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ON THE COMPUTATIONAL COMPLEXITY OF MCMC-BASED
ESTIMATORS IN LARGE SAMPLES
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Duke University and Massachusetts Institute of Technology

In this paper we examine the implications of the statistical large sample
theory for the computational complexity of Bayesian and quasi-Bayesian esti-
mation carried out using Metropolis random walks. Our analysis is motivated
by the Laplace–Bernstein–Von Mises central limit theorem, which states that
in large samples the posterior or quasi-posterior approaches a normal density.
Using the conditions required for the central limit theorem to hold, we estab-
lish polynomial bounds on the computational complexity of general Metropo-
lis random walks methods in large samples. Our analysis covers cases where
the underlying log-likelihood or extremum criterion function is possibly non-
concave, discontinuous, and with increasing parameter dimension. However,
the central limit theorem restricts the deviations from continuity and log-
concavity of the log-likelihood or extremum criterion function in a very spe-
cific manner.

Under minimal assumptions required for the central limit theorem to hold
under the increasing parameter dimension, we show that the Metropolis algo-
rithm is theoretically efficient even for the canonical Gaussian walk which is
studied in detail. Specifically, we show that the running time of the algorithm
in large samples is bounded in probability by a polynomial in the parameter
dimension d and, in particular, is of stochastic order d2 in the leading cases
after the burn-in period. We then give applications to exponential families,
curved exponential families and Z-estimation of increasing dimension.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms have dra-
matically increased the use of Bayesian and quasi-Bayesian methods for practical
estimation and inference. (See, e.g., books of Casella and Robert [9], Chib [12],
Geweke [18] and Liu [34] for detailed treatments of the MCMC methods and their
applications in various areas of statistics, econometrics and biometrics.) Bayesian
methods rely on a likelihood formulation, while quasi-Bayesian methods replace
the likelihood with other criterion functions. This paper studies the computational
complexity of MCMC algorithms (based on Metropolis random walks) as both the
sample and parameter dimensions grow to infinity at the appropriate rates. The
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paper shows how and when the large sample asymptotics places sufficient restric-
tions on the likelihood and criterion functions that guarantee the efficient—that
is, polynomial time—computational complexity of these algorithms. These results
suggest that at least in large samples, Bayesian and quasi-Bayesian estimators can
be computationally efficient alternatives to maximum likelihood and extremum
estimators, most of all in cases, where likelihoods and criterion functions are non-
concave and possibly nonsmooth in the parameters of interest.

To motivate our analysis, let us consider the Z-estimation problem, which is
a basic method for estimating various kinds of structural models, especially in
biometrics and econometrics. The idea behind this approach is to maximize some
criterion function

Qn(θ) = −
∥∥∥∥∥ 1√

n

n∑
i=1

m(Ui, θ)

∥∥∥∥∥
2

, θ ∈ � ⊂ R
d,(1.1)

where Ui is a vector of random variables, and m(Ui, θ) is a vector of functions
such that E[m(Ui, θ)] = 0 at the true parameter value θ = θ0. For example, in
estimation of conditional α-quantile models with censoring and endogeneity, the
functions take the form

m(Ui, θ) = W
(
α/pi(θ) − 1(Yi ≤ Xiθ)

)
Zi.(1.2)

Here Ui = (Yi,Xi,Zi), Yi is the response variable and Xi is a vector of regressors.
In the censored regression models, Zi is the same as Xi , and pi(θ) is a weighting
function that depends on the probability of censoring that depends on Xi and θ

(see [49] for extensive motivation and details), and in the endogenous models,
Zi is a vector of instrumental variables that affect the outcome variable Yi only
through Xi (see [11] for motivation and details), while pi(θ) = 1 for each i; the
matrix W is some positive definite weighting matrix. Finally, the index α ∈ (0,1)

is the quantile index, and X′
iθ is the model for the αth quantile function of the

outcome Yi .
In these quantile examples, the criterion function Qn(θ) is highly discontinuous

and nonconcave, implying that the argmax estimator may be difficult or impossi-
ble to obtain. Figure 1 in Section 2 illustrates this example and similar examples,
where the argmax computation is intractable, at least when the parameter dimen-
sion d is high. In typical applications, the parameter dimension d is indeed high
in relation to the sample size (see, e.g., Koenker [32] for a relevant survey). Simi-
lar issues can also arise in M-estimation problems, where the extremum criterion
function takes the form Qn(θ) = ∑n

i=1 m(Ui, θ), where Ui is a vector of random
variables, and m(Ui, θ) is a real-valued function, for example, the log-likelihood
function of Ui or some other pseudo-log-likelihood function. Section 5 discusses
several examples of this kind.

As an alternative to argmax estimation in both the Z- and M-estimation frame-
works, consider the quasi-Bayesian estimator obtained by integration in place of
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optimization

θ̂ =
∫
� θ exp{Qn(θ)}dθ∫
� exp{Qn(θ ′)}dθ ′ .(1.3)

This estimator may be recognized as a quasi-posterior mean of the quasi-posterior
density πn(θ) ∝ expQn(θ). (Of course, when Qn is a log-likelihood, the term
“quasi” becomes redundant.) This estimator is not affected by local discontinu-
ities and nonconcavities and is often much easier to compute in practice than the
argmax estimator, particularly in the high-dimensional setting; see, for example,
the discussion in Liu, Tian and Wei [49] and Chernozhukov and Hong [11].

At this point, it is worth emphasizing that we will formally capture the high
parameter dimension by using the framework of Huber [23], Portnoy [41] and oth-
ers. In this framework, we have a sequence of models (rather than a fixed model),
where the parameter dimension grows as the sample size grows, namely, d → ∞
as n → ∞, and we will carry out all of our analysis in this framework.

This paper will show that if the sample size n grows to infinity and the dimen-
sion of the problem d does not grow too quickly relative to the sample size, the
quasi-posterior

exp{Qn(θ)}∫
� exp{Qn(θ ′)}dθ ′(1.4)

will be approximately normal. This result in turn leads to the main claim: the
estimator (1.3) can be computed using Markov chain Monte Carlo in polynomial
time, provided that the starting point is drawn from the approximate support of the
quasi-posterior (1.4). As is standard in the literature, we measure running time in
the number of evaluations of the numerator of the quasi-posterior function (1.4)
since this accounts for most of the computational burden.

In other words, when the central limit theorem (CLT) for the quasi-posterior
holds, the estimator (1.3) is computationally tractable. The reason is that the CLT,
in addition to implying the approximate normality and attractive estimation prop-
erties of the estimator θ̂ , bounds nonconcavities and discontinuities of Qn(θ) in a
specific manner that implies that the computational time is polynomial in the pa-
rameter dimension d . In particular, in the leading cases the bound on the running
time of the algorithm after the so-called burn-in period is Op(d2). Thus, our main
insight is to bring the structure implied by the CLT into the computational com-
plexity analysis of the MCMC algorithm for computation of (1.3) and sampling
from (1.4).

Our analysis of computational complexity builds on several fundamental papers
studying the computational complexity of Metropolis procedures, especially Ap-
plegate and Kannan [2], Frieze, Kannan and Polson [16], Polson [40], Kannan,
Lovász and Simonovits [29], Kannan and Li [28], Lovász and Simonovits [36]
and Lovász and Vempala [37–39]. Many of our results and proofs rely upon and
extend the mathematical tools previously developed in these works. We extend the
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complexity analysis of the previous literature, which has focused on the case of
an arbitrary concave log-likelihood function, to the nonconcave and nonsmooth
cases. The motivation is that, from a statistical point of view, in concave settings
it is typically easier to compute a maximum likelihood or extremum estimate than
a Bayesian or quasi-Bayesian estimate, so the latter do not necessarily have prac-
tical appeal. In contrast, when the log-likelihood or quasi-likelihood is either non-
smooth, nonconcave or both, Bayesian and quasi-Bayesian estimates defined by
integration are relatively attractive computationally, compared to maximum likeli-
hood or extremum estimators defined by optimization.

Our analysis relies on statistical large sample theory. We invoke limit theorems
for posteriors and quasi-posteriors for large samples as n → ∞. These theorems
are necessary to support our principal task—the analysis of the computational
complexity under the restrictions of the CLT. As a preliminary step of our com-
putational analysis, we state a CLT for quasi-posteriors and posteriors under para-
meters of increasing dimension, which extends the CLT previously derived in the
literature for posteriors and quasi-posteriors for fixed dimensions. In particular,
Laplace circa 1809, Blackwell [7], Bickel and Yahav [6], Ibragimov and Hasmin-
skii [24], and Bunke and Milhaud [8] provided CLTs for posteriors. Blackwell
[7], Liu, Tian and Wei [49], and Chernozhukov and Hong [11] provided CLTs for
quasi-posteriors formed using various nonlikelihood criterion functions. In con-
trast to these previous results, we allow for increasing dimensions. Ghosal [20]
previously derived a CLT for posteriors with increasing dimension for log-concave
exponential families. We go beyond this canonical setup and establish the CLT for
the non-log-concave and discontinuous cases. We also allow for general criterion
functions to replace likelihood functions. This paper also illustrates the plausi-
bility of the approach using exponential families, curved exponential families and
Z-estimation problems. The curved families arise, for example, when the data must
satisfy additional moment restrictions, as for example, in Hansen and Singleton
[21], Chamberlain [10] and Imbens [25]. Both the curved exponential families and
Z-estimation problems typically fall outside the log-concave framework.

The rest of the paper is organized as follows. In Section 2, we establish a gen-
eralized version of the Central Limit Theorem for Bayesian and quasi-Bayesian
estimators. This result may be seen as a generalization of the classical Bernstein–
Von Mises theorem, in that it allows the parameter dimension to grow as the sample
size grows. In Section 2, we also formulate the main problem, which is to char-
acterize the complexity of MCMC sampling and integration as a function of the
key parameters that describe the deviations of the quasi-posterior from the normal
density. Section 3 explores the structure set forth in Section 2 to find bounds on
conductance and mixing time of the MCMC algorithm. Section 4 derives bounds
on the integration time of the standard MCMC algorithm. Section 5 considers an
application to a broad class of curved exponential families and Z-estimation prob-
lems, which have possibly nonconcave and discontinuous criterion functions, and
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verifies that our results apply to this class of statistical models. Section 5 also veri-
fies that the high-level conditions of Section 2 follow from the primitive conditions
for these models.

COMMENT 1.1 (Notation). Throughout the paper, we follow the framework
of high dimensional parameters introduced in Huber (1973). In this framework, the
parameter θ(n) of the model, the parameter space �(n), its dimension d(n) and all
other properties of the model itself are indexed by the sample size n, and d(n) → ∞
as n → ∞. However, following Huber’s convention, we will omit the index and
write, for example, θ , � and d as abbreviations for θ(n), �(n) and d(n), and so on.

2. The setup and the problem. Our analysis is motivated by the problems
of estimation and inference in large samples under high dimension. We consider
a “reduced-form” setup formulated in terms of parameters that characterize local
deviations from the true parameter value. The local parameter λ describes con-
tiguous deviations from the true parameter shifted by a first-order approximation
to an extremum estimator θ̃ . That is, for θ denoting a parameter vector θ0, the
true value, and s = √

n(θ̃ − θ0), the normalized first-order approximation of the
extremum estimator, we define the local parameter λ as

λ = √
n(θ − θ0) − s.

The parameter space for θ is �, and the parameter space for λ is therefore � =√
n(� − θ0) − s.
The corresponding localized likelihood or localized criterion function is de-

noted by �(λ). For example, suppose Ln(θ) is the original likelihood function in
the likelihood framework or, more generally, Ln(θ) is exp{Qn(θ)}, where Qn(θ)

is the criterion function in extremum framework, then

�(λ) = Ln

(
θ0 + (λ + s)/

√
n
)
/Ln

(
θ0 + s/

√
n
)
.

The assumptions below will be stated directly in terms of �(λ). In Section 5, we
further illustrate the connection between the localized set-up and the nonlocal-
ized set-ups and provide more primitive conditions within the exponential family,
curved exponential family and Z-estimation framework.

Then, the posterior or quasi-posterior density for λ takes the form, implicitly
indexed by the sample size n,

f (λ) = �(λ)∫
� �(ω)dω

,(2.1)

and we impose conditions that force the posterior to satisfy a CLT in the sense of
approaching the normal density

φ(λ) = 1

(2π)d/2 det (J−1)
1/2 exp

(
−1

2
λ′Jλ

)
.(2.2)
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More formally, the following conditions are assumed to hold for �(λ) as the sample
size and parameter dimension grow to infinity:

n → ∞ and d → ∞.

We call these conditions the “CLT conditions”:

C.1 The local parameter λ belongs to the local parameter space � ⊂ R
d . The vec-

tor s is a zero-mean vector with variance �, whose eigenvalues are bounded
above as n → ∞, and � = K ∪Kc, where K is a closed ball B(0,‖K‖) such
that

∫
K f (λ)dλ ≥ 1 − op(1) and

∫
K φ(λ)dλ ≥ 1 − o(1).

C.2 The lower semi-continuous posterior or quasi-posterior function �(λ) ap-
proaches a quadratic form in logs, uniformly in K , that is, there exist positive
approximation errors ε1 and ε2 such that, for every λ ∈ K ,∣∣ln�(λ) − (−1

2λ′Jλ
)∣∣ ≤ ε1 + ε2 · λ′Jλ/2,(2.3)

where J is a symmetric positive definite matrix with eigenvalues bounded
away from zero and from above uniformly in the sample n. Also, we denote
the ellipsoidal norm induced by J as ‖v‖J := ‖J 1/2v‖.

C.3 The approximation errors ε1 and ε2 satisfy ε1 = op(1) and ε2 · ‖K‖2
J = op(1).

COMMENT 2.1. We choose the support set K = B(0,‖K‖), which is a
ball of radius ‖K‖ = supλ∈K ‖λ‖, as follows. Under increasing dimension, the
normal density is subject to a concentration of measure, namely that selecting
‖K‖ ≥ C · √

d , for a sufficiently large constant C, is enough to contain the sup-
port of the standard normal vector. Indeed, let Z ∼ N(0, Id), then Pr(Z /∈ K) =
Pr(‖Z‖2 > C2d) → 0, for C > 1, as d → ∞, because ‖Z‖2/d →p 1. For the case
where W ∼ N(0, J−1) = J−1/2Z, we have that Pr(W /∈ K) ≤ Pr(‖Z‖/√λmin >

‖K‖) → 0 for ‖K‖ ≥ C
√

d/λmin for C > 1, as d → ∞, where λmin denotes the
smallest eigenvalue of J . Moreover, since ‖K‖J = λmax‖K‖, where λmax denotes
the largest eigenvalue of J , we need to have that ‖K‖J >

√
dλmax/λmin. In view of

condition C.3, this requires ε2dλmax/λmin = op(1), and hence ε2d = op(1). Thus,
in some of the computations presented below, we will set

‖K‖ = C
√

d/λmin and ‖K‖J = C
√

dλmax/λmin for C > 1.

Finally, even though we make the assumption of bounded eigenvalues of J , we
will emphasize the dependence on the eigenvalues in most proofs and formal state-
ments. This will allow us to see immediately the impact of changing this assump-
tion.

These conditions imply that

�(λ) = a(λ) · m(λ)
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FIG. 1. This figure illustrates how ln �(λ) can deviate from lna(λ), allowing for possible disconti-
nuities in ln�(λ).

over the approximate support set K , where

lna(λ) = −1
2λ′Jλ,(2.4)

−ε1 − ε2λ
′Jλ/2 ≤ lnm(λ) ≤ ε1 + ε2λ

′Jλ/2.(2.5)

Figure 1 illustrates the kinds of deviations of ln�(λ) from the quadratic curve
captured by the parameters ε1 and ε2, and it also shows the types of discontinuities
and nonconvexities permitted in our framework. Parameter ε1 controls the size of
local discontinuities and parameter ε2 controls the global tilting away from the
quadratic shape of the normal log-density.

THEOREM 1 (Generalized CLT for quasi-posteriors). Under condi-
tions C.1–C.3, the quasi-posterior density (2.1) approaches the normal density
(2.2) in the following sense:∫

�
|f (λ) − φ(λ)|dλ = op(1).

Theorem 1 is a simple preliminary result. However, the result is essential for
defining the environment in which the main results of this paper—the computa-
tional complexity results—will be developed. The theorem shows that in large
samples, provided that some regularity conditions hold, Bayesian and quasi-
Bayesian inference have good large sample properties. The main part of the paper,
namely Section 3, develops the computational implications of the CLT conditions.
In particular, Section 3 shows that polynomial time computing of Bayesian and
quasi-Bayesian estimators by MCMC is in fact implied by the CLT conditions.
Therefore, the CLT conditions are essential for both good statistical properties of
the posterior or quasi-posterior under increasing dimension, as shown in Theo-
rem 1, and for good computational properties as shown in Section 3.
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By allowing increasing dimension (d → ∞), Theorem 1 extends the CLT previ-
ously derived in the literature for posteriors in the likelihood framework (Blackwell
[7], Bickel and Yahav [6], Ibragimov and Hasminskii [24], Bunke and Milhaud
[8], Ghosal [20] and Shen [45]) and for quasi-posteriors in the general extremum
framework, when the likelihood is replaced by general criterion functions (Black-
well [7], Liu, Tian and Wei [49] and Chernozhukov and Hong [11]). The theorem
also extends the results in Ghosal [20], who also considered increasing dimen-
sions but focused his analysis to the exponential likelihood family framework. In
contrast, Theorem 1 allows for nonexponential families and for quasi-posteriors in
place of posteriors. Recall that quasi-posteriors result from using quasi-likelihoods
and other criterion functions in place of the likelihood. This substantially expands
the scope of the applications of the result. Importantly, Theorem 1 allows for
nonsmoothness and even discontinuities in the likelihood and criterion functions,
which are pertinent in a number of applications listed in the Introduction.

The problem of the paper. Our problem is to characterize the complexity of
obtaining draws from f (λ) and of Monte Carlo integration for computing∫

g(λ)f (λ) dλ,

where f (λ) is restricted to the approximate support K . The procedure used to ob-
tain the basic draws as well as to carry out Monte Carlo integration is a Metropolis
random walk, which is a standard MCMC algorithm used in practice. The tasks
are thus:

I. Characterize the complexity of sampling from f (λ) as a function of (d, n, ε1,

ε2,K);
II. Characterize the complexity of calculating

∫
g(λ)f (λ)dλ as a function of

(d, n, ε1, ε2,K);
III. Characterize the complexity of sampling from f (λ) and performing integra-

tions with f (λ) in large samples as d,n → ∞ by invoking the bounds on
(d, n, ε1, ε2,K) imposed by the CLT;

IV. Verify that the CLT conditions are applicable in a variety of statistical prob-
lems.

This paper formulates and solves this problem. Thus, the paper brings the CLT
restrictions into the complexity analysis and develops complexity bounds for sam-
pling and integrating from f (λ) under these restrictions. These CLT restrictions,
arising from the use of large sample theory and the imposition of certain regular-
ity conditions, limit the behavior of f (λ) over the approximate support set K in
a specific manner that allows us to establish polynomial computing time for sam-
pling and integration. Because the conditions for the CLT do not provide strong
restrictions on the tail behavior of f (λ) outside K (other than C.1), our analysis of
complexity is limited entirely to the approximate support set K defined in C.1–C.3.
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By solving the above problem, this paper contributes to the recent literature
on the computational complexity of Metropolis procedures. Early work was pri-
marily concerned with the question of approximating the volume of high dimen-
sional convex sets where uniform densities play a fundamental role (Lovász and
Simonovits [36], and Kannan, Lovász and Simonovits [29, 30]). Later, the ap-
proach was generalized for the cases where the log-likelihood is concave (Frieze,
Kannan and Polson [16], Polson [40] and Lovász and Vempala [37–39]). However,
under log-concavity the maximum likelihood or extremum estimators are usually
preferred over Bayesian or quasi-Bayesian estimators from a computational point
of view. Cases in which log-concavity is absent, the settings in which there is great
practical appeal for using Bayesian and quasi-Bayesian estimates, have received
little treatment in the literature. One important exception is the paper of Applegate
and Kannan [2], which covers nearly-log-concave but smooth densities using a dis-
crete Metropolis algorithm. In contrast to Applegate and Kannan [2], our approach
allows for both discontinuous and non-log-concave densities that are permitted to
deviate from the normal density (not from an arbitrary log-concave density, like
in Applegate and Kannan [2]) in a specific manner. The manner in which they de-
viate from the normal is motivated by the CLT and controlled by parameters ε1
and ε2, which are in turn restricted by the CLT conditions. Using the CLT restric-
tions also allows us to treat nondiscrete sampling algorithms. In fact, it is known
that the canonical Gaussian walk analyzed in Section 3.2.4 does not have good
complexity properties (rapidly mixing) for arbitrary log-concave density functions
(see Lovász and Vempala [39]). Nonetheless, the CLT conditions imply enough
structure so that even a canonical Gaussian walk becomes rapidly mixing. More-
over, the analysis is general in that it applies to any Metropolis chain, provided
that it satisfies a simple geometric condition. We illustrate this condition with the
canonical algorithm. This suggests that the same approach can be used to establish
polynomial bounds for various more sophisticated schemes. Finally, as is standard
in the literature, we assume that the starting point for the algorithm occurs in the
approximate support of the posterior. Indeed, the polynomial time bound that we
derive applies only in this case because this is the domain where the CLT provides
enough structure on the problem. Our analysis does not apply outside this domain.

3. The complexity of sampling using random walks.

3.1. Set-up and main result. In this section, we bound the computational com-
plexity of obtaining a draw from a random variable approximately distributed ac-
cording to a density function f as defined in (2.1). (Section 4 builds upon these
results to study the associated integration problem.) By invoking condition C.1,
we restrict our attention entirely to the approximate support set K , and the ac-
curacy of sampling will be defined over this set. Consider a measurable space
(K,A). Our task is to draw a random variable according to a density function f

restricted to K . This density induces a probability distribution on K defined by
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Q(A) = ∫
A f (x) dx/

∫
K f (x)dx for any A ∈ A. Asymptotically, it is well known

that random walks combined with a Metropolis filter are capable of performing
such a task. Such random walks are characterized by an initial point u0 and a one-
step probability distribution, which depends on the current point, to generate the
next candidate point of the random walk. The candidate point is accepted with a
probability given by the Metropolis filter, which depends on the likelihood func-
tion �, on the current and on the candidate point, and otherwise the random walk
stays at the current point (see Casella and Robert [9] and Vempala [51] for details;
Section 3.2.4 describes the canonical Gaussian random walk).

In the complexity analysis of this algorithm, we are interested in bounding the
number of steps of the random walk required to draw a random variable from Q

with a given precision. Equivalently, we are interested in bounding the number of
evaluations of the local likelihood function � required for this purpose.

Next, following Lovász and Simonovits [36] and Vempala [51], we review de-
finitions of concepts relevant for our analysis. Let q(x|u) denote the probability
density to generate a candidate point and 1u(A) be the indicator function of the
set A. For each u ∈ K , the one-step distribution Pu—the probability distribution
after one step of the random walk starting from u—is defined as

Pu(A) =
∫
K∩A

min
{
f (x)q(u|x)

f (u)q(x|u)
,1

}
q(x|u)dx + (1 − pu)1u(A),(3.1)

where

pu =
∫
K

min
{
f (x)q(u|x)

f (u)q(x|u)
,1

}
q(x|u)dx(3.2)

is the probability of making a proper move, namely the move to x ∈ K , x �= u,
after one step of the chain from u ∈ K .

The triple (K,A, {Pu :u ∈ K}), along with a starting distribution Q0, defines a
Markov chain in K . We denote by Qt the probability distribution obtained after t

steps of the random walk. A distribution Q is called stationary on (K,A) if for
any A ∈ A, ∫

K
Pu(A)dQ(u) = Q(A).(3.3)

Given the random walk described earlier, the unique stationary probability distri-
bution Q is induced by the function f , Q(A) = ∫

A f (x) dx/
∫
K f (x)dx for all

A ∈ A (see, e.g., Casella and Roberts [9]). This is the main motivation for most of
the MCMC studies found in the literature since it provides an asymptotic method
to approximate the density of interest. As mentioned before, our goal is to properly
quantify this convergence and for that we need to review additional concepts.

The ergodic flow of a set A with respect to a distribution Q is defined as


(A) =
∫
A

Pu(K\A)dQ(u).
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It measures the probability of the event {u ∈ A,u′ /∈ A} where u is distributed
according to Q and u′ is distributed according to Pu; it captures the average flow
of points leaving A in one step of the random walk. The measure Q is stationary
if and only if 
(A) = 
(K\A) for all A ∈ A, since


(A) =
∫
A

Pu(K\A)dQ(u) =
∫
A

(
1 − Pu(A)

)
dQ(u)

= Q(A) −
∫
A

Pu(A)dQ(u) =
∫
K

Pu(A)dQ(u) −
∫
A

Pu(A)dQ(u)

= 
(K\A).

A Markov chain is said to be ergodic if 
(A) > 0, for every A with 0 < Q(A) < 1,
which is the case for the Markov chain induced by the random walk described
earlier due to the assumptions on f , namely conditions C.1 and C.2.

Next, we recall the concept of a conductance of a Markov chain, which plays
a key role in the convergence analysis. Intuitively, a Markov chain will converge
slowly to the steady state if there exists a set A in which the Markov chain stays
“too long” relative to the measure of A or its complement K\A. In order for a
Markov chain to stay in A for a long time, the probability of stepping out of A

with the random walk must be small, that is, the ergodic flow of A must be small
relative to the measures of A and K\A. The concept of conductance of a set A

quantifies this notion:

φ(A) = 
(A)

min{Q(A),Q(K\A)} , 0 < Q(A) < 1.

The global conductance of the Markov chain is the minimum conductance over
sets with positive measure

φ = inf
A∈A:0<Q(A)<1

φ(A).(3.4)

Lovász and Simonovits [36] proved the connection between conductance and
convergence for the continuous state space, and Jerome and Sinclair [26, 27]
proved the connection for the discrete state space. We will extensively use Corol-
lary 1.5 of Lovász and Simonovits [36], restated here as follows: Let Q0 be
M-warm with respect to the stationary distribution Q, namely

sup
A∈A:Q(A)>0

Q0(A)

Q(A)
= M.(3.5)

Then, the total variation distance between the stationary distribution Q and the
distribution Qt , obtained after t steps of the Markov chain starting from Q0, is
bounded above by a function of global conductance φ and warmness parameter M :

‖Qt − Q‖TV = sup
A∈A

|Qt(A) − Q(A)| ≤ √
M

(
1 − φ2

2

)t

.(3.6)
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Therefore, the global conductance φ determines the number of steps required to
generate a random point whose distribution Qt is within a specified distance of the
target distribution Q. The conductance φ also bounds the autocovariance between
consecutive elements of the Markov chain, which is important for analyzing the
computational complexity of integration by MCMC (see Section 4 for a more de-
tailed discussion). The warmness parameter M , which measures how the starting
distribution Q0 differs from the target distribution Q, also plays an important role
in determining the quality of convergence of Qt to Q. In what follows, we will
calculate M explicitly for the canonical random walk.

The main result of this paper provides a lower bound for the global conductance
of the Markov chain φ under the CLT conditions. In particular, we show that 1/φ

is bounded by a fixed polynomial in the dimension of the parameter space even
for a canonical random walk considered in Section 3.2.4. In order to show this, we
require the following geometric condition on the difference between the one-step
distributions.

D.1 There exist positive sequences hn and cn such that for every u, v ∈ K , ‖u −
v‖ ≤ hn implies that

‖Pu − Pv‖TV < 1 − cn.

D.2 The sequences above can be taken to satisfy the following bounds:

1

cn min{hn

√
λmin,1} = Op(d).

Condition D.1 holds if at least a cn-fraction of the probability distribution asso-
ciated with Pu varies smoothly as the point u changes. Condition D.2 imposes a
particular rate for the sequences. As shown in Theorem 2 below, the rates in con-
ditions D.1 and D.2 play an important role in delivering good, that is, polynomial
time and computational complexity. We show in Section 3.2.4 that conditions D.1
and D.2 hold for the canonical Gaussian walk under conditions C.1, C.2 and C.3.
with

1/hn = Op(d) and 1/cn = Op(1),

and λmin bounded away from zero. Moreover, the rates in condition D.2 appear
to be sharp for the canonical Gaussian walk under our framework. It remains an
important question whether different types of random walks could lead to better
rates than those in condition D.2 (see Vempala [51] for a relevant survey). Another
interesting question is the establishment of lower bounds on the computational
complexity of the type considered in Lovász [35].

Next we state the main result of the section.

THEOREM 2 (Main result on complexity of sampling). Under conditions C.1,
C.2 and D.1, the global conductance of the induced Markov chain satisfies

1/φ = O

(
e2(ε1+ε2‖K‖2

J /2)

cn min{hn

√
λmin,1}

)
.(3.7)
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In particular, a random walk satisfying these assumptions requires at most

Nε = Op

(
e4(ε1+ε2‖K‖2

J /2) ln(M/ε)

(cn min{hn

√
λmin,1})2

)
(3.8)

steps to achieve ‖QNε − Q‖TV ≤ ε, where Q0 is M-warm with respect to Q.
Finally, if conditions C.1, C.2, C.3, D.1 and D.2 hold, we have that

1/φ = Op(d),

and the number of steps Nε is bounded by

Op(d2 ln(M/ε)).(3.9)

Thus, under the CLT conditions, Theorem 2 establishes the polynomial bound
on the computing time, as stated in equation (3.9). Indeed, CLT conditions C.1
and C.2 first lead to the bound (3.8) and, then, condition C.3, which imposes
ε1 = op(1) and ε2 · ‖K‖2

J = op(1), leads to the polynomial bound (3.9). It is also
useful to note that, if the stated CLT conditions do not hold, the bound on the
computing time needs not be polynomial: in particular, the first bound (3.8) is ex-
ponential in ε1 and ε2‖K‖2

J . It is also useful to note that the approximate normality
of posteriors and quasi-posteriors implied by the CLT conditions plays an impor-
tant role in the proofs of this main result and of auxiliary lemmas. Therefore, the
CLT conditions are essential for both (a) good statistical properties of the posterior
or quasi-posterior under increasing dimension, as shown in Theorem 1 and (b) for
good computational properties, as shown in Theorem 2. Thus, results (a) and (b)
establish a clear link between the computational properties and the statistical envi-
ronment.

The relevance of the particular random walk in bounding the conductance is
captured through the parameters cn and hn defined in condition D.1. Theorem 2
shows that as long as we can take 1/cn and 1/hn to be bounded by a polynomial in
the dimension of the parameter space d , we will obtain polynomial time guarantees
for the sampling problem. In some cases, the warmness parameter M appearing in
(3.9) can also be related to the particular random walk being used. This is the case
in the canonical random walk discussed in detail in Section 3.2.4.

3.2. Proof of the main result. The proof of Theorem 2 relies on a new iso-
perimetric inequality (Corollary 1) and a geometric property of the particular ran-
dom walk (condition D.1). After the connection between the iso-perimetric in-
equality and the ergodic flow is established, the geometric property allows us to
use the first result to bound the conductance from below. In what follows we pro-
vide an outline of the proof, auxiliary results and, finally, the formal proof.
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3.2.1. Outline of the proof. The proof follows the arguments in Lovász and Si-
monovits [36] and Lovász and Vempala [37]. In order to bound the ergodic flow of
A ∈ A, consider the particular disjoint partition K = S̃1 ∪ S̃2 ∪ S̃3, where S̃1 ⊂ A,
S̃2 ⊂ K\A and S̃3 consists of points in A or K\A for which the one-step proba-
bility of going to the other set is at least cn/2 (to be defined later). Therefore we
have


(A) =
∫
A

Pu(K\A)dQ(u) = 1

2

∫
A

Pu(K\A)dQ(u) + 1

2

∫
K\A

Pu(A)dQ(u)

≥ 1

2

∫
S̃1

Pu(K\A)dQ(u) + 1

2

∫
S̃2

Pu(A)dQ(u) + cn

4
Q(S̃3),

where the second equality holds because 
(A) = 
(K\A).
Since the first two terms could be arbitrarily small, the result will follow by

bounding the last term from below. This will be achieved by a new iso-perimetric
inequality tailored to the CLT framework and derived in Section 3.2.2. This result
will provide a lower bound on Q(S̃3), which is increasing in the distance between
S̃1 and S̃2.

Therefore, it remains to show that the distance between S̃1 and S̃2 is suit-
ably bounded below. This follows from the geometric property stated in condi-
tion D.1. Given two points u ∈ S̃1 and v ∈ S̃2, we have Pu(K\A) ≤ cn/2 and
Pv(A) ≤ cn/2. Therefore, the total variation distance between their one-step dis-
tributions is bounded as

‖Pu − Pv‖TV ≥ |Pu(A) − Pv(A)| ≥ 1 − cn.

In such a case, condition D.1 implies that the distance ‖u − v‖ is bounded from
below by hn. Since u and v are arbitrary points, the distance between sets S̃1 and
S̃2 is bounded below by hn.

This leads to a lower bound for the global conductance. After bounding the
global conductance from below, Theorem 2 follows by invoking the conductance
theorem of [36] restated in equation (3.6) and the CLT conditions.

3.2.2. An iso-perimetric inequality. We start by defining a notion of approx-
imate log-concavity. A function f : Rd → R is said to be log-β-concave if, for
every α ∈ [0,1], x, y ∈ R

d , we have

f
(
αx + (1 − α)y

) ≥ βf (x)αf (y)1−α

for some β ∈ (0,1], and f is said to be log-concave if β can be taken to be one. The
class of log-β-concave functions is rather broad, including, for example, various
nonsmooth and discontinuous functions.

This concept is relevant under our CLT conditions C.1–C.3, since the relations
(2.4) and (2.5) imposed by these conditions imply the following:
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LEMMA 1. Over the set K , the functions f (λ) := �(λ)/
∫
� �(λ)dλ and �(λ)

can be written as the product of a Gaussian function, e−1/2λ′Jλ, and a log-β-
concave function with parameter

β = e−2(ε1+ε2‖K‖2
J /2).

The representation of Lemma 1 gives us a convenient structure to establish the
following iso-perimetric inequality.

LEMMA 2. Consider any measurable partition of the form K = S1 ∪ S2 ∪ S3
such that the distance between S1 and S2 is at least t , that is, d(S1, S2) ≥ t . Let
Q(S) = ∫

S f dx/
∫
K f dx. Then, for any lower semi-continuous function f (x) =

e−‖x‖2
m(x), where m is a log-β-concave function, we have

Q(S3) ≥ β
2te−t2/4

√
π

min{Q(S1),Q(S2)}.

The iso-perimetric inequality of Lemma 2 states that if two subsets of K are far
apart, the measure of the remaining subset of K should be comparable to the mea-
sure of at least one of the original subsets. This iso-perimetric inequality extends
the iso-perimetric inequality in Kannan and Li [28]. The proof builds on their proof
as well as on the ideas in Applegate and Kannan [2]. Unlike the inequality in Kan-
nan and Li [28], Lemma 2 removes the smoothness assumptions on f , covering
both non-log-concave and discontinuous cases.

The following corollary extends Lemma 2 to the case of an arbitrary covariance
matrix J .

COROLLARY 1 (Iso-perimetric inequality). Consider any measurable par-
tition of the form K = S1 ∪ S3 ∪ S2, such that d(S1, S2) ≥ t , and let Q(S) =∫
S f dx/

∫
K f dx. Then, for any lower semi-continuous function f (x) =

e−1/2x′Jxm(x), where m is a log-β-concave function and J is positive definite
covariance matrix, we have

Q(S3) ≥ β
√

λminte
−λmint

2/8

√
2

π
min{Q(S1),Q(S2)},

where λmin denotes the minimum eigenvalue of J .

3.2.3. Proof of Theorem 2. Fix an arbitrary set A ∈ A, and denote by Ac =
K\A the complement of A with respect to K . We will prove that


(A) ≥ cn

4
β

√
2

πe
min

{
hn

2

√
λmin,1

}
min{Q(A),Q(Ac)},(3.10)
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where β = e−2(ε1+ε2‖K‖2
J /2) is as defined in Lemma 1. This result implies the de-

sired bound on the global conductance φ.
Consider the following auxiliary definitions:

S̃1 =
{
u ∈ A :Pu(A

c) <
cn

2

}
, S̃2 =

{
v ∈ Ac :Pv(A) <

cn

2

}
,

S̃3 = K\(S̃1 ∪ S̃2).

In this case Q(S̃1) ≤ Q(A)/2, we have


(A) =
∫
A

Pu(A
c) dQ(u) ≥

∫
A\S̃1

Pu(A
c) dQ(u) ≥

∫
A\S̃1

cn

2
dQ(u)

≥ cn

2
Q(A\S̃1) ≥ cn

4
Q(A),

which immediately implies the inequality (3.10). In the case Q(S̃2) ≤ Q(Ac)/2,
we apply a similar argument.

In the remaining case Q(S̃1) ≥ Q(A)/2 and Q(S̃2) ≥ Q(Ac)/2, we proceed as
follows. Since 
(A) = 
(Ac), we have that


(A) =
∫
A

Pu(A
c) dQ(u) = 1

2

∫
A

Pu(A
c) dQ(u) + 1

2

∫
Ac

Pv(A)dQ(v)

≥ 1

2

∫
A\S̃1

Pu(A
c) dQ(u) + 1

2

∫
Ac\S̃2

Pv(A)dQ(v)

≥ 1

2

∫
S̃3

cn

2
dQ(u) = cn

4
Q(S̃3),

where we used that S̃3 = K\(S̃1 ∪ S̃2) = (A\S̃1) ∪ (Ac\S̃2). Given the definitions
of the sets S̃1 and S̃2, for every u ∈ S̃1 and v ∈ S̃2, we have

‖Pu − Pv‖TV ≥ Pu(A) − Pv(A) = 1 − Pu(A
c) − Pv(A) ≥ 1 − cn.

In such a case, by condition D.1, we have that ‖u − v‖ > hn for every u ∈ S̃1
and v ∈ S̃2. Thus, we can apply the iso-perimetric inequality of Corollary 1, with
d(S̃1, S̃2) ≥ hn, to bound Q(S̃3). We then obtain∫

A
Pu(A

c) dQ(u) ≥ max
0≤t≤hn

cn

4
β

√
2

π

√
λminte

−1/8λmint
2

min{Q(S̃1),Q(S̃2)}

≥ cn

4
β

√
2

πe
min

{
hn

2

√
λmin,1

}
min{Q(A),Q(Ac)},

where we used the fact that max0≤t≤hn

√
λminte

−1/8λmint
2

is bounded below
by min{hn

√
λmin,2}e−1/2 and that min{Q(S̃1),Q(S̃2)} ≥ min{Q(A),Q(Ac)}/2.

Thus, the inequality (3.10) and the lower bound on conductance (3.7) follow.
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The bound (3.8) on the number of steps of the Markov chain follows from the
lower bound on conductance (3.7) and the conductance theorem of [36] restated
in equation (3.6). The remaining results in Theorem 2 follow by invoking the CLT
conditions. �

3.2.4. The case of the Gaussian random walk. In order to provide a concrete
example of our complexity bounds, we consider the canonical random walk in-
duced by a Gaussian distribution. Such a random walk is completely characterized
by an initial point u0, a fixed standard deviation σ > 0 and its one-step move.
The latter is defined by the procedure of drawing a point y from a Gaussian dis-
tribution centered at the current point u with covariance matrix σ 2I and then, if
y ∈ K , moving to y with probability min{f (y)/f (u),1} = min{�(y)/�(u),1}, and
otherwise staying at u.

We start with the following auxiliary result.

LEMMA 3. Let a : Rn → R be a function such that lna is Lipschitz with con-
stant L over a compact set K . Then, for every u ∈ K and r > 0,

inf
y∈B(u,r)∩K

[a(y)/a(u)] ≥ e−Lr .

Given the ball K = B(0,‖K‖), we can bound the Lipschitz constant of the
function −λ′Jλ/2 by

L = sup
λ∈K

‖Jλ‖ = λmax‖K‖.(3.11)

We define the parameter σ of the Gaussian random walk as

σ = min
{

1

4
√

dL
,

‖K‖
120d

}
.(3.12)

Using (3.11) and that ‖K‖ >
√

d/λmin, it follows that

σ ≥ 1

120λmax
√

d‖K‖ .(3.13)

In order to apply Theorem 2 we rely on σ being defined in (3.12) as a function
of the relevant theoretical quantities. More practical choices of the parameter, as
in Robert and Rosenthal [43] and Gelman, Roberts and Gilks [17], suggest that we
tune the parameter to ensure a particular average acceptance rate for the steps of the
Markov chain. These cases are exactly the cases covered by our (theoretical) choice
of σ (of course, different constant acceptance rates lead to different constants in the
proof of the theorem). Moreover, a different choice of covariance matrix for the
auxiliary Gaussian distribution can lead to improvements in practice but, under
the assumptions on the matrix J , does not affect the overall dependence on the
dimension d , which is our focus here.
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Next we verify conditions D.1 and D.2 for the Gaussian random walk. Although
this approach follows that in Lovász and Vempala [37–39], there are two important
differences which call for a new proof. First, we no longer rely on the log-concavity
of f . Second, we use a different random walk.

LEMMA 4. Let u, v ∈ K := B(0,‖K‖), suppose that σ ≤ min{ 1
4
√

dL
,

‖K‖
120d

},
and ‖u − v‖ < σ

8 , where L is the Lipschitz constant specified in equation (3.11).

Under conditions C.1–C.2, we have for β = e−2(ε1+ε2‖K‖2
J /2) that

‖Pu − Pv‖TV ≤ 1 − β

3e
.

COMMENT 3.1. Therefore, the Gaussian random walk satisfies condition D.1
with

cn = β

3e
and hn = σ

8
.(3.14)

Under the CLT framework, that is, conditions C.1, C.2 and C.3, we have that cn

and hn as defined in (3.14) satisfy condition D.2 with

1/hn = Op(d) and 1/cn = Op(1),

and λmin bounded away from zero.
By applying Theorem 2 to the Gaussian random walk, the conductance bound

(3.7) becomes

1/φ = O

(
λmax

λmin
de2(ε1+ε2‖K‖J /2)

)
= Op(d)

and the bound on the number of steps Nε in (3.8) becomes

Op(d2 ln(M/ε)).(3.15)

Next we discuss and bound the dependence on M , the “distance” of the initial
distribution Q0 from the stationary distribution Q as defined in (3.5). A natural
candidate for a starting distribution Q0 is the one-step distribution conditional on
a proper move from an arbitrary point u ∈ K . Thus,

Q0(A) = p−1
u ·

∫
K∩A

min
{
f (x)q(u|x)

f (u)q(x|u)
,1

}
q(x|u)dx,

where

pu =
∫
K

min
{
f (x)q(u|x)

f (u)q(x|u)
,1

}
q(x|u)dx

is the probability of a proper move, namely the move to x ∈ K,x �= u, after one
step of the chain from u ∈ K . We emphasize that, in general, such choice of Q0
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could lead to values of M that are arbitrarily. In fact, this could happen even in
the case of the stationary density being a uniform distribution on a convex set (see
Lovász and Vempala [39]). However, this is not the case under the CLT framework
as shown by the following lemma.

LEMMA 5. Suppose conditions C.1 and C.2 hold, then for β =
e−2(ε1+ε2‖K‖2

J /2) we have that with a probability pu ≥ β/(3e) the random walk
makes a proper move. Moreover, let u ∈ K and Q0 be the associated one-step
distribution conditional on performing a proper move starting from u, then Q0 is
M-warm with respect to Q, where

lnM = O
(
d ln(‖K‖2

J ) + ‖K‖2
J + ε1 + ε2‖K‖2

J

)
.

Under conditions ε1 = op(1), ε2‖K‖J = op(1) and ‖K‖J = O(
√

d) we have

lnM = Op(d lnd) and pu ≥ 1/(3e) + op(1).

COMMENT 3.2 (Overall complexity for Gaussian walk). The combination of
this result with relation (3.15), which was derived from Theorem 2, yields the
overall (burn-in plus post burn-in) running time

Op(d3 lnd).

4. The complexity of Monte Carlo integration. This section considers our
second task of interest—that of computing a high dimensional integral of a
bounded real valued function g:

μg =
∫
K

g(λ)dQ(λ).(4.1)

Theorem 2 showed that the CLT conditions provide enough structure to bound the
conductance of the Markov chain associated with a particular random walk. Below
we also show how the conductance and CLT-based bounds on conductance impact
the computational complexity of calculating (4.1) via standard schemes (long run,
multiple runs and subsampling). These new characterizations complement the pre-
vious well-known characterizations of the error in estimating (4.1) in terms of the
covariance functions of the underlying chain (Geyer [19], Casella and Roberts [9]
and Fishman [15]).

In what follows, a random variable λt is distributed according to Qt , the proba-
bility measure obtained after iterating the chain t times, beginning from a starting
measure Q0. The chain λt , t = 0,1, . . . has the stationary distribution Q. Accord-
ingly, a standard estimate of (4.1), called the long-run (lr) average, takes the form

μ̂g = 1

N

B+N∑
i=B

g(λi),(4.2)
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discarding the first B draws and the burn-in sample, and using subsequent N draws
of the Markov chain.

The dependent nature of the chain increases the number of post-burn-in draws N

needed to achieve a desired precision compared to the infeasible case of indepen-
dent draws from Q. It turns out that, as in the preceding analysis, the conductance
of the Markov chain is crucial for determining the appropriate N .

The starting point of our analysis is a central limit theorem for reversible
Markov chains due to Kipnis and Varadhan [31]. Consider a reversible Markov
chain on K with a stationary distribution Q. The lag k autocovariance of the sta-
tionary time series g(λi), i = 1,2, . . . , obtained by starting the Markov chain with
the stationary distribution Q is defined as

γk = CovQ(g(λi), g(λi+k)).

Then, for a stationary, irreducible and reversible Markov chain,

NE[(μ̂g − μg)
2] → σ 2

g =
+∞∑

k=−∞
γk(4.3)

almost surely. If σ 2
g is finite, then

√
N(μ̂g − μg)→

d
N(0, σ 2

g ).(4.4)

In our case, γ0 is finite since g is bounded. Let us recall a result, due to Lovász
and Simonovits [36], which states that σ 2

g can be bounded using the global con-
ductance φ of a stationary, irreducible and reversible Markov chain: Let g be a
square integrable function with respect to the stationary measure Q, then

|γk| ≤
(

1 − φ2

2

)|k|
γ0 and σ 2

g ≤ γ0

(
4

φ2

)
.(4.5)

We will use these conductance-based bounds to obtain bounds on the complexity
of integration under the CLT conditions.

There exist other methods for constructing the sequence of draws in construct-
ing estimators of the type (4.2) (see Geyer [19] for a detailed discussion). In ad-
dition to the long run (lr) method, we also consider the subsample (ss) and multi-
start (ms) methods. Denote the number of post burn-in draws corresponding to
each method as Nlr , Nss and Nms . As mentioned above, the long run method con-
sists of generating the first point using the starting distribution Q0 and, after the
burn-in period, selecting the Nlr subsequent points to compute the sample average.
The subsample method also uses only one sample path, but the Nss draws used in
the sample average are spaced out by S steps of the chain. Finally, the multi-start
method uses Nms different sample paths, initializing each one independently from
the starting probability distribution Q0 and picking the last draw in each sample
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path after the burn-in period to compute the average. Thus, all estimators discussed
above take the form

μ̂g = 1

N

N∑
i=1

g(λi,B)

with the underlying sequence λ1,B, λ2,B, . . . , λN,B produced as follows:

• for lr, λi,B = λi+B , where B is the burn-in period;
• for ss, λi,B = λiS+B , where S is the number of draws being skipped;
• for ms, λi,B are i.i.d. draws from QB , that is, λi,B ∼ λB for every i.

There is a final issue that must be addressed. Both the central limit theorem
of [31], restated in equations (4.3) and (4.4) and the conductance-based bound of
[36] on covariances restated in equation (4.5) require that the initial point be drawn
from the stationary distribution Q. However, we are starting the chain from some
other distribution Q0, and in order to apply these results we need first to run the
chain for sufficiently many steps B , to bring the distribution of the draws QB close
to Q in total variation metric. This is what we call the burn-in period. However,
even after the burn-in period there is still a discrepancy between Q and QB , which
should be taken into account. But once QB is close to Q, we can use the results on
complexity of integration where sampling starts with Q to bound the complexity
of integration where sampling starts with QB , where the bound depends on the
discrepancy between QB and Q. Thus, our computational complexity calculations
take into account all of the following three facts: (i) we are starting with a dis-
tribution Q0 that is M-warm with respect to Q, (ii) from Q0 we are making B

steps with the chain in the burn-in period to obtain QB such that ‖QB − Q‖TV
is sufficiently small, and (iii) we are only using draws after the burn-in period to
approximate the integral.

We use the mean-square error as the measure of closeness for a consistent esti-
mator as follows:

MSE(μ̂g) = E[(μ̂g − μg)
2].

THEOREM 3 (Complexity of integration). Let Q0 be M-warm with respect
to Q, and let ḡ := supλ∈K |g(λ)|. In order to obtain

MSE(μ̂g) < ε

it is sufficient to use the following lengths of the burn-in sample, B , and post-burn-
in samples, Nlr,Nss,Nms :

B =
(

2

φ2

)
ln

(
24

√
Mḡ2

ε

)
and

Nlr = γ0

ε

6

φ2 , Nss = 3γ0

ε
with S = 2

φ2 ln
(

6γ0

ε

)
, Nms = 2γ0

3ε
.
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TABLE 1
Burn-in and post burn-in bounds on the complexity of integration of a bounded function

via conductance

Method Quantities Complexity

Long run B + Nlr
2
φ2 (ln(

24
√

Mḡ2

ε )) + 2
φ2 (

3γ0
ε )

Subsample B + Nss · S 2
φ2 (ln(

24
√

Mḡ2

ε )) + 2
φ2 (

3γ0
ε ln(

24γ0
ε ))

Multi-start B × Nms
2
φ2 (ln(

24
√

Mḡ2

ε )) × 2γ0
3ε

The overall complexities of the lr, ss and ms methods are thus B + Nlr , B + SNss

and B × Nms .

For convenience, Table 1 tabulates the bounds for the three different schemes.
Note that the dependence on M and ḡ is only via log terms. Although the opti-
mal choice of the method depends on the particular values of the constants, when
ε ↘ 0, the long-run algorithm has the smallest (best) bound, while the multi-
start algorithm has the largest (worst) bound on the number of iterations. Table
2 presents the computational complexities implied by the CLT conditions, namely

‖K‖J = O
(√

d
)
, ε1 = op(1) and ε2‖K‖2

J = op(1),

and the Gaussian random walk studied in Section 3.2.4. The table assumes γ0 and ḡ

are constant, though it is straightforward to tabulate the results for the case, where
γ0 and ḡ grow at polynomial speed with d . Finally, note that the bounds apply
under a slightly weaker condition than the CLT requires, namely that ε1 = Op(1)

and ε2‖K‖2
J = Op(1).

5. Applications. In this section, we verify that the CLT conditions and the
analysis apply to a variety of statistical problems. In particular, we focus on the
MCMC estimator (1.3) as an alternative to M- and Z-estimators. Here our goal is

TABLE 2
Burn-in and post burn-in bounds on the complexity of integration of a bounded function using the

Gaussian random walk under the CLT framework with ‖K‖J = O(
√

d), ε1 = op(1),
ε2‖K‖2

J = op(1) and ḡ = O(1)

Method Burn-in complexity Post-burn-in complexity

Long run Op(d3 lnd · ln ε−1) + Op(d2 · ε−1)

Subsample Op(d3 lnd · ln ε−1) + Op(d2 · ε−1 · ln ε−1)

Multi-start Op(d3 lnd · ln ε−1) × Op(ε−1)
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to derive the high-level conditions C1–C3 from appropriate primitive conditions,
and thus show the efficient computational complexity of the MCMC estimator.

5.1. M-estimation. We present two examples in M-estimation. We begin with
the canonical log-concave cases within the exponential family. Then we drop the
concavity and smoothness assumptions to illustrate the full applicability of the
approach developed in this paper.

5.1.1. Exponential family. Exponential families play a very important role
in statistical estimation (cf. Lehmann and Casella [33]), especially in high-
dimensional contexts (see Portnoy [41], Ghosal [20] and Stone et al. [46]). For
example, the high-dimensional situations arise in modern data sets in technomet-
ric and econometric applications. Moreover, exponential families have excellent
approximation properties and are useful for approximation of densities that are not
necessarily of the exponential form (see Stone et al. [46]).

We base our discussion on the asymptotic analysis of Ghosal [20]. In order to
simplify the exposition, we invoke the more canonical conditions similar to those
given in Portnoy [41]. Moreover, we assume that these conditions, numbered E.1
to E.4, hold uniformly in the sample size n.

E.1 Let X1, . . . ,Xn be i.i.d observations from a d-dimensional canonical expo-
nential family with density

h(x; θ) = exp
(
x′θ − ψ(θ)

)
,

where θ ∈ � is an open subset of R
d , and d → ∞ as n → ∞. Fix a sequence

of parameter points θ0 ∈ �. Set μ = ψ ′(θ0) and J = ψ ′′(θ0), the mean and
covariance of the observations, respectively. Following Portnoy [41], we im-
plicitly re-parameterize the problem, so that the Fisher information matrix
J = I .

For a given prior π on �, the posterior density of θ over � conditioned on the
data takes the form

πn(θ) ∝ π(θ) ·
n∏

i=1

h(Xi; θ) = π(θ) · exp
(
nX̄′θ − nψ(θ)

)
,

where X̄ = ∑n
i=1 Xi/n is the empirical mean of the data.

We associate every point θ in the parameter space � with a local parameter
λ ∈ � = √

n(� − θ) − s, where

λ = √
n(θ − θ0) − s,

and s = √
n(x̄−μ) is a first-order approximation to the normalized maximum like-

lihood and extremum estimate. By design, we have that E[s] = 0 and E[ss ′] = Id .
Moreover, by Chebyshev’s inequality, the norm of s can be bounded in probability,
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‖s‖ = Op(
√

d). Finally, the posterior density of λ over � = √
n(� − θ0) − s is

given by f (λ) = �(λ)∫
� �(λ)dλ

, where

�(λ) = exp
(
X̄′√nλ − nψ

(
θ0 + λ + s√

n

)
+ nψ

(
θ0 + s√

n

))
(5.1)

× π

(
θ0 + λ + s√

n

)/
π

(
θ0 + s√

n

)
.

We impose the following regularity conditions (following Ghosal [20] and Port-
noy [41]):

E.2 Consider the following quantities associated with higher moments in a neigh-
borhood of the true parameter θ0, uniformly in n:

B1n(c) := sup
θ,η

{Eθ |η′(xi − μ)|3 :η ∈ Sd,‖θ − θ0‖2 ≤ cd/n},

B2n(c) := sup
θ,η

{Eθ |η′(xi − μ)|4 :η ∈ Sd,‖θ − θ0‖2 ≤ cd/n},

where Sd = {η ∈ R
d :‖η‖ = 1}. There are p > 0 and c0 > 0 such that

B1n(c) < c0 + cp and B2n(c) < c0 + cp , for all c > 0 and all n.
E.3 The prior density π is proper and satisfies a positivity requirement at the true

parameter

sup
θ∈�

ln[π(θ)/π(θ0)] = O(d),

where θ0 is the true parameter. Moreover, the prior π also satisfies the local
Lipschitz condition

| lnπ(θ) − lnπ(θ0)| ≤ V (c)
√

d‖θ − θ0‖,
for all θ such that ‖θ −θ0‖2 ≤ cd/n and some V (c) such that V (c) < c0 +cp ,
with the latter holding for all c > 0.

E.4 The parameter dimension d grows at the rate such that d3/n → 0.

Condition E.2 strengthens an analogous condition of Ghosal [20] and implies
an analogous assumption by Portnoy [41]. Condition E.3 is similar to the condition
on the prior in Ghosal [20]. For further discussion of this condition, see [4]. Con-
dition E.4 states that the parameter dimension should not grow too quickly relative
to the sample size.

THEOREM 4. Conditions E.1–E.4 imply conditions C.1–C.3, with ‖K‖ =
C

√
d for some C > 1.
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COMMENT 5.1. Combining Theorems 1 and 4, we have the asymptotic nor-
mality of the posterior, ∫

�
|f (λ) − φ(λ)|dλ = op(1).

Furthermore, we can apply Theorem 2 to the posterior density f to bound the
convergence time (number of steps) of the Metropolis walk needed to obtain a
draw from f (with a fixed level of accuracy). The convergence time is at most

Op(d2)

after the burn-in period; together with the burn-in, the convergence time is

Op(d3 lnd).

Finally, the integration bounds stated in the previous section also apply to the pos-
terior f .

5.1.2. Curved exponential family. Next, we consider the case of a d-dimen-
sional curved exponential family. The curved family is general enough to allow
for nonconcavities and even nonsmoothness in the log-likelihood function, which
the canonical exponential family did not allow for. We assume that the following
conditions, numbered as NE.1 to NE.4, hold uniformly in the sample size n, in
addition to the previous conditions E.1 to E.4.

NE.1 Let X1, . . . ,Xn be i.i.d observations from a d-dimensional curved exponen-
tial family with density

h(x; θ) = exp
(
x′θ(η) − ψ(θ(η))

)
.

The parameter of interest is η, whose true value η0 lies in the interior of a
convex compact set � ⊂ R

d1 . The true value of θ , induced by η0 is given
by θ0 = θ(η0). The mapping η �→ θ(η) takes values from R

d1 to R
d where

c · d ≤ d1 ≤ d , for some c > 0. Finally, d → ∞ as n → ∞.
NE.2 True value η0 is the unique solution to the system θ(η) = θ0, and we have

that ‖θ(η) − θ(η0)‖ ≥ ε0‖η − η0‖, for some ε0 > 0 and all η ∈ � .

Thus, the parameter θ corresponds to a high-dimensional linear parametriza-
tion of the log-density, and η describes the lower-dimensional parametrization of
the log-density. There are many classical examples of curved exponential families
(see, e.g., Efron [14], Lehmann and Casella [33] and Bandorff-Nielsen [3]). An
example of the condition that puts a curved structure onto an exponential family is
a moment restriction of the type∫

m(x,α)h(x, θ) dx = 0.

This condition restricts θ to lie on a curve that can be parameterized as {θ(η), η ∈
�}, where the parameter η = (α,β) contains the component α as well as other
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components β . In econometric applications, moment restrictions often represent
Euler equations that result from the data x being an outcome of an optimization by
rational decision-makers (see, e.g., Hansen and Singleton [21], Chamberlain [10],
Imbens [25] and Donald, Imbens and Newey [13]). Thus, the curved exponential
framework is a fundamental complement of the exponential framework, at least in
certain fields of data analysis.

We require the following additional regularity conditions on the mapping θ(·).
NE.3 For every κ , and uniformly in γ ∈ B(0, κ

√
d), there exists a linear operator

G : Rd1 → R
d such that G′G has eigenvalues bounded from above and away

from zero, uniformly in n, and for every n√
n
(
θ(η0 + γ /

√
n) − θ(η0)

) = r1n + (Id + R2n)Gγ,

where ‖r1n‖ ≤ δ1n, ‖R2n‖ ≤ δ2n, δ1n

√
d → 0 and δ2nd → 0.

Thus, the mapping η �→ θ(η) is allowed to be nonlinear and discontinuous. For
example, the additional condition of δ1n = 0 implies the continuity of the mapping
in a neighborhood of η0. More generally, condition NE.3 does impose that the map
admits an approximate linearization in the neighborhood of η0, whose quality is
controlled by the errors δ1n and δ2n. An example of a kind of map allowed in this
framework is given in Figure 2.

Given a prior π on �, the posterior of η, given the data, is denoted by

πn(η) ∝ π(θ(η)) ·
n∏

i=1

h(Xi;η) = π(θ(η)) · exp
(
nX̄′θ(η) − nψ(θ(η))

)
.

In this framework, we also define the local parameters to describe contiguous de-
viations from the true parameter as

γ = √
n(η − η0) − s, s = (G′G)−1G′√n(x̄ − μ),

FIG. 2. This figure illustrates the mapping θ(·). The (discontinuous) solid line is the mapping while
the dash line represents the linear map induced by G. The dash-dot line represents the deviation band
controlled by r1n and R2n.
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where s is a first-order approximation to the normalized maximum likelihood and
extremum estimate. Further, we have that E[s] = 0, E[ss′] = (G′G)−1 and ‖s‖ =
Op(

√
d). The posterior density of γ over �, where � = √

n(�−η0)−s, is f (γ ) =
�(γ )∫

� �(γ ) dγ
, where

�(γ ) = exp
(
nX̄′

(
θ

(
η0 + γ + s√

n

)
− θ

(
η0 + s√

n

)))

× exp
(
−nψ

(
θ

(
η0 + γ + s√

n

))
+ nψ

(
θ

(
η0 + s√

n

)))
(5.2)

× π

(
θ

(
η0 + γ + s√

n

))/
π

(
θ

(
η0 + s√

n

))
.

The condition on the prior is the following.

NE.4 The prior π(η) ∝ π(θ(η)), where π(θ) satisfies condition E.3.

THEOREM 5. Conditions E.1–E.4 and NE.1–NE.4 imply conditions C.1–C.3
with ‖K‖ = C

√
d/λmin for some C > 1, where λmin is the minimal eigenvalue of

J = G′G.

COMMENT 5.2. Theorems 1 and 5 imply the asymptotic normality of the pos-
terior, ∫

�
|f (γ ) − φ(γ )|dγ = op(1),

where

φ(γ ) = 1

(2π)d/2 det ((G′G)−1)
1/2 exp

(
−1

2
γ ′(G′G)γ

)
.

Theorem 2 implies further that the main results of the paper on the polynomial
time sampling and integration apply to this curved exponential family.

5.2. Z-estimation. Next we turn to the Z-estimation problem, where our basic
setup closely follows the setup in, for example, He and Shao [22]. We make the
following assumption that characterizes the setting. As in the rest of the paper, the
dimension of the parameter space d and other quantities will depend on the sample
size n.

ZE.0 The data X1, . . . ,Xn are i.i.d, and there exists a vector-valued moment func-
tion m :X × R

d → R
d1 such that

E[m(X,θ)] = 0 at the true parameter θ = θ0 ∈ �n ⊂ B(θ0, Tn) ⊂ R
d .

Both the dimension of the moment function d1 and the dimension of the
parameter d grow with the sample size n, and we restrict that cd1 ≤ d ≤ d1
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for some constant c. The parameter space �n is an open convex set contained
in the ball B(θ0, Tn) of radius Tn, where the radius Tn can grow with the
sample size n.

The normalized empirical moment function takes the form

Sn(θ) = 1√
n

n∑
i=1

m(Xi, θ).

The Z-estimator for θ0 is defined as the minimizer of the norm ‖Sn(θ)‖. How-
ever, in many applications of interests, the lack of continuity or smoothness of the
empirical moments Sn(θ) can pose serious computational challenges to obtaining
the minimizer. As argued in the introduction, in such cases the MCMC method-
ology could be particularly appealing for obtaining the quasi-posterior means and
medians as computationally tractable alternatives to the Z-estimator based on min-
imization.

We then make the following variance and smoothness assumptions on the mo-
ment functions in addition to the basic condition ZE.0.

ZE.1 Let Sd1 = {η ∈ R
d1 :‖η‖ = 1} denote the unit sphere. The variance of

the moment function is bounded, namely supη∈Sd1 E[(η′m(X,θ0))
2] =

O(1). The moment functions have the following continuity property:
supη∈Sd1 (E[(η′(m(X, θ) − m(X,θ0)))

2])1/2 ≤ O(1) · ‖θ − θ0‖α , uniformly
in θ ∈ �n, where α ∈ (0,1] and is bounded away from zero, uniformly in n.
Moreover, the family of functions F = {η′(m(X, θ) − m(X,θ0)) : θ ∈ �n ⊂
R

d, η ∈ Sd1} is not very complex, namely the uniform covering entropy
of F is of the same order as the uniform covering entropy of a Vapnik–
Chervonenkis (VC) class of functions with VC dimension of order O(d),
and F has an envelope F a.s. bounded by M = O(

√
d).

The smoothness assumption covers moment function both in the smooth case,
where α = 1, and the nonsmooth case, where α < 1. For example, in the classical
mean regression problem, we have the smooth case α = 1 and in the quantile re-
gression problems mentioned in the introduction, we have a nonsmooth case, with
α = 1/2. The condition on the function class F is standard in statistical estimation
and, in particular, holds for F formed as VC classes or certain stable transforma-
tions of VC classes (see van der Vaart and Wellner [50]). We use the entropy in
conjunction with the maximal inequalities similar to those developed in He and
Shao [22]. The condition on the envelope is standard, but it can be replaced by an
alternative condition on supf ∈F n−1 ∑n

i=1 f 4 (see, e.g., He and Shao [22]) which
can weaken the assumptions on the envelope.

Next, we make the following additional smoothness and identification assump-
tions uniformly in the sample size n.
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ZE.2 The mapping θ �→ E[m(X,θ)] is continuously twice differentiable with
‖ supη∈Sd1 ∇2

θ E[m(X,θ)][η,η]‖ bounded by O(
√

d) uniformly in θ , uni-
formly in n. The eigenvalues of A′A, where A = ∇E[m(X,θ0)] is the Jaco-
bian matrix, are bounded above and away from zero uniformly in n. Finally,
there exist positive numbers μ and δ such that, uniformly in n, the following
identification condition holds

‖E[m(X,θ)]‖ ≥ (√
μ‖θ − θ0‖ ∧ δ

)
.(5.3)

This condition requires the population moments E[m(X,θ)] to be approximately
linear in the parameter θ near the true parameter value θ0, and also ensures identi-
fiability of the true parameter value θ0.

Finally, we impose the following restrictions on the parameter dimension d and
the radius of the parameter space Tn.

ZE.3 The following condition holds: (a) d4 log2 n/n → 0, (b) d2+α logn/nα → 0
and (c) dT 2α

n logn/n → 0.

These conditions are reasonable. Indeed, if we set α = 1 and use radius Tn =
O(d logn) for parameter space, then we require only that d4/n → 0, ignoring
logs, which is only slightly stronger than the condition d3/n → 0 needed in the
exponential family case. In the latter case, the information on higher-order mo-
ments lead to the weaker requirement. Also, an important difference here is that
we are using the flat prior in the Z-estimation framework, and this necessitates us
to restrict the radius of parameter space by Tn. Note that even though the bounded
radius Tn = O(1) is already plausible for many applications, we can allow for the
radius to grow, for example, Tn = O(d logn) when α = 1.

In order to state the formal results concerning the quasi-posterior, let us define
the quasi-posterior and related quantities. First, we define the criterion function as
Qn(θ) = −‖Sn(θ)‖2 and treat it as a replacement for the log-likelihood. We will
use a flat prior over the parameter space �, so that the quasi-posterior density of θ

over � takes the form

πn(θ) = exp{Qn(θ)}∫
� exp{Qn(θ ′)}dθ ′ .

We associate every point θ in the parameter space � with a local parameter
λ ∈ � = √

n(� − θ0) − s, where λ = √
n(θ −θ0)− s, and s = −(A′A)−1A′Sn(θ0)

is a first-order approximation to extremum estimate. We have that E[m(X,θ0) ×
m(X,θ0)

′] is bounded in the spectral norm, and (A′A)−1A′ has a bounded norm,
so that the norm of s can be bounded in probability, ‖s‖ = Op(

√
d), by the Cheby-

shev inequality. Finally, the quasi-posterior density of λ over � = √
n(�− θ0)− s

is given by

f (λ) = �(λ)
/∫

�
�(λ′) dλ′,
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where

�(λ) = exp
(
Qn

(
θ0 + (λ + s)/

√
n
) − Qn

(
θ0 + s/

√
n
))

.

THEOREM 6. Conditions ZE.0–ZE.3 imply conditions C.1–C.3 with ‖K‖ =
C

√
d/λmin for C > 1, where λmin is the minimal eigenvalue of J = 2A′A.

COMMENT 5.3. Theorems 1 and 6 imply the asymptotic normality of the
quasi-posterior, ∫

�
|f (λ) − φ(λ)|dλ = op(1),

where

φ(λ) = 1

(2π)d/2 detJ 1/2 exp
(
−1

2
λ′Jλ

)
.

Theorem 2 implies further that the main results of the paper on the polynomial
time sampling and integration apply to the quasi-posterior density formulated for
the Z-estimation framework.

6. Conclusion. In this paper we study the implications of the statistical large
sample theory for computational complexity of Bayesian and quasi-Bayesian es-
timation carried out using a canonical Metropolis random walk. Our analysis per-
mits the parameter dimension of the problem to grow to infinity and allows the un-
derlying log-likelihood or extremum criterion function to be discontinuous and/or
nonconcave. We establish polynomial complexity by exploiting a central limit the-
orem framework which provides the structural restriction on the problem, namely,
that the posterior or quasi-posterior density approaches a normal density in large
samples.

We focused the analysis on (general) Metropolis random walks and provided
specific bounds for a canonical Gaussian random walk. Although it is widely used
for its simplicity, this canonical random walk is not the most sophisticated algo-
rithm available. Thus, in principle, further improvements could be obtained by
considering different kinds of algorithms, for example, the Langevin diffusion
[1, 42, 44, 47]. (Of course, the algorithm requires a smooth gradient of the log-
likelihood function, which rules out the nonsmooth and discontinuous cases em-
phasized here.) Another important research direction, as suggested by a referee,
could be to develop sampling and integration algorithms that most effectively ex-
ploit the proximity of the posterior to the normal distribution.
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APPENDIX A: PROOFS OF OTHER RESULTS

PROOF OF THEOREM 1. From C.1 it follows that∫
�

|f (λ) − φ(λ)|dλ ≤
∫
K

|f (λ) − φ(λ)|dλ +
∫
Kc

(
f (λ) + φ(λ)

)
dλ

=
∫
K

|f (λ) − φ(λ)|dλ + op(1).

Now, denote Cn = (2π)d/2 det (J−1)
1/2∫

K �(ω)dω
and write∫

K

∣∣∣∣f (λ)

φ(λ)
− 1

∣∣∣∣φ(λ)dλ =
∫
K

∣∣∣∣Cn · exp
(

ln�(λ) −
(
−1

2
λ′Jλ

))
− 1

∣∣∣∣φ(λ)dλ.

Combining the expansion in C.2 with conditions imposed in C.3,∫
�

∣∣∣∣f (λ)

φ(λ)
− 1

∣∣∣∣φ(λ)dλ ≤
∫
K

|Cn · exp(ε1 + ε2λ
′Jλ) − 1|φ(λ)dλ

+
∫
K

|Cn · exp(−ε1 − ε2λ
′Jλ) − 1|φ(λ)dλ

≤ 2
∫
K

∣∣Cn · eop(1) − 1
∣∣φ(λ)dλ

≤ 2
∣∣Cne

op(1) − 1
∣∣.

The proof then follows by showing that Cn →p 1. Using condition C.1 on the set
K = B(0,‖K‖) and C.2,

1

Cn

≥
∫
K �(λ)dλ

(1 + o(1))
∫
K e−1/2λ′Jλ dλ

≥
∫
K e−1/2λ′Jλe−ε1−ε2/2(λ′Jλ) dλ

(1 + o(1))
∫
K e−1/2λ′Jλ dλ

= e−ε1

(1 + o(1))

√
det(J )

det(J + ε2J )

×
∫
K e−1/2λ′(J+ε2J )λ/[(2π)d/2 det((J + ε2J )−1)1/2]dλ∫

K e−1/2λ′Jλ/[(2π)d/2 det(J−1)1/2]dλ
.

Since ε2 < 1/2, we can define W ∼ N(0, (1+ε2)
−1J−1) and V ∼ N(0, J−1), and

we rewrite our bound as

1

Cn

≥ e−ε1

(1 + o(1))

(
1

1 + ε2

)d/2 P(‖W‖ ≤ ‖K‖)
P (‖V ‖ ≤ ‖K‖)

≥ e−ε1

(1 + o(1))

(
1

1 + ε2

)d/2

,
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where the last inequality follows from P(‖W‖ ≤ ‖K‖) ≥ P(‖√1 + ε2W‖ ≤
‖K‖) = P(‖V ‖ ≤ ‖K‖). Likewise,

1

Cn

≤
∫
K �(λ)dλ∫

K e−1/2λ′Jλ dλ
≤ eε1

(
1

1 − ε2

)d/2

.

Therefore Cn →p 1 since ε1 →p 0 and ε2 · d →p 0 (cf. Comment 2.1). �

PROOF OF LEMMA 1. The result follows immediately from equa-
tions (2.4)–(2.5). �

PROOF OF LEMMA 2. Let M := β 2te−t2/4√
π

. Take any measurable partition of
K = S1 ∪ S2 ∪ S3, with d(S1, S2) ≥ t . It suffices to prove that∫ (

M1Si
(x) − 1S3(x)

)
f (x) dx < 0 for i = 1 or i = 2.

We will prove this by contradiction. Suppose that∫ (
M1Si

(x) − 1S3(x)
)
f (x) dx > 0 for i = 1 and i = 2.

We will use the Localization Lemma of Kannan, Lovász and Simonovits [29] in
order to reduce a high-dimensional integral to a low-dimensional integral. �

LEMMA 6 (Localization lemma). Let g and h be two lower semi-continuous
Lebesgue integrable functions on R

d such that∫
Rd

g(x) dx > 0 and
∫

Rd
h(x) dx > 0.

Then, there exist two points a and b ∈ R
d and a linear function γ̃ : [0,1] → R+

such that∫ 1

0
γ̃ d−1(t)g

(
(1 − t)a + tb

)
dt > 0 and

∫ 1

0
γ̃ d−1(t)h

(
(1 − t)a + tb

)
dt > 0,

where ([a, b], γ̃ ) is said to form a needle.

PROOF. See Kannan, Lovász and Simonovits [29].
By the Localization Lemma, there exists a needle (a, b, γ̃ ) such that∫ 1

0
γ̃ d−1(l)f

(
(1 − l)a + lb

)(
M1Si

(
(1 − l)a + lb

) − 1S3

(
(1 − l)a + lb

))
du > 0,

for i = 1,2. Equivalently, using γ (u) = γ̃ (u/‖b − a‖) and v := (b − a)/‖b − a‖,
where ‖b − a‖ ≥ t , and rearranging, we have, for i = 1,2,

M

∫ ‖b−a‖
0

γ d−1(u)f (a + uv)1Si
(a + uv)du

(A.1)

>

∫ ‖b−a‖
0

γ d−1(u)1S3(a + uv)f (a + uv)du.
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In order for the left-hand side of (A.1) to be positive for i = 1 and i = 2, the
line segment [a, b] must contain points in S1 and S2. Since d(S1, S2) ≥ t , we have
that S3 ∩ [a, b] contains an interval [w,w + t] whose length is at least t . Thus, we
can partition the line segment [a, b] into [0,w) ∪ [w,w + t] ∪ (w + t,‖b − a‖].
We will prove that, for every w ∈ R such that 0 ≤ w ≤ w + t ≤ ‖b − a‖,∫ w+t

w
γ d−1(u)f (a + uv)du ≥ M min

{∫ w

0
γ d−1(u)f (a + uv)du,

(A.2) ∫ ‖b−a‖
w+t

γ d−1(u)f (a + uv)du

}
,

which contradicts the relation (A.1) and proves the lemma.
First, note that f (a + uv) = e−‖a+uv‖2

m(a + uv) = e−u2+r1u+r0m(a + uv),
where r1 := 2a′v and r0 := −‖a‖2. Next, recall that m(a + uv)γ d−1(u) is still a
unidimensional log-β-concave function on u. By Lemma 9 presented in Appen-
dix B, there exists a unidimensional logconcave function m̂ such that βm̂(u) ≤
m(a + uv)γ d−1(u) ≤ m̂(u) for every u. Moreover, there exists numbers s0 and
s1 such that m̂(w) = s0e

s1w and m̂(w + t) = s0e
s1(w+t). Due to the log-concavity

of m̂, this implies that

m̂(u) ≥ s0e
s1u for u ∈ (w,w + t) and m̂(u) ≤ s0e

s1u otherwise.

Thus, if we replace m(a +uv)γ d−1(u) by s0e
s1u on the right-hand side of (A.2)

and replace m(a + uv)γ d−1(u) by βs0e
s1u on the left-hand side of (A.2), and

define r̂1 = r1 + s1 and r̂0 := r0 + ln s0, we obtain the relation

β

∫ w+t

w
e−u2+r̂1u+r̂0 du ≥ M min

{∫ w

0
e−u2+r̂1u+r̂0 du,

∫ ‖b−a‖
w+t

e−u2+r̂1u+r̂0 du

}
.

This relation is stronger than (A.2) and thus implies (A.2). This relation is equiva-
lent to

β

∫ w+t

w
e−(u−r̂1/2)2+r̂0+r̂2

1 /4 du

≥ M min
{∫ w

0
e−(u−r̂1/2)2+r̂0+r̂2

1 /4 du,(A.3)

∫ ‖b−a‖
w+t

e−(u−r̂1/2)2+r̂0+r̂2
1 /4 du

}
.

Now, cancel the term er̂0+r̂2
1 /4 on both sides and, since we want the inequality (A.3)

holding for any w, (A.3) is implied by∫ w+t

w
e−u2

du ≥ 2te−t2/4
√

π
min

{∫ w

−∞
e−u2

du,

∫ ∞
w+t

e−u2
du

}
(A.4)

holding for any w. This inequality is Lemma 2.2 in Kannan and Li [28]. �
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PROOF OF COROLLARY 1. Consider the change of variables x̃ = J 1/2x√
2

and

S̃ = J 1/2S√
2

. Then, in x̃ coordinates, f (x̃) = ex̃′x̃m(
√

2J−1/2x̃) satisfies the assump-

tion of Lemma 2 and d(S̃1, S̃2) ≥ t
√

λmin√
2

. The result follows by applying Lemma 2

with x̃ coordinates. �

PROOF OF LEMMA 3. The result is immediate from the stated assumptions.
�

PROOF OF THEOREM 2. See Section 3.2. �

PROOF OF LEMMA 4. Define K := B(0,R), so that R is the radius of K ;
also let r := 4

√
dσ (where σ 2 ≤ 1

16dL2 ), and let q(x|u) denote the normal density

function centered at u with covariance matrix σ 2I . We use the following notation:
Bu = B(u, r), Bv = B(v, r) and Au,v = Bu ∩ Bv ∩ K . By definition of r , we have
that

∫
Bu

q(x|u)dx = ∫
Bv

q(x|v) dx ≥ 1 − P {|U | ≥ 4} > 1 − 1/104, where U ∼
N(0,1).

Define the direction w = (v −u)/‖v −u‖. Let H1 = {x ∈ Bu ∩Bv :w′(x −u) ≥
‖v − u‖/2}, H2 = {x ∈ Bu ∩ Bv :w′(x − u) ≤ ‖v − u‖/2}. Consider the one-step
distributions from u and v. We first observe in view of Lemmas 1 and 3, that
infx∈B(y,r) f (x)/f (y) ≥ βe−Lr . Then, we have that

‖Pu − Pv‖TV ≤ 1 −
∫
K

min{dPu, dPv} ≤ 1 −
∫
Au,v

min{dPu, dPv}

= 1 −
∫
Au,v

min
{
q(x|u)min

{
f (x)

f (u)
,1

}
,

q(x|v)min
{
f (x)

f (v)
,1

}}
dx

≤ 1 − βe−Lr
∫
Au,v

min{q(x|u), q(x|v)}dx

≤ 1 − βe−Lr

(∫
H1∩K

q(x|u)dx +
∫
H2∩K

q(x|v) dx

)
,

where ‖u − v‖ < σ/8. Next we will bound from below the last sum of integrals
for an arbitrary u ∈ K .

We first bound the integrals over the possibly larger sets, respectively H1
and H2. Let h denote the density function of a univariate random variable dis-
tributed as N(0, σ 2). It is easy to see that h(t) = ∫

w′(x−u)=t q(x|u)dx, that
is, h is the marginal density of q(·|u) along the direction w up to a transla-
tion. Let H3 = {x :−‖u − v‖/2 < w′(x − u) < ‖v − u‖/2}. Note that Bu ⊂
H1 ∪ (H2 −‖u− v‖w)∪H3, where the union is disjoint. Armed with these obser-



COMPLEXITY OF MCMC 2045

vations, we have∫
H1

q(x|u)dx +
∫
H2

q(x|v) dx =
∫
H1

q(x|u)dx +
∫
H2−‖u−v‖w

q(x|u)dx

≥
∫
Bu

q(x|u)dx −
∫
H3

q(x|u)dx

=
∫
Bu

q(x|u)dx −
∫ ‖u−v‖/2

−‖u−v‖/2
h(t) dt

≥ 1 − 1

104 −
∫ ‖u−v‖/2

−‖u−v‖/2

e−t2/2σ 2

√
2πσ

dt(A.5)

≥ 1 − 1

104 − ‖u − v‖ 1√
2πσ

≥ 1 − 1

104 − 1

8
√

2π

≥ 9

10
,

where we used ‖u − v‖ < σ/8 by the hypothesis of the lemma.
In order to take the support K into account, we can assume that u, v ∈ ∂K , that

is, ‖u‖ = ‖v‖ = R (otherwise the integral will be larger). Let z = (v + u)/2 and
define the half space Hz = {x : z′x ≤ z′z} whose boundary passes through u and v.
(Using ‖u‖ = ‖v‖ = R, it follows that z′v = z′u = z′z/2).

By the symmetry of the normal density, we have∫
H1∩Hz

q(x|u)dx = 1
2

∫
H1

q(x|u)dx.

Although H1 ∩ Hz does not lie in K in general, simple arithmetic shows that H1 ∩
(Hz − r2z

R‖z‖) ⊆ K .1

Using that
∫
Hz\(Hz−r2z/(R‖z‖)) q(x|u) = ∫ r2/R

0 h(t) dt , we have∫
H1∩K

q(x|u)dx ≥
∫
H1∩(Hz−r2z/(R‖z‖))

q(x|u)dx

≥
∫
H1∩Hz

q(x|u)dx −
∫ r2/R

0
h(t) dt

1Indeed, take y ∈ H1 ∩ (Hz − r2

R
z‖z‖ ). We can write y = z‖z‖ (

y′z
‖z‖ ) + s, where ‖s‖ ≤ r [since

‖y − z‖z‖ (
y′z
‖z‖ )‖ ≤ ‖y − z‖ = ‖y − u+v

2 ‖ ≤ 1
2‖y − u‖ + 1

2‖y − v‖ ≤ r] and s is also orthogonal

to z. Since y ∈ (Hz − r2

R
z‖z‖ ), we have y′z

‖z‖ ≤ z′z‖z‖ − r2

R
= ‖z‖ − r2

R
≤ R − r2

R
. Therefore, ‖y‖ =√

(
y′z
‖z‖ )2 + ‖s‖2 ≤

√
(R − r2

R
)2 + r2 =

√
R2 − r2(1 − r2

R2 ) ≤ R.
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≥ 1

2

∫
H1

q(x|u)dx −
∫ r2/R

0

e−t2/2σ 2

√
2πσ

dt

≥ 1

2

∫
H1

q(x|u)dx − 4
√

dσ
1

30
√

d

1√
2πσ

,

where we used that r
R

< 1
30

√
d

since r = 4
√

dσ and σ
R

< 1
120d

.
By symmetry, the same inequality holds when u and H1 are replaced by v

and H2, respectively. Adding these inequalities and using (A.5), we have(∫
H1∩K

q(x|u)dx +
∫
H2∩K

q(x|v) dx

)
≥ 9

20
− 4

15
√

2π
≥ 1/3.(A.6)

Thus, we have

‖Pu − Pv‖ < 1 − β

3
e−Lr,

and the result follows since Lr ≤ 1. �

PROOF OF LEMMA 5. We calculate the probability p of making a proper
move. We will use the notation defined in the Proof of Lemma 4. Let u be an
arbitrary point in K . We have that

pu =
∫
K

min
{
f (x)

f (u)
,1

}
q(x|u)dx ≥ βe−Lr

∫
Bu∩K

q(x|u)dx ≥ βe−Lr 1

3
,

where we used that infx∈B(y,r) f (x)/f (y) ≥ βe−Lr by Lemmas 1 and 3 and the
bound (A.6) for the case that u = v so that Bu = H1 ∪ H2. Since Lr < 1, we
conclude that pu ≥ β/3e.

We then note that, for Q(A) > 0, the ratio Q0(A)/Q(A) is bounded above
by supx∈K dQ0(x)/dQ(x); dQ0(x)/dx is bounded above by p−1

u e−‖x‖2/2σ 2 ·
(2πσ 2)−d/2 ≤ p−1

u · (2πσ 2)−d/2; and dQ(x)/dx is bounded over x ∈ K be-

low by (2π)−d/2 det(J 1/2)e−1/2x′Jxβ1/2 ≥ (2π)−d/2λ
d/2
mine

−1/2‖K‖2
J β1/2, where

β = e−2(ε1+ε2‖K‖2
J /2). Thus, we can bound

max
A∈A:Q(A)>0

Q0(A)

Q(A)
≤ p−1

u σ−dλ
−d/2
min e1/2‖K‖2

J β−1/2

≤ 3e
[
120

√
dλmax‖K‖/√

λmin
]d

e1/2‖K‖2
J β−3/2

≤ 3[120‖K‖2
J ]de3ε1+2ε2‖K‖2

J +1,

where we used the bound on σ given in (3.13) and the fact that ‖K‖J ≥ √
λmin‖K‖

and ‖K‖J >
√

d
√

λmax/λmin (cf. Comment 2.1).
The remaining results in the lemma follow by invoking the CLT conditions.

�
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PROOF OF THEOREM 3. We have, for λB denoting the random variable with
law QB and λ denoting the random variable with law Q, MSE(μ̂g|X) denoting
the mean-square error E[(μ̂g − μg)

2|X] conditional on the element λ0,B drawn
according to X = λB or X = λ, the following:

MSE(μ̂g) = EQB
[MSE(μ̂g|λB)] = EQ

[
MSE(μ̂g|λ)

dQB(λ)

dQ(λ)

]

= EQ[MSE(μ̂g|λ)] + EQ

[
MSE(μ̂g|λ)

(
dQB(λ)

dQ(λ)
− 1

)]

≤ EQ[MSE(μ̂g|λ)] + 4ḡ2EQ

[∣∣∣∣dQB(λ)

dQ(λ)
− 1

∣∣∣∣]
= (σ 2

g,N/N) + 8ḡ2‖QB − Q‖TV,

where σ 2
g,N is N times the variance of the sample average when the Markov chain

starts from the stationary distribution Q. We also used the fact that ‖QB −Q‖TV =
1
2

∫ |dQB/dx − dQ/dx|dx.
The bound on σ 2

g,N will depend on the particular scheme, as discussed below.
We begin by bounding the burn-in period B .

We require that the second term in the bound for MSE(μ̂g) be smaller than ε/3,
which is equivalent to imposing that ‖QB − Q‖TV < ε

24ḡ2 . Using the conductance
theorem of [36] restated in equation (3.6), since Q0 is M-warm with respect to Q,
we require that

√
M

(
1 − φ2

2

)B

≤ √
Me−Bφ2/2 ≤ ε

24ḡ2 or B ≥ 2

φ2 ln
(

24
√

Mḡ2

ε

)
.

Next, we bound σ 2
g,N . Specifically, we determine the number of post-burn-in

iterations Nlr , Nss or Nms needed to set MSE(μ̂g) ≤ ε.

1. To bound Nlr , note that σ 2
g,N ≤ γ0

4
φ2 , where the last inequality follows from

the conductance-based covariance bound of [36] restated in equation (4.5). Thus,
Nlr = γ0

ε
6
φ2 and B set above suffice to obtain MSE(μ̂g) ≤ ε.

2. To bound Nss , we first must choose a spacing S to ensure that the autoco-
variances are sufficiently small. We start by bounding

σ 2
g,N ≤ γ0 + 2N |γS | ≤ γ0 + 2Nγ0

(
1 − φ2

2

)S

,

where we used the conductance-based covariance bound of [36] restated in equa-
tion (4.5) and λi,B and λi+1,B are spaced by S steps of the chain. By choosing S

as (
1 − φ2

2

)S

≤ e−Sφ2/2 ≤ ε

6γ0
or S ≥ 2

φ2 ln
(

6γ0

ε

)
,
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and using Nss = 3γ0
ε

, we obtain

MSE(μ̂g) ≤ 1

Nss

(γ0 + 2Nss |γS |) + 8ḡ2‖QB − Q‖TV

≤ ε

3γ0

(
γ0 + 2

3γ0

ε
γ0

ε

6γ0

)
+ ḡ2 ε

3ḡ2 ≤ ε.

3. To bound Nms , we observe, using that λi,B , i = 1,2, . . . , are i.i.d. across i,
that MSE(μ̂g) ≤ γ0

Nms
+ ε/3 ≤ ε provided that Nms ≥ 2γ0/(3ε). �

PROOF OF THEOREM 4. Given

K = B(0,‖K‖), where ‖K‖2 = cd,

condition C.1 holds by an argument given in proof of Ghosal’s Lemma 4. Let

λn(c) =
√

cd
n

B1n(0) + cd
n

B2n(c). Our condition C.2 is satisfied by an argument
similar to that given in the proof of Ghosal’s Lemma 1 with

ε1 = O(λn(c)‖s‖2) = Op(λn(c)d) = Op(d3/2/n1/2) = op(1) and

ε2 = O(λn(c)) = Op(d1/2/n1/2) = op(1/d),

and our condition C.3 is satisfied since ε2‖K‖2
J = op(1). �

COMMENT A.1. Ghosal [20] proves his results for the support set K ′ =
B(0,C

√
d logd). His arguments actually go through for the support set K =

B(0,C
√

d) due to the concentration of normal measure under d → ∞ asymp-
totics (see [4] for details).

PROOF OF THEOREM 5. Take K = B(0,‖K‖), where ‖K‖2 = Cd1 for
some C sufficiently large independent of d (see [4] for details). Let λn(c) =√

cd
n

B1n(0) + cd
n

B2n(c). Then, condition C.1 is satisfied by the argument given
in the proof of Ghosal’s Lemma 4 and NE.3. Further, condition C.2 is satisfied by
the argument similar to that given in the proof of Ghosal’s Lemma 1 and by NE.3
with

ε1 = Op

(
δ1nd

1/2 + δ2nd + λn(C)(δ1nd
1/2 + δ2nd

1/2 + d)
) = op(1),

ε2 = Op(λn(C)) = op(d1/2/n1/2) = op(1/d),

and condition C.3 is satisfied since ε2‖K‖2
J = op(1). �

COMMENT A.2. For further details, see [4].
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PROOF OF THEOREM 6. We will first establish the following linear approxi-
mation for Sn(θ) in a neighborhood of θ0:

sup
‖θ−θ0‖≤C

√
d/n

‖Sn(θ) − Sn(θ0) − n1/2A(θ − θ0)‖ = op(d−1/2),(A.7)

for any fixed constant C > 0. For notational convenience, let

δn(θ) = Sn(θ) − Sn(θ0) − n1/2A(θ − θ0),
(A.8)

Wn(θ) = Sn(θ) − Sn(θ0) − E[Sn(θ) − Sn(θ0)].
Let Fn = {η′(m(X, θ) − m(X,θ0)) :‖θ − θ0‖ ≤ ρn, η ∈ Sd1}. Under condi-
tion ZE.1, we apply the following maximal inequality adopted from He and Shao
[22] (see [5] for details) to an empirical process indexed by members of Fn:

sup
f ∈Fn

∣∣∣∣∣n−1/2
n∑

i=1

f (Xi)

∣∣∣∣∣
(A.9)

= Op

(√
V

√
logn

(
sup

f ∈Fn

E[f 2] + n−1V M2 logn

)1/2)
.

Here, the multiplier
√

V arises as the order of the uniform covering entropy inte-
gral, where V is the VC dimension of a VC function class Fn or an entropically
equivalent class Fn. We assumed in ZE.1 that V = O(d). Also, M is the a.s. bound
on the envelope of Fn, assumed to be of order O(

√
d). Finally, we assumed that

supf ∈Fn
(E[f 2])1/2 = O(ρα

n ). Therefore, we have that uniformly in θ ∈ �n,

‖Wn(θ)‖ = Op

(√
d logn(‖θ − θ0‖2α + n−1dM2 logn)1/2)

(A.10)
= Op

(√
d logn‖θ − θ0‖α + n−1/2d3/2 logn

)
.

Note that (A.10) and an expansion with an integral reminder around θ − θ0
shows that uniformly in θ ∈ �n,

‖δn(θ)‖ ≤ ‖Wn(θ)‖ + ‖∇2E[Sn(ξ)] · [θ − θ0, θ − θ0]‖
= Op(d1/2 log1/2 n‖θ − θ0‖α + n−1/2d3/2 logn)

+ Op

(√
dn‖θ − θ0‖2)

,

where ξ lies between θ and θ0 and we used ZE.2 that imposes ‖∇2E[Sn(ξ)] ·
[γ, γ ]‖ = O(

√
dn‖γ ‖2). The condition (A.7) follows from the growth condi-

tion ZE.3(a).
Building upon (A.7), Lemmas 7 and 8 verify that conditions C.1–C.3 hold, prov-

ing Theorem 6. �

LEMMA 7. Under conditions ZE.1–ZE.3, conditions C.2 and C.3 hold for
K = B(0,C

√
d), for any fixed constant C > 0.
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PROOF. Let s = −(A′A)−1A′Sn(θ0) be a first-order approximation for the ex-
tremum estimator. For θ = θ0 + (s + λ)/

√
n and θ̃ = θ0 + s/

√
n,

ln�(λ) = −‖Sn(θ)‖2 + ‖Sn(θ̃)‖2

= −λ′A′Aλ − ‖rn‖2 − 2r ′
nAλ − 2r ′

nSn(θ̃)

= −λ′A′Aλ + op(1),

where rn = δn(θ) − δn(θ̃) for δn(θ) defined in (A.8). Indeed, using (A.7) we have
‖δn(θ)‖ = op(d−1/2) and ‖δn(θ̃)‖ = op(d−1/2) uniformly over λ ∈ K ; using (A.7)
we have ‖Sn(θ̃)‖ = Op(d1/2); and moreover, ‖λ‖ = O(d1/2), and ‖s‖ = Op(d1/2)

by Chebyshev inequality. Thus, conditions C.2 and C.3 follow with ε1 = op(1),
ε2 = 0 and J = 2A′A. �

LEMMA 8. Under the conditions ZE.1, ZE.2 and ZE.3 there exist a constant
C > 0 such that by setting K = B(0,C

√
d) we have

∫
Kc �(λ) dλ = op(

∫
K �(λ)dλ)

and condition C.1 holds.

PROOF. For notational convenience, we conduct the proof in the original pa-
rameter space. Let θ̃ = θ0 + s/

√
n and ε > 0 be any small positive constant. Since

‖s‖ = Op(d1/2), there is a constant Ĉ such that ‖s‖ ≤ Ĉd1/2, with asymptotic
probability no smaller than 1 − ε. Below, we replace the last phrase by “wp 1 − ε.”

Now, since E[Sn(θ0)] = 0, we have that

Sn(θ) = Wn(θ) + Sn(θ0) + E[Sn(θ)],(A.11)

where Wn(θ) is defined in (A.10).
Next, define for C ≥ Ĉ + C̃ the sets

K̃ = B
(
θ0, C̃

√
d/n

) ⊆ K̂ = B
(
θ̃ ,C

√
d/n

)
,(A.12)

where the inclusion holds wp 1 − ε. Note that these sets are centered on different
points. We will show that, for a sufficiently large constant C̃,∫

K̂c
exp(−‖Sn(θ)‖2) dθ = op

(∫
K̂

exp(−‖Sn(θ)‖2) dθ

)
,

which implies the claim of the lemma.

Step 1. Relative bound on ‖Sn(θ0)‖. Note that ‖Sn(θ0)‖ = Op(d1/2) by Cheby-
shev inequality. Using equation (5.3) of condition ZE.2, we have that

‖E[Sn(θ)]‖2 ≥ (√
n
(√

μ‖θ − θ0‖ ∧ δ
))2 ≥ (

C̃
√

μ
√

d
)2 ∀θ ∈ K̃c,

since ‖θ − θ0‖ ≥ C̃
√

d/n. Therefore, there exists C̃ such that wp 1 − ε

‖E[Sn(θ)]‖ > 5‖Sn(θ0)‖ uniformly in θ ∈ K̃c.(A.13)
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Step 2. Relative bound on ‖Wn(θ)‖. Using equation (A.10), we have that, for
uniformly in θ ∈ �n ⊂ B(0, Tn),

‖Wn(θ)‖ = Op

(√
d logn‖θ − θ0‖α + n−1/2d3/2 logn

)
.

Building on that, we will show that ‖Wn(θ)‖ = op(
√

n(δ ∧ ‖θ − θ0‖)) uniformly
on θ ∈ K̃c, and therefore

‖Wn(θ)‖ = op(‖E[Sn(θ)]‖) uniformly in θ ∈ K̃c.(A.14)

For the case that δ ≤ ‖θ − θ0‖ ≤ Tn, it suffices to have
√

d lognT α
n +

n−1/2d3/2 logn = o(n1/2). On the other hand, for C
√

d/n ≤ ‖θ − θ0‖ ≤ δ, it
suffices to have

√
d logn‖θ − θ0‖α + n−1/2d3/2 logn = o(

√
n‖θ − θ0‖). In-

deed,
√

d logn‖θ − θ0‖α = (
√

n‖θ − θ0‖) if
√

d logn = o(
√

n‖θ − θ0‖1−α),
which is implied by

√
d logn = o(

√
n(d/n)(1−α)/2). Moreover, n−1/2d3/2 logn =

o(
√

n‖θ −θ0‖) if n−1/2d3/2 logn = o(
√

n
√

d/n). All of the above conditions hold
under condition ZE.3.

Step 3. Lower bound on ‖Sn(θ)‖. We will show that

‖Sn(θ)‖2 = ‖E[Sn(θ)] + Sn(θ0) + Wn(θ)‖2 ≥ 1
2‖E[Sn(θ)]‖2(A.15)

uniformly, for all θ ∈ K̃c wp 1 − 2ε.
For any two vectors a and b, we have ‖a + b‖2 ≥ (‖a‖ − ‖b‖)2 = ‖a‖2 −

2‖a‖‖b‖+‖b‖2 ≥ ‖a‖2(1−2‖b‖/‖a‖). Applying this relation with a = E[Sn(θ)]
and b = Wn(θ) + Sn(θ0), (A.13) and (A.14), we obtain (A.15).

Step 4. Bounding the integrals. Using (A.15) and ZE.2, wp 1 − 3ε∫
K̂c

exp(−‖Sn(θ)‖2) dθ

≤
∫
K̃c

exp(−‖Sn(θ)‖2) dθ

≤
∫
K̃c

exp
(
−1

2
‖E[Sn(θ)]‖2

)
dθ

≤
∫
K̃c

exp
(
−1

2
μn‖θ − θ0‖2

)
dθ +

∫
K̃c

exp
(
−1

2
μnδ2

)
dθ

≤ (2π)d/2(nμ)−d/2P
(‖U‖ > C̃

√
d/n

) + exp
(
−1

2
μnδ2

)
vol(�n)

≤ (2π)d/2(nμ)−d/2 exp
(
−(C̃ − 1/

√
μ)2μ

2
d

)
+ νdT d

n exp
(
−1

2
μnδ2

)
,

where νd is the volume of the d-dimensional unit ball, which goes to zero as d

grows, and U ∼ N(0, 1
μn

Id). In the first line we used the inclusion (A.12), and in
the last line we used a standard Gaussian concentration inequality, Proposition 2.2
in Talagrand [48] and the fact that E[‖U‖] ≤ (E[‖U‖2])1/2 = 1√

μ

√
d/n.
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On the other hand, by Lemma 7 we have

−‖Sn(θ)‖2 + ‖Sn(θ̃)‖2 = n‖A(θ − θ̃ )‖2 + op(1)

uniformly for θ ∈ K̂ . This yields that wp 1 − ε∫
K̂

exp(−‖Sn(θ)‖2) dθ ≥ exp(−‖Sn(θ̃)‖2)

∫
K̂

exp
(−n‖A(θ − θ̃ )‖2 + op(1)

)
dθ

≥ exp(−C2d)

∫
K̂

exp(−C1n‖θ − θ̃‖2) dθ

≥ exp(−C2d)(2π)d/2(C1n)−d/2(
1 − P

(‖U‖ ≤ C
√

d/n
))

≥ exp(−C2d)(2π)d/2(C1n)−d/2(
1 − o(1)

)
,

where constant C1 is maximal eigenvalue of A′A, constant C2 is such that
‖Sn(θ̃)‖2 ≤ C2d wp 1 − ε by Lemma 7 and U ∼ N(0, 1

C1n
Id). In the last line we

used the standard Gaussian concentration inequality, Proposition 2.2 in Talagrand
[48], with constant C > 2/

√
C1 to get P(‖U‖ ≤ C

√
d/n) = o(1).

Finally, we obtain that wp 1 − 5ε∫
K̂c exp(−‖Sn(θ)‖2) dθ∫
K̂ exp(−‖Sn(θ)‖2) dθ

≤ (2π)d/2(μn)−d/2 exp(−(C̃ − 1/
√

μ)2μ/2d) + νdT d
n exp(−1/2μnδ2)

exp(−C2d)(2π)d/2(C1n)−d/2(1 + o(1))
,

where the right-hand side is o(1) by choosing C̃ > 0 sufficiently large, and noting
that terms (2π)d/2n−d/2 cancel and that d lnTn = o(n) by condition ZE.3.

Since ε > 0 can be set as small as we like, the conclusion follows. �

APPENDIX B: BOUNDING LOG-β-CONCAVE FUNCTIONS

LEMMA 9. Let f : R → R be a unidimensional log-β-concave function. Then,
there exists a logconcave function g : R → R such that

βg(x) ≤ f (x) ≤ g(x) for every x ∈ R.

PROOF. Consider h(x) = lnf (x) a (lnβ)-concave function. Now, let m be the
smallest concave function greater than h(x) for every x, that is,

m(x) = sup

{
k∑

i=1

λih(yi) :k ∈ N, λ ∈ R
k, λ ≥ 0,

k∑
i=1

λi = 1,

k∑
i=1

λiyi = x

}
.

Recall that the epigraph of a function w is defined as epiw = {(x, t) : t ≤ w(x)}.
Using our definitions, we have that epim = conv(epih) (the convex hull of epih),
where both sets lie in R

2. In fact, the values of m are defined only by points in the
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boundary of conv(epih). Consider (x,m(x)) ∈ epim, since the epigraph is convex,
and since this point is on the boundary, there exists a supporting hyperplane H at
(x,m(x)). Moreover, (x,m(x)) ∈ conv(epih ∩ H). Since H is one dimensional,
(x,m(x)) can be written as convex combination of at most 2 points of epih.

Furthermore, by definition of log-β-concavity, we have that

ln 1/β ≥ sup
λ∈[0,1],y,z

λh(y) + (1 − λ)h(z) − h
(
λy + (1 − λ)z

)
.

Thus, h(x) ≤ m(x) ≤ h(x) + ln(1/β). Exponentiating gives f (x) ≤ g(x) ≤
1
β
f (x), where g(x) = em(x) is a logconcave function. �
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