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We consider maximum likelihood estimation for both causal and non-
causal autoregressive time series processes with non-Gaussian o-stable noise.
A nondegenerate limiting distribution is given for maximum likelihood esti-
mators of the parameters of the autoregressive model equation and the para-
meters of the stable noise distribution. The estimators for the autoregressive
parameters are n 1/@_consistent and converge in distribution to the maximizer
of a random function. The form of this limiting distribution is intractable,
but the shape of the distribution for these estimators can be examined using
the bootstrap procedure. The bootstrap is asymptotically valid under general
conditions. The estimators for the parameters of the stable noise distribution
have the traditional n'/2 rate of convergence and are asymptotically normal.
The behavior of the estimators for finite samples is studied via simulation,
and we use maximum likelihood estimation to fit a noncausal autoregressive
model to the natural logarithms of volumes of Wal-Mart stock traded daily
on the New York Stock Exchange.

1. Introduction. Many observed time series processes appear “spiky” due
to the occasional appearance of observations particularly large in absolute value.
Non-Gaussian «-stable distributions, which have regularly varying or “heavy” tail
probabilities (P(|X| > x) ~ (constant)x™%, x > 0, 0 < o < 2), are often used
to model these series. Processes exhibiting non-Gaussian stable behavior have
appeared, for example, in economics and finance (Embrechts, Kliippelberg and
Mikosch [18], McCulloch [25] and Mittnik and Rachev [28]), signal processing
(Nikias and Shao [29]) and teletraffic engineering (Resnick [32]).

The focus of this paper is maximum likelihood (ML) estimation for the pa-
rameters of autoregressive (AR) time series processes with non-Gaussian stable
noise. Specific applications for heavy-tailed AR models include fitting network
interarrival times (Resnick [32]), sea surface temperatures (Gallagher [20]) and
stock market log-returns (Ling [24]). Causality (all roots of the AR polynomial
are outside the unit circle in the complex plane) is a common assumption in the
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time series literature since causal and noncausal models are indistinguishable in
the case of Gaussian noise. However, noncausal AR models are identifiable in the
case of non-Gaussian noise, and these models are frequently used in deconvolution
problems (Blass and Halsey [3], Chien, Yang and Chi [10], Donoho [16] and Scar-
gle [36]) and have also appeared for modeling stock market trading volume data
(Breidt, Davis and Trindade [5]). We, therefore, consider parameter estimation for
both causal and noncausal AR models. We assume the parameters of the AR model
equation and the parameters of the stable noise distribution are unknown, and we
maximize the likelihood function with respect to all parameters. Since most stable
density functions do not have a closed-form expression, the likelihood function is
evaluated by inversion of the stable characteristic function. We show that ML es-
timators of the AR parameters are n!/%-consistent (n represents sample size) and
converge in distribution to the maximizer of a random function. The form of this
limiting distribution is intractable, but the shape of the distribution for these es-
timators can be examined using the bootstrap procedure. We show the bootstrap
procedure is asymptotically valid provided the bootstrap sample size m, — 00
with m, /n — 0 as n — oco. ML estimators of the parameters of the stable noise
distribution are n'/?-consistent, asymptotically independent of the AR estimators
and have a multivariate normal limiting distribution.

Parameter estimation for causal, heavy-tailed AR processes has already been
considered in the literature (Davis and Resnick [14], least squares estimators;
Davis [11] and Davis, Knight and Liu [12], least absolute deviations and other
M -estimators; Mikosch, Gadrich, Kliippelberg and Adler [27], Whittle estima-
tors; Ling [24], weighted least absolute deviations estimators). The weighted least
absolute deviations estimators for causal AR parameters are n'/?-consistent, and
the least squares and Whittle estimators are (n/Inn)!/%-consistent, while the un-
weighted least absolute deviations estimators have the same faster rate of con-
vergence as ML estimators, n'/%. Least absolute deviations and ML estimators
have different limiting distributions, however, and simulation results in Calder and
Davis [8] show that ML estimates (obtained using the stable likelihood) tend to be
more efficient than least absolute deviations estimates, even when the AR process
has regularly varying tail probabilities but is not stable. Theory has not yet been
developed for the distribution of AR parameter estimators when the process is
noncausal and heavy-tailed.

In Section 2, we discuss properties of AR processes with non-Gaussian stable
noise and give an approximate log-likelihood for the model parameters. In Sec-
tion 3, we give a nondegenerate limiting distribution for ML estimators, show that
the bootstrap procedure can be used to approximate the distribution for AR pa-
rameter estimators, and discuss confidence interval calculation for the model pa-
rameters. Proofs of the Lemmas used to establish the results of Section 3 can be
found in the Appendix. We study the behavior of the estimators for finite samples
via simulation in Section 4.1 and, in Section 4.2, use ML estimation to fit a non-
causal AR model to the natural logarithms of volumes of Wal-Mart stock traded
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daily on the New York Stock Exchange. A causal AR model is inadequate for these
log-volumes since causal AR residuals appear dependent. The noncausal residu-
als appear i.i.d. (independent and identically distributed) stable, and so the fitted
noncausal AR model appears much more suitable for the series.

2. Preliminaries. Let {X;} be the AR process which satisfies the difference
equations

2.1 $o(B)X; = Z;,

where the AR polynomial ¢g(z) :=1 — ¢p1z2 — -+ — ¢opz? # 0 for |z| =1, B
is the backshift operator (B¥X, = X,_, k=0,£1,42,...), and {Z;} is an i.i.d.
sequence of random variables. Because ¢o(z) # 0 for |z| = 1, the Laurent series

expansion of 1/¢(z), 1/¢o(z) = D2 Y jz/, exists on some annulus {z: a ! <

=—00

|z| < a},a > 1, and the unique, stricgly stationary solution to (2.1) is given by X; =
Z?i_oo V¥ Z;—j (see Brockwell and Davis [6], Chapter 3). Note that if ¢ (z) # 0
for |z] <1, then ¥; =0 for j <0, and so {X,} is said to be causal since X; =

?10 Y¥jZ;—j, a function of only the past and present {Z,}. On the other hand, if
¢o(z) # 0 for |z| > 1, then X, = Z?‘;O V_;jZyj, and {X,} is said to be a purely
noncausal process. In the purely noncausal case, the coefficients {1;} satisfy (1 —
G012 — -+ — p0pzP) (Yo + Y_1z7 1 + ---) = 1, which, if ¢o, # O, implies that
Vo=V _1=--=¥1_p=0and y_, = —¢0_p1. To express ¢p(z) as the product
of causal and purely noncausal polynomials, suppose

(2.2) $o(2) =1 =001z — -+ —Oorg 2 ) — 00 rg12 — -+ — 00, rg+502"°),

where ro + so = p, Qg(z) =1—6p1z— - —00p,y2"° #O0for |z] <1, and 65 (z) :=

1 —=60,rg+12— =60, ry+5,2"° 7 0 for |z| > 1. Hence, Gg (z) is a causal polynomial
and 6 (z) is a purely noncausal polynomial. So that ¢o(z) has a unique represen-

tation as the product of causal and purely noncausal polynomials 63 (z) and 6;(2),
if the true order of the polynomial ¢(z) is less than p (if ¢, = 0), we further
suppose that 6 ,+s, 7 0 when so > 0. Therefore, if the true order of the AR poly-

nomial ¢o(z) is less than p = rg + sg, then the true order of 95 (2) is less than ro,
but the order of 65 (2) is so.

We assume throughout that the i.i.d. noise {Z;} have a univariate stable dis-
tribution with exponent «g € (0, 2), parameter of symmetry |Bo| < 1, scale para-
meter 0 < op < 00, and location parameter o € R. Let 7o = («o, Bo, 00, o) .
By definition, nondegenerate, i.i.d. random variables {S,} have a stable dis-
tribution if there exist positive constants {a,} and constants {b,} such that

a,(S1+---+ 8, + b, £ S for all n. In general, stable distributions are indexed
by an exponent o € (0, 2], a parameter of symmetry |B| < 1, a scale parameter
0 <o < oo and a location parameter u € R. Hence, T is in the interior of the sta-
ble parameter space. If 8 = 0, the stable distribution is symmetric about w, and, if
o =1 and B = 0, the symmetric distribution is Cauchy. When o = 2, the stable dis-
tribution is Gaussian with mean g and standard deviation /20 . Other properties of
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stable distributions can be found in Feller [19], Gnedenko and Kolmogorov [21],
Samorodnitsky and Taqqu [35] and Zolotarev [38].
Since the stable noise distribution has exponent o < 2,

lim x“P(|Z;| > x) = ¢(ap)ag s
X—>00

with ¢(a) := (/OOO t~%sin(t) dt)

(Samorodnitsky and Taqqu [35], Property 1.2.15). Following Properties 1.2.1
and 1.2.3 in Samorodnitsky and Taqqu [35], X; = ?‘;_Oo V¥;Z;—; also has a
stable distribution with exponent o9 and, hence, the tail probabilities for the
AR process {X;} are also regularly varying with exponent cg. It follows that
E|X,|‘S < oo forall § € [0, ag) and E|X,|‘S = oo forall § > «y.

The characteristic function for Z; is

@o(s) := Efexp(isZ;)}

(2.3) .

exp{—og(’|s|°‘0[1 + iBo(signs) tan(%)(laosﬂ_“‘) - 1)]
2.4 —{—iuos},
- if g # 1,
2. .
CXP{—GOISI[I + lﬁo;(SIgnS)ln(GOISI)] + zuos},
ifoag=1,

and so the density function for the noise can be expressed as f(z; Tg) =
Qm)~! ffooo exp(—izs)po(s)ds. No general, closed-form expression is known for
f, however; although, computational formulas exist that can be used to evaluate
f (see, e.g., McCulloch [26] and Nolan [30]). It can be shown that f(z; tg) =
oy f(og '@ = po): (@o. fo. 1.0)). £ (a0, fo. 1,0)) is unimodal on R (Ya-
mazato [37]), and f(z; (a, B, 1,0)) is infinitely differentiable with respect to
(z,a, B) on R x (0,2) x (—1, 1). There are alternative parameterizations for the
stable characteristic function ¢q (see, e.g., Zolotarev [38]), but we are using (2.4)
so that the noise density function is differentiable with respect to not only z on R
but also (a, B, 0, 1) on (0,2) x (—1,1) x (0, 00) x (—0o0, 00). From asymptotic
expansions in DuMouchel [17], if 25 := {t = (a, B, 0, w)": |t — 7ol < 8}, then
for § > O sufficiently small we have the following bounds for the partial and mixed
partial derivatives of In f(z; ) as |z| — oo:

3%In f(z; 7)
sup|—————

3%In f(z; 1)
022 sup|————| +su

dz oW

3%In f(z; 7)
o

Qs Qs Qs

(2.5)
= 0(|z|™),
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dln f(z; 7) dln f(z; 7) 3%In f(z; T)
sup| ———— _ _
Qs 0z Qs a/L Qs 0z 8,3
921 ; 921 ;
(2.6) + sup| LIS & D) Pinf&r)
25 dzdo Q| 0Bou
ZInf(z;t _
+sup| S @ D o(zI™h,
o do I
In f(z; T %In f(z; T _
e e sup| TS E D G EIIE DT,
Qs 0z do Qs da a,bL
dln f(z; T) dln f(z;T) 3%In f(z; T)
e sup|———|+sup|——— —
2 ap 2 do 2 ap
(2.8) ) s
-1 ; 0°1 ;
Qs 8,3 do Qs do
dln f(z; 7) 8%1n f(z; 7) 3%1n f(z; 7)
e sup|——~ — " 7 — - -
oy | o o | 00 0p o | 9000
(2.9)
= O(In|z]),
9%1n T
(2.10) e sup # = O([In|z|]%).
s do
From (2.1) and (2.2), Z; = (1 = 601B — --- — 6ory B")(1 — 09 rg41B — -+ —
60,rg+so B°°) X;. Therefore, for arbitrary autoregressive polynomials 07(z)=1-—
Orz—--- =67 and 0%(2) =1 = Op 112 — -+ - — Op452°, With r +5 = p, GT(Z) #0
for |z] < 1,0%(z) #0 for |z| > 1, and 6,5 # 0 when s > 0, we define
211  Z,0,5)=(01—-6B—---—6,B" )1 —0,11B—---—0,44B)X;,
where 6 := (61,...,0,)". Let 89 = (6o1,...,60p)" denote the true parame-
ter vector and note that {Z;(0o, s0)} = {Z;}. Now, let n = (1, ..., 1np+4) =

1,....0p,,B,0,n) = (0,7, and let 5y = (o1, ..., N0, p+4)" = (B, 7).
From Breidt et al. [4], given a realization {X,};_; from (2.1), the log-likelihood
of 5 can be approximated by the conditional log-likelihood

(2.12) L, )= Y [Inf(Z0,5);7)+1n|0,|I{s > 0}],
t=p+1

where {Z,(0, 5)}}_ Pt is computed using (2.11) and /{-} represents the indicator
function (see [4] for the derivation of .£). Given {X,}}_; and fixed p, we can esti-

mate s, the order of noncausality for the AR model (2.1), and ny by maximizing £
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with respect to both s and . If the function g is defined so that
g0,5)=1g;(0,917_,,

J
2.13) 0j — > 0j—kOp—stk- j=1,....,p—s,
’ k=1
gj(ﬂ,s): j
- Z Qj—kgp—s-i—k, j=p_s+1"'~ap9
k=j—p+s

with 6y = —1 and 6y = 0 whenever k ¢ {0, ..., p}, then an estimate of ¢ :=
(éo1, .., $0p)" can be obtained using the MLEs of so and 6o and the fact that
éo = g(00, s0). A similar ML approach is considered in [4] for lighter-tailed AR
processes.

3. Asymptotic results. In this section, we obtain limiting results for maxi-
mizers of the log-likelihood L. But first, we need to introduce some notation and
define a random function W (-). The ML estimators of g converge in distribution
to the maximizer of W ().

Suppose the Laurent series expansions for 1 /93 (x)=1/0 — 6p1z — --- —

Bory2") and 1/65(z) = 1/(1 = 00,rg+12 — -+ - — bo,rg+502™°) are given by 1/93@ =
Y i2om;z! and 1/65(z) = 352, x;jz~/. From (2.11),

(3 1) 8Z[(0’S)_ _9*(B)Xl‘fjv j:15""r’
' 30; | -0T(B)Xi4r—j, j=r+1,...,p,
and so, foru= (uy,...,up) €RP,
0Z:(09, s0) ¥
W = 05 (B) Xt — = w5 (B) Xy — st 416 (B) X
_ "'_upeg(B)Xt—so
= —ut(1/65 (BN Zy—1 — -+ — o (1/6] (B) Zs—y,
—Urgt1(1/05 (BN Zi—1 — -+ —up(1/05(B) Zi—s,
o0 0
=—u1 Y T Zitmj— =ty 3T Ly
j=0 j=0
0 o
— Ury+1 Z XthflJrj — T Up Z Xthfso+j'
J=s0 J=50
Therefore, if
ad 0Z(00, s0)
3.2 WZ_i=u ——2—~
(3.2) Z CJ( )Z; J 30

j=—0
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then co(u) = —up x501{so > 0} = upeo_pll{so > 0}, ci(u) = —umol{rg > 0} =
—uil{ro >0}, c—1(u) = —upxol{so =1} — (up—1 x5y +upxso+1)I{s0 > 1}, and so
on. Since {7} and {x ?O:so decay at geometric rates (Brockwell and Davis [6],
Chapter 3), for any u € R?, there exist constants C(u) > 0 and 0 < D(u) < 1 such
that

(3.3) lc;| < DI Vje{..,—1,0,1,...}.

We now define the function

W =YY {In £(Z,; + [E0)]/®opc; )Ty /% 7o)
k=1 j#0
3.4)
—In f(Z,j; T0)},

where

o {Zi j}k,j is anii.d. sequence with Z ; £ Zy,

e ¢(-) was defined in (2.3),

o {§}isiid withP(r=1)=1+po)/2and P(5x =—-1)=1— (14 Bo)/2,

e 'y =FE1+---+ Ey, where {Ey} is an i.i.d. series of exponential random vari-
ables with mean one, and

® {Z ), {6x} and {E}} are mutually independent.

Note that (1 + Bp)/2 = limy_,oo[P(Z1 > x)/P(|Z1]| > x)] (Samorodnitsky and
Taqqu [35], Property 1.2.15). Some properties of W (-) are given in the following
theorem.

THEOREM 3.1. With probability one, the function W(u) defined in (3.4) is
finite for all u € R? and has a unique maximum.

PROOF. Letu e R? and observe that

Waw =3 Y[ age; ey oo 0 Zhi (W3 T0)

k=1 j#0 9z
[e.e]
=YY [E(@o)]“oqcj (w)d
k=1 j#0
y Fl/ao[alnf(zk,j(u)§ T9) dInf(Zyj; To)}
k 0z 0z

k_l/ao) d1ln f(Zk,j§ 70)

+ 57 3 (@ o) 000 (s (T V0 — -

k=1j#0
1/0rg dln f(Zx,j; To)

+ 3> [E )]V *00gc j (w) sk~ s

k=1 j0
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where Zj j(u) lies between Z; ; and Zy ; + [E(ao)]1/“anc]~(u)5kr‘,:1/a°. Since
0 < [¢(ap)]/* 0y < 0o, by Lemmas A.1-A.3 in the Appendix, |W (u)| < oo al-
most surely. It can be shown similarly that sup, <7 |W(u)| < oo almost surely
for any T € (0, oo) and, therefore, P(ﬂ‘%ozl{sup”u”ST [W()| <oo}) =1.

Since f(-; 7o) is unimodal and differentiable on R, with positive probability,
In f(Z1+-; T9) is strictly concave in a neighborhood of zero, and so, by Remark 2
in Davis, Knight and Liu [12], W (-) has a unique maximum almost surely. [

We now give nondegenerate limiting distributions for ML estimators of 5y =
05, tp)" = (o1, - ... 6op, a0, Po. 00, 10)" and estimators of the AR parameters

o= (o1, ..., Pop) in (2.1).

A Y A
THEOREM 3.2.  There exists a sequence of maximizers fiy. = Oy » Tag) Of
L(-, 80) in (2.12) such that, as n — o0,

(35) Y@y —00) S E and (v —T0) S Y ~N@O, T (10)),

where & is the unique maximizer of W(-), & and Y are independent, and I(t) :=

g as defined in (2.13), then

A £
(3.6) n' gy — do) > T(00)E,
where
9g1(0,50)  9g1(8, )
30, 36,
3.7) X(0):= : . :
agp(ovso) 38p(0»30)
001 00,

and g1, ..., gp were also defined in (2.13).

Since T is in the interior of the stable parameter space, given i.i.d. observations
{Z:}}_,» ML estimators of T are asymptotically Gaussian with mean 7¢ and co-
variance matrix I ! (1) /n (see DuMouchel [17]). The estimators Ty, therefore,
have the same limiting distribution as ML estimators in the case of observed i.i.d.
noise. Nolan [31] lists values of I~ !(-) for different parameter values.

For u € R” and v € R*, let W, (u,v) = L(y + (n~V%ou', n=1/2v), 59) —
L (Mg, s0), and note that maximizing L£(n, so) with respect to » is equivalent to
maximizing W, (u, v) with respect to u and v if u = n'/?0(@ — 0y) and v =
nl2(r — 7¢). We give a functional convergence result for W, in the following
theorem, and then use it to prove Theorem 3.2.
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THEOREM 3.3. As n — oo, Wy(u,v) 5 W) + VN — 2-I¥I(zo)v on
C(RPH*), where N ~ N(0,X(t¢)) is independent of W(-), and C(RP*) repre-
sents the space of continuous functions on RPT*, where convergence is equivalent
to uniform convergence on every compact subset.

PROOF. Foru e R” and v e R, let

Wi v = Y {lnf<Zz+n‘”"‘°Zc;(u)Zt—j;ro)—lnf(Zz;ro)}

1=p+1 j#0
v X 0lnf(Z;t
+— Z f(; t O).

\/ﬁ t=p+1 T

Since

Wy(a,v) — W (u,v)

- u v
= Z 11’1f<Z[<0()+ m,é‘o), 70+ ﬁ)

t=p+1
n
- > 1nf<zt+n—1/“02cj(u)z,_j;ro>
t=p+1 j#0

vV & 0ln f(Z;; 1)
- Z ——— =+ @m—p) ln‘
N/ Weprlt ot
Wy, v) — Wr(u,v) + 2~ WI(trg)v = op(1) on C(RPH by Lemmas A.4-A.7.

So, the proof is complete if W, (u, v) L3 W (u) + v'N on C(RPH%).
For u € R?, let

Oop + n_l/“oup

I{So > 0},
Bop

(3.8) W,j(u) = Z [lnf(zt + Vo ch(u)Zt_j; ro) —In f(Z;; ro)}

t=p+1 Jj#0

and, for v e R4, let

vV & 9ln f(Z;; 1)
3.9 T,(v) = — 2 : )
39) ) ﬁt:p ) ik

By Lemma A.8, for fixed u and v, (W, (u), T,,(v))’ L3 (W (u), v'N)’ on R?, with

W (u) and v'N independent. Consequently, W,*(u, v) = WnT wW+T,(v) ic) W) +
v'N on R. Similarly, it can be shown that the finite dimensional distributions of
W (u, v) converge to those of W (u) + v'N, with W (-) and N independent. For any
compact set K; C R?, {W;(-)} is tight on C(K;) by Lemma A.12 and, for any
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compact set K» C R*, {T, ()} is tight on C(K>) since T, (v) is linear in v. There-

fore, by Theorem 7.1 in Billingsley [2], W5 (u, v) = WJ () +T,(v) L3 W(u)+Vv'N
on C(RPT). O

PROOF OF THEOREM 3.2. Since W, (u, v) £ W) + v'N — 2~ VI(zo)v on
C(RPHY), & uniquely maximizes W (-) almost surely, and Y = I"!(zo)N uniquely
maximizes VN — 2_1V/I(T())V, from Remark 1 in Davis, Knight and Liu [12],
there exists a sequence of maximizers of W, (-, -) which converges in distribution
to (£/,Y’). The result (3.5) follows because L(, s0) — £ (1, S0) = Wy (n'/%0 (0 —
00), n'/?(r — 70)). By Theorem 3.3, & and Y are independent.

Using the mean-value theorem,

nV%0 (Gai — do) = 1'% (g(@mr, s0) — (80, 50))

9gi1(07.50)  9g1(67, s0)
0601 26,
(3.10) = : . :
38;7(0;,&)) 38p(0;,S0)
261 20,
x n'/ @y, — 09),
where 0%, ..., 0; lie between @ML and 0. Since éML £ 0 and X (-) is continuous

at 09, (3.10) equals Z(Oo)nl/“o(éML — 0¢) + 0p(1). Therefore, the result (3.6)
follows from (3.5). [

Since the forms of the limiting distributions for éML and &ML in (3.5) and (3.6)
are intractable, we recommend using the bootstrap procedure to examine the distri-
butions for these estimators. Davis and Wu [15] give a bootstrap procedure for ex-
amining the distribution of M -estimates for the parameters of causal, heavy-tailed
AR processes; we consider a similar procedure here. Given observations {X;}}_,
from (2.1), éML from (3.5), and corresponding residuals {Z; (9ML, so) ot ob-
tained via (2.11), the procedure is implemented by first generating an i.i.d. se-
quence {Z;k}:”:"l from the empirical distribution for {Z; (@ML, so) pile A boot-
strap replicate X7, ..., X* . is then obtained from the fitted AR(p) model

m
(3.11) by (B)oiy (BYX = Z7,

where é;,[L(z) =1- QALMLZ — = érO,MLz’O and HAR‘,[L(z) =1 ér0+1,MLz —
co = Orgrso,MLZ0 (let ZF =0 for ¢ ¢ {1,...,m,}). Finally, with Z7(0, s) := (1 —
\B—---—6,B)Y1—=6,41B—---—0,4B)X] for 0 = (61,...,0,) € R and
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r + s = p, a bootstrap replicate 9:”[ of @ can be found by maximizing

np
L3 (0,50):= > [Inf(Z;(0,50); TmL) +1In 0,1 {so > 0}]
t=p+1

*

with respect to @. The limiting behavior of ] along with that of &:1” =

my?
g(é’;n ,50) (a bootstrap replicate of (})ML), is considered in Theorem 3.4. To give
a precise statement of the results, we let M, (IR”) represent the space of prob-
ability measures on R” and we use the metric d,, from Davis and Wu ([15],
page 1139) to metrize the topology of weak convergence on M, (R?). For random

elements Q, and Q of M,(RP), Q, > Q if and only if d,(Q,. Q) = 0 on R,

which is equivalent to [p, h; dQ, X JrphjdQ onRforall j €{1,2,...}, where
{h j}j?‘;l is a dense sequence of bounded, uniformly continuous functions on R”.

By Theorem 3.4, P(m)/ oML (9;an —6m1) € 1X1, ..., X,) converges in probability
to P(§ € -) on M, (IR”) [£ represents the unique maximizer of W(-)], and a similar

result holds for m,/ ®M*- (‘;5:1,, — b

THEOREM 3.4. If, as n — 00, m,, — 0o with m,/n — 0, then there exists a
A%
sequence of maximizers 8,, of L, (-,s0) such that

P(mM®™@) —Oyi) € 1X1,..., X,) > P& €)
on M,(RP) and, if §,, =g, ,0), then
(3.12)  P(ml/o(@, — @) €-1X1, ..., X)) > P(E@B0)% € )
on M, (RP) [X(-) was defined in (3.7)].

PROOF. Since Z¥(8,5) = (1—61B —---—0,B")(1 =01 B—--— 6,4, B*) x
X7, following (3.1), foru= (uy,...,up) € R?,

% (Omr. 50)

T =~ (BYX}_| — -+ — un O (B)X],,
— o104y (BYX]_y — - — u by (BYX]_,
=~ (/0 (BNZ; =+ — (103 (BN ZF,
—trg1 (/O (BN Z — - —upy (105 (BN Z),.
We define the sequence {C; (u)}?i_ o SO that
(.13) > Gz =u/7aZ?(Z§L’SO).

j=—00
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Also, foru € R?,

W, (w)
314 " )
= Z |:1nf(Z* +m—1/ao Zc (wZ;_ T ) —In f(Z}; 1-0):|
t=p+1 Jj#0
and
(3.15) Win, (W) 1= L5, (Br + my /%0, 50) — £5, B, s0).

Now, let M, (C(R?)) represent the space of probability measures on C(R?”), and
let dy metrize the topology of weak convergence on M, (C (R”)). That is, for ran-

dom elements L, and L of M,(C(RP)), L, B and only if do(L,, L) £ 0
on R, and there exists a dense sequence {h } - ; of bounded, continuous func-

tions on C(RP) such that dy(L,, L) —> 0 is equivalent to fC(R,,) h_,- dL, —>
Je@p hjdL on R forall j € {1,2,...}. We now show that, if L, (") :=P(W,,, €
AX1,..., X,) and Li() = P(W}, €-[Xi,...,X,), then L, — L} 5 0 on

M, (C(RP)). Following the proof of Theorem 2.1 in [15], it suffices to show that
for any subsequence {ny} there exists a further subsequence {n;'} for which L, e

LT 230 relative to the metric dp, which holds if, for almost all realizations of

/

{X,:}, Wmn ,( )= ( ) —> 0 on C(R?). By Lemma A.13, for any subsequence,
any T e {1 2,. } and any k € {1,1/2,1/3,. } there exists a further subsequence
{n};*} for which P(sup;y <7 | W o W — W) W] >x|Xi,..., X T,K) 0.

Using a diagonal sequence argument it follows that there exists a subsequence
{ni'} of {ny} for which P(sup”uH<T |Wmnk/ (n) — (u)| >K|X1, .0 Xny) =0
for almost all {X,} and any T, k > 0 and, thus, Wmnk/ (-) — W,Lnk/ ) —> 0 on C(RP)
for almost all {X,}.

Following the proof of Theorem 3.11in [15], L};(-) =P(W,}, €-|X1,..., Xp) £
P(W € -) on M, (C(R”)), and so L, (-) =P(Wmn €1 X1,...,Xn) £ P(W €-) on
M, (C(RP)) also. Therefore, because £, (8, 50) — Ly, Owm, s0) = Wy (ml/ao
@ — 9ML)) and & uniquely maximizes W( ) almost surely, it can be shown that

there exists a sequence of maximizers 0 my, of L3 ( s0), such that P(mn/ %0 (0

9ML) e X1...,Xy) —P> P(§ € ) on M, (IR”) (the proof is similar to that of Theo—
rem 2.2 in [15]). Since

my/ @, — ) =m0 @, — by)

_(md " Ingmy)

Mn ) - ao p* A
=—| ———— ) @@mL — ap)m,'°(@,, —0mL),
< mrll/ﬂfo(an)Z n Mn
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where o lies between @y, and g, and n'/2(Gmr — ap) = 0, (1), P(||(ml/&ML —

my/“) @, )|l > k|X1,..., X,) & 0forany x > 0. Hence, P(m,/*™" 8, —

9ML) €-X1,...,.Xn) —P> P(§ € -) on M,(R?). The mean-value theorem can be
used to show that (3.12) holds. [

Thus, m /%Mt (é;n — ) and m)/ oL ((;ann — ¢y, conditioned on {X My

have the same limiting distributions as n!/®0 (9ML —0p) and n'/% (&ML — @), re-
spectively. If n is large, these limiting distributions can, therefore, be approximated

by simulating bootstrap values of é;knn and (i;n , and looking at the distributions for
m,ll/ ML (@;n — Op) and m,ll/ oML (&;n — (;SML). In principle, one could also exam-

ine the limiting distributions for n!/®0 (éML —09) and n'/® ((;SML — ¢) by simu-
lating realizations of W (-), with the true parameter values @y and 7 replaced by
estimates, and by finding the corresponding values of the maximizer &, but this
procedure is much more laborious than the bootstrap. Confidence intervals for the
elements of ¢ and ¢, can be obtained using the limiting results for O and (;SML
in (3.5) and (3.6), bootstrap estimates of quantiles for the limiting distributions and
the estimate ap, of .

For the elements of 7(, confidence intervals can be directly obtained from the

o A . . . - P
limiting result for Ty in (3.5). Because 1! (+) is continuous at T and Ty, — Tog,
I-!(#pm1) is a consistent estimator for I-!(7() which can be used to compute
standard errors for the estimates.

4. Numerical results.

4.1. Simulation study. In this section we describe a simulation experiment to
study the behavior of the ML estimators for finite samples. We did these sim-
ulations in MATLAB, using John Nolan’s STABLE library (http://academic2.
american.edu/~jpnolan/stable/stable.html) to generate stable noise and evaluate
stable densities. The STABLE library uses the algorithm in Chambers, Mallows
and Stuck [9] to generate stable noise and the algorithm in Nolan [30] to evaluate
stable densities.

For each of 300 replicates, we simulated an AR series of length n = 500 with

stable noise and then found 7y = (é;v[L, #3y)’ by maximizing the log-likelihood
L in (2.12) with respect to both s € {0, ..., p} and 5. To reduce the possibility
of the optimizer getting trapped at local maxima, for each s € {0, ..., p}, we used
1200 randomly chosen starting values for 5. We evaluated the log-likelihood at
each of the candidate values and, for each s € {0, ..., p}, reduced the collection
of initial values to the eight with the highest likelihoods. Optimized values were
found using the Nelder-Mead algorithm (see, e.g., Lagarias et al. [23]) and the
8(p + 1) initial values as starting points. The optimized value for which the likeli-

hood was highest was chosen to be 7y , and then &ML was computed using (2.13).


http://academic2.american.edu/~jpnolan/stable/stable.html
http://academic2.american.edu/~jpnolan/stable/stable.html
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TABLE 1
Empirical means and standard deviations for ML estimates of AR model parameters. The
asymptotic standard deviations were computed using Theorem 3.2 and Nolan [31]

Asymp. Empirical Asymp. Empirical
std. dev. mean std. dev. std. dev. mean std. dev.
¢o1 =0.5 0.500 0.001 ¢o1 =0.5 0.500 0.001
ap=0.8 0.051 0.795 0.040 ap=0.8 0.049 0.799 0.035
Bo=0.0 0.067 0.000 0.064 Bo=0.5 0.058 0.504 0.060
op=1.0 0.077 0.996 0.068 oo=1.0 0.074 0.995 0.075
no=0.0 0.054 0.003 0.057 no=0.0 0.062  —0.002 0.066
¢o1 =0.5 0.498 0.019 ¢o1 =0.5 0.500 0.018
apg=1.5 0.071 1.499 0.069 apg=1.5 0.070 1.500 0.066
Bo=0.0 0.137 0.012 0.142 Bo=0.5 0.121 0.491 0.121
o9p=1.0 0.048 0.997 0.050 op=1.0 0.047 0.996 0.047
no=0.0 0.078  —0.002 0.074 no=0.0 0.078 0.005 0.082
¢o1 =2.0 2.000 0.004 $o1 =2.0 2.000 0.004
apg=0.8 0.051 0.797 0.041 ap=0.8 0.049 0.795 0.037
Bo=0.0 0.067 0.000 0.066 Bo=0.5 0.058 0.499 0.060
op=1.0 0.077 1.004 0.072 op=1.0 0.074 0.996 0.072
no=0.0 0.054 0.004 0.055 1o =0.0 0.062 0.000 0.063
¢o1 =2.0 2.003 0.074 ¢o1 =2.0 2.013 0.073
apg=15 0.071 1.505 0.074 ag=1.5 0.070 1.497 0.069
Bo=0.0 0.137 0.008 0.138 Bo=0.5 0.121 0.504 0.119
ogp=1.0 0.048 1.000 0.056 op=1.0 0.047 0.996 0.061
no=0.0 0.078  —0.006 0.077 1o =0.0 0.078 0.004 0.079
¢or =—1.2 —1.200 0.004 ¢o1 =—1.2 —1.200 0.004
P =1.6 1.600 0.004 o2 = 1.6 1.600 0.004
ap=0.8 0.051 0.798 0.041 ap=0.8 0.049 0.800 0.039
Bo=0.0 0.067 —0.001 0.068 Bo=0.5 0.058 0.502 0.056
og=1.0 0.077 0.997 0.073 op=1.0 0.074 0.997 0.071
no=0.0 0.054  —0.002 0.057 no=0.0 0.062  —0.004 0.064
¢ =—1.2 —1.212 0.083 P01 =—1.2 —1.204 0.078
¢ =1.6 1.605 0.065 P2 =1.6 1.598 0.062
ap=15 0.071 1.502 0.069 ap=1.5 0.070 1.499 0.071
Bo=0.0 0.137 0.010 0.128 Bo=0.5 0.121 0.509 0.128
op=1.0 0.048 0.999 0.066 op=1.0 0.047 0.997 0.056
no=0.0 0.078  —0.006 0.078 1o =0.0 0.078 0.000 0.083

In all cases, £ was maximized at s = sg, so the true order of noncausality for the
AR model was always correctly identified.

We obtained simulation results for the causal AR(1) model with parameter
¢o = 0.5, the noncausal AR(1) model with parameter ¢, = 2.0 and the AR(2)
model with parameter ¢, = (—1.2, 1.6)". The AR(2) polynomial 1+ 1.2z — 1.622
equals (1 — 0.8z)(1 + 2z), and so it has one root inside and the other outside the
unit circle. Results of the simulations appear in Table 1, where we give the em-
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pirical means and standard deviations for the parameter estimates. The asymptotic
standard deviations were obtained using Theorem 3.2 and values for I"! () in
Nolan [31]. (Values for I"!(-) not given in Nolan [31] can be computed using the
STABLE library.) Results for symmetric stable noise are given on the left-hand
side of the table, and results for asymmetric stable noise with By = 0.5 are given
on the right-hand side. In Table 1, we see that the MLEs are all approximately un-
biased and that the asymptotic standard deviations fairly accurately reflect the true
variability of the estimates dy, BML, oML, and fimr. Note that the values of dA)ML,
OML, /§ML, and [y are less disperse when the noise distribution is heavier-tailed
(ie., when ag = 0.8), while the values of oy, are more disperse when the noise
distribution has heavier tails. Note also that the finite sample results for Ty, do
not appear particularly affected by the value of ¢, which is not surprising since
&ML and Ty are asymptotically independent.

Normal qg-plots show that, in all cases, &mr, /§ML, omL and iy, have approx-
imately Gaussian distributions. To examine the distribution for '/ ((?)ML — &0,
in Figure 1, we give kernel estimates for the density of nl/oo (qASLML — ¢01) when
(¢01, @0, Po, 00, o) is (0.5,0.8,0, 1, 0), (0.5,0.8,0.5,1,0), (0.5,1.5,0, 1,0) and
(0.5,1.5,0.5, 1, 0). For comparison, we also included normal density functions in

(a)

(b)

< ]
o
® — kernel estimate — kernel estimate
e — N(0.36, 8.22) © 4 — N(0.02,5.98)
2 o 2
a fa)
5 =
= < - A
© T T T T T T S T T T T T T T
-10 -5 0 5 10 15 20 25 -25 -20 -15 -10 -5 0 5 10
(c) (d)
<
o . <
- l;lernel estimate S 7] == kernel estimate
94— (-0.11,1.47) w | — N(0.08, 1.25)
= 2 3 7
[ [ 172
5 o 5 |
o [alK=)
5 =
2 — o .
e e T T T T T

FIG. 1. Kernel estimates of the density for nl/eo (le,ML — ¢o1) when (¢o1, o, Bo, 00, L0) IS
(a) (0.5,0.8,0,1,0), (b) (0.5,0.8,0.5,1,0), (c) (0.5,1.5,0,1,0) and (d) (0.5,1.5,0.5,1,0), and
normalA density functions with the same means and variances as the corresponding values for
n1/%0 (¢ i, — do1)-
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Figure 1; the means and variances for the normal densities are the correspond-
ing means and variances for the values of nl/@o (<131,ML — ¢01). The distribution
of nl/@ ((131, ML — ¢o1) appears more peaked and heavier-tailed than Gaussian, but
closer to Gaussian as «g approaches two. Similar behavior is exhibited by other
estimators 43 j ML -

4.2. Autoregressive modeling. Figure 2 shows the natural logarithms of the
volumes of Wal-Mart stock traded daily on the New York Stock Exchange from
December 1, 2003 to December 31, 2004. Sample autocorrelation and partial auto-
correlation functions for the series are given in Figure 3. Note that, even if a process
has infinite second-order moments, the sample correlations and partial correlations
can still be useful for identifying a suitable model for the data (see, e.g., Adler,
Feldman and Gallagher [1]). Because the sample partial autocorrelation function
is approximately zero after lag two and the data appear “spiky,” it is reasonable
to try modeling this series {X ,}tzl‘ﬁ as an AR(2) process with non-Gaussian stable
noise. Additionally, Akaike’s information criterion (AIC) is smallest at lag two.
This supports the suitability of an AR(2) model for {X;}. Note that AIC is a con-
sistent order selection criterion for heavy-tailed, infinite variance AR processes
(Knight [22]), even though it is not in the finite variance case.

We fit an AR(2) model to {X ,} by max1m1z1ng £ in (2 12) with respect to both
n and s. The ML estimates are ;. = (91 0, @, ,3 = (0.7380, —2.8146,
1.8335, 0.5650, 0.4559, 16.0030)’, with s = 1. Hence, the ﬁtted AR(2) polynomial

17.0
|

16.5
|

16.0
|

0 50 100 150 200 250

t

FI1G. 2. The natural logarithms of the volumes of Wal-Mart stock traded daily on the New York
Stock Exchange from December 1, 2003 to December 31, 2004.
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FI1G. 3. (a) The sample autocorrelation function for {X;} and (b) the sample partial autocorrelation
function for {X;}.

has one root inside and one root outside the unit circle. The residuals from the fitted
noncausal AR(2) model

4.1)  (1—0.7380B)(1 4+ 2.8146B)X, = (1 + 2.0766B — 2.0772B>)X, = Z,

and sample autocorrelation functions for the absolute values and squares of
the mean-corrected residuals are shown in Figure 4(a)-(c). The bounds in
(b) and (c) are approximate 95% confidence bounds which we obtained by
simulating 100,000 independent sample correlations for the absolute values
and squares of 272 mean-corrected i.i.d. stable random variables with 7 =
(1.8335,0.5650, 0.4559, 16.0030)’. Based on these graphs, the residuals appear
approximately i.i.d., and so we conclude that (4.1) is a satisfactory fitted model
for the series {X;}. A qqg-plot, with empirical quantiles for the residuals plotted
against theoretical quantiles of the stable T = (1.8335, 0.5650, 0.4559, 16.0030)’
distribution, is given in Figure 4(d). Because the qq-plot is remarkably linear, it
appears reasonable to model the i.i.d. noise {Z;} in (4.1) as stable with parame-
ter T = (1.8335, 0.5650, 0.4559, 16.0030)’. Following the discussion at the end of
Section 3, approximate 95% bootstrap confidence intervals for ¢g; and ¢gy are
(—2.2487, —1.8116) and (1.8120, 2.2439) (these were obtained from 100 itera-
tions of the bootstrap procedure with m, = 135), and approximate 95% confidence
intervals for ag, Bo, oo and pg, with standard errors computed using ! (T™ML),
are (1.6847,1.9823), (—0.1403, 1), (0.4093, 0.5025) and (15.9102, 16.0958).

In contrast, when we fit a causal AR(2) model to {X;} by maximizing /£
with s = 0 fixed, we obtain 7 = (01, 6>, &, B, 6, 1)’ = (0.4326,0.2122, 1.7214,
0.5849,0.1559, 5.6768)". The sample autocorrelation functions for the absolute
values and squares of the mean-corrected residuals from this fitted causal model
are given in Figure 5. Because both the absolute values and squares have large lag-
one correlations, the residuals do not appear independent, and so the causal AR
model is not suitable for {X,}.
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(a) Z, (b) ACF of Absolute Values
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FI1G. 4. (a) The residuals {Z;}, (b) the sample autocorrelation function for the absolute values of
mean-corrected {Z;}, (c) the sample autocorrelation function for the squares of mean-corrected {Z;}
and (d) the stable qq-plot for {Z;}.
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FIG. 5. The sample autocorrelation functions for the absolute values and squares of the
mean-corrected residuals from the fitted causal AR(2) model.
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APPENDIX
In this final section, we give proofs of the lemmas used to establish the results

of Section 3.

LEMMA A.1. For any fixed u € R? and for Zy j(u) between Zy j and Zy ; +
[&(e0)] /0 00c,; ()5 T /0,

(A1) ZZM( I e

k=1 j#0

is finite a.s.

dIn f(Zr,j(w); 7o)  dln f(Zg,j; T0)
0z 0z

PROOF. Since equation (A.1) equals Y 72, Z#O|c]-(u)|Fk_l/a°|Zk’j(u) —
Zyj|10*In f(Z} j(u);ro)/8z2|, where Z{ ;(u) is between Zy; and Zj ;(w),
(A.1) is bounded above by

(A.2) [E(ct0)]'/ 0 sup
zeR

821
nf(Z To)‘zr 2/aozc .
J#0

By (2.5) and the continuity of 3%1n f(-; T9)/dz> on R, Sup,cr 18%1n f(z; T0)/
9z2| < 0o. Now suppose k" e {2,3,...} such that k" > 2/ap. It follows that
E{Y2 T /%) = Y% Tk — 2/a0)/ T(k) < (constant) Y2 k=2/%0 < oo,
Consequently, since 0 < [¢(ag)]/*0g < 00, 3 0 c?(u) < 00 by (3.3) and
Zi;}l Fk_z/ao < o0 as., (A.2)is finite a.s. O

LEMMA A.2. For any fixed u € R?,

a3 Y /a0y A0 S (Zk i T0)|

cjuy(r; 40—k~ ;
k=1 j#0 z

a.s.

PROOF. The left-hand side of (A.3) is bounded above by sup, g [ 1n f(z;
-1 _

70)/02] 02, T /0 — k=120] 3 glej)|. By (2.6), sup,g |d1n f(z; 70)/

dz| < 00, by (3.3), 3" ;20 lcj(w)| < 00, and, from the proof of Proposition A.3 in

Davis, Knight and Liu [12], Y72, |F_l/a° k~1/*| < 00 a.s. Thus, (A.3) holds.
a

LEMMA A.3. Forany fixedu e R?, |32, ¥ o cj (k™ /*0[31n f(Zy j;
T0)/0z]| < 00 a.s.

PROOF.  The sequence {}_ ;¢ (u)8;k Y0 [31n f(Zy jit0)/0z])72 is ase-
ries of independent random variables which, by dominated convergence, all
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have mean zero, since 3 ;.o |c;j(w)| < 0o, sup g [d1In f(z; T9)/dz] < oo and
E{0In f(Zy, j;T0)/02} = fj";o(af(z; 70)/0dz) dz = 0. Therefore, because

i Var{ > cj)sck 9n f(Z.j; T0) }

k=1 j#0 9z
2
d1n f(z; 7o) [\? >, _
= (s 5 (D) we
zeR < j#£0 k=1
< 00,

the result holds by the Kolmogorov convergence theorem (see, e.g., Resnick [33],
page 212). O

LEMMA A.4. ForueR? andveRY,
" u v
Z lnf(Z,(ﬂo—i-]—,So);‘to-f——)

n o0 v
-3 1nf(z,+n—1/“° > cj(u)zt_j;roJrﬁ),

t=p+1 j=—00

(A.4)

with Z;(-,-) as defined in (2.11), converges in probability to zero on C (RP4) as
n— 00.

PROOF. Let T > 0. We begin by showing that (A.4) is 0,(1) on C([-T,
T17+%). Since {Z:(09, s0)} = {Z;}, and following (3.2), equation (A.4) equals

n 81nf(Z;n(u);ro+v/ﬁ)
Z { 9z

t=p+1
(A5) ?

u' 9Z:(00, 50)
nl/eo 00 ’
where Z}, (u) lies between Z;(0¢ + n~—V%u, 50) and Z; + n~ Vw3 Z; (09, s0)/
d0. Equation (A.5) can be expressed as

1 " 3ln f(ZF,); To+v/y/n) ,02Z (07, (w), s0)

2nZ ,:21 0z YT 000

u
X [Zt (00 + m, SO) — Z:(09, s0) —

with Gf’n(u) between 0 and 0o + n~!/%u. Following (3.1), the mixed partial
derivatives of Z;(8, s) are given by

022,05 % jok=1....r,
T90. 90, Xitr—j—ks j=1...rik=r+1,...,p,
/ g O’ j7k:r+1,...,p,
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and so we have

1 " 9ln f(Z,(w); o+ v//n)

t,n
sup Z :
Wy el—T, T+ 200 1=p+1 0z
/8221(0;}1(“)’ SO)
26 00’
= sup
zeR,ve[-T,T]* 07
X sup ! i ,02Z, (07, (w), 50) ‘
wel1.7)p 2020 el 30 96
T2p2 n )4
= Sup 0 2/ag Z Z |Xt_j|
zeR,ve[-T,T* Z n i2ptl =2
T2p2
=< sup ” porn

zeR,ve[-T,T]*
(A.6)

n P o0
X 33> WkZi—jil

t=p+1 j=2k=—00

(recall that X, = ?O:—oo ViZi—j). By (2.6), Sup,cg ye(—7.7p4 10In f(z; 70 +
v/4/n)/0z] = O(1) as n — oo. Now let € > 0 and k] = 3/Hagl{ay < 1} +
I{ag > 1}, and observe that E|Z; ¢! < oo and 0 < 1 < 1. Using the Markov in-
equality,

<|:n2/0t0 Z Z Z Ve Zoj— kl} >€K1)

t=p+1 j=2k=—00

() B & 3 5wz a]

t=p+1 j=2k=—00

() o 5 £ 5 )

t=p+1 j=2k=—00

e}
< n!THVROPEIZy [T T [yl

k=—00

n—oo

— 0.
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Consequently, (A.6)is 0,,(1) on R, and so (A.4)is 0, (1) on C([-T, T1P*4). Since
T > 0 was arbitrarily chosen, for any compact set K C RPH4 (A4)is o p(1) on
C(K), and it therefore follows that (A.4) is 0, (1) on CRPtY. O

LEMMA A.5. ForueR? andve R4,

n o v
Z 1nf<Z,—|—n_l/a0 Z cj(u)Z,_j;To+ﬁ>

t=p+1 j=—00
n o0
(A7) - > lnf(Zt—i—n_l/“" > cj(u)zt_j;ro)
t=p+1 j=—00
" & Olnf(ZTg) 1

v
-y AR Virg)v
ﬁt:p+] ot 2

converges in probability to zero on C(RPT*) as n — oo.

PROOF. Using a Taylor series expansion about 7, equation (A.7) equals

C & 9 f(Z VYR i) Z i o)

%Z[ ot

t=p+1
(A.8)
dln f(Z;; ro)]
k4
. Vo & PInf(Zin VYR iz r:(v))v
2n —, ot o1’
(A.9) =

1 /
VI ,
+ 2V (To)v
where 7)(v) is between 79 and to + v//n. Let T > 0. We will show that
Supue[_T’T]p Of

\/E[:p+l o

(A.10)
_ 3In f(Z;; ro)}
o

is 0, (1). It can be shown similarly that SUP(w vy e[—T.T]P+ of (A.8)is 0,(1), and,
using the ergodic theorem, SUP(w vy e[—T.T]P+ of (A.9)is 0,(1). Since T > 0 was
arbitrarily chosen, it follows that (A.7) is 0,,(1) on C (RPH4).
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Observe that supyc[_7, 710 Of (A.10) equals

1 " 9%In f(ZF)iTe) &
(A.11) sup -~ c;i(w)Z;_;|,
we[—T. TP nl/2+1/ao t:%-%-l 9z da J:X_:oo J t—j

where Z[ (u) is between Z; and Z; +n~ Vo Z?‘;foo cj(w)Z;_;. Following (3.2),
there must exist constants C; > 0 and 0 < D < 1 such that

(A.12) sup  [e;w)|<CiDY Vjel..,—-1,0,1,..},
ue[-T,T|?

and so (A.11) is bounded above by

3?Inf(z;T0)| Ci X
(A.13) iz
zeR 0z 0x nl/2+1/ao t;”:zoo 1 t—j

By (2.7), sup,cr 10%1n f(z; T0)/(3z0a)| < 0o. Now let € > 0 and k» = ag(1 +
a0/3)/(14+ag/2)[{ag < 1}+ T{ag > 1}, sothat kp(1/24+1/ag) > 1,E|Z1|*2 < 00
and 0 < xp < 1. Since

n

1 x “
Jl
P(|:n1/2+1/060 > > Db |zt_j|} >6K2)

t=p+1 j=—00

0
5G_Kznl_K2(1/2+l/a°)E|Z1|K2 Z (D’1<2)|j|

j=—00

and nl—2(l/2+1/a0) 5 () (A.13) is op(1) and therefore supyci_7 7» of (A.10)
must also be 0,,(1). [

LEMMA A.6. ForueRP?,

n o0
Z 1nf<Z,+n_1/"‘° Z cj(u)Z,_j;to>

r=p+1 =00
(A.14) -2 1nf<Z’+n_l/a0ch(u)zt—ﬁ'fo)
t=p+1 j#0
" co(u
- > I:lnf<Zt+%Zt;TO>_lnf(zt;TO)]
t=p+1 n

converges in probability to zero on C(RP) as n — oo.

PROOF. Equation (A.14) equals
con) & [alnf(Z;‘jn(ux to)  dln f(ZF(w); To)}
> Z - :

1/
n t=p+1 9z 9z

(A.15)
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where Z:n(u) is betheen Z, + n~ Z;’o:_oo ci(w)Z;—j and Z; + n—1/eo
> jz0cj(WZ,—;, and Z7 (u) is between Z; and (1 +n—Ve5(u))Z,. For T > 0,
SUPye[—T.T]? of the absolute value of (A.15) is bounded above by

n 82 In £(Z**(); T
(A16) sup @ Z Z; ch(u)zt—j f( t.n ( ) 0)
nz/ao 8 2
ue[-T,T]P =ptl 20 z
5 " 3% In f(ZF*(u); T
(A.17) +  sup COZ(U) Z tz A t,r;( )5 To) ,
ue~7,T1p 12/ t=p+1 9z

where Z/7*(w) = Z; + n_l/"‘o)»j’,,(u)co(u)Zt + n_l/“ok;’in(u) YizociWZ—;
for some )»Zn(u), )\;"’n(u) € [0, 1]. To complete the proof, we show that (A.16)
and (A.17) are 0, (1).

Following (A.12), equation (A.16) is bounded above by sup, . 10%1n f(z; T0)/
0220 C S 1 Zi Y o DY Zi 1. M k3 o= 3/ Dol oo < 1} + Terg >
1}, then, for any € > 0,

L5 1l h
([ 3 g otz -
t=p+1 j#0
< € ! HI0(E| Z,9) 3 (D),
Jj#0
which is o(1), and thus (A.16) is 0, (1).
Equation (A.17) is bounded above by

n

2 2 T 1/a017 -
(A.18) sup Co(u) Z th 0 lnf([l'i')ut,n(ll)co(ll)/n °]Z:; T0)

ue[—T.1]7 N>/ 1=p+1 922
2
cp(w)
+ su
ue[—TI,)T]P n/e
1 821n £(Z**(u); 10)
(A.19) x Y 7} A 8”;( )
t=p+1 <

92In f([1+ A ,(co(u)/n'/*]Z,; 7o)
B 972

k)

and (A.18) is bounded above by supzeRlzz[len f(z; ro)/812]| X
SUPye(_7 7 0 X (1+n~ 0ol ()co(w)) 2. Since n' /%0 — 0,
SUPye(_7.77r Ico()| < 00 and, from (2.5), sup, g |22[8%In f(z; T0)/02%]| < oo,
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(A.18) is 0, (1). An upper bound for (A.19) is

2 n
cp(w) 2
Sup 30 > Z
ue[-T, TP It t=p+1

33 In f(Z; n(u); 7o)
8&3 E Cj(ll)Zt,j
Z .
J#0

93 1n f(z;To)

e I

zeR

SRR 1l
J
(o) X ZX oz,

t=p+1 Jj#0

where Z,,n(u) is between Z;* (u) and [1 +k;n(u)c0(u)/n1/°‘0]zl. If k4 :=3a0/8,
then, for any € > 0,

1 n . K4
([ £ A g v ~)
t=p+1 Jj#0
< € n! TIIOB(ZIE| 2y 3 (DTS 0.
j#0
Since supz€R|83 In f(z; ro)/8z3| < 0o (see DuMouchel [17]), it follows that
(A.19)isalso 0, (1). O

LEMMA A.7. Foru=(ui,...,up) €RP,
e co(u)
Z Inf{Z: + mzﬁ TO) —In f(Z;; T0)1|
t=p+1
(A.20) g

Oop +n~1/u,

+ (@ —p)ln
6o,

I{so > 0}

converges in probability to zero on C(R?) as n — oo.

PROOF. If 59 = 0, the result is trivial since, from (3.2), co(u) = u pQ(iDll {so >
0}, and so, when 59 = 0, equation (A.20) equals zero for all u € R?. Now consider
the case so > 0. Choose arbitrary 7' > 0 and note that sup,,c[_7 71, Of the absolute
value of (A.20) equals

i [CO(U)Z dln f(Z;; To)

sup
uel-7.71 |, 21 nl/oo t 0z
A _,8%In f(Z] ,(u); 7o)
(A.21) + 5 37e Zi S5

Oop + n_l/“oup

+ (¢ —p)ln
60,

|,
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where Z:’n (u) is between Z; and [1+ n—1/0¢, (w)]Z;. Equation (A.21) is bounded
above by

co() ¢ dln f(Z;; 7o)
(A.22) T > [1+z,84}
ue[-7,T1? t=p+1 z
co(u) Bop + n_l/"‘"up
(A.23) 4+ su n— )[ —1In }
ue[—TF,)T]l’ P2 e Oop

2 n 2 T

cp(w) ,0%In f(Z; ,,(w); T0) .

(A.24) +sup | >z 33 :
ue[-T,T1P =ptl b4

we complete the proof by showing that each of these three terms is 0, (1).
Since {1 + Z:[dIn f(Z;; T9)/0z]} is an i.i.d. sequence with mean zero (which
can be shown using integration by parts) and finite variance,

2
1 " dln f(Z;; To)
E:"“"‘O Y [1+z=5 H

t=p+1 <

1 ¢ dln f(Zi; 70) |

=—— E{l+Z2,———

7 2 E{1+2 I
n /050 gt az

which is o(1). Therefore, because supyci_r 70 [co(@)| < 00, (A.22) is op(1).

Next, (A.23) equals supye(_7. 7y [(n — p)[n~1/%0u peo—pl —1In|1+n"1/e0y peo—pl ",

which is o(1). And finally, (A.24) is bounded above by

29%1In f(z; T0) c§(w) Z[ Zi ]2

sup|z

zeR dz? uel-7.T1p 2n%/% t=p+1 Zi"(u)
i
%ln f(z; T c2(u |upby, 1772
< sup 12# a2 gy D )[1 — Tt ] ’
zeR 0z ue[-T,T]? 2 nee

which, since sup, p |z2[821n f(z; To)/3Z2]| < oo,isalsoo(1). O

LEMMA A.8. For any fixed u € R? and v € R*, (Wj(u), T,(v)) £ (W),
v'N) on R? as n — oo, with W (u) and v'N independent. [W (-), T, (-) and W (-)
were defined in equations (3.8), (3.9) and (3.4), respectively, and, from Theo-
rem 3.3, N ~ N(0, I(tg)).]

Before proving this result, we introduce some notation and three additional lem-
mas which will be used in the proof. First, define a set function &, (-) as follows:
gx(A) =I{x € A}, and, form > 1, let

e=(,...,0,1,0,...,0),...,e, =(0,...,0, 1)
——— —— —_——

m times m—1 times 2m—1 times
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and
e_1=(,...,0,1,0,...,0),...,e_,=(, 0,...,0).

e e’ e e’ N o’

m—1 times m times 2m—1 times
Now define

n
Smon () = Z 8<Zt,[5<ao>r1/“0o(;‘n*”“0(Z,+m,...,z,+1,ZH,...,zzfm»(')
t=p+1

and

o m
Sm () = ]{2_:1 ‘IX_:I (8(qu_]', e_jskrk_l/ao) () + S(Zk,j,ejgkrk_l/ao) ())
By the following lemma, S,, ,(:) can converge in distribution to S, (-).

LEMMA A.9.  For any fixed relatively compact subset A of R x (ﬁzm \ {0}
(a subset A for which the closure A is compact; note that a compact subset of
R \ {0} = [—00, 00]?" \ {0} is closed and bounded away from the origin) of the
form

A = (ao, bo]l X (@—m,b_] x -+ x (a-1,b_1]
(A.25)
X (ar, b1] X -+ X (@, b1, aj,bj #0V|jlefl,...,m}

and for any fixed v € R*, (Sp..(A), T,(v))’ £ (Sm(A), VNY on R? as n — oo,
with S,,(A) and v'N independent.

PROOF. Let A, 1> € R. Following Theorem 3 on page 37 of Rosenblatt [34],
this Lemma holds if cumy (A1 S0 (A) + 22T, (v)) — cumg (A1 S, (A) + Av'N) for
all k > 1, where cumy (X) is the kth-order joint cumulant of the random variable X.
So,

cumg (X) =cum(X, ..., X).
—

k times

Note that since S,,(A) and v'N are independent, cumg(1;S,,(A) + A2v'N) =
AK cumy (S, (A)) + A4 cumy (V'N).
Fix k > 1 and denote the kth-order joint cuamulant of i Xsand j Ys (i + j =k)
as cum; ; (X, Y). So,
cum; ;(X,Y)=cum(X,..., X,Y,....Y).
AR il

—

i times j times
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Then, by linearity,
cumy (A1 Spm.n (A) + 12T, (V) = A% cumy (S 0 (A)) 4 A4 cumy (T;,(v))

k—1
k ) k—j
+3 (5) M8 cum i (Sn4). T,
i=1

Also by linearity, for j € {1,...,k — 1},

cumj,k_j (Sm,n (A), Tn (V))
(A.26)

n n
= Z Z Cum(th,nw-',th,n, Wt_/'+1,nv~~~7Wtk,I’l)s
n=p+1  n=p+1
where Vin =€z, zo)1 9005 0110 (Zy o Zus1, 2ot Zey(A) AN Wi 2=
n~12v'91n f(Zs; To)/0T. Due to the limited dependence between the variables
{V,,,,}’::pﬂ, {Wt’n}:l=p+l’ equation (A.26) equals

n
n=p+lin-—nl<2jm  |tj—t|<2jmtj1—|<(2j+Dm

Z cum(th,n,...,th,n,WtHl,n,...,Wtk,n);
ltx—t1|<2j+1D)m

(A.27)

this sum is made up of (n — p)(4jm + l)j_l([4j +2]m + 1)*¥=J terms. Therefore,
since |V; | <1, and E|W,,n|(Z < oo forall £>1 and all n, (A.27) is o(1) if k —
J = 3 [as a result of the scaling by n—k=N/2, Equation (A.27) is also o(1) for
k — j e {1,2} if nE|V}, wWs,nl = 0o(1) and nE|V;, , Wi, n Wi n| = o(1) for any
11, 2, t3. We will show the limit is zero in one case; convergence to zero can be
established similarly in all other cases.

Since A is a relatively compact subset of R x (ﬁzm \ {0}), at least one of
the intervals (a—,,, b_n1, ..., (a—1,b_1], (a1, b1], ..., (am, by ] does not contain
zero. We assume (a—1, b—1] does not contain zero and show that nE|V] ,W> ,| =
o(1). First, from (2.5)—(2.10), there exist constants C,, D, < oo such that
[Valn f(z; 19)/dt| < Cy + Dylz]%/* Vz € R. Hence, because Vin =

_ =12y .
&(Z1. e 005 'm0 (Zy o 20,20 Z1 ) D) ADD W = 07 EV9 In f(Z2;
70)/0T,

nE|Vi ,Wa |

ot
< Con'?P(1Z2] = nV*r) + Dyn'PE{| Zo|** 1{| 22| = /%)),

where ¢ := [¢(x0)]"/%oomin{|a_i|, |b_1|}. By (2.3), since ¢ > 0, n'/?P(|Z,| >
nl/“og‘) — 0, and, using Karamata’s theorem (see, e.g., Feller [19], page 283),

ol Z;
< 0B (a0 0 02, & (0 b (VD)
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n'PE{|Z2|*/* {1 Zo] = n'/*0¢}} < (constantyn' /> (n'/*00)*MP(|Z5]| = n'/*0¢),
which is o(1) by (2.3).

It has therefore been established that cumy(A1S,,,,(A) + 22T, (V) = )Jl‘ X
cumy (Sp,n(A)) + ké cumg (7, (v)) + o(1) for arbitrary k > 1. Following the Proof
of Lemma 16 in Calder [7], it can be shown that cum (S, , (A)) = cumi (S, (4)).
Note that, from Davis and Resnick [13], Sy.n(A) = Sw(A) on R and S, (A) is a
Poisson random variable, so all cuamulants are finite. It is relatively straightforward
to show that cumy (7;,(v)) — cumy (v'N) (see the Proof of Lemma 16 in [7] for de-
tails), which is not surprising since 7, (v) £ v'N on R by the central limit theorem.
Consequently, cumg (A1 Sy, 1 (A) + 12T, (V) — )Jl‘ cumy (S, (A)) + )»15 cumy (V'N),
and the proof is complete. [

LEMMA A.10.  Let Uy, (w) =n~1% 3% e j(w)Ziyj, U, (w) =n~ 1790 x

% cjWZi—j and 1150M = 1{1Z,| < MU, ()] > 2) U (U, )] > )}

For any fixed u € R? and any k > 0, lim,_, g+ limps—, o limsup,,_, ., of

d

n

Y Alnf(Z + U, + U, (w): 7o)
r=p+1

(A.28)
—1In f(Zs; To)][1 — I}5M7)

)

PROOF. Note that, forany € {p + 1, ...,n} and any n, In f(Z; + U; ,(0) +
Uty (W); 7o) —In f(Z;: T0) = Uy, (W) + Uy, W][9 In £ (Zy: 70)/92]+ U, () +
U,Jf” w]*[81n f(ZF 70)/92%]/2, where Z7, lies between Z; and Z; + U, ,, (u) +

U,Tn (u). Note also that

is zero.

1= 150M = U, ] < MHIUS, @) < A + {1 Z,] > MYH{|U, )] > A)
+ H{|Z,| > MY{|U,}, ()| > )
— H{|Z| > MYI{|U;,, ()| > A I{|U;, ()] > A}

Consequently, (A.28) is bounded above by

" a1 Z;:: _
P( > [+ v ) o <
t=p+1

x U ()| sx}}

91

>£)
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3%1n f(z; 7o)
072

+ P(sup
zeR

x > UL+ UL PIUS, @] < (U, @] <2 > %)
t=p+1

+P< U 1zl>mnu,, @) > )u)}>

t=p+1

+2P( U (1zil>mnqut,ml> )»)})-

t=p+1

The proof of Proposition A.2(a)—(c) in Davis, Knight and Liu [12] can be used to
show that lim,_, o+ limps—, oo limsup,,_, ., of each of the four summands is zero.
g

LEMMA A.11. Let IkAjM = I{|Z ;| < M}I{|[5(O!0)]1/a000€j(ll)8kF1:1/a0| <
A}. For any fixed u € R?,

3 S [{In £(Zj + [E(@o)] 0 0gc; s Ty /% 7o)
k=1 j#0
(A.29) 7

—In f(Zg,j; to) (1 — I/?,’JM)]

converges in probability to zero as A — 07 and M — 0.

PROOF. The absolute value of (A.29) is bounded above by [&(x)]!/%0 x
—1 -1
o0 sup,cp 1910 £ (z: 70)/02l Y52 T /X g lej )l Ifag < 1,300, T /%0 <

o0 a.s., since E{Fk_l/ao} = Ok~ /%) for k > 1/ag. Thus, the result holds if
o < 1.
For o > 1, the proof of this lemma is similar to the Proof of Lemma A.10. We

omit the details. [J
We now use Lemmas A.9—A.11 to prove Lemma A.8.

PROOF OF LEMMA A.8. By Lemma A.9, for any relatively compact subset A

—=2m

of R x (R™ \ {0}) of the form (A.25) and any v € R*, (Sm.n(A), T,,(v)) ic)
(S (A), VN) on R?, with S,,(A) and VN independent. It can be shown sim-
ilarly that, for any ¢ > 1 and any relatively compact subsets Ayq,..., Ay of

R x (R \ {0}) of the form (A.25),

(A30)  (Spn(AD). - Sma(A0). TuW) 5 (Su(A), ..., Su(Ae), VNY
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on R with (S, (A1),...,Sn(Ar)) and VN independent. Now, for fixed
ueR?, let S,() = Y p+18<z,u - @w,ut () with Up, () = n —leo
ijl c—j(u)Z;4j and Ut,n(u) = n—l/ao Z?il cj(WZ;—j, and let

oo o0

S ()_;2 (Zi—j [Eao)]@000c_ s T /%0 00
J

8 ~ — 1/ N .
T & 210,060 0one; (we Ty 0, )

Following the proof of Theorem 2.4 in Davis and Resnick [13], using (A.30), the
mapping
(Ztv ZH—m, ) ZI+19 Tt—1s - Zt—m)

m m
— <z,, [E(c0)]"/*000 Y e—j)zitj, [E(@0)]V*000 Y cj(w)z;— j),
j=1 j=1
and by letting m — 00, it can be shown that
~ ~ ~ ~ £ ~ ~ ~ ~
(A.31) (Su(AD), ..., Su(Ap), T,(v)) S (S(A)), ..., S(Ap), VN
on R with (S(A)), ..., S(A)) and V'N independent, for any relatively com-
pact subsets Al, e A~[ of R x (Ez \ {0}).
Since (S,(A1), ..., Su(A0)) 5 (S(A1), ..., S(Ae)) on R for arbitrary £ > 1
and arbitrary, relatively compact subsets Al, e, Ag of R x (Ez \ {0}),

> &(Z, U, W), Ul )

t=p+1

o0 XX
(A.32) L33 (32— [Eao)] 000c_; ()8 Ty /%, 0)
k=1 j=1

~ ~ -1
+8(Z,j. 0. [E(@0)] o0 s T /)
on R for any continuous function g on R x (@2 \ {0}) with compact sup-

port (see Davis and Resnick [13]). Because it is almost everywhere continuous

on R x (@2 \ {0}) with compact support, we will use g(x,y,z) = [In f(x +
y +z370) — In f(xs To) M {|x| <= M}{(|y] > 2) U (|z| > M)}, where M, > 0.
By Lemma A.10, for any k > 0, limy_, o+ limM%oolimsupn_)ooPUWJ(u) —
Y —p+1 g(Z, U, ,(w), U ,(w)| > k) =0and, by Lemma A.11,

1
53 (32 6@ T one_ BT 0,0
k=1 j=1

- - _ P
+ 8(Zi ;. 0, [8(0)] /00 ()8 Ty /%)) 5 W (u)
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as A — 07 and M — oo [W,;’(-) and W(.) were defined in equations (3.8)
and (3.4), resp.]. Therefore, by Theorem 3.2 in Billingsley [2], it follows from

(A.32) that W,T (w) f) W (u) on R for fixed u € R”, and consequently the result of
this lemma follows from (A.31). [

LEMMA A.12. Forany T > 0 and any k > 0,
(A33)  lim lim supP( sup (W (u) — Wi(v)| > K) =0.
e=>0% n—o0o  \Jull,||v|<T.|u—v|<e

[W,:r(-) was defined in equation (3.8).]

PROOF. Foru,veRP?,

+ 1 n a1 ZF (u,v);
|W,j(u)—W,;(v)|:‘m 3 (ZCj(u—V)Z,_j) n f(Z{,(u,v); 7o)

t=p+1 \j£0 9z

: n dln f(Z;; 7o)
= [ 2 <ch(u—v)zt_j>87;

t=p+1 \j#0

9*1n f (z; To)')

072

+ <sup
zeR
n

1
X 2ag >

t=p+1

ZCj(ll - V)Zt_j
Jj#0

where Z7, (u, v) lies between Z; + n—1/eo > jzocjWZ;—j and Z; + n—l/a0 x
> j#0Cj (V)Z;_;. Following the Proof of Theorem 2.1 in Davis, Knight and
Liu [12] (see page 154), if {m;};+0 is a geometrically decaying sequence, then
it can be shown that n— /@0 z;':p+1(z#0ﬁjz,_j)[aln f(Zi;t0)/9z] = 0,(1)
and n—2/ Z?ZPH(Z#O |7 Z—j N2 = O, (1). Therefore, by (A.12) and because
c¢;j(u) is linear in u for all j, (A.33) holds. [J

+ ZCj(V)Zt_j

J#0

Dz,
j#0

LEMMA A.13. If,as n — 0o, m, — oo with my/n — 0, then for any T > 0
and any k > 0,

(A34) P( sup | Wi, () — W, ] > X1, ..., X,,) £o.
lull=7

[W,L” (-) and Wmn (-) were defined in equations (3.14) and (3.15).]
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PROOF. Choose arbitrary 7',k > 0, and let the sequence {1} j};?oz_ oo Contain

the coefficients in the Laurent series expansion of 1/ [ég,lL(z)éML(z)] From (3.11),
fort e {1,...,mn},ég/IL(B)éf\k,[L(B)X;k=Z;",and soXF=>%_ w] _ ;- From
Brockwell and Davis [6] (see Chapter 3), there exist Cy > O 0< Dz <1 and
a sufficiently small § > O such that, whenever ||5ML — 0ol <3, |V il =< Clezj !

and also supy <7 I¢; (W] < C2D|2j| forall je{...,—1,0,1,...} [the ¢;(u)s were
defined in (3.13)]. Now observe that the left-hand side of (A.34) is bounded above
by

P( sup 1, @) = W, @] > K1X1.... X, ) (1 = B0l <)
lull<T

(A.35) .
+ I{[|0mL — 00l = 5},
and that 7{]|@m1. — 0ol > 8} is o, (1) since /N £ 0o.Foru= (uy,...,up,) eR?,
Wi, (@) — W, (w)

mpy

A u A~ A
=) [hlf(Zf <0ML + W,So); TML) —In f(Z; TML)]
t=p+1 mp
mp
- > [mf(z* +m N ez T ) —Inf(Z}; ro)}
t=p+1 Jj#0
1/ao
b (my — pyIn[ MLy,
p,ML

and so, using arguments similar to those given in the proofs of Lemmas A.4-A.7,
it can be shown that the first summand of (A.35) is also 0, (1) if, for any € > 0,

C2 & |
(A.36) P( e > Z DY\Z; 1> elX1, ... X ),

Mp " t=p+1 j=—00

R (6))
P sup |T,ML — Toi] Ty
iell,...4) My
(A.37) .
x Z pyzx |>6|X1,...,X,,>,
t=p+1 j=—00

(A38) ( T Z 1241 DYz |>e|X1,...,Xn),

Mp  t=p+1 Jj#0

(A.39) ( T Z V4 )22D2j||Z,*_j|>e|X1,...,Xn)
m

n t=p+1 J#0
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and

2
AL dIn f(Z}; 7o)
(A.40) P(:W > [1+z;"8—zf] >e|X1, ..., Xp

mpy t=p+1

are all o,(1). To complete the proof, we show that (A.36) and (A.40) are
both 0,(1). Since n'2EvL — 19) = 0,(1) and m,/n — 0, using the Proof
of Lemma A.5, it can be shown similarly that (A.37) is o, (1). The Proof of
Lemma A.6 can be used to show that (A.38) and (A.39) are 0, (1).

Recall, from the Proof of Lemma A.4, that k] = (3/4)agl {9 < 1} + I {og > 1}.
By the Markov inequality, equation (A.36) is bounded above by

C2 K1 00 )
(—) m1=2e1/e > (D5HVHENZF 11X, ..., X s

€ :
j=—00

this is 0,(1) since myl,_z'q/ao — 0 and, using O £ 0y and E|Z X! < o0, it
can be shown that E{|Z}|“!|X1,..., X,} = (n — p)~! Z:’:pﬂ |Z,(9ML, so) |t is
O,(D).

We now consider (A.40), which is bounded above by

a1 zZ*: 2
(A.41) e—lm,l;z/“OE{ <1 + Z;"W) X1, ..., Xn}

2 *. 2
— doln f(Z7,
(A.42) +€*1u E 1+Z*M{X1,...,Xn )
my! t 9z

Since m,lfz/“o — 0 and, by (2.6), sup g [z[d1n f(z; T¢)/dz]| < 00, (A.41) is
op(1). Now consider

(A.43) E{1+Z,*W|X1,...,Xn}
1 " dln f(Z:; 7o)
(A.44) = > (1 + Z,T)

n—p t=p+1

[ 5 Zt(éML’So)alnﬂzt(oML,so);ro)

n=r|, 0 9z

(A.45)
B i 2,00/ (Z: To)i|‘

t=p+1 9z

By the central limit theorem, (A.44) is Op(n_l/ 2). In addition, since Z, =
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Z:(00, 50), (A.45) equals

(OmL — 00) Z [a In f(Z, (0%, 50); 7o)
07

n—p t=p+1
(A.46)

+ Z1(67, s0)

3%1n f(Z,(07, 50); To)} dZ,(0%, s0)
972 00 ’

with 0} between Oy and 0, and, because sup,cr [[01n f(z; T9)/0z] + z[8% x
In f(z; T0)/ 9z2] ]| < oo, the absolute value of (A.46) is bounded above by

OimL — 0 dZ,(0%,
(A47) (constant)  sup <| i ML — 6o | Z ‘ t( so)')'
iefl,...,p} =pt

Recall, from the Proof of Lemma A.5, that k3 = ag(1 4+ «g/3)/(1 + ag/2) I {og <
1} + I{ag > 1}.Fori € {1,...,p}and € > 0,

1 8Zt(0n,s0)
P([—(n_p)l/ZJrl/ao Z ’

0Z,(0}, 50) |2

00;
which can be shown to be o(1) for sufficiently small § > 0 since x2(1/2 +
1/ag) > 1 and E|Z{|*2 < oco. Therefore, since nl/% @y — 00) = 0,(1), it fol-
lows that (A.47), and hence (A.45) and (A.46), are 0,(n~'/?), and so (A.43) is

0, (n=1/2). Since my/n — 0, (A.42) must be 0, (1), and so the proof is complete.
O

K2
I{|[0mL — 0ol < 5}} > 6"2>

< (n— p)l—K2(1/2+1/a0)E{'

1{l1fns. — 8ol < 8}},
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