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This paper discusses the problem of adaptive estimation of a univariate
object like the value of a regression function at a given point or a linear func-
tional in a linear inverse problem. We consider an adaptive procedure origi-
nated from Lepski [Theory Probab. Appl. 35 (1990) 454–466.] that selects in
a data-driven way one estimate out of a given class of estimates ordered by
their variability. A serious problem with using this and similar procedures is
the choice of some tuning parameters like thresholds. Numerical results show
that the theoretically recommended proposals appear to be too conservative
and lead to a strong oversmoothing effect. A careful choice of the parameters
of the procedure is extremely important for getting the reasonable quality of
estimation. The main contribution of this paper is the new approach for choos-
ing the parameters of the procedure by providing the prescribed behavior of
the resulting estimate in the simple parametric situation. We establish a non-
asymptotical “oracle” bound, which shows that the estimation risk is, up to a
logarithmic multiplier, equal to the risk of the “oracle” estimate that is opti-
mally selected from the given family. A numerical study demonstrates a good
performance of the resulting procedure in a number of simulated examples.

1. Introduction. This paper discusses the problem of selecting one estimate
from a given family of estimates {θ̃k, k = 1, . . . ,K} of a univariate object θ . We
suppose that every estimate can be represented as

θ̃k = θk + ξk, k = 1, . . . ,K,(1.1)

where θk is the expectation of θ̃k : Eθ̃k = θk and ξ1, . . . , ξK are zero mean ran-
dom errors. In what follows we assume that (ξ1, . . . , ξK) is a Gaussian vector
with a known covariance matrix B . This problem is illustrated by two major ex-
amples: estimating a regression function at a given point and estimating a linear
functional in a linear inverse problem. In the case of a Gaussian regression model
Yi = f (Xi) + εi , the target of estimation is the value of the unknown regression
function f (x) at a certain point x. The set {θ̃k} can be obtained as kernel or lo-
cal polynomial estimates with different bandwidths. In the case of a linear inverse
problem, the target is usually the value of a linear functional and the family of
estimates is obtained by using different values of the regularization parameter for
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the regularized inversion. Note that the representation (1.1) can be regarded as
a reasonable approximation for many other statistical models and problems like
regression with non-Gaussian errors or density estimation.

The problem of adaptive estimation can be formulated as the best possible
choice of one estimate out of this family on the basis of the available informa-
tion. This problem can be viewed as the problem of model selection, see, for
example, Birgé and Massart (1993, 1998), Birgé (2006), Juditsky, Rigollet and
Tsybakov (2008) and references therein. However, there is an essential difference
between the (global) model selection problem and the problem of pointwise es-
timation considered in this paper. In the problem of global model selection one
tries to recover the whole underlying model, that is, the target is the model itself.
Here we consider the problem of recovering a one-dimensional characteristic of
the whole model like the value of the function at a certain point. This makes these
two problems quite different. In particular, for the problem of pointwise adaptation
some additional assumptions on the considered family of estimates are required.
Typically one assumes that the given family of “weak” estimates θ̃k is ordered in
the sense that the variance vk of θ̃k decreases with k. Another intrinsic assumption

on the considered set-up is that the squared bias b2
k

def= (θk − θ)2 is small for the
k = 1 and it may increases with k. The most popular example is given by kernel
estimates with different bandwidths so that the starting bandwidth h1 is small lead-
ing to the small bias but a huge variance of estimation. As the bandwidth grows the
variance decreases but the bias may increase dramatically. The aim is to construct
from the data one estimate that performs in the best possible way and particularly
minimizes the corresponding estimation risk.

The first adaptive procedure of this sort was suggested in Lepski (1990) and
extended in Lepski (1992) to much more general set-up. The idea is to select the
largest index k such that the estimates θ̃1, . . . , θ̃k do not differ significantly with
each other. Two estimates θ̃l and θ̃k for l < k differ significantly if the standard-

ized difference Tlk
def= v−1

l (θ̃l − θ̃k)
2/2 exceeds the prescribed threshold z, which

can be dependent of l, z = zl . Lepski (1990) stated the rate optimality of this proce-
dure over Hölder smoothness classes, and Lepski, Mammen and Spokoiny (1997)
showed its spatial adaptivity in the sense of rate optimality over Besov func-
tional classes and established some oracle risk bound. Lepski and Spokoiny (1997)
proved sharp optimality of a slightly modified procedure in the asymptotic mini-
max sense. However, all the mentioned results have been established under some
conditions on the thresholds zk , which basically means that the thresholds have to
be sufficiently large, and they tell nothing if this condition is not fulfilled. At the
same time, numerical results in simulated and practical data examples show that
applying a large threshold typically leads to a conservative procedure and over-
smoothing effects. In this sense, one can say there is some critical gap between the
theory and practical applications.
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Our paper presents a novel method for selecting the tuning parameters of the
method based on the so called “propagation” condition, which postulates the de-
sirable performance of the method in the simple parametric situation. The idea is
similar to the problem of hypothesis testing for which the critical value of a test
is selected by bounding the first-kind error probability under the null hypothesis.
The theoretical study is done for the adaptive estimate with the selected tuning
parameters. The main result claims the desired oracle risk bound for this defined
procedure. The proposed approach seems to be quite general and it can be directly
applied to many other procedures including local model selection, stagewise ag-
gregation and local change-point analysis, which are studied in details in Spokoiny
(2009) in a much more general set-up.

Golubev (2004) proposed another “risk envelope” approach to select the thresh-
old for a special sequence space model and a particular linear functional. We con-
sider this example in Section 1.3. The common point between Golubev (2004) and
our proposal is the selection of the parameters of the method by a Monte Carlo
simulation from the model with zero response. However, the procedure, motiva-
tion and theoretical analysis of our study is quite different from the one in Gol-
ubev (2004).

Theoretical properties of the proposed method are presented in Section 3.
The main result states the “oracle” property of the proposed estimate: the risk
of the adaptive estimate is within a log-multiple as small as the risk of the “oracle”
estimate for the given model. The results are established in the precise nonasymp-
totic way in a rather general form. Our simulation study in Section 4 confirms a
nice finite sample performance of the procedure for a rather big class of different
models and problems.

Below in this section we present three major examples for which the proposed
procedure can be applied. We start with the problem of pointwise bandwidth se-
lection in kernel estimation, then we discuss the problem of estimating a linear
functional in a linear inverse problem and then specify it to one particular func-
tional in the sequence space model.

1.1. Bandwidth choice in kernel estimation. Consider a regression model
Yi = f (Xi) + εi where εi are i.i.d. Gaussian errors with zero mean and known
variance σ 2 and with a deterministic design X1, . . . ,Xn in Rd . The considered
problem is to estimate the value of the unknown regression function f (x) at a
given point x. Let a sequence of localizing scheme W(k) = {w(k)

i } have been fixed
for k = 1, . . . ,K . In the case of kernel weights, this sequence is built just by using
different values of the bandwidth h from the smallest bandwidth h1 to the largest
value hK in the form w

(k)
i = ψ(|Xi − x|/hk) with a kernel function ψ(·). Every

localizing scheme yields the corresponding estimate

θ̃k = N−1
k

n∑
i=1

w
(k)
i Yi, Nk =

n∑
i=1

w
(k)
i .
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By simple algebra

θk
def= Eθ̃k = N−1

k

n∑
i=1

w
(k)
i f (Xi), ξk

def= θ̃k − Eθ̃k = N−1
k

n∑
i=1

w
(k)
i εi .

Moreover,

Eξlξk = σ 2N−1
k N−1

l

n∑
i=1

w
(k)
i w

(l)
i .

The above ordering condition can be written for the case of the kernel weights in
the form Nl < Nk for l < k. Below we will assume even a stronger condition that
the values Nk grow exponentially.

1.2. Estimation of a linear functional in a linear inverse problem. Consider a
general set-up of a linear inverse problem when the observed data Y from a Hilbert
space HY are modeled by a linear operator equation

Y = AX + ε,(1.2)

where X is the unknown parameter vector from some Hilbert space HX , A :HX →
HY is a linear operator and ε is a random Gaussian noise in HY with the known
correlation structure given by the covariance operator Σ . The goal is to estimate
a linear functional θ = θ(X) that can be represented in the form 〈ϑ,X〉 for some
known element ϑ ∈ HX . Such problems are usually considered as more complex
than the usual nonparametric regression estimation due to the poor rate of estima-
tion. Moreover, the difficulty that is usually associated with the attained estimation
accuracy increases with the degree of illposedness. A naive estimation approach is
based on the explicit least-square solution of the problem (1.2):

θ̃ = 〈ϑ, (A∗A)−A∗Y 〉 = 〈A(A∗A)−ϑ,Y 〉 = 〈φ,Y 〉,
where A∗ is the conjugate operator to A, C− means a pseudo-inverse of C and
φ = A(A∗A)−ϑ . However, this approach cannot be efficiently applied if A is a
compact operator because the inverse of A∗A does not exist or is an unbounded
operator. One can regularize the problem if some additional information about
smoothness of the element X is available. This allows to replace (A∗A)− by its
regularization gα(A∗A) where gα means some regularized inversion and α is the
corresponding parameter. See, for example, Goldenshluger and Pereversev (2003),
Goldenshluger (1999) and Goldenshluger and Pereversev (2000) for typical exam-
ples. The quality of estimation heavily depends on the choice of the regularization
parameter α and its choice is a challenging problem. Usually one fixes a finite or-
dered set of values α1 < α2 < · · · < αK and considers the corresponding estimates

θ̃k = 〈φk,Y 〉, φk = Agαk
(A∗A)ϑ.
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Now the original problem can be reformulated as follows: given a set of estimates
θ̃k for known vectors φk , build an estimate θ̂ of the functional θ that performs
nearly as good as the best in this family. We present one particular example for
the considered set-up borrowed from Golubev (2004). More examples include a
positron emission tomography problem, Cavalier (2001), functional data analysis,
Cai and Hall (2006), among many others.

Our analysis focuses on demonstrating the oracle efficiency of the constructed
adaptive procedure rather than on establishing the optimal rate of convergence on
functional classes. The mentioned efficiency of any adaptive (data-driven) method
can be measured by the ratio of the risk of the proposed method to the “oracle”
risk which corresponds to the optimal choice of the regularization parameter for
the model at hand. One message of this note is that this statistical part of the linear
inverse problem is actually not harder than in the classical nonparametric infer-
ence. Moreover, in the inverse problem set-up it is typically easier to do a statistical
adaption because the likelihood profile is not so flat as in the classical nonparamet-
ric regression. In some examples presented in our simulation study in Section 4,
the risk of the adaptive procedure is even smaller than the oracle risk.

1.3. Example for a sequence space model. We consider the statistical problem
with observations y1, . . . , yM following the “sequence space” equation

yi = μi + σiεi, i = 1, . . . ,M,(1.3)

where εi are independent standard normal and the standard deviations σi are
known while the mean values μi are unknown. The variances σ 2

i are usually con-
stant for the regression set-up or grow with i for ill-posed inverse problems.

One particular problem in this set-up can be to estimate the sum

θ = μ1 + · · · + μM,

where M can be equal to infinity assuming that the sum of the μi ’s is absolutely
convergent. The “naive” estimate θ̃ = ∑M

i=1 yi , even for a finite M , has a very large
variance

∑M
i=1 σ 2

i and hence, can be highly inefficient. The smoothing idea leads
to the set of the spectral cut-off estimates

θ̃k = 〈φk,Y 〉 = y1 + · · · + ymk
,

where φk = (1, . . . ,1,0, . . . ,0) is the vector with the first mk entries equal to one
and the others equal to zero, while mk is a fixed decreasing sequence of finite
indices M ≥ m1 > m2 > · · · > mK ≥ 1.

One can easily compute for k = 1, . . . ,K and l < k

θk
def= Eθ̃k = μ1 + · · · + μmk

, ξk
def= θ̃k − θk = σ1ε1 + · · · + σmk

εmk

and vk
def= Var(θ̃k) = σ 2

1 + · · · + σ 2
mk

. The major difficulty in applying the smooth-
ing approach is the proper choice of the parameter k or, equivalently the cutting
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point mk . Small values of k lead to a huge variance vk of the estimate θ̃k while large
k-values can result in a big bias bk = θ − θk = ∑M

i=mk+1 μi . The “oracle” choice
balances the approximation and stochastic errors. However, this ideal choice as-
sumes that the bias (the approximation error) is known. The problem we consider
in this paper is to develop an adaptive (data-driven) choice that mimics the “oracle”
and achieves the best possible performance among the set of estimates θ̃k .

2. Description of the method. This section presents the considered adaptive
estimation procedure. We first describe some simple properties of the estimates θ̃k

that will be used in the construction. Then we present the adaptive estimation
method.

The definition θ̃k = θk + ξk for any k ≤ K yields Eθ̃k = θk and Var θ̃k =
Eξ2

k = vk . Moreover, ξk is a zero-mean Gaussian random variable and for any
r > 0 and any λ < 1

E|v−1
k (θ̃k − θk)

2|r = cr ,(2.1)

E exp{λv−1
k (θ̃k − θk)

2/2} = (1 − λ)−1/2,(2.2)

where cr = E|ξ |2r and ξ is standard normal. Due to this result, θ̃k is a reasonable
estimate of θ if the bias θk − θ is sufficiently small relative to the standard devia-
tion v

1/2
k . In particular, in the “no bias” situation θk = θ the estimate θ̃k leads to the

accuracy of order v
1/2
k and one can build confidence intervals for the parameter θk

in the form

Ek(z) = {u :v−1
k (θ̃k − u)2/2 ≤ z}.(2.3)

If z is sufficiently large, then the result (2.2) ensures that Ek(z) contains θk with a
high probability.

2.1. Adaptive choice of an estimate out of a given family. Our starting point
is the given family of estimates θ̃k for k = 1, . . . ,K ordered by their variability so
that the variance vk of θ̃k decreases with k. We aim to select a data-driven index k̂

or equivalently the estimate θ̂ = θ̃k̂ , which minimizes the corresponding estimation
risk.

For a given sequence of estimates θ̃k = θk + ξk consider the sequence of nested
hypothesis Hk : θ1 = · · · = θk = θ . The procedure is sequential: we start with k = 2
and at every step k the hypothesis Hk is tested against H1, . . . ,Hk−1. If Hk is not
rejected then we continue with the next larger k. The final estimate corresponds
to the latest accepted hypothesis. For testing Hk against Hl with l < k, we check
that the new estimate θ̃k belongs to the confidence intervals built on the base of θ̃l .
More precisely, we apply the test statistics:

Tlk = v−1
l (θ̃l − θ̃k)

2/2, l < k,
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where vl is the variance of θ̃l . Big values of Tlk indicate a significant difference be-
tween the estimates θ̃l and θ̃k . Due to the definition (2.3), the event Alk = {Tlk ≤ zl}
means that θ̃k belongs to the confidence set El(zl) based on θ̃l . The estimate θ̃k (or
the hypothesis Hk) is accepted if Hk−1 was accepted and Tlk ≤ zl for all l < k, that
is, the new estimate θ̃k belongs to the intersection of all the confidence intervals
El(zl) built on the previous steps of the procedure. The formal definition is given
by

k̂ = max{k ≤ K :Tlm ≤ zl , ∀l < m ≤ k}.
Here the “critical values” z1, . . . , zK−1 are the parameters of the procedure. Their
choice is discussed in Section 2.2.

The selected random index k̂ means the largest accepted k. The corresponding
adaptive estimate θ̂ is θ̃k̂ : θ̂ = θ̃k̂ . We also define the adaptive estimate θ̂k as the
latest accepted after the first k steps:

θ̂k = θ̃min{k̂,k}.

The described procedure involves K − 1 parameters and their automatic choice is
ultimately required for practical applications of the method. Our next step is the
method for an automatic selection of the critical values zk .

2.2. Choice of the critical values zk using a “propagation condition.” The
way of selecting the critical values z1, . . . , zK−1 is similar to the standard approach
of hypothesis testing theory: to provide the prescribed performance of the proce-
dure under the simplest (null) hypothesis. In the considered set-up, the null means
θ1 = θ2 = · · · = θK = θ . We will show below in Theorem 3.3 that the particular
value of θ is unimportant and it suffices to only consider θ = 0. In what follows
we denote by P0 the distribution of the data in this situation and E0 means the
corresponding mathematical expectation. By the definition of the procedure, ac-
cepting Hk for some k ≤ K yields θ̂k = θ̃k and rejecting of Hk means θ̂k 
= θ̃k .
We refer to the latter as a “false alarm” because the procedure terminates in the
situation where it should not. If such false alarms occur too often, it is an indica-
tion that the critical values zk are not large enough. The usual α-level condition
on any testing procedure is that under the null it rejects the null hypothesis with
the probability not exceeding α. For the considered multiple test procedure this
condition reads as P0(θ̂k 
= θ̃k) ≤ α. We slightly modify this condition to adapt it
to the problem of adaptive estimation by selecting a polynomial loss function in-
stead of the indicator of the error decision. Rejecting the null hypothesis happens
if v−1

l (θ̃l − θ̃k)
2/2 > zl , in which can be interpreted that the estimate θ̃k does not

belong to the confidence interval El(zl) built on the base of θ̃l . In the testing prob-
lem it only matters how often such false alarms occur. In the considered problem
of adaptive estimation we focus on the risk associated with such a false alarm.
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Therefore, the particular indices l, k and the size of v−1
l (θ̃l − θ̃k)

2 matter as well.
Suppose that some loss power r > 0 is fixed. By (2.1)

E0|v−1
l (θ̃l − θ)2|r = cr , for all l ≤ K,

where cr = E|ξ |2r and ξ is standard normal. We require that the parameters
z1, . . . , zK−1 of the procedure are selected in such a way that

E0|v−1
k (θ̂k − θ̃k)

2|r ≤ αcr , k = 2, . . . ,K.(2.4)

The meaning of this condition is that at every step k of the procedure, the risk
associated with false alarms is at most an α-fraction of the best-possible estimation
risk. Here α is the preselected constant, which is similar to the confidence level of
a testing procedure. This gives us K − 1 conditions to fix K − 1 parameters. As
in the testing problem, we are interested to select the critical values as small as
possible under the constraint (2.4). Note that the choice r very close to zero leads
back to the indicator loss function 1(θ̂k 
= θ̃k) and thus, to the usual error of the
first kind for the multiple testing procedure.

Our definition still involves two parameters α and r . It is important to mention
that their choice is subjective and there is no way for an automatic selection in
the considered local or pointwise set-up. Moreover, the possibility of tuning such
parameters in particular applications is an important advantage of the approach.
Our aim is to develop a procedure that combines and balances two important fea-
tures: stability in the parametric situation and sensitivity under deviations from the
parametric null hypothesis. The propagation condition (2.4) is exactly a constraint
on the stability in the parametric case, and we aim to optimize the sensitivity of
the method under this constraint. A proper choice of the power r for the loss func-
tion as well as the “confidence level” α depends on the particular application and
on the additional subjective requirements to the procedure. Taking a large r and
small α would result in an increase of the critical values and therefore improves
the performance of the method in the parametric situation at cost of some loss of
sensitivity to deviations from the parametric situation. This behavior is analogous
to the hypothesis testing problem where a small α reduces the first-kind error at
costs of the test’s power. Theorem 3.1 presents some upper bounds for the critical
values zk as functions of α and r in the form a1 log(K) + a2{logα−1 + r(K − k)}
with some coefficients a1 and a2. We see that these bounds linearly depend on r

and on logα−1. For our examples, we apply a relatively small value r = 1/2. We
also apply α = 1 although the other values in the range [0.5,1] lead to very similar
results. It is worth mentioning that both the procedure and the theoretical study
apply and lead to reasonable results whatever r and α are. This makes a striking
difference with many other proposals; see the references in the introduction for
selecting the tuning parameter(s). Typically one requires that the critical values
(thresholds) z are sufficiently large and the theory is only valid under this condi-
tion.
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2.3. Sequential choice. The set of conditions (2.4) does not directly define the
critical values zk . We present below one sequential method for fixing zk one after
another starting from z1. The idea is to provide that the relative impact of each zk

in the total risk in (2.4) is the same for every k ≤ K − 1. We start with z1 and set
z2 = · · · = zK−1 = ∞. This effectively means that every new estimate θ̃k is only
compared with θ̃1. We run the procedure with such critical values. The resulting
adaptive estimate after step k is denoted by θ̂k(z1). We select z1 as the minimal
value providing

E0|v−1
k {θ̂k(z1) − θ̃k}2|r ≤ 1

K − 1
αcr , k = 2, . . . ,K.(2.5)

Such a value exists because the choice z1 = ∞ leads to θ̂k = θ̃k for all k.
Similarly, we specify z2 by considering the situation with the previously

fixed z1, some finite z2 and all the remaining critical values equal to infinity, and so
on. For the formal definition, suppose that z1, . . . , zm−1 have been already fixed for
some m > 1 and define for any zm the adaptive estimates θ̂k(z1, . . . , zm) for k > m,
which come out of the procedure with the critical values (z1, . . . , zm,∞, . . . ,∞).
We select zm as the minimal value providing

E0|v−1
k {θ̂k(z1, . . . , zm) − θ̃k}2|r ≤ m

K − 1
αcr , k = m + 1, . . . ,K.(2.6)

Such a value exists because the choice zm = ∞ leads to θ̂k(z1, . . . , zm) =
θ̂k(z1, . . . , zm−1) and even a stronger condition has been already checked at the
previous step.

The condition (2.5) describes the impact of the first critical value in the risk
(2.4) while (2.6) describes the accumulated impact of the first m critical values.
The factor m/(K − 1) in the right-hand side of (2.6) is chosen to ensure that every
critical value zk has the same impact.

Our construction guarantees that the selected sequence zk is minimal under the
set of conditions (2.6) in the sense that one cannot select another sequence z′k < zk

for all k such that (2.6) is still fulfilled. Indeed, let {z′k} be another sequence that
ensures (2.6) and let m be the first index for which z′m < zm. Then the condition

E0|v−1
k {θ̂k(z

′
1, . . . , z

′
m−1, zm) − θ̃k}2|r ≤ m

K − 1
αcr , k > m,

on zm is even stronger than (2.6) and one cannot select z′m < zm to ensure it. This
contradiction shows minimality of the sequence zk .

An explicit form for the critical values zk is not available but they can be easily
computed using the Monte Carlo simulations from the null hypothesis; see Sec-
tion 4 for details.
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3. Theoretical study. This section presents some properties of the adaptive
estimate θ̂ of the target value θ . We suppose that the parameters zk of the proce-
dure are selected in such a way that the condition (2.4) is fulfilled. The main result
is the “oracle” property of the adaptive estimate θ̂ , which claims that the risk of
adaptive estimation is up to some multiplier as good as the risk of the ideal (or-
acle) estimate. This multiplier is directly related to the applied critical values zk

and in typical situations it is at most logarithmic in the sample size. In the proof
we distinguish between three cases: parametric, local parametric and nonparamet-

ric. The parametric case means that θk
def= Eθ̃k ≡ θ for all k ≤ K . This case can be

easily reduced to the null hypothesis θ1 = · · · = θK = 0 and the oracle property
of the adaptive estimate θ̂ is ensured by the construction, more precisely, by the
propagation condition (2.4). The local parametric case means that for some k < K

holds θ1 = · · · = θk = θ . In this case, the construction ensures the oracle prop-
erty for the adaptive estimate θ̂k obtained after the first k steps of the procedure.
Then we show that a similar oracle property of the estimate θ̂k can be obtained in
the nonparametric situation under the so-called “small modeling bias” condition.
This condition is used to give a formal definition of the oracle choice. The final
oracle result for the adaptive estimate θ̂ is obtained by combining the previously
established “propagation” result under the small modeling bias condition with the
“stability” property, which is ensured by the adaptive procedure itself.

3.1. Bounds for the critical values. This section presents some upper and
lower bounds for the critical values zk . The results are established under the fol-
lowing condition on the variances vk .

(MD) for some constants u0,u with 1 < u0 ≤ u, the variances vk satisfy

vk−1 ≤ uvk, u0vk ≤ vk−1, 2 ≤ k ≤ K.

We also denote for l < k ≤ K

vl,k
def= Var(θ̃l − θ̃k).

Our first result presents some upper bound for the parameters zk under condition
(MD). The proof is given in the Appendix.

THEOREM 3.1. Assume (MD). Let γ be such that for all l < k ≤ K

vl,k/vl ≤ γ.(3.1)

Then there is a constant C1 depending on r , u0, and u only such that the choice

zk = γ {logα−1 + r log(vk/vK)} + C1 logK

ensures (2.4) for all k ≤ K . Particularly, E0|v−1
K (θ̃K − θ̂ )2|r ≤ αcr .
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REMARK 3.1. The result of Theorem 3.1 presents some upper bounds for the
critical values. These upper bounds will be used for our theoretical study; however,
they do not appear in the proposed adaptive procedure. An interesting observation
is that these upper bounds linearly decrease with k. Indeed, by condition (MD)

log(vk/vK) ≤ (K − k) logu and log(vk/vK) ≥ (K − k) logu0. The reason for a
decrease of zk with k can be explained as follows. Under the null hypothesis the
procedure should not terminate at intermediate steps and the oracle estimate is θ̃K .
An early stop (“false alarm”) k̂ = k for k < K results in selecting the estimate θ̃k ,
which has much larger variability than θ̃K . The smaller k is, the larger is the as-
sociated loss in the estimation quality. Therefore, the test at the early stage of the
procedure should be rather conservative while a “false alarm” at the final steps of
the procedure is not so critical, and we are more interested to improve sensitivity
by applying nonconservative critical values.

Our next result shows that the linear growth of the critical values zk with K − k

is not only sufficient but also necessary for providing (2.4). To highlight the contri-
bution of every particular value zk , we consider the situation when all the previous
parameters are equal to infinity: z1 = · · · = zk−1. This effectively means that the
procedure cannot terminate at the first k − 1 steps due to a possibly wrong choice
of the corresponding critical values.

THEOREM 3.2. Assume (MD). Suppose that for a fixed k < K , it holds z1 =
· · · = zk−1 = ∞. Then the condition (2.4) implies that

zk ≥ vk,k+1

vk

{r log(vk,K/vK) + logα−1 − C2 log(K)}

for some positive constant C2 depending on r,u,u0 only.

The proof is again moved to the Appendix.

REMARK 3.2. Our main oracle result particularly shows that the leading term
in the risk linearly depends on the value zk∗ where k∗ is the optimally selected
index. Therefore, obtaining a sharp oracle result would require bringing together
the upper and lower bounds for the critical values zk . In our results these two
bounds differ by the factor γ vk/vk,k+1 with γ from (3.1). The value γ is usually
close to one because the estimates θ̃k are positively correlated with each other in the
most of cases. However, the value vk,k+1/vk can be small by the same reason. So,
obtaining a sharp oracle result would require some modification of the presented
procedure; cf. Lepski and Spokoiny (1997). The further discussion of this issue
lies beyond the scope of this paper.
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3.2. Behavior in the local parametric situation. The parametric situation can
be understood as the case when θ1 = θ2 = · · · = θK . In this case the estimate θ̃K is
unbiased and has the smallest variance and hence, the smallest risk described by
the formula E|v−1

K (θ̃K − θ)2|r = cr . A natural requirement to any adaptive proce-
dure is to provide a similar accuracy of the adaptive estimate under the parametric
hypothesis. Similarly, the local parametric situation corresponds to the case when
θ1 = · · · = θk = θ for some k ≤ K . In this case it is natural to require that the
adaptive estimate θ̂k after k steps is close to its nonadaptive counterpart θ̃k . This
property is actually provided by the construction of the critical values.

THEOREM 3.3. Let θ1 = θ2 = · · · = θK = θ . Then it holds

E|v−1
K (θ̂ − θ̃K)2|r ≤ αcr .

Moreover, if θ1 = θ2 = · · · = θk = θ for some k ≤ K , then

E|v−1
k (θ̂k − θ̃k)

2|r ≤ αcr .

PROOF. Only the differences θ̃l − θ̃k appear in the definition of the test sta-
tistics Tlk . In view of the decomposition θ̃k = θ + ξk , the value θ cancels there.
Similarly, the adaptive estimate θ̂k coincides with one of θ̃1, . . . , θ̃k and the value θ

cancels in the difference θ̂k − θ̃k as well. Hence, we can assume θ = 0 and θ̃k = ξk .
Then the results follow from the constraints (2.4) on the critical values zk . �

3.3. “Small modeling bias” condition and “propagation” property. Theo-
rem 3.3 describes the performance of the estimate θ̂k under the parametric or local
parametric assumption. Now we aim to extend this result to the general nonpara-
metric situation when the identities θ1 = θ2 = · · · = θk = θ are only approximately
fulfilled and the deviation from the null hypothesis Hk is not significant.

As mentioned in Section 2.2, the choice of critical values zk is determined
by the joint distribution of the test statistics Tlk = v−1

l (θ̃l − θ̃k)
2 under the mea-

sure P0 corresponding to the parametric hypothesis θ1 = θ2 = · · · = θK = 0.
An extension of this result to the nonparametric situation leads to considering
the similar distribution in the general case. Let Pk mean the joint distribution
of θ̃ (k) = (θ̃1, . . . , θ̃k)

� for k ≥ 1. By the model assumption, this is a Gaussian
vector with Eθ̃ (k) = θ(k) = (θ1, . . . , θk)

�. Let also Bk be the covariance matrix
of the vector θ̃ (k). Then Pk is the normal distribution with the mean θ(k) and
the covariance matrix Bk , Pk = N (θ(k),Bk). Similarly, Pθ,k denotes the distri-
bution of θ̃ (k) under the local parametric situation θ1 = · · · = θk = θ , that is,
Pθ,k = N (θ0(k),Bk), where θ0(k) = (θ, . . . , θ)�. Let b(k) = (b1, . . . , bk)

� with
bk = θk − θ .

LEMMA 3.1. For k ≥ 1, define

k
def= b�(k)B−1

k b(k).
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Then the Kullback–Leibler divergence K(Pk,Pθ,k) fulfills

K(Pk,Pθ,k)
def= Ek log

(
dPk

dPθ,k

)
= k/2

and the values k grow with k. It also holds for any s > 1

1

s
log Eθ,k

(
dPk

dPθ,k

)s

= k(s − 1)

2
.

Moreover, if ζ is measurable function of θ̃1, . . . , θ̃k , then with s′ = s/(s − 1)

Eζ ≤ (Eθ,kζ
s′
)1/s′

exp{k(s − 1)/2}.
In particular, for s = 2 it holds Eζ ≤ (ek Eθ,kζ

2)1/2.

PROOF. Define Zk = dPk/dPθ,k . Then

logZk = b�(k)B
−1/2
k ξk + b�(k)B−1

k b(k)/2

with ξk ∼ N (0,1) and hence Ek log(Zk) = k/2. Therefore, k is twice the
Kullback–Leibler divergence between two measures Pk and Pθ,k obtained by pro-
jecting the measures P and Pθ on the σ -field generated by θ̃1, . . . , θ̃k and growing
with k. This immediately implies that k monotonously increase with k, that is,
k ≤ k′ for k < k′. Similarly,

Eθ,kZ
s
k = Eθ,k exp{sb�(k)B

−1/2
k ξk − b�(k)B−1

k b(k)s/2}
= exp{b�(k)B−1

k b(k)(s2 − s)/2}.
Next, let ζ be a measurable function of the vector θ̃ (k). It holds Eζ = Eθ,kζZk.

By the Hölder inequality

Eθ,kζZk ≤ (Eθ,kζ
s′
)1/s′

(Eθ,kZ
s
k)

1/s

and the assertion follows. �

Due to Lemma 3.1, the value k can be used to measure the distance between
the two models: one corresponds to the local parametric situation with θ1 = θ2 =
· · · = θk = θ and the other describes the distribution of the same vector θ̃ (k) in the
general nonparametric situation. We call this value k the modeling bias because
it describes how much we have to pay in the risk for using the “wrong” parametric
model in place of the underlying nonparametric one. The “small modeling bias”
(SMB) condition simply means that the value k does not exceed some sufficiently
small value .

The result of Lemma 3.1 implies that the bound for the risk of estimation
E0{v−1

k (θ̃k − θ)2}r under the parametric hypothesis translates under the SMB con-
dition k ≤  into the bound for the risk E{v−1

k (θ̃k − θ)2}r/s′
. Similarly one can

bound E{v−1
k (θ̂k − θ̃k)

2}r/s′
.
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In what follows we apply the result of Lemma 3.1 with s = s′ = 2, which nicely
simplifies the notation. Note, however, that any s > 1 can be used. For instance,
taking a large s leads to the value of s ′ close to one.

THEOREM 3.4. For any r > 0, it holds for every k ≤ K

E{v−1
k (θ̃k − θ)2}r/2 ≤

√
ekcr ,

E{v−1
k (θ̃k − θ̂k)

2}r/2 ≤
√

ekαcr .

The bound follows directly from Lemma 3.1 and Theorem 3.3.
We call this result the “propagation” property because it ensures that with a high

probability the procedure does not terminate yielding θ̂k = θ̃k as long as the SMB
condition k ≤  is fulfilled. Note that a similar property has been proved for the
original procedure in Lepski (1990) and Lepski (1991, 1992), however, under the
additional condition that the critical values zk are sufficiently large. We instead use
the propagation condition (2.4) and the SMB condition.

3.4. “Stability after propagation” and oracle results. Due to the “propaga-
tion” result of Theorem 3.4, the procedure performs well as long as the SMB
condition is fulfilled, which means that the value k remains bounded by some
(small) constant. We formalize this condition in the form k ≤ . Here  is an
arbitrary number that will determine the oracle choice. We will show in Section 3.6
that in typical situations this value  is similar to the ratio of the squared bias to
the variance of θ̃k . Note however, that the value  only appears in our theoretical
study; it does not affect the procedure. The results apply whatever  > 0.

To establish the accuracy result for the final estimate θ̂ , we have to check that
the adaptive estimate θ̂k does not vary much at the steps at which the modeling
bias k becomes large.

THEOREM 3.5 (Stability). It holds for every k < K

v−1
k (θ̃k − θ̂ )21(k̂ > k) ≤ 2zk.(3.2)

PROOF. The result follows by the definition of θ̂ = θ̃k̂ and θ̂k = θ̃min{k̂,k} be-
cause k̂ is accepted and min{k̂, k} ≤ k̂. �

Combination of the “propagation” and “stability” statements implies the main
result concerning the properties of the adaptive estimate θ̂ . In the formulation of
this and the further results we assume some constant  > 0 to be fixed. We also
assume that our set-up is reasonable in the sense that for the very first model the
SMB condition 1 ≤ , or equivalently, b2

1 ≤ v1, is fulfilled. This enables us to
correctly define the ideal index k∗.
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THEOREM 3.6. Let k∗ be the maximal value k such that k ≤ . Then

E|v−1
k∗ (θ̃k∗ − θ̂ )2|r/2 ≤

√
αcre + (2zk∗)r/2.(3.3)

PROOF. The events 1(k̂ > k∗) and 1(k̂ ≤ k∗) do not overlap and θ̂ = θ̂k∗ for
k̂ ≤ k∗. This yields the representation

E|v−1
k∗ (θ̃k∗ − θ̂ )2|r/2 = E|v−1

k∗ (θ̃k∗ − θ̂ )2|r/21(k̂ > k∗) + E|v−1
k∗ (θ̃k∗ − θ̂k∗)2|r/2.

Now the result follows from Theorems 3.4 and 3.5. �

3.5. Discussion. Here we discuss some issues related to the stated oracle re-
sult.

“Oracle” quality. Theorem 3.4 ensures that the estimation loss v−1
k (θ̃k −θ)2 is

bounded with a high probability if the modeling bias k is not too big. The oracle
choice k∗ is the largest one for which the SMB condition k ≤  holds leading
to the accuracy |θ̃k∗ − θ | of order v

1/2
k∗ . We aim to build an adaptive estimate that

delivers the same quality as the oracle one. Theorem 3.6 claims that the difference
θ̂ − θ̃k∗ between the adaptive estimate θ̂ and oracle is indeed of order v

1/2
k∗ up to

the factor
√

2zk∗ .

The “true” value θ . The “true” value θ is not explicitly shown in the ora-
cle inequality (3.3). It only enters in the definition of the modeling bias k and
thus, in the SMB condition k ≤  and in the definition of the oracle choice k∗.
The oracle bound just compares the optimal choice of the index k∗ for the given
nonparametric model (1.1) with the adaptive index k̂. In fact, the model (1.1) does
not require a “true” value θ to be defined and the oracle result can be formally ap-
plied for any θ . However, in our two basic examples of nonparametric regression
and linear function estimation such values are defined in a natural way. The quality
of estimation of this value θ can be easily derived from the oracle bound (3.3). We
present the corresponding result about the risk of the adaptive estimate θ̂ for the
special case with r = 1. The other values of r can be considered as well, one only
has to update the constants depending on r . We also assume that α ≤ 1.

COROLLARY 3.7. Let k∗ be the largest k with k ≤ . Then

v
−1/2
k∗ E|θ̂ − θ | ≤ 2

√
e + √

2zk∗ .

PROOF. Just observe that

|θ̂ − θ | ≤ |θ̃k∗ − θ | + |θ̃k∗ − θ̂ |
and the result follows from Theorem 3.6 in view of c1 = 1. �
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Leading term in the risk. The risk bound in the presented oracle result consists
of two terms. The first one

√
αcre is just a constant. Moreover, by choosing a

small α, one can make this term arbitrary small. The other term (2zk∗)r/2 is by
the bound of Theorem 3.1 of order logK and thus, under the assumption (MD), it
is logarithmic in the sample size. This implies that asymptotically, as the sample
size increases, the leading term in the risk bound is exactly the value (2zk∗)r/2.
This particularly explains why the choice of a possibly small critical values is an
important issue.

Payment for adaptation. Recall that in the parametric situation, the risk
E|v−1

k∗ (θ̃k∗ − θ)2| of θ̃k∗ is bounded by c1 = 1; see (2.2). In the nonparametric situ-
ation, the result is only slightly worse. The risk bound includes

√
2zk∗ , which can

be logarithmic in the sample size. In addition, it bounds the absolute loss |θ̂ − θ |
instead of squared loss. Finally, there is an additional factor

√
e, which accounts

for the use of a wrong parametric model instead of the real one.
3.6. SMB condition versus “bias-variance trade-off.” The standard approach

for selecting the optimal index k is based on balancing an upper bound bk for the
bias bk = θk − θ and the standard deviation v

1/2
k of the estimate θ̃k , see for exam-

ple Lepski, Mammen and Spokoiny (1997) or Goldenshluger (1998) for a related
discussion. This section shows that under some additional technical assumptions
this approach is nearly equivalent to the SMB condition advocated in this paper.

In addition to (MD) we suppose the following properties of the covariance ma-
trices Bk = Cov

(
θ̃ (k)

)
. Let Bk,diag be the diagonal matrix with the same diagonal

entries vk as for Bk . Define also Dk = B
1/2
k and Dk,diag = B

1/2
k,diag. The required

conditions reads as follows:

(Dk) It holds for some constant s and all k ≤ K

D−1
k � sD−1

k,diag.

Here the notation A � B for two symmetric matrices A,B means that |Av| ≤ |Bv|
for any vector v. If B is invertible, this is equivalent to saying that the maximal
eigenvalue of the matrix B−1A2B−1 is bounded by s2.

Condition (Dk) allows to rewrite the SMB condition |D−1
k b(k)|2 ≤  in the

following form:

|D−1
k,diagb(k)|2 ≡ b2

1/v1 + · · · + b2
k/vk ≤ /s2.(3.4)

Let bk be a monotonously increasing upper bound for |bk|: bk = maxl≤k |bl|. For
the considered problem of pointwise estimation, the bias-variance trade-off is usu-
ally written in the form

bk∗ ≤ Cbv
1/2
k∗(3.5)

for some fixed constant Cb; see Lepski, Mammen and Spokoiny (1997). The next
result shows that this relation implies the SMB condition (3.4).
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THEOREM 3.8. Suppose (MD) and (Dk). Then for the index k∗ defined
by the balance relation (3.5), the SMB condition k∗ ≤  is also fulfilled with
 = s2Cu0C

2
b .

PROOF. Let k be such that bk ≤ Cbv
−1/2
k . Then

b2
1/v1 + · · · + b2

k/vk ≤ b
2
k(v

−1
1 + · · · + v−1

k ) ≤ Cu0b
2
kv

−1
k ,

Cu0 = (1 − u
−1
0 )−1. Now condition (Dk) provides

|D−1
k b(k)|2 ≤ s2|D−1

k,diagb(k)|2 ≤ s2Cu0b
2
kv

−1
k ≤ s2Cu0C

2
b

and the assertion follows. �

Combination of the results of Theorem 3.8 and Corollary 3.7 yields the follow-
ing.

COROLLARY 3.9. Suppose (MD) and (Dk) and let the index k∗ be defined
by the balance relation (3.5). Then for  = s2Cu0C

2
b and any r > 0

E|v−1
k∗ (θ̂ − θ̃k∗)2|r/2 ≤

√
eαcr + (2zk∗)r/2,

v
−1/2
k∗ E|θ̂ − θ | ≤ 2

√
e + √

2zk∗ .

We conclude this section by a small discussion about relations between of the
oracle result and minimax rate of convergence. Most of the theoretical results in the
statistical literature are stated about the asymptotic minimax rate of estimation on
the functional classes. See for example Lepski (1990, 1992) and Lepski, Mammen
and Spokoiny (1997) for pointwise regression estimation or Goldenshluger (1999)
and Goldenshluger and Pereversev (2003) for some results in the linear inverse
problem. The rate optimal procedures can be obtained using the bias-variance re-
lation (3.5). An immediate corollary of Theorem 3.8 is that the proposed adaptive
estimate that selects one out of the family of the spectral cut-off estimates θ̃k is
rate optimal (up to a logarithmic multiplier) for all such set-ups, because it also
achieves the accuracy corresponding to the balance relation. A precise formulation
of this result lies beyond the focus of this paper.

3.7. Application to the “sequence space” model. This section specifies the
general results to the sequence space example considered in Section 1.3. In this
case, θ̃k = y1 + · · · + ymk

, vk = σ 2
1 + · · · + σ 2

mk
with m1 > m2 > · · · > mK ≥ 1.

We additionally assume that σ 2
i are monotonously increasing in i. The condition

(MD) means in this situation that the indices mk properly decrease to provide an
exponential decrease of the sums vk in k. The next result shows that this condition
ensures (Dk).
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LEMMA 3.2. For the model (1.3), the condition (MD) implies (Dk) with the
constant s = (1 − 1/u0)

−3/2.

The proof is given in the Appendix. The estimate θ̃k has the bias bk = θk −
θ = −∑M

i=mk+1 μi . The bias-variance relation (3.5) balances the nondecreasing
envelope bk = maxl≤k |bl| with the variance v2

k leading to the oracle choice k∗.

Corollary 3.9 ensures for the adaptive estimate θ̂ the accuracy of order v
−1/2
k∗ up to

the multiplicative factor
√

2zk∗ .

4. Simulation. This section illustrates the performance of the proposed pro-
cedure by means of two simulated examples. The first correspond to a severely ill-
posed inverse problem with exponentially increasing variances σ 2

i and the second
to a regularly ill-posed problem with polynomially increasing values σ 2

i . We focus
on two important features of our procedure: “propagation property” and “adaptiv-
ity.” The “propagation” property means that the selected index only in very few
cases is smaller than the oracle one, that means, the “false alarm” situation, when
the procedure stops but the modeling bias is still small, is very rare. The “adaptiv-
ity” means that the ratio of the risk of the adaptive estimate to the risk of the oracle
one is bounded by some fixed constant.

For simplicity we consider “sequence space” models, that is, the data Yi are
generated by the following model: Yi = μi + σiδεi , for i = 1, . . . , n for n = 50
and we assume that εi are i.i.d. standard normal. In each example the values
(μi)i=1,...,n are generated randomly from a centered Gaussian with a decreasing
variance i−3 and we consider 10 different models of this type. The error level δ is
equal to 10−4,10−5 or 10−6. In every example, the target is the sum of the para-
meters μi , that is, θ = ∑n

i=1 μi . This set-up is friendly advised by F. Bauer, see
for example, Bauer (2007).

We apply the proposed procedure to the family of “weak” estimates θ̃k =∑mk

i=1 Yi . Our default choice of the “metaparameters” α and r is α = 1 and r = 1/2.
We also report the similar results for r = 1, which illustrate that the critical values
slightly increase with r . More numerical results (not reported here) indicate that
the critical values increase with r and decrease with α; however, the final results
are rather insensitive to the choice of these metaparameters.

In the first example we choose σi = ai for i = 1, . . . , n, where a = n2/n. We
consider the estimates θ̃k = ∑mk

i=1 Yi with mk = [n− 2 ∗ (k − 1)], for k = 1, . . . ,K

and K = 20, then mK = 12.
The critical values zk are computed from 50,000 Monte Carlo replications from

the null hypothesis (pure noise model) using the sequential procedure from Sec-
tion 2.2, see Table 1.

Figure 1 compares the results for our adaptive estimate with the oracle one.
The oracle value k∗ is defined as max{k :k < 1}. The results for other values
of , for example,  = 0.5 or  = 2 are very similar and we do not report them
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TABLE 1
Critical values computed under the null hypothesis from 50000 replications, when K = 20 and

(σi = ((n2/n)i )i=1,...,n using the sequential procedure

r α z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19

0.5 1.0 15.5 13.0 12.8 12.2 11.5 11.3 10.9 9.8 9.2 8.6 8.3 7.6 7.0 6.6 5.9 5.2 4.5 3.6 2.5
1.0 1.0 22.5 19.0 16.4 17.2 16.2 15.6 16.8 14.4 13.4 13.2 12.9 11.9 10.2 9.3 8.3 7.3 5.8 4.7 3.4

here. Each row corresponds to a different level of the noise δ. The panel (a) draws
the ratio of the adaptive risk E|θ̂ − θ | obtained from 500 realizations to the cor-
responding oracle risk E|θ̃k∗ − θ | for the 10 different models. In the panel (b) we
show the box-plot of k̂ from 500 replications and the “oracles” values k∗ (trian-
gles) for the 10 different models described above. One can see that the adaptive
risk is in the most of cases not more than twice larger than the the oracle risk. The
oracle choice k∗ is usually smaller than the adaptively selected k̂, which illustrates
“propagation” property: procedure does not stop until k∗. It is also worth noticing
that both the oracle choice k∗ and the adaptive values k̂ decrease with the noise,
that is, the smaller the noise, the more coefficients yi are taken for estimating the
sum θ = ∑

i μi .
In the second example we consider a model with (σi = i2)i=1,...,n and apply the

estimates θ̃k = ∑mk

i=1 Yi with mk = [n/(21/5)k−1], for k = 1, . . . ,K and K = 15,
leading to mK = 7. The critical values zk are computed from 50,000 Monte Carlo
replications under the null hypothesis, see Table 2.

Figure 2 presents the results comparing the performance of the adaptive and or-
acle estimates in the second example. The set-up is the same as in the first example
and the results are very similar.

We conclude from this simulation study that the performance of the method
is completely in agreement with the theoretical conclusions and the procedure
demonstrates quite reasonable performance in all the examples including regular
and severely ill-posed problems and for different configurations of the signal and
different noise levels.

APPENDIX.

We start with some useful technical result. Let (ξ1, ξ2) be a Gaussian vector with
zero mean, Eξ2

1 = Eξ2
2 = 1 and ρ = Eξ1ξ2. The correlation coefficient ρ uniquely

describes the joint distribution of ξ1 and ξ2 enabling to define for r ≥ 0 and z ≥ 0

Qr(ρ, z)
def= E[|ξ1|2r1(ξ2

2 /2 > z)], Q∗
r (z)

def= sup
ρ

Q(ρ, z).

Below we utilize some simple bounds on the quantities Qr(ρ, z) and Q∗
r (z).
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FIG. 1. The result for the first example with δ = 10−4 (top), δ = 10−5 (middle) and δ = 10−6

(bottom). Left: the ratio of the adaptive risk E|θ̂ − θ | to the oracle risk E|θ̃k∗ − θ | as function of the
model. Right: the boxplots of the adaptive index k̂ based on 500 runs. The triangles show the oracle
values k∗.

LEMMA A.1. For any r > 0 and any z ≥ 1

Q∗
r (z) ≤ {C1(r) + C2(r)z

r}z−1/2e−z,
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TABLE 2
Critical values computed under the null hypothesis from 50000 replications, when K = 15 and

(σi = i2)i=1,...,n using the sequential procedure

r α z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

0.5 1.0 5.5 5.0 4.6 4.3 4.1 3.9 3.4 3.1 2.8 2.6 2.2 1.7 1.3 0.9
1.0 1.0 8.1 7.9 6.4 6.6 7 5.8 4.8 4.3 3.9 3.6 3.0 2.0 1.5 1.0

where C1(r) and C2(r) depend on r only. Moreover, for any z ≥ 1

inf
ρ

Qr(ρ, z) ≥ C3(r)z
−1/2e−z.

PROOF. Represent ξ1 as ρξ2 + ρ̃ξ̃1 where ρ̃ fulfills ρ2 + ρ̃2 = 1 and ξ̃1 is
standard normal and independent of ξ2. Note that

Qr(ρ, z) = E|ρξ2 + ρ̃ξ̃1|2r1(ξ2
2 /2 > z)

= 0.5E|ρξ2 + ρ̃ξ̃1|2r1(ξ2
2 /2 > z) + 0.5E|ρξ2 − ρ̃ξ̃1|2r1(ξ2

2 /2 > z).

One can easily see that there are constants c1(r), c
′
1(r) > 0 such that for any x, y

c′
1(r){|ρx|2r + |ρ̃y|2r} ≤ |ρx + ρ̃y|2r + |ρx − ρ̃y|2r ≤ c1(r){|ρx|2r + |ρ̃y|2r}.

It is straightforward to check that for some other constants 0 < c′
2(r) < c2(r),

0 < c′
3(r) < c3(r) and z ≥ 1

c′
2(r)z

r−1/2e−z ≤ E|ξ2|2r1(ξ2
2 > 2z) ≤ c2(r)z

r−1/2e−z,

c′
3(r)z

−1/2e−z ≤ E1(ξ2
2 > 2z) ≤ c3(r)z

−1/2e−z.

The simple algebra yields now

Qr(ρ, z) ≤ 0.5c1(r)E{|ρξ2|2r + |ρ̃ξ̃1|2r}1(ξ2
2 > 2z)

≤ 0.5c1(r){c2(r)z
r + c3(r)cr}z−1/2e−z,

Qr(ρ, z) ≥ 0.5c′
1(r)E{|ρξ2|2r + |ρ̃ξ̃1|2r}1(ξ2

2 /2 > z) ≥ C3(r)z
−1/2e−z.

as required. �

PROOF OF THEOREM 3.1. Define for every m < k ≤ K the random set

Bmk
def= {θ̂k = θ̃m}. The definition of the procedure implies

Bmk ⊆
m⋃

l=1

1
(
v−1
l (θ̃l − θ̃k)

2/2 > zl
)

and

E0|v−1
k (θ̃k − θ̂k)

2|r1(Bmk) ≤
m∑

l=1

E0|v−1
k (θ̃k − θ̃m)2|r1(v−1

l (θ̃l − θ̃k)
2/2 > zl).
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FIG. 2. The result for the second example with δ = 10−4 (top), δ = 10−5 (middle) and δ = 10−6

(bottom). Left: the ratio of the adaptive risk E|θ̂ − θ | to the oracle risk E|θ̃k∗ − θ | as function of the
model. Right: the boxplots of the adaptive index k̂ based on 500 runs. The triangles show the oracle
values k∗.

Define for l < m ≤ k

vlm = Var(θ̃l − θ̃m), ξlm
def= (θ̃l − θ̃m)/v

1/2
lm , ρlmk

def= E0ξlkξmk.
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The conditions of the theorem imply that vlm ≤ γ vl for all l < m. Therefore

E0|v−1
k (θ̃k − θ̂k)

2|r1(Bmk) ≤
m∑

l=1

E0|γ vm

vk

|r |ξmk|2r1(ξ2
lk/2 > zl/γ )

and

E|v−1
k (θ̃k − θ̂k)

2|r =
k−1∑
m=1

E0|v−1
k (θ̃k − θ̂k)

2|r1(Bmk)

≤
k−1∑
m=1

m∑
l=1

∣∣∣∣γ vm

vk

∣∣∣∣rQr(ρlmk, zl/γ )

≤ γ r
k−1∑
l=1

Q∗
r (zl/γ )

k−1∑
m=l

∣∣∣∣vm

vk

∣∣∣∣r .
Condition (MD) implies that

k−1∑
m=l

∣∣∣∣vm

vk

∣∣∣∣r ≤
∣∣∣∣ vl

vk

∣∣∣∣r
k−1∑
m=l

u
−(m−l)
0 ≤ C(u0)

∣∣∣∣ vl

vk

∣∣∣∣r ,
where C(u0) = (1 − u

−1
0 )−1. This and Lemma A.1 yield

E|v−1
k (θ̃k − θ̂k)

2|r ≤ γ rC(u0)

k−1∑
l=1

Q∗
r (zl/γ )

∣∣∣∣ vl

vk

∣∣∣∣r

≤ C(r, γ,u0)

k−1∑
l=1

exp{−zl/γ + r log(vl/vk) + r log(zl)}.

and it remains to check that the choice zl = a1 log(K) + γ log(α−1) + rγ×
log(vl/vK) with a properly selected a1 = a1(r, γ,u0,u) provides in view of (k −
l) log(u0) ≤ log(vl/vk) ≤ (k − l) log(u) the required bound E0|v−1

k (θ̃k − θ̂k)
2|r ≤

αcr for all k ≤ K and Theorem 3.1 follows. �

PROOF OF THEOREM 3.2. We use again the decomposition

E0|v−1
K (θ̂ − θ̃K)2|r =

K−1∑
k=1

E0|v−1
K (θ̃k − θ̃K)2|r1(k̂ = k)

≥ E0|v−1
K (θ̃k − θ̃K)2|r1(k̂ = k)

for any k < K . The definition of k̂ implies in the considered case with z1 = · · · =
zk−1 = ∞ that

1(k̂ = k) = 1
(
v−1
k (θ̃k+1 − θ̃k)

2/2 > zk
)
.
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With ρ = ρk,k+1,K = E0ξk,k+1ξk,K it holds

E0|v−1
K (θ̂ − θ̃K)2|r ≥ E0|v−1

K (θ̃k − θ̃K)2|r1
(
v−1
k (θ̃k+1 − θ̃k)

2/2 > zk
)

= (vk,K/vK)rE0|ξk,K |2r1(ξ2
k,k+1/2 > zkvk/vk,k+1)

= (vk,K/vK)rQr(ρ, zkvk/vk,k+1).

The propagation condition (2.4) implies now that

log(αcr ) ≥ r log(vk,K/vK) + logQr(ρ, zkvk/vk,k+1)

yielding in view of Lemma A.1 that

zk ≥ vk,k+1

vk

{
r log(vk,K/vK) + logα−1 − Const. log

(
1 + log(vk,K/vK)

)}
with some fixed constant Const. depending on r only. �

PROOF OF LEMMA 3.2. It suffices to show that the minimal eigenvalue of
the matrix Mk = D−1

k,diagBkD
−1
k,diag is bounded away from zero, or, equivalently,

the largest eigenvalue of M−1
k is bounded from above: ‖M−1

k ‖∞ ≤ (1 − 1/u0)
−3.

Clearly E0θ̃j θ̃l = E0θ̃
2
l = vl for j ≤ l, and Mk is the symmetric matrix composed

by the elements of the form ρjl = v
−1/2
j v

−1/2
l E0θ̃j θ̃l = (vj /vl)

1/2 for j ≤ l. In
other words, Mk is the covariance matrix for the set of random variables ηl =
θ̃l/v

1/2
l for l = 1, . . . , k.

Define γl = v
−1/2
l (θ̃l − θ̃l+1) for l < k and γk = v

−1/2
k ηk . The random variables

γl are independent zero mean normal with the variance sl
def= Eγ 2

l = v−1
l (vl −vl+1)

for l < k and sk = 1. The condition (MD) implies for all l ≤ k that (1 − 1/u0) ≤
sl ≤ (1 − 1/u). Define γ (k) = (γ1, . . . , γk)

� and η(k) = (η1, . . . , ηk)
�. The identi-

ties γl = ηl − ηl+1(vl+1/vl)
1/2 for l < k can be written as γ (k) = Akη

(k), where
line l of the matrix Ak only contains only two nonzero entries: al,l = 1 and
al,l+1 = −v

1/2
l+1/v

1/2
l for l = 1, . . . , k − 1. Again, the condition (MD) implies that

‖I − Ak‖∞ ≤ 1/u0 and ‖A−1
k ‖∞ = ‖{I − (I − Ak)}−1‖ ≤ (1 − 1/u0)

−1. Simi-

lar bound holds for A�
k . Obviously E0γ

(k)(γ (k))� = Γk
def= diag(s1, . . . , sk). This

yields

Γk = EAkη
(k)(η(k))�A�

k = AkMkA
�
k

and ‖M−1
k ‖∞ ≤ ‖A−1

k ‖2∞ · ‖Γ −1
k ‖∞ ≤ (1 − 1/u0)

−3, then the result follows. �
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