b in a central subspace satisfies E[g′(bT X)] = 0; a condition
that occurs if g and the distribution of X exhibit certain symmetries. The direc-
tion cannot be found by methods based on the derivative. Also, there has also been
some recent work on nonparametric methods for estimation of central subspaces.
One such method estimates the central subspace based on an expected log likeli-
hood [35]. This requires, however, an estimate of the joint probability density, and
is limited to single-index regression. Finally, Zhu and Zeng [36] have proposed
a method for estimating the central subspace based on the Fourier transform. This
method is similar to the KDR method in its use of Hilbert space methods and in
its use of a contrast function that can characterize conditional independence under
weak assumptions. It differs from KDR, however, in that it requires an estimate of
the derivative of the marginal density of the covariate X; in practice this requires
assuming a parametric model for the covariate X. In general, we are aware of no
practical method that attacks SDR directly by using nonparametric methodology
to assess departures from conditional independence.

We presented an earlier kernel dimension reduction method in [14]. The con-
trast function presented in that paper, however, was not derived as an estimator
of a conditional covariance operator, and it was not possible to establish a consis-
tency result for that approach. The contrast function that we present here is derived
directly from the conditional covariance perspective; moreover, it is simpler than
the earlier estimator and it is possible to establish consistency for the new for-
mulation. We should note, however, that the empirical performance of the earlier
KDR method was shown by Fukumizu, Bach and Jordan [14] to yield a significant
improvement on SIR and pHd in the case of nonelliptic data, and these empirical
results motivated us to pursue the general approach further.

While KDR has advantages over other SDR methods because of its generality
and its directness in capturing the semiparametric nature of the SDR problem, it
also reposes on a more complex mathematical framework that presents new the-
oretical challenges. Thus, while consistency for SIR and related methods follows
from a straightforward appeal to the central limit theorem (under ellipticity as-
sumptions), more effort is required to study the statistical behavior of KDR theo-
retically. This effort is of some general value, however; in particular, to establish
the consistency of KDR we prove the uniform O(n−1/2) convergence of an em-
pirical process that takes values in a reproducing kernel Hilbert space. This result,
which accords with the order of uniform convergence of an ordinary real-valued
empirical process, may be of independent theoretical interest.
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It should be noted at the outset that we do not attempt to provide distribution
theory for KDR in this paper, and in particular we do not address the problem of
inferring the dimensionality of the central subspace.

The paper is organized as follows. In Section 2 we show how conditional in-
dependence can be characterized by cross-covariance operators on an RKHS and
use this characterization to derive the KDR method. Section 3 presents numerical
examples of the KDR method. We present a consistency theorem and its proof in
Section 4. Section 5 provides concluding remarks. Some of the details in the proof
of consistency are provided in the Appendix.

2. Kernel dimension reduction for regression. The method of kernel dimen-
sion reduction is based on a characterization of conditional independence using op-
erators on RKHSs. We present this characterization in Section 2.1 and show how
it yields a population criterion for SDR in Section 2.2. This population criterion is
then turned into a finite-sample estimation procedure in Section 2.3.

In this paper, a Hilbert space means a separable Hilbert space, and an operator
always means a linear operator. The operator norm of a bounded operator T is
denoted by ‖T ‖. The null space and the range of an operator T are denoted by
N (T ) and R(T ), respectively.

2.1. Characterization of conditional independence. Let (X,BX) and (Y,

BY) denote measurable spaces. When the base space is a topological space, the
Borel σ -field is always assumed. Let (HX, kX) and (HY, kY) be RKHSs of func-
tions on X and Y, respectively, with measurable positive definite kernels kX

and kY [1]. We consider a random vector (X,Y ) :� → X × Y with the law PXY .
The marginal distribution of X and Y are denoted by PX and PY , respectively. It
is always assumed that the positive definite kernels satisfy

EX[kX(X,X)] < ∞ and EY [kY(Y,Y )] < ∞.(2)

Note that any bounded kernels satisfy this assumption. Also, under this assump-
tion, HX and HY are included in L2(PX) and L2(PY ), respectively, where L2(μ)

denotes the Hilbert space of square integrable functions with respect to the mea-
sure μ, and the inclusions JX :HX → L2(PX) and JY :HY → L2(PY ) are contin-
uous, because EX[f (X)2] = EX[〈f, kX(·,X)〉2

HX
] ≤ ‖f ‖2

HX
EX[kX(X,X)] for

f ∈ HX.
The cross-covariance operator of (X,Y ) is an operator from HX to HY so that

〈g,�YXf 〉HY = EXY

[(
f (X) − EX[f (X)])(g(Y ) − EY [g(Y )])](3)

holds for all f ∈ HX and g ∈ HY [3, 14]. Obviously, �YX = �∗
XY , where T ∗

denotes the adjoint of an operator T . If Y is equal to X, the positive self-adjoint
operator �XX is called the covariance operator.
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For a random variable X :� → X, the mean element mX ∈ HX is defined by
the element that satisfies

〈f,mX〉HX = EX[f (X)](4)

for all f ∈ HX; that is, mX = J ∗
X1, where 1 is the constant function. The explicit

function form of mX is given by mX(u) = 〈mX,k(·, u)〉HX = E[k(X,u)]. Using
the mean elements, (3), which characterizes �YX , can be written as

〈g,�YXf 〉HY = EXY [〈f, kX(·,X) − mX〉HX〈kY(·, Y ) − mY ,g〉HY ].
Let QX and QY be the orthogonal projections which map HX onto R(�XX)

and HY onto R(�YY ), respectively. It is known [3], Theorem 1, that �YX has
a representation of the form

�YX = �
1/2
YY VYX�

1/2
XX,(5)

where VYX :HX → HY is a unique bounded operator such that ‖VYX‖ ≤ 1 and
VYX = QY VYXQX .

A cross-covariance operator on an RKHS can be represented explicitly as an
integral operator. For arbitrary ϕ ∈ L2(PX) and y ∈ Y, the integral

Gϕ(y) =
∫
X×Y

kY(y, ỹ)
(
ϕ(x̃) − EX[ϕ(X)])dPXY (x̃, ỹ)(6)

always exists and Gϕ is an element of L2(PY ). It is not difficult to see that

SYX :L2(PX) → L2(PY ), ϕ �→ Gϕ

is a bounded linear operator with ‖SYX‖ ≤ EY [kY(Y,Y )]. If f is a function in HX,
we have for any y ∈ Y

Gf (y) = 〈kY(·, y),�YXf 〉HY = (�YXf )(y),

which implies the following proposition:

PROPOSITION 1. The covariance operator �YX :HX → HY is the restriction
of the integral operator SYX to HX. More precisely,

JY�YX = SYXJX.

Conditional variance can be also represented by covariance operators. Define
the conditional covariance operator �YY |X by

�YY |X = �YY − �
1/2
YY VYXVXY �

1/2
YY ,

where VYX is the bounded operator in (5). For convenience we sometimes write
�YY |X as

�YY |X = �YY − �YX�−1
XX�XY ,
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which is an abuse of notation, because �−1
XX may not exist.

The following two propositions provide insights into the meaning of a con-
ditional covariance operator. The former proposition relates the operator to the
residual error of regression, and the latter proposition expresses the residual error
in terms of the conditional variance.

PROPOSITION 2. For any g ∈ HY,

〈g,�YY |Xg〉HY = inf
f ∈HX

EXY

∣∣(g(Y ) − EY [g(Y )]) − (
f (X) − EX[f (X)])∣∣2.

PROOF. Let �YX = �
1/2
YY VYX�

1/2
XX be the decomposition in (5), and define

Eg(f ) = EYX|(g(Y ) − EY [g(Y )]) − (f (X) − EX[f (X)])|2. From the equality

Eg(f ) = ‖�1/2
XXf ‖2

HX
− 2〈VXY �

1/2
YY g,�

1/2
XXf 〉HX + ‖�1/2

YY g‖2
HY

,

replacing �
1/2
XXf with an arbitrary φ ∈ HX yields

inf
f ∈HX

Eg(f ) ≥ inf
φ∈HX

{‖φ‖2
HX

− 2〈VXY �
1/2
YY g,φ〉HX + ‖�1/2

YY g‖2
HY

}

= inf
φ∈HX

‖φ − VXY �
1/2
YY g‖2

HX
+ 〈g,�YY |Xg〉HY

= 〈g,�YY |Xg〉HY .

For the opposite inequality, take an arbitrary ε > 0. From the fact that

VXY �
1/2
YY g ∈ R(�XX) = R(�

1/2
XX), there exists f∗ ∈ HX such that ‖�1/2

XXf∗ −
VXY �

1/2
YY g‖HX ≤ ε. For such f∗,

Eg(f∗) = ‖�1/2
XXf∗‖2

HX
− 2〈VXY �

1/2
YY g,�

1/2
XXf∗〉HX + ‖�1/2

YY g‖2
HY

= ‖�1/2
XXf∗ − VYX�

1/2
YY g‖2

HX
+ ‖�1/2

YY g‖HY − ‖VXY �
1/2
YY g‖2

HX

≤ 〈g,�YY |Xg〉HY + ε2.

Because ε is arbitrary, we have inff ∈HX Eg(f ) ≤ 〈g,�YY |Xg〉HY . �

Proposition 2 is an analog for operators of a well-known result on covariance
matrices and linear regression: the conditional covariance matrix CYY |X = CYY −
CYXC−1

XXCXY expresses the residual error of the least square regression problem
as bT CYY |Xb = mina E‖bT Y − aT X‖2.

To relate the residual error in Proposition 2 to the conditional variance of g(Y )

given X, we make the following mild assumption:

HX +R is dense in L2(PX), where HX +R denotes the direct sum of the
RKHS HX and the RKHS R [1].

(AS)
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As seen later in Section 2.2, there are many positive definite kernels that satisfy
the assumption (AS). Examples include the Gaussian radial basis function (RBF)
kernel k(x, y) = exp(−‖x − y‖2/σ 2) on R

m or on a compact subset of R
m.

PROPOSITION 3. Under the assumption (AS),

〈g,�YY |Xg〉HY = EX[VarY |X[g(Y )|X]](7)

for all g ∈ HY.

PROOF. From Proposition 2, we have

〈g,�YY |Xg〉HY

= inf
f ∈HX

Var[g(Y ) − f (X)]

= inf
f ∈HX

{
VarX

[
EY |X[g(Y ) − f (X)|X]] + EX

[
VarY |X[g(Y ) − f (X)|X]]}

= inf
f ∈HX

VarX
[
EY |X[g(Y )|X] − f (X)

] + EX[VarY |X[g(Y )|X]].

Let ϕ(x) = EY |X[g(Y )|X = x]. Since ϕ ∈ L2(PX) from Var[ϕ(X)] ≤ Var[g(Y )] <

∞, the assumption (AS) implies that for an arbitrary ε > 0 there exists f ∈ HX

and c ∈ R such that h = f + c satisfies ‖ϕ − h‖L2(PX) < ε. Because Var[ϕ(X) −
f (X)] ≤ ‖ϕ−h‖2

L2(PX)
≤ ε2 and ε is arbitrary, we have inff ∈HX VarX[EY |X[g(Y )|

X] − f (X)] = 0, which completes the proof. �

Proposition 3 improves a result due to Fukumizu, Bach and Jordan [14], Propo-
sition 5, where the much stronger assumption E[g(Y )|X = ·] ∈ HX was imposed.

Propositions 2 and 3 imply that the operator �YY |X can be interpreted as cap-
turing the predictive ability for Y of the explanatory variable X.

2.2. Criterion of kernel dimension reduction. Let M(m × n;R) be the set of
real-valued m × n matrices. For a natural number d ≤ m, the Stiefel manifold
S

m
d (R) is defined by

S
m
d (R) = {B ∈ M(m × d;R)|BT B = Id},

which is the set of all d orthonormal vectors in R
m. It is well known that S

m
d (R) is

a compact smooth manifold. For B ∈ S
m
d (R), the matrix BBT defines an orthog-

onal projection of R
m onto the d-dimensional subspace spanned by the column

vectors of B . Although the Grassmann manifold is often used in the study of sets
of subspaces in R

m, we find the Stiefel manifold more convenient as it allows us
to use matrix notation explicitly.

Hereafter, X is assumed to be either a closed ball Dm(r) = {x ∈ R
m|‖x‖ ≤ r}

or the entire Euclidean space R
m; both assumptions satisfy the condition that the

projection BBT X is included in X for all B ∈ S
m
d (R).
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Let B
m
d ⊆ S

m
d (R) denote the subset of matrices whose columns span a dimen-

sion-reduction subspace; for each B0 ∈ B
m
d , we have

pY |X(y|x) = pY |BT
0 X(y|BT

0 x),(8)

where pY |X(y|x) and pY |BT X(y|u) are the conditional probability densities of Y

given X, and Y given BT X, respectively. The existence and positivity of these
conditional probability densities are always assumed hereafter. As we have dis-
cussed in the Introduction, under conditions given by [6], Section 6.4, this subset
represents the central subspace (under the assumption that d is the minimum di-
mensionality of the dimension reduction subspaces).

We now turn to the key problem of characterizing the subset B
m
d using condi-

tional covariance operators on reproducing kernel Hilbert spaces. In the following,
we assume that kd(z, z̃) is a positive definite kernel on Z = Dd(r) or R

d such
that EX[kd(BT X,BT X)] < ∞ for all B ∈ S

m
d (R), and we let kB

X denote a positive
definite kernel on X given by

kB
X(x, x̃) = kd(BT x,BT x̃)(9)

for each B ∈ S
m
d (R). The RKHS associated with kB

X is denoted by HB
X. Note that

HB
X = {f :X → R|there exists g ∈ Hkd

such that f (x) = g(BT x)}, where Hkd
is

the RKHS given by kd . As seen later in Theorem 4, if X and Y are subsets of
Euclidean spaces and Gaussian RBF kernels are used for kX and kY, under some
conditions the subset B

m
d is characterized by the set of solutions of an optimization

problem

B
m
d = arg min

B∈S
m
d (R)

�B
YY |X,(10)

where �B
YX and �B

XX denote the (cross-) covariance operators with respect to the
kernel kB , and

�B
YY |X = �YY − �B

YX�B
XX

−1
�B

XY .

The minimization in (10) refers to the minimal operators in the partial order of
self-adjoint operators.

We use the trace to evaluate the partial order of self-adjoint operators. While
other possibilities exist (e.g., the determinant), the trace has the advantage of
yielding a relatively simple theoretical analysis, which is conducted in Section 4.
The operator �B

YY |X is trace class for all B ∈ S
m
d (R), since �B

YY |X ≤ �YY and
Tr[�YY ] < ∞, which is shown in Section 4.2. Henceforth the minimization in (10)
should thus be understood as that of minimizing Tr[�B

YY |X].
From Propositions 2 and 3, minimization of Tr[�B

YY |X] is equivalent to the min-
imization of the sum of the residual errors for the optimal prediction of functions



1880 K. FUKUMIZU, F. R. BACH AND M. I. JORDAN

of Y using BT X, where the sum is taken over a complete orthonormal system
{ξa}∞a=1 of HY. Thus, the objective of dimension reduction is rewritten as

min
B∈S

m
d (R)

∞∑
a=1

min
f ∈HB

X

E
∣∣(ξa(Y ) − E[ξa(Y )]) − (

f (X) − E[f (X)])∣∣2.(11)

This is intuitively reasonable as a criterion of choosing B , and we will see that this
is equivalent to finding the central subspace under some conditions.

We now introduce a class of kernels to characterize conditional independence.
Let (�,B) be a measurable space, let (H , k) be an RKHS over � with the ker-
nel k measurable and bounded, and let S be the set of all probability measures on
(�,B). The RKHS H is called characteristic (with respect to B) if the map

S � P �→ mP = EX∼P [k(·,X)] ∈ H(12)

is one-to-one, where mP is the mean element of the random variable with law P . It
is easy to see that H is characteristic if and only if the equality

∫
f dP = ∫

f dQ

for all f ∈ H means P = Q. We also call a positive definite kernel k characteristic
if the associated RKHS is characteristic.

It is known that the Gaussian RBF kernel exp(−‖x −y‖2/σ 2) and the so-called
Laplacian kernel exp(−α

∑m
i=1 |xi − yi |) (α > 0) are characteristic on R

m or on a
compact subset of R

m with respect to the Borel σ -field [2, 15, 28].
The following theorem improves Theorem 7 in [14], and is the theoretical basis

of kernel dimension reduction. In the following, let PB denote the probability on X
induced from PX by the projection BBT :X → X.

THEOREM 4. Suppose that the closure of the HB
X in L2(PX) is included in

the closure of HX in L2(PX) for any B ∈ S
m
d (R). Then,

�B
YY |X ≥ �YY |X,(13)

where the inequality refers to the order of self-adjoint operators. If further
(HX,PX) and (HB

X,PB) satisfy (AS) for every B ∈ S
m
d (R) and HY is charac-

teristic, the following equivalence holds

�YY |X = �B
YY |X ⇐⇒ Y ⊥⊥ X|BT X.(14)

PROOF. The first assertion is obvious from Proposition 2. For the second as-
sertion, let C be an m × (m − d) matrix whose columns span the orthogonal
complement to the subspace spanned by the columns of B , and let (U,V ) =
(BT X,CT X) for notational simplicity. By taking the expectation of the well-
known relation

VarY |U [g(Y )|U ] = EV |U [VarY |U,V [g(Y )|U,V ]] + VarV |U [EY |U,V [g(Y )|U,V ]]
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with respect to V , we have

EU [VarY |U [g(Y )|U ]]
= EX[VarY |X[g(Y )|X]] + EU [VarV |U [EY |U,V [g(Y )|U,V ]]],

from which Proposition 3 yields

〈g, (�B
YY |X − �YY |X)g〉HY = EU [VarV |U [EY |U,V [g(Y )|U,V ]]].

It follows that the right-hand side of the equivalence in (14) holds if and only if
EY |U,V [g(Y )|U,V ] does not depend on V almost surely. This is equivalent to

EY |X[g(Y )|X] = EY |U [g(Y )|U ]
almost surely. Since HY is characteristic, this means that the conditional probabil-
ity of Y given X is reduced to that of Y given U . �

The assumption (AS) and the notion of characteristic kernel are closely related.
In fact, from the following proposition, (AS) is satisfied if a characteristic kernel
is used. Thus, if Y is Euclidean, the choice of Gaussian RBF kernels for kd , kX

and kY is sufficient to guarantee the equivalence given by (14).

PROPOSITION 5. Let (�,B) be a measurable space, and (k,H) be a
bounded measurable positive definite kernel on � and its RKHS. Then, k is char-
acteristic if and only if H + R is dense in L2(P ) for any probability measure P

on (�,B).

PROOF. For the proof of “if” part, suppose mP = mQ for P �= Q. Denote the
total variation of P − Q by |P − Q|. Since H + R is dense in L2(|P − Q|), for
arbitrary ε > 0 and A ∈ B, there exists f ∈ H +R such that

∫ |f −IA|d|P −Q| <
ε, where IA is the index function of A. It follows that |(EP [f (X)] − P(A)) −
(EQ[f (X)] − Q(A))| < ε. Because EP [f (X)] = EQ[f (X)] from mP = mQ, we
have |P(A) − Q(A)| < ε for any ε > 0, which contradicts P �= Q.

For the opposite direction, suppose H + R is not dense in L2(P ). There is
nonzero f ∈ L2(P ) such that

∫
f dP = 0 and

∫
f ϕ dP = 0 for any ϕ ∈ H . Let

c = 1/‖f ‖L1(P ), and define two probability measures Q1 and Q2 by Q1(E) =
c

∫
E |f |dP and Q2(E) = c

∫
E(|f | − f )dP for any measurable set E. By f �= 0,

we have Q1 �= Q2, while EQ1[k(·,X)] − EQ2[k(·,X)] = c
∫

f (x)k(·, x) dP (x) =
0, which means k is not characteristic. �

2.3. Kernel dimension reduction procedure. We now use the characterization
given in Theorem 4 to develop an optimization procedure for estimating the cen-
tral subspace from an empirical sample {(X1, Y1), . . . , (Xn,Yn)}. We assume that
{(X1, Y1), . . . , (Xn,Yn)} is sampled i.i.d. from PXY and we assume that there ex-
ists B0 ∈ S

m
d (R) such that pY |X(y|x) = pY |BT

0 X(y|BT
0 x).
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We define the empirical cross-covariance operator �̂
(n)
YX by evaluating the

cross-covariance operator at the empirical distribution 1
n

∑n
i=1 δXi

δYi
. When acting

on functions f ∈ HX and g ∈ HY, the operator �̂
(n)
YX gives the empirical covari-

ance

〈
g, �̂

(n)
YXf

〉
HY

= 1

n

n∑
i=1

g(Yi)f (Xi) −
(

1

n

n∑
i=1

g(Yi)

)(
1

n

n∑
i=1

f (Xi)

)
.

Also, for B ∈ S
m
d (R), let �̂

B(n)
YY |X denote the empirical conditional covariance op-

erator:

�̂
B(n)
YY |X = �̂

(n)
YY − �̂

B(n)
YX

(
�̂

B(n)
XX + εnI

)−1
�̂

B(n)
XY .(15)

The regularization term εnI (εn > 0) is required to enable operator inversion and is
thus analogous to Tikhonov regularization [17]. We will see that the regularization
term is also needed for consistency.

We now define the KDR estimator B̂(n) as any minimizer of Tr[�̂B(n)
YY |X] on the

manifold S
m
d (R); that is, any matrix in S

m
d (R) that minimizes

Tr
[
�̂

(n)
YY − �̂

B(n)
YX

(
�̂

B(n)
XX + εnI

)−1
�̂

B(n)
XY

]
.(16)

In view of (11), this is equivalent to minimizing

∞∑
a=1

min
f ∈HB

X

[
n∑

i=1

∣∣∣∣∣
{
ξa(Yj ) − 1

n

n∑
j=1

ξa(Yj )

}

−
{
f (Xj ) − 1

n

n∑
j=1

f (Xj )

}∣∣∣∣∣
2

+ εn‖f ‖2
HB

X

]

over B ∈ S
m
d (R), where {ξa}∞a=1 is a complete orthonormal system for HY.

The KDR contrast function in (16) can also be expressed in terms of Gram
matrices (given a kernel k, the Gram matrix is the n × n matrix whose entries
are the evaluations of the kernel on all pairs of n data points). Let φB

i ∈ HB
X and

ψi ∈ HY (1 ≤ i ≤ n) be functions defined by

φB
i = kB(·,Xi) − 1

n

n∑
j=1

kB(·,Xj ), ψi = kY(·, Yi) − 1

n

n∑
j=1

kY(·, Yj ).

Because R(�̂
B(n)
XX ) = N (�̂

B(n)
XX )⊥ and R(�̂

(n)
YY ) = N (�̂

(n)
YY )⊥ are spanned by

(φB
i )ni=1 and (ψi)

n
i=1, respectively, the trace of �̂

B(n)
YY |X is equal to that of the matrix

representation of �̂
B(n)
YY |X on the linear hull of (ψi)

n
i=1. Note that although the vec-

tors (ψi)
n
i=1 are over-complete, the trace of the matrix representation with respect

to these vectors is equal to the trace of the operator.
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For B ∈ S
m
d (R), the centered Gram matrix GB

X with respect to the kernel kB is
defined by

(GB
X)ij = 〈φB

i ,φB
j 〉HB

X

= kB
X(Xi,Xj ) − 1

n

n∑
b=1

kB
X(Xi,Xb) − 1

n

n∑
a=1

kB
X(Xa,Xj )

+ 1

n2

n∑
a=1

n∑
b=1

kB
X(Xa,Xb)

and GY is defined similarly. By direct calculation, it is easy to obtain

�̂
B(n)
YY |Xψi = 1

n

n∑
j=1

ψj(GY )ji − 1

n

n∑
j=1

ψj

(
GB

X(GB
X + nεnIn)

−1GY

)
ji .

It follows that the matrix representation of �̂
B(n)
YY |X with respect to (ψi)

n
i=1 is

1
n
{GY − GB

X(GB
X + nεnIn)

−1GY } and its trace is

Tr
[
�̂

B(n)
YY |X

] = 1

n
Tr[GY − GB

X(GB
X + nεnIn)

−1GY ]
= εn Tr[GY (GB

X + nεnIn)
−1].

Omitting the constant factor, the KDR contrast function in (16) thus reduces to

Tr[GY (GB
X + nεnIn)

−1].(17)

The KDR method is defined as the optimization of this function over the manifold
S

m
d (R).

Theorem 4 is the population justification of the KDR method. Note that this
derivation imposes no strong assumptions either on the conditional probability of
Y given X, or on the marginal distributions of X and Y . In particular, it does not
require ellipticity of the marginal distribution of X, nor does it require an additive
noise model. The response variable Y may be either continuous or discrete. We
confirm this general applicability of the KDR method by the numerical results
presented in the next section.

Because the contrast function (17) is nonconvex, the minimization requires a
nonlinear optimization technique; in our experiments we use the steepest descent
method with line search. To alleviate potential problems with local optima, we
use a continuation method in which the scale parameter σ in Gaussian RBF ker-
nel exp(−‖x − y‖/σ 2) is gradually decreased during the iterative optimization
process. In numerical examples shown in the next section, we used a fixed number
of iterations, and decreased σ 2 linearly from σ 2 = 100 to σ 2 = 10 for standardized
data with standard deviation 5.0. Since the covariance operator approaches the co-
variance operator induced by a linear kernel as σ → ∞, which is solvable as an
eigenproblem.
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In addition to σ , there is another tuning parameter εn, the regularization coef-
ficient. As both of these tuning parameters have a similar smoothing effect, it is
reasonable to fix one of them and select the other; in our experiments we fixed
εn = 0.1 as an arbitrary choice and varied σ 2. While there is no theoretical guar-
antee for this choice, we observe the results are generally stable if the optimization
process is successful. There also exist heuristics for choosing kernel parameters
in similar RKHS-based dependency analysis; an example is to use the median of
pairwise distances of the data for the parameter σ in the Gaussian RBF kernel [16].
Currently, however, we are not aware of theoretically justified methods of choosing
these parameters; this is an important open problem.

The proposed estimator is shown to be consistent as the sample size goes to
infinity. We defer the proof to Section 4.

3. Numerical results.

3.1. Simulation studies. In this section we compare the performance of the
KDR method with that of several well-known dimension reduction methods.
Specifically, we compare to SIR, pHd and SAVE on synthetic data sets generated
by the regressions in Examples 6.2, 6.3 and 6.4 of [22]. The results are evaluated
by computing the Frobenius distance between the projection matrix of the esti-
mated subspace and that of the true subspace; this evaluation measure is invariant
under change of basis and is equal to

‖B0B
T
0 − B̂B̂T ‖F ,

where B0 and B̂ are matrices in the Stiefel manifold S
m
d (R) representing the

true subspace and the estimated subspace, respectively. For the KDR method,
a Gaussian RBF kernel exp(−‖z1 − z2‖2/c) was used, with c = 2.0 for regres-
sion (A) and regression (C) and c = 0.5 for regression (B). The parameter esti-
mate B̂ was updated 100 times by the steepest descent method. The regularization
parameter was fixed at ε = 0.1. For SIR and SAVE, we optimized the number of
slices for each simulation so as to obtain the best average norm.

Regression (A) is given by

Y = X1

0.5 + (X2 + 1.5)2 + (1 + X2)
2 + σE,(A)

where X ∼ N(0, I4) is a four-dimensional explanatory variable, and E ∼ N(0,1)

is independent of X. Thus, the central subspace is spanned by the vectors
(1,0,0,0) and (0,1,0,0). For the noise level σ , three different values were used:
σ = 0.1,0.4 and 0.8. We used 100 random replications with 100 samples each.
Note that the distribution of the explanatory variable X satisfies the ellipticity as-
sumption, as required by the SIR, SAVE and pHd methods.

Table 1 shows the mean and the standard deviation of the Frobenius norm over
100 samples. We see that the KDR method outperforms the other three methods
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TABLE 1
Comparison of KDR and other methods for regression (A)

KDR SIR SAVE pHd

σ NORM SD NORM SD NORM SD NORM SD

0.1 0.11 0.07 0.55 0.28 0.77 0.35 1.04 0.34
0.4 0.17 0.09 0.60 0.27 0.82 0.34 1.03 0.33
0.8 0.34 0.22 0.69 0.25 0.94 0.35 1.06 0.33

in terms of estimation accuracy. It is also worth noting that in the results presented
by Li, Zha and Chiaromonte [22] for their GCR method, the average norm was
0.28, 0.33, 0.45 for σ = 0.1,0.4,0.8, respectively; again, this is worse than the
performance of KDR.

The second regression is given by

Y = sin2(πX2 + 1) + σE,(B)

where X ∈ R
4 is distributed uniformly on the set

[0,1]4 \ {x ∈ R
4|xi ≤ 0.7 (i = 1,2,3,4)},

and E ∼ N(0,1) is independent noise. The standard deviation σ is fixed at σ =
0.1,0.2 and 0.3. Note that in this example the distribution of X does not satisfy
the ellipticity assumption.

Table 2 shows the results of the simulation experiments for this regression. We
see that KDR again outperforms the other methods.

The third regression is given by

Y = 1
2(X1 − a)2E,(C)

where X ∼ N(0, I10) is a ten-dimensional variable and E ∼ N(0,1) is indepen-
dent noise. The parameter a is fixed at a = 0,0.5 and 1. Note that in this example
the conditional probability p(y|x) does not obey an additive noise assumption.

TABLE 2
Comparison of KDR and other methods for regression (B)

KDR SIR SAVE pHd

σ NORM SD NORM SD NORM SD NORM SD

0.1 0.05 0.02 0.24 0.10 0.23 0.13 0.43 0.19
0.2 0.11 0.06 0.32 0.15 0.29 0.16 0.51 0.23
0.3 0.13 0.07 0.41 0.19 0.41 0.21 0.63 0.29
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TABLE 3
Comparison of KDR and other methods for regression (C)

KDR SIR SAVE pHd

a NORM SD NORM SD NORM SD NORM SD

0.0 0.17 0.05 1.83 0.22 0.30 0.07 1.48 0.27
0.5 0.17 0.04 0.58 0.19 0.35 0.08 1.52 0.28
1.0 0.18 0.05 0.30 0.08 0.57 0.20 1.58 0.28

The mean of Y is zero and the variance is a quadratic function of X1. We gener-
ated 100 samples of 500 data.

The results for KDR and the other methods are shown by Table 3, in which we
again confirm that the KDR method yields significantly better performance than
the other methods. In this case, pHd fails to find the true subspace; this is due to
the fact that pHd is incapable of estimating a direction that only appears in the
variance [8]. We note also that the results in [22] show that the contour regression
methods SCR and GCR yield average norms larger than 1.3.

Although the estimation of variance structure is generally more difficult than
that of estimating mean structure, the KDR method nonetheless is effective at find-
ing the central subspace in this case.

3.2. Applications. We apply the KDR method to two data sets; one is a binary
classification problem and the other is a regression with a continuous response
variable. These data sets have been used previously in studies of dimension reduc-
tion methods.

The first data set that we studied is Swiss bank notes which has been previously
studied in the dimension reduction context by Cook and Lee [7], with the data
taken from [11]. The problem is that of classifying counterfeit and genuine Swiss
bank notes. The data is a sample of 100 counterfeit and 100 genuine notes. There
are six continuous explanatory variables that represent aspects of the size of a note:
length, height on the left, height on the right, distance of inner frame to the lower
border, distance of inner frame to the upper border and length of the diagonal. We
standardize each of explanatory variables so that their standard deviation is 5.0.

As we have discussed in the Introduction, many dimension reduction methods
(including SIR) are not generally suitable for binary classification problems. Be-
cause among inverse regression methods the estimated subspace given by SAVE
is necessarily larger than that given by pHd and SIR [7], we compared the KDR
method only with SAVE for this data set.

Figure 1 shows two-dimensional plots of the data projected onto the subspaces
estimated by the KDR method and by SAVE. The figure shows that the results for
KDR appear to be robust with respect to the values of the scale parameter a in the
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FIG. 1. Two-dimensional plots of Swiss bank notes. The crosses and circles show genuine and
counterfeit notes, respectively. For the KDR methods, the Gaussian RBF kernel exp(−‖z1 − z2‖2/a)

is used with a = 10,100 and 10,000. For comparison, the plots given by KDR with a linear kernel
and SAVE are shown.
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Gaussian RBF kernel. (Note that if a goes to infinity, the result approaches that
obtained by a linear kernel, since the linear term in the Taylor expansion of the
exponential function is dominant.) In the KDR case, using a Gaussian RBF with
scale parameter a = 10 and 100 we obtain clear separation of genuine and coun-
terfeit notes. Slightly less separation is obtained for the Gaussian RBF kernel with
a = 10,000, for the linear kernel and for SAVE; in these cases there is an isolated
genuine data point that lies close to the class boundary, which is similar to the re-
sults using linear discriminant analysis and specification analysis [11]. We see that
KDR finds a more effective subspace to separate the two classes than SAVE and
the existing analysis. Finally, note that there are two clusters of counterfeit notes
in the result of SAVE, while KDR does not show multiple clusters in either class.
Although clusters have also been reported in other analyses [11], Section 12, the
KDR results suggest that the cluster structure may not be relevant to the classifica-
tion.

We also analyzed the Evaporation data set, available in the Arc package (http:
//www.stat.umn.edu/arc/software.html). The data set is concerned with the effect
on soil evaporation of various air and soil conditions. The number of explana-
tory variables is 10: maximum daily soil temperature (Maxst), minimum daily soil
temperature (Minst), area under the daily soil temperature curve (Avst), maximum
daily air temperature (Maxat), minimum daily air temperature (Minat), average
daily air temperature (Avat), maximum daily humidity (Maxh), minimum daily
humidity (Minh), area under the daily humidity curve (Avh) and total wind speed
in miles/hour (Wind). The response variable is daily soil evaporation (Evap). The
data were collected daily during 46 days; thus, the number of data points is 46.
This data set was studied in the context of contour regression methods for dimen-
sion reduction in [22]. We standardize each variable so that the sample variance is
equal to 5.0, and use the Gaussian RBF kernel exp(−‖z1 − z2‖2/10).

Our analysis yielded an estimated two-dimensional subspace which is spanned
by the vectors:

KDR1: −0.25 MAXST + 0.32 MINST + 0.00 AVST + (−0.28)MAXAT

+ (−0.23)MINAT + (−0.44)AVAT + 0.39 MAXH + 0.25 MINH

+ (−0.07)AVH + (−0.54)WIND.

KDR2: 0.09 MAXST + (−0.02)MINST + 0.00 AVST + 0.10 MAXAT

+ (−0.45)MINAT + 0.23 AVAT + 0.21 MAXH + (−0.41)MINH

+ (−0.71)AVH + (−0.05)WIND.

In the first direction, Wind and Avat have a large factor with the same sign, while
both have weak contributions on the second direction. In the second direction, Avh
is dominant.

Figure 2 presents the scatter plots representing the response Y plotted with re-
spect to each of the first two directions given by the KDR method. Both of these

http://www.stat.umn.edu/arc/software.html
http://www.stat.umn.edu/arc/software.html


KERNEL DIMENSION REDUCTION 1889

FIG. 2. Two-dimensional representation of Evaporation data for each of the first two directions.

directions show a clear relation with Y . Figure 3 presents the scatter plot of Y ver-
sus the two-dimensional subspace found by KDR. The obtained two-dimensional
subspace is different from the one given by the existing analysis in [22]; the con-
tour regression method gives a subspace in which the first direction shows a clear
monotonic trend, but the second direction suggests a U -shaped pattern. In the re-
sult of KDR, we do not see a clear folded pattern. Although without further analy-
sis it is difficult to say which result expresses more clearly the statistical depen-
dence, the plots suggest that the KDR method successfully captured the effective
directions for regression.

FIG. 3. Three-dimensional representation of Evaporation data.
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4. Consistency of kernel dimension reduction. In this section we prove that
the KDR estimator is consistent. Our proof of consistency requires tools from em-
pirical process theory, suitably elaborated to handle the RKHS setting. We es-
tablish convergence of the empirical contrast function to the population contrast
function under a condition on the regularization coefficient εn, and from this result
infer the consistency of B̂(n).

4.1. Main result. We assume hereafter that Y is a topological space. The
Stiefel manifold S

m
d (R) is assumed to be equipped with a distance D which is

compatible with the topology of S
m
d (R). It is known that geodesics define such a

distance (see, e.g., [19], Chapter IV).
The following technical assumptions are needed to guarantee the consistency of

kernel dimension reduction:
(A-1) For any bounded continuous function g on Y, the function

B �→ EX[EY |BT X[g(Y )|BT X]2]
is continuous on S

m
d (R).

(A-2) For B ∈ S
m
d (R), let PB be the probability distribution of the random

variable BBT X on X. The Hilbert space HB
X + R is dense in L2(PB) for any

B ∈ S
m
d (R).

(A-3) There exists a measurable function φ :X → R such that E|φ(X)|2 < ∞
and the Lipschitz condition

‖kd(BT x, ·) − kd(B̃T x, ·)‖Hd
≤ φ(x)D(B, B̃)

holds for all B, B̃ ∈ S
m
d (R) and x ∈ X.

THEOREM 6. Suppose kd in (9) is continuous and bounded, and suppose the
regularization parameter εn in (15) satisfies

εn → 0, n1/2εn → ∞ (n → ∞).(18)

Define the set of the optimum parameters B
m
d by

B
m
d = arg min

B∈S
m
d (R)

Tr[�B
YY |X].

Under the assumptions (A-1), (A-2) and (A-3), the set B
m
d is nonempty, and for an

arbitrary open set U in S
m
d (R) with B

m
d ⊂ U we have

lim
n→∞ Pr

(
B̂(n) ∈ U

) = 1.

Note that Theorem 6 holds independently of any requirement that the popu-
lation contrast function characterizes conditional independence. If the additional
conditions of Theorem 4 are satisfied, then the estimator converges in probability
to the set of sufficient dimension-reduction subspaces.
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The assumptions (A-1) and (A-2) are used to establish the continuity of
Tr[�B

YY |X] in Lemma 13, and (A-3) is needed to derive the order of uniform con-

vergence of �̂
B(n)
YY |X in Lemma 9.

The assumption (A-1) is satisfied in various cases. Let f (x) = EY |X[g(Y )|X =
x], and assume f (x) is continuous. This assumption holds, for example, if the
conditional probability density pY |X(y|x) is bounded and continuous with respect
to x. Let C be an element of S

m
m−d(R) such that the subspaces spanned by the

column vectors of B and C are orthogonal; that is, the m × m matrix (B,C) is
an orthogonal matrix. Define random variables U and V by U = BT X and V =
CT X. If X has the probability density function pX(x), the probability density
function of (U,V ) is given by pU,V (u, v) = pX(Bu+Cv). Consider the situation
in which u is given by u = BT x̃ for B ∈ S

m
d (R) and x̃ ∈ X, and let VB,x̃ = {v ∈

R
m−d |BBT x̃ + Cv ∈ X}. We have

E[g(Y )|BT X = BT x̃] =
∫
VB,x̃

f (BBT x̃ + Cv)pX(BBT x̃ + Cv)dv∫
VB,x̃

pX(BBT x̃ + Cv)dv
.

If there exists an integrable function r(v) such that χVB,x̃
(v)pX(BBT x̃ + Cv) ≤

r(v) for all B ∈ S
m
d (R) and x̃ ∈ X, the dominated convergence theorem ensures

(A-1). Thus, it is easy to see that a sufficient condition for (A-1) is that X is
bounded, pX(x) is bounded, and pY |X(y|x) is bounded and continuous on x,
which is satisfied by a wide class of distributions.

The assumption (A-2) holds if X is compact and kd + 1 is a universal kernel
on Z. The assumption (A-3) is satisfied by many useful kernels; for example, ker-
nels with the property∣∣∣∣ ∂2

∂za∂zb

kd(z1, z2)

∣∣∣∣ ≤ L‖z1 − z2‖ (a, b = 1,2)

for some L > 0. In particular Gaussian RBF kernels satisfy this property.

4.2. Proof of the consistency theorem. If the following proposition is shown,
Theorem 6 follows straightforwardly by standard arguments establishing the con-
sistency of M-estimators (see, e.g., [31], Section 5.2).

PROPOSITION 7. Under the same assumptions as Theorem 6, the functions
Tr[�̂B(n)

YY |X] and Tr[�B
YY |X] are continuous on S

m
d (R), and

sup
B∈S

m
d (R)

∣∣Tr
[
�̂

B(n)
YY |X

] − Tr[�B
YY |X]∣∣ → 0 (n → ∞)

in probability.
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The proof of Proposition 7 is divided into several lemmas. We decompose
supB |Tr[�B

YY |X] − Tr[�̂B(n)
YY |X]| into two parts: supB |Tr[�B

YY |X] − Tr[�YY −
�B

YX(�B
XX + εnI )−1�B

XY ]| and supB |Tr[�YY − �B
YX(�B

XX + εnI )−1�B
XY ] −

Tr[�̂B(n)
YY |X]|. Lemmas 8, 9 and 10 establish the convergence of the second part.

The convergence of the first part is shown by Lemmas 11–14; in particular, Lem-
mas 12 and 13 establish the key result that the trace of the population conditional
covariance operator is a continuous function of B .

The following lemmas make use of the trace norm and the Hilbert–Schmidt
norm of operators. For a discussion of these norms, see [26], Section VI and [20],
Section 30. Recall that the trace of a positive operator A on a Hilbert space H is
defined by

Tr[A] =
∞∑
i=1

〈ϕi,Aϕi〉H ,

where {ϕi}∞i=1 is a complete orthonormal system (CONS) of H . A bounded opera-
tor T on a Hilbert space H is called trace class if Tr[(T ∗T )1/2] is finite. The set of
all trace class operators on a Hilbert space is a Banach space with the trace norm
‖T ‖tr = Tr[(T ∗T )1/2]. For a trace class operator T on H , the series

∑∞
i=1〈ϕi, T ϕi〉

converges absolutely for any CONS {ϕi}∞i=1, and the limit does not depend on the
choice of CONS. The limit is called the trace of T , and denoted by Tr[T ]. It is
known that |Tr[T ]| ≤ ‖T ‖tr.

A bounded operator T :H1 → H2, where H1 and H2 are Hilbert spaces, is
called Hilbert–Schmidt if Tr[T ∗T ] < ∞, or equivalently,

∑∞
i=1 ‖T ϕi‖2

H2
< ∞ for

a CONS {ϕi}∞i=1 of H1. The set of all Hilbert–Schmidt operators from H1 to H2
is a Hilbert space with Hilbert–Schmidt inner product

〈T1, T2〉HS =
∞∑
i=1

〈T1ϕi, T2ϕi〉H2,

where {ϕi}∞i=1 is a CONS of H1. Thus, the Hilbert–Schmidt norm ‖T ‖HS satisfies
‖T ‖2

HS = ∑∞
i=1 ‖T ϕi‖2

H2
.

Obviously, ‖T ‖ ≤ ‖T ‖HS ≤ ‖T ‖tr holds, if T is trace class or Hilbert–Schmidt.
Recall also that if A is trace class (Hilbert–Schmidt) and B is bounded, AB

and BA are trace class (Hilbert–Schmidt, resp.), for which ‖BA‖tr ≤ ‖B‖‖A‖tr
and ‖AB‖tr ≤ ‖B‖‖A‖tr (‖AB‖HS ≤ ‖A‖‖B‖HS and ‖BA‖HS ≤ ‖A‖‖B‖HS). If
A :H1 → H2 and B :H2 → H1 are Hilbert–Schmidt, the product AB is trace-
class with ‖AB‖tr ≤ ‖A‖HS‖B‖HS.

It is known that cross-covariance operators and covariance operators are
Hilbert–Schmidt and trace class, respectively, under the assumption (2) [13, 16].
The Hilbert–Schmidt norm of �YX is given by

‖�YX‖2
HS = ∥∥EYX

[(
kX(·,X) − mX

)(
kY(·, Y ) − mY

)]∥∥2
HX⊗HY

,(19)
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where HX ⊗ HY is the direct product of HX and HY, and the trace norm of �XX

is

Tr[�XX] = EX[‖kX(·,X) − mX‖2
HX

].(20)

LEMMA 8. ∣∣Tr
[
�̂

(n)
YY |X

] − Tr[�YY − �YX(�XX + εnI )−1�XY ]∣∣
≤ 1

εn

{(∥∥�̂(n)
YX

∥∥
HS + ‖�YX‖HS

)∥∥�̂(n)
YX − �YX

∥∥
HS

+ ‖�YY ‖tr
∥∥�̂(n)

XX − �XX

∥∥}
+ ∣∣Tr

[
�̂

(n)
YY − �YY

]∣∣.
PROOF. Noting that the self-adjoint operator �YX(�XX +εnI )−1�XY is trace

class from �YX(�XX + εnI )−1�XY ≤ �YY , the left-hand side of the assertion is
bounded from above by∣∣Tr

[
�̂

(n)
YY − �YY

]∣∣ + ∣∣Tr
[
�̂

(n)
YX

(
�̂

(n)
XX + εnI

)−1
�̂

(n)
XY − �YX(�XX + εnI )−1�XY

]∣∣.
The second term is upper-bounded by∣∣Tr

[(
�̂

(n)
YX − �YX

)(
�̂

(n)
XX + εnI

)−1
�̂

(n)
XY

]∣∣
+ ∣∣Tr

[
�YX

(
�̂

(n)
XX + εnI

)−1(
�̂

(n)
XY − �XY

)]∣∣
+ ∣∣Tr

[
�YX

{(
�̂

(n)
XX + εnI

)−1 − (�XX + εnI )−1}
�XY

]∣∣
≤ ∥∥(

�̂
(n)
YX − �YX

)(
�̂

(n)
XX + εnI

)−1
�̂

(n)
XY

∥∥
tr

+ ∥∥�YX

(
�̂

(n)
XX + εnI

)−1(
�̂

(n)
XY − �XY

)∥∥
tr

+ ∣∣Tr
[
�YX(�XX + εnI )−1/2

× {
(�XX + εnI )1/2(

�̂
(n)
XX + εnI

)−1
(�XX + εnI )1/2 − I

}
× (�XX + εnI )−1/2�XY

]∣∣
≤ 1

εn

∥∥�̂(n)
YX − �YX

∥∥
HS

∥∥�̂(n)
XY

∥∥
HS + 1

εn

‖�YX‖HS
∥∥�̂(n)

XY − �XY

∥∥
HS

+ ∥∥(�XX + εnI )1/2(
�̂

(n)
XX + εnI

)−1
(�XX + εnI )1/2 − I

∥∥
× ‖(�XX + εnI )−1/2�XY �YX(�XX + εnI )−1/2‖tr.

In the last line, we use |Tr[ABA∗]| ≤ ‖B‖‖A∗A‖tr for a Hilbert–Schmidt opera-
tor A and a bounded operator B . This is confirmed easily by the singular decom-
position of A.



1894 K. FUKUMIZU, F. R. BACH AND M. I. JORDAN

Since the spectrum of A∗A and AA∗ are identical, we have∥∥(�XX + εnI )1/2(
�̂

(n)
XX + εnI

)−1
(�XX + εnI )1/2 − I

∥∥
= ∥∥(

�̂
(n)
XX + εnI

)−1/2
(�XX + εnI )

(
�̂

(n)
XX + εnI

)−1/2 − I
∥∥

≤ ∥∥(
�̂

(n)
XX + εnI

)−1/2(
�XX − �̂

(n)
XX

)(
�̂

(n)
XX + εnI

)−1/2∥∥
≤ 1

εn

∥∥�̂(n)
XX − �XX

∥∥.
The bound ‖(�XX + εnI )−1/2�

1/2
XXVXY ‖ ≤ 1 yields

‖(�XX + εnI )−1/2�XY �YX(�XX + εnI )−1/2‖tr ≤ ‖�YY ‖tr,

which concludes the proof. �

LEMMA 9. Under the assumption (A-3),

sup
B∈S

m
d (R)

∥∥�̂B(n)
XX − �B

XX

∥∥
HS, sup

B∈S
m
d (R)

∥∥�̂B(n)
XY − �B

XY

∥∥
HS

and

sup
B∈S

m
d (R)

∣∣Tr
[
�̂

B(n)
YY − �B

YY

]∣∣
are of order Op(1/

√
n) as n → ∞.

The proof of Lemma 9 is deferred to the Appendix. From Lemmas 8 and 9, the
following lemma is obvious.

LEMMA 10. If the regularization parameter (εn)
∞
n=1 satisfies (18), under the

assumption (A-3) we have

sup
B∈S

m
d (R)

∣∣Tr
[
�̂

B(n)
YY |X

] − Tr[�YY − �B
YX(�B

XX + εnI )−1�B
XY ]∣∣ = Op(ε−1

n n−1/2)

as n → ∞.

In the next four lemmas, we establish the uniform convergence of Lε to L0
(ε ↓ 0), where Lε(B) is a function on S

m
d (R) defined by

Lε(B) = Tr[�B
YX(�B

XX + εI)−1�B
XY ]

for ε > 0 and L0(B) = Tr[�1/2
YY V B

YXV B
XY �

1/2
YY ]. We begin by establishing pointwise

convergence.

LEMMA 11. For arbitrary kernels with (2),

Tr[�YX(�XX + εI)−1�XY ] → Tr[�1/2
YY VYXVXY �

1/2
YY ] (ε ↓ 0).
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PROOF. With a CONS {ψi}∞i=1 for HY, the difference of the right-hand side
and the left-hand side can be written as

∞∑
i=1

〈ψi,�
1/2
YY VYX{I − �

1/2
XX(�XX + εI)−1�

1/2
XX}VXY �

1/2
YY ψi〉HY .

Since each summand is positive and upper bounded by 〈ψi,�
1/2
YY VYXVXY �

1/2
YY ×

ψi〉HY , and the sum over i is finite, by the dominated convergence theorem it
suffices to show

lim
ε↓0

〈ψ,�
1/2
YY VYX{I − �

1/2
XX(�XX + εI)−1�

1/2
XX}VXY �

1/2
YY ψ〉HY = 0

for each ψ ∈ HY.
Fix arbitrary ψ ∈ HY and δ > 0. From the fact R(VXY ) ⊂ R(�XX), there exists

h ∈ HX such that ‖VXY �
1/2
YY ψ −�XXh‖HX < δ. Using the fact I −�

1/2
XX(�XX +

εnI )−1�
1/2
XX = εn(�XX + εnI )−1, we have

‖{I − �
1/2
XX(�XX + εI)−1�

1/2
XX}VXY �

1/2
YY ψ‖HX

= ‖ε(�XX + εI)−1�XXh‖HX

+ ‖ε(�XX + εI)−1(VXY �
1/2
YY ψ − �XXh)‖HX

≤ ε‖h‖HX + δ,

which is arbitrarily small if ε is sufficiently small. This completes the proof. �

LEMMA 12. Suppose kd is continuous and bounded. Then, for any ε > 0, the
function Lε(B) is continuous on S

m
d (R).

PROOF. By an argument similar to that in the proof of Lemma 11, it suffices to
show the continuity of B �→ 〈ψ,�B

YX(�B
XX + εI)−1�B

XY ψ〉HY for each ψ ∈ HY.
Let JB

X :HB
X → L2(PX) and JY :HY → L2(PY ) be inclusions. As seen in

Proposition 1, the operators �B
YX and �B

XX can be extended to the integral op-
erators SB

YX and SB
XX on L2(PX), respectively, so that JY �B

YX = SB
YXJB

X and
JB

X �B
XX = SB

XXJB
X . It is not difficult to see also JB

X (�B
XX + εI)−1 = (SB

XX +
εI)−1JB

X for ε > 0. These relations yield

〈ψ,�B
YX(�B

XX + εI)−1�B
XY ψ〉HY

= EXY

[
ψ(Y )

(
(SB

XX + εI)−1SB
XY ψ

)
(X)

]
− EY [ψ(Y )]EX

[(
(SB

XX + εI)−1SB
XY ψ

)
(X)

]
,

where JY ψ is identified with ψ . The assertion is obtained if we prove that the
operators SB

XY and (SB
XX + εI)−1 are continuous with respect to B in operator
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norm. To see this, let X̃ be identically and independently distributed with X. We
have

‖(SB
XY − S

B0
XY )ψ‖2

L2(PX)

= E
X̃

[
CovYX[kB

X(X, X̃) − k
B0
X (X, X̃),ψ(Y )]2]

≤ E
X̃

[
VarX[kd(BT X,BT X̃) − kd(BT

0 X,BT
0 X̃)]VarY [ψ(Y )]]

≤ E
X̃
EX

[(
kd(BT X,BT X̃) − kd(BT

0 X,BT
0 X̃)

)2]‖ψ‖2
L2(PY )

,

from which the continuity of B �→ SB
XY is obtained by the continuity and bounded-

ness of kd . The continuity of (SB
XX + εI)−1 is shown by ‖(SB

XX + εI)−1 − (S
B0
XX +

εI)−1‖ = ‖(SB
XX + εI)−1(S

B0
XX − SB

XX)(S
B0
XX + εI)−1‖ ≤ 1

ε2 ‖SB0
XX − SB

XX‖. �

To establish the continuity of L0(B) = Tr[�B
YX�B

XX

−1
�B

XY ], the argument in

the proof of Lemma 12 cannot be applied, because �B
XX

−1
is not bounded in gen-

eral. The assumptions (A-1) and (A-2) are used for the proof.

LEMMA 13. Suppose kd is continuous and bounded. Under the assumptions
(A-1) and (A-2), the function L0(B) is continuous on S

m
d (R).

PROOF. By the same argument as in the proof of Lemma 11, it suffices to
establish the continuity of B �→ 〈ψ,�B

YY |Xψ〉 for ψ ∈ HY. From Proposition 2,
the proof is completed if the continuity of the map

B �→ inf
f ∈HB

X

VarXY [g(Y ) − f (X)]

is proved for any continuous and bounded function g.
Since f (x) depends only on BT x for any f ∈ HB

X, under the assumption (A-2),
we use the same argument as in the proof of Proposition 3 to obtain

inf
f ∈HB

X

VarXY [g(Y ) − f (X)]

= inf
f ∈HB

X

VarX
[
EY |BBT X[g(Y )|BBT X] − f (X)

]
+ EX[VarY |BBT X[g(Y )|BBT X]]

= EY [g(Y )2] − EX[EY |BT X[g(Y )|BT X]2],
which is a continuous function of B ∈ S

m
d (R) from assumption (A-1). �

LEMMA 14. Suppose that kd is continuous and bounded, and that εn con-
verges to zero as n goes to infinity. Under the assumptions (A-1) and (A-2), we



KERNEL DIMENSION REDUCTION 1897

have

sup
B∈S

m
d (R)

Tr[�B
YY |X − {�YY − �B

YX(�B
XX + εnI )−1�B

XY }] → 0 (n → ∞).

PROOF. From Lemmas 11, 12 and 13, the continuous function Tr[�YY −
�YX(�B

XX + εnI )−1�B
XY ] converges to the continuous function Tr[�B

YY |X] for
every B ∈ S

m
d (R). Because this convergence is monotone and S

m
d (R) is compact,

it is necessarily uniform. �

The proof of Proposition 7 is now easily obtained.

PROOF OF PROPOSITION 7. Lemmas 12 and 13 show the continuity of
Tr[�̂B(n)

YY |X] and Tr[�B
YY |X]. Lemmas 10 and 14 prove the uniform convergence.

�

5. Conclusions. This paper has presented KDR, a new method for sufficient
dimension reduction in regression. The method is based on a characterization
of conditional independence using covariance operators on reproducing Hilbert
spaces. This characterization is not restricted to first or second-order conditional
moments, but exploits high-order moments in the estimation of the central sub-
space. The KDR method is widely applicable; in distinction to most of the existing
literature on SDR it does not impose strong assumptions on the probability dis-
tribution of the covariate vector X. It is also applicable to problems in which the
response Y is discrete.

We have developed some asymptotic theory for the estimator, resulting in
a proof of consistency of the estimator under weak conditions. The proof of con-
sistency reposes on a result establishing the uniform convergence of the empirical
process in a Hilbert space. In particular, we have established the rate Op(n−1/2)

for uniform convergence, paralleling the results for ordinary real-valued empirical
processes.

We have not yet developed distribution theory for the KDR method, and have
left open the important problem of inferring the dimensionality of the central sub-
space. Our proof techniques do not straightforwardly extend to yield the asymp-
totic distribution of the KDR estimator, and new techniques may be required.

It should be noted, however, that inference of the dimensionality of the central
subspace is not necessary for many of the applications of SDR. In particular, SDR
is often used in the context of graphical exploration of data, where a data analyst
may wish to explore views of varying dimensionality. Also, in high-dimensional
prediction problems of the kind studied in statistical machine learning, dimension
reduction may be carried out in the context of predictive modeling, in which case
cross-validation and related techniques may be used to choose the dimensionality.

Finally, while we have focused our discussion on the central subspace as the
object of inference, it is also worth noting that KDR applies even to situations in
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which a central subspace does not exist. As we have shown, the KDR estimate
converges to the subset of projection matrices that satisfy (1); this result holds
regardless of the existence of a central subspace. That is, if the intersection of
dimension-reduction subspaces is not a dimension-reduction subspace, but if the
dimensionality chosen for KDR is chosen to be large enough such that subspaces
satisfying (1) exist, then KDR will converge to one of those subspaces.

APPENDIX: UNIFORM CONVERGENCE OF
CROSS-COVARIANCE OPERATORS

In this Appendix we present a proof of Lemma 9. The proof involves the use of
random elements in a Hilbert space [3, 30]. Let H be a Hilbert space equipped with
a Borel σ -field. A random element in the Hilbert space H is a measurable map
F :� → H from a measurable space (�,S). If H is an RKHS on a measurable
set X with a measurable positive definite kernel k, a random variable X in X
defines a random element in H by k(·,X).

A random element F in a Hilbert space H is said to have strong order p (0 <

p < ∞) if E‖F‖p is finite. For a random element F of strong order one, the
expectation of F , which is defined as the element mF ∈ H such that 〈mF ,g〉H =
E[〈F,g〉H ] for all g ∈ H , is denoted by E[F ]. With this notation, the interchange
of the expectation and the inner product is justified: 〈E[F ], g〉H = E[〈F,g〉H ].
Note also that for independent random elements F and G of strong order two, the
relation

E[〈F,G〉H ] = 〈E[F ],E[G]〉H
holds.

Let (X,Y ) be a random vector on X×Y with law PXY , and let HX and HY be
the RKHS with positive definite kernels kX and kY, respectively, which satisfy (2).
The random element kX(·,X) has strong order two, and E[k(·,X)] equals mX ,
where mX is given by (4). The random element kX(·,X)kY(·, Y ) in the direct
product HX ⊗ HY has strong order one. Define the zero mean random elements
F = kX(·,X) − E[kX(·,X)] and G = kY(·, Y ) − E[kY(·, Y )].

For an i.i.d. sample (X1, Y1), . . . , (Xn,Yn) on X × Y with law PXY , define
random elements Fi = kX(·,Xi)−E[kX(·,X)] and Gi = kY(·, Yi)−E[kY(·, Y )].
Then, F,F1, . . . ,Fn and G,G1, . . . ,Gn are zero mean i.i.d. random elements in
HX and HY, respectively. In the following, the notation F = HX ⊗ HY is used
for simplicity.

As shown in the proof of Lemma 4 in [13], we have

∥∥�̂(n)
YX − �YX

∥∥
HS =

∥∥∥∥∥1

n

n∑
i=1

(
Fi − 1

n

n∑
j=1

Fj

)(
Gi − 1

n

n∑
j=1

Gj

)
− E[FG]

∥∥∥∥∥
F

,



KERNEL DIMENSION REDUCTION 1899

which provides a bound

sup
B∈S

m
d (R)

∥∥�̂B(n)
YX − �B

YX

∥∥
HS ≤ sup

B∈S
m
d (R)

∥∥∥∥∥1

n

n∑
i=1

(FB
i Gi − E[FG])

∥∥∥∥∥
F B

(21)

+ sup
B∈S

m
d (R)

∥∥∥∥∥1

n

n∑
j=1

FB
j

∥∥∥∥∥
HB

X

∥∥∥∥∥1

n

n∑
j=1

Gj

∥∥∥∥∥
HY

,

where FB
i are defined with the kernel kB , and F B = HB

X ⊗HY. Also, (20) implies

Tr
[
�̂

(n)
XX − �XX

] = 1

n

n∑
i=1

∥∥∥∥∥Fi − 1

n

n∑
j=1

Fj

∥∥∥∥∥
2

HX

− E‖F‖2
HX

= 1

n

n∑
i=1

‖Fi‖2
HX

− E‖F‖2
HX

−
∥∥∥∥∥1

n

n∑
i=1

Fi

∥∥∥∥∥
2

HX

,

from which we have

sup
B∈S

m
d (R)

∣∣Tr
[
�̂

B(n)
XX − �B

XX

]∣∣ ≤ sup
B∈S

m
d (R)

∣∣∣∣∣1

n

n∑
i=1

‖FB
i ‖2

HB
X

− E‖FB‖2
HB

X

∣∣∣∣∣
(22)

+ sup
B∈S

m
d (R)

∥∥∥∥∥1

n

n∑
i=1

FB
i

∥∥∥∥∥
2

HB
X

.

It follows that Lemma 9 is proved if all the four terms on the right-hand side of
(21) and (22) are of order Op(1/

√
n).

Hereafter, the kernel kd is assumed to be bounded. We begin by considering the
first term on the right-hand side of (22). This is the supremum of a process which
consists of real-valued random variables ‖FB

i ‖2
HB

X
. Let UB be a random element

in Hd defined by

UB = kd(·,BT X) − E[kd(·,BT X)]
and let C > 0 be a constant such that |kd(z, z)| ≤ C2 for all z ∈ Z. From
‖UB‖Hd

≤ 2C, we have for B, B̃ ∈ S
m
d (R)∣∣‖FB‖2

HB
X

− ‖F B̃‖2
H B̃

X

∣∣ = |〈UB − UB̃,UB + UB̃〉Hd
|

≤ ‖UB − UB̃‖Hd
‖UB + UB̃‖Hd

≤ 4C‖UB − UB̃‖Hd
.

The above inequality, combined with the bound

‖UB − UB̃‖Hd
≤ 2φ(x)D(B, B̃)(23)
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obtained from assumption (A-3), provides a Lipschitz condition |‖FB‖2
HB

X
−

‖F B̃‖2
H B̃

X

| ≤ 8Cφ(x)D(B, B̃), which works as a sufficient condition for the uni-

form central limit theorem [31], Example 19.7. This yields

sup
B∈S

m
d (R)

∣∣∣∣∣1

n

n∑
i=1

‖FB
i ‖2

HB
X

− E‖FB‖2
HB

X

∣∣∣∣∣ = Op

(
1/

√
n
)
.

Our approach to the other three terms is based on a treatment of empir-
ical processes in a Hilbert space. For B ∈ S

m
d (R), let UB

i = kd(·,BT Xi) −
E[kd(·,BT X)] be a random element in Hd . Then the relation 〈kB(·, x), kB(·,
x̃)〉HB

X
= kd(BT x,BT x̃) = 〈kd(·,BT x), kd(·,BT x̃)〉Hd

implies∥∥∥∥∥1

n

n∑
j=1

FB
j

∥∥∥∥∥
HB

X

=
∥∥∥∥∥1

n

n∑
j=1

UB
j

∥∥∥∥∥
Hd

,(24)

∥∥∥∥∥1

n

n∑
j=1

FB
j G − E[FG]

∥∥∥∥∥
HB

X⊗HY

=
∥∥∥∥∥1

n

n∑
j=1

UB
j G − E[UBG]

∥∥∥∥∥
Hd⊗HY

.(25)

Note also that the assumption (A-3) gives

‖UBG − UB̃G‖Hd⊗HY ≤ 2
√

kY(y, y)φ(x)D(B, B̃).(26)

From (23)–(26), the proof of Lemma 9 is completed from the following proposi-
tion:

PROPOSITION 15. Let (X,BX) be a measurable space, let � be a com-
pact metric space with distance D, and let H be a Hilbert space. Suppose that
X,X1, . . . ,Xn are i.i.d. random variables on X, and suppose F :X × � → H
is a Borel measurable map. If supθ∈� ‖F(x; θ)‖H < ∞ for all x ∈ X and there
exists a measurable function φ :X → R such that E[φ(X)2] < ∞ and

‖F(x; θ1) − F(x; θ2)‖H ≤ φ(x)D(θ1, θ2) (∀θ1, θ2 ∈ �),(27)

then we have

sup
θ∈�

∥∥∥∥∥ 1√
n

n∑
i=1

(
F(Xi; θ) − E[F(X; θ)])∥∥∥∥∥

H

= Op(1) (n → ∞).

The proof of Proposition 15 is similar to that for a real-valued random process,
and is divided into several lemmas.

I.i.d. random variables σ1, . . . , σn taking values in {+1,−1} with equal proba-
bility are called Rademacher variables. The following concentration inequality is
known for a Rademacher average in a Banach space:
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PROPOSITION 16. Let a1, . . . , an be elements in a Banach space, and let
σ1, . . . , σn be Rademacher variables. Then, for every t > 0

Pr

(∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥ > t

)
≤ 2 exp

(
− t2

32
∑n

i=1 ‖ai‖2

)
.

PROOF. See [21], Theorem 4.7 and the remark thereafter. �

With Proposition 16, the following exponential inequality is obtained with
a slight modification of the standard symmetrization argument for empirical
processes.

LEMMA 17. Let X,X1, . . . ,Xn and H be as in Proposition 15, and de-
note (X1, . . . ,Xn) by Xn. Let F :X → H be a Borel measurable map with
E‖F(X)‖2

H < ∞. For a positive number M such that E‖F(X)‖2
H < M , define an

event An by 1
n

∑n
i=1 ‖F(Xi)‖2 ≤ M . Then, for every t > 0 and sufficiently large n,

Pr

({
Xn

∣∣∣∥∥∥∥∥1

n

n∑
i=1

(
F(Xi) − E[F(X)])∥∥∥∥∥

H

> t

}
∩ An

)
≤ 8 exp

(
− nt2

1024M

)
.

PROOF. First, note that for any sufficiently large n we have Pr(An) ≥ 3
4

and Pr(‖ 1
n

∑n
i=1(F (Xi) − E[F(X)])‖ ≤ t

2) ≥ 3
4 . We consider only

such n in the following. Let X̃n be an independent copy of Xn, and let Ãn =
{X̃n| 1

n

∑n
i=1 ‖F(X̃i)‖2 ≤ M}. The obvious inequality

Pr

({
Xn

∣∣∣∥∥∥∥∥1

n

n∑
i=1

(
F(Xi) − E[F(X)])∥∥∥∥∥

H

> t

}
∩ An

)

× Pr

({
X̃n

∣∣∣∥∥∥∥∥1

n

n∑
i=1

(
F(X̃i) − E[F(X)])∥∥∥∥∥

H

≤ t

2

}
∩ Ãn

)

≤ Pr

({
(Xn, X̃n)

∣∣∣∥∥∥∥∥1

n

n∑
i=1

(
F(Xi) − F(X̃i)

)∥∥∥∥∥
H

>
t

2

}
∩ An ∩ Ãn

)

and the fact that Bn := {(Xn, X̃n)| 1
2n

∑n
i=1(‖F(Xi)‖2 +‖F(X̃i)‖2) ≤ M} includes

An ∩ Ãn gives a symmetrized bound

Pr

({
Xn

∣∣∣∥∥∥∥∥1

n

n∑
i=1

(
F(Xi) − E[F(X)])∥∥∥∥∥

H

> t

}
∩ An

)

≤ 2 Pr

({
(Xn, X̃n)

∣∣∣∥∥∥∥∥1

n

n∑
i=1

(
F(Xi) − F(X̃i)

)∥∥∥∥∥
H

>
t

2

}
∩ Bn

)
.
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Introducing Rademacher variables σ1, . . . , σn, the right-hand side is equal to

2 Pr

({
(Xn, X̃n, {σi})

∣∣∣∥∥∥∥∥1

n

n∑
i=1

σi

(
F(Xi) − F(X̃i)

)∥∥∥∥∥
H

>
t

2

}
∩ Bn

)
,

which is upper-bounded by

4 Pr

(∥∥∥∥∥1

n

n∑
i=1

σiF (Xi)

∥∥∥∥∥
H

>
t

4
and

1

2n

n∑
i=1

‖F(Xi)‖2
H ≤ M

)

= 4EXn

[
Pr

(∥∥∥∥∥1

n

n∑
i=1

σiF (Xi)

∥∥∥∥∥
H

>
t

4

∣∣Xn

)
1{Xn∈Cn}

]
,

where Cn = {Xn| 1
n

∑n
i=1 ‖F(Xi)‖2

H ≤ 2M}. From Proposition 16, the last line is

upper-bounded by 4 exp(− (nt/4)2

32
∑n

i=1 ‖F(Xi)‖2 ) ≤ 4 exp(− nt2

1024M
). �

Let � be a set with semimetric d . For any δ > 0, the covering number
N(δ, d,�) is the smallest m ∈ N for which there exist m points θ1, . . . , θm in
� such that min1≤i≤m d(θ, θi) ≤ δ holds for any θ ∈ �. We write N(δ) for
N(δ, d,�) if there is no confusion. For δ > 0, the covering integral J (δ) for �

is defined by

J (δ) =
∫ δ

0
(8 log(N(u)2/u))1/2 du.

The chaining lemma [25], which plays a crucial role in the uniform central limit
theorem, is readily extendable to a random process in a Banach space.

LEMMA 18 (Chaining lemma). Let � be a set with semimetric d , and let
{Z(θ)|θ ∈ �} be a family of random elements in a Banach space. Suppose � has
a finite covering integral J (δ) for 0 < δ < 1 and suppose there exists a positive
constant R > 0 such that for all θ, η ∈ � and t > 0 the inequality

Pr
(‖Z(θ) − Z(η)‖ > td(θ, η)

) ≤ 8 exp
(
− 1

2R
t2

)
holds. Then, there exists a countable subset �∗ of � such that for any 0 < ε < 1

Pr
(

sup
θ,η∈�∗,d(θ,η)≤ε

‖Z(θ) − Z(η)‖ > 26RJ(d(θ, η))

)
≤ 2ε

holds. If Z(θ) has continuous sample paths, then �∗ can be replaced by �.

PROOF. By noting that the proof of the chaining lemma for a real-valued ran-
dom process does not use any special properties of real numbers but the property
of the norm (absolute value) for Z(θ), the proof applies directly to a process in
a Banach space. See [25], Section VII.2. �
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PROOF OF PROPOSITION 15. Note that (27) means∥∥∥∥∥1

n

n∑
i=1

(
F(Xi; θ1) − F(Xi; θ2)

)∥∥∥∥∥
2

H

≤ D(θ1, θ2)
2 1

n

n∑
i=1

φ(Xi)
2.

Let M > 0 be a constant such that E[φ(X)2] < M , and let An = {Xn|‖ 1
n

×∑n
i=1(F (Xi; θ1) − F(Xi; θ2))‖2

H ≤ MD(θ1, θ2)
2}. Since the probability of An

converges to zero as n → ∞, it suffices to show that there exists δ > 0 such that
the probability

Pn = Pr

(
Xn|An ∩

{
sup
θ∈�

∥∥∥∥∥ 1√
n

n∑
i=1

(
F(Xi; θ) − E[F(X; θ)])∥∥∥∥∥

H

> δ

})
satisfies lim supn→∞ Pn = 0.

With the notation F̃θ (x) = F(x; θ) − E[F(X; θ)], from Lemma 17 we can de-
rive

Pr

(
An ∩

{
Xn

∣∣∣∥∥∥∥∥ 1√
n

n∑
i=1

(
F̃θ1(Xi) − F̃θ2(Xi)

)∥∥∥∥∥
H

> t

})

≤ 8 exp
(
− t2

512 · 2MD(θ1, θ2)2

)
for any t > 0 and sufficiently large n. Because the covering integral J (δ) with
respect to D is finite by the compactness of �, and the sample path � � θ �→

1√
n

∑n
i=1 F̃θ (Xi) ∈ H is continuous, the chaining lemma implies that for any

0 < ε < 1

Pr

(
An ∩

{
Xn

∣∣∣ sup
θ1,θ2∈�,D(θ1,θ2)≤ε

∥∥∥∥∥ 1√
n

n∑
i=1

(
F̃θ1(Xi) − F̃θ2(Xi)

)∥∥∥∥∥
H

> 26 · 512M · J (ε)

})
≤ 2ε.

Take an arbitrary ε ∈ (0,1). We can find a finite number of partitions � =⋃ν(ε)
a=1 �a (ν(ε) ∈ N) so that any two points in each �a are within the distance ε.

Let θa be an arbitrary point in �a . Then the probability Pn is bounded by

Pn ≤ Pr

(
max

1≤a≤ν(ε)

∥∥∥∥∥ 1√
n

n∑
i=1

F̃θa (Xi)

∥∥∥∥∥
H

>
δ

2

)
(28)

+ Pr

(
An ∩

{
Xn

∣∣∣ sup
θ,η∈�,D(θ,η)≤ε

∥∥∥∥∥ 1√
n

n∑
i=1

(
F̃θ (Xi) − F̃η(Xi)

)∥∥∥∥∥
H

>
δ

2

})
.

From Chebyshev’s inequality the first term is upper-bounded by

ν(ε)Pr

(∥∥∥∥∥ 1√
n

n∑
i=1

F̃θa (Xi)

∥∥∥∥∥
H

>
δ

2

)
≤ 4ν(ε)E‖F̃θa (X)‖2

H

δ2 .
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If we take sufficiently large δ so that 512MJ(ε) < δ/2 and
4ν(ε)E‖F̃θa (X)‖2

H
ε

< δ2,
the right-hand side of (28) is bounded by 3ε, which completes the proof. �
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