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CHANGE-POINT ESTIMATION UNDER ADAPTIVE SAMPLING

BY YAN LAN, MOULINATH BANERJEE1 AND GEORGE MICHAILIDIS2

Abbott Laboratories, University of Michigan and University of Michigan

We consider the problem of locating a jump discontinuity (change-point)
in a smooth parametric regression model with a bounded covariate. It is as-
sumed that one can sample the covariate at different values and measure the
corresponding responses. Budget constraints dictate that a total of n such
measurements can be obtained. A multistage adaptive procedure is proposed,
where at each stage an estimate of the change point is obtained and new
points are sampled from its appropriately chosen neighborhood. It is shown
that such procedures accelerate the rate of convergence of the least squares
estimate of the change-point. Further, the asymptotic distribution of the es-
timate is derived using empirical processes techniques. The latter result pro-
vides guidelines on how to choose the tuning parameters of the multistage
procedure in practice. The improved efficiency of the procedure is demon-
strated using real and synthetic data. This problem is primarily motivated by
applications in engineering systems.

1. Introduction. The problem of estimating the location of a jump disconti-
nuity (change-point) in an otherwise smooth curve has been extensively studied
in the nonparametric regression and survival analysis literature [see, e.g., Dempfle
and Stute (2002), Gijbels, Hall and Kneip (1999), Hall and Molchanov (2003),
Kosorok and Song (2007), Koul and Qian (2002), Loader (1996), Müller (1992),
Müller and Song (1997), Pons (2003), Ritov (1990) and references therein]. In
the classical setting, measurements on all n covariate-response pairs are available
in advance, and the main issue is to estimate as accurately as possible the loca-
tion of the change-point. However, there are applications where it is possible to
sample the response at any covariate value of the experimenter’s choice. The only
hard constraint is that the total budget of measurements to be obtained is fixed a
priori.

For example, consider the following example from system engineering. There
is a stochastic flow of jobs/customers of various types arriving to the system with
random service requests. Jobs waiting to be served are placed in queues of infinite
capacity. The system’s resources are allocated to the various job classes (queues)
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according to some service policy. This system serves as a canonical queueing
model for many applications, including network switches, flexible manufacturing
systems, wireless communications, etc. [Hung and Michailidis (2008)]. A quan-
tity of great interest to the system’s operator is the average delay of the customers,
which is a key performance metric of the quality of service offered by the system.

The average delay of the customers in a two-class system as a function of its
loading, for a resource allocation policy introduced and discussed in Hung and
Michailidis (2008), is shown in Figure 1. Specifically, the system was simulated
under 134 loading settings and fed by input/service request processes obtained
from real network traces and the average delay of 500,000 customers recorded.
It can be seen that for loading around 0.8 there is a marked discontinuity in the
response, which indicates that under the specified resource-allocation policy the
service provided to the customers deteriorates. It is of interest to locate the “thresh-
old” where such a change in the quality of service occurs. It should be pointed out
that this threshold would occur at different system loadings for different allocation
policies.

A few comments on the setting implied by this example are in order. First, the
experimenter can select covariate values (in this case, the system’s loading) and
subsequently obtain their corresponding sample responses. Second, the sampled
responses are expensive to obtain; for example, the average delay is obtained by

FIG. 1. Average delay as a function of system loading for a two-class parallel processing system.
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running a fairly large-scale discrete event simulation of the system under consid-
eration, involving half a million customers. For systems, comprising of a large
number of customer classes, more computationally intensive simulations that can
last days must be undertaken. Third, in many situations there is an a priori fixed
budget of resources; for this example it may correspond to CPU time, in other en-
gineering applications to emulation time, while in other scientific contexts to real
money.

Given the potentially limited budget of points that can be sampled and lack of
a priori knowledge about the location of the change-point, the following strategy
looks promising. A certain portion of the budget is used to obtain an initial esti-
mate of the change-point based on a least squares criterion. Subsequently, a neigh-
borhood around this initial estimate is specified and the remaining portion of the
available points are sampled from it, together with their responses, that yield a new
estimate of the change-point. Intuition suggests that if the first-stage estimate is
fairly accurate, the more intensive sampling in its neighborhood ought to produce
a more accurate estimate than the one that would have been obtained by laying out
the entire budget of points in a uniform fashion. Obviously, the procedure with its
“zoom-in” characteristics can be extended beyond two stages.

The goal of this paper is to formally introduce such multistage adaptive proce-
dures for change-point estimation and examine their properties. In particular, the
following important issues are studied and resolved: (i) the selection of the size of
the neighborhoods, (ii) the rate of convergence of the multistage least squares esti-
mate, together with its asymptotic distribution and (iii) allocation of the available
budget at each stage.

The proposed procedure should be contrasted with the well-studied sequential
techniques for change-point detection, since the underlying setting exhibits marked
differences. In its simplest form, the sequential change-point detection problem
can be formulated as follows: there is a process that generates a sequence of in-
dependent observations X1,X2, . . . from some distribution F0. At some unknown
point in time τ , the distribution changes and hence observations Xτ ,Xτ+1, . . . are
generated from F1. The objective is to raise an alarm as soon as the data-generating
mechanism switches to a new distribution. This problem originally arose in statis-
tical quality control and over the years has found important applications in other
fields. Being a canonical problem in sequential analysis, many detection proce-
dures have been proposed in the literature over the years in discrete and continuous
time, under various assumptions on the distribution of τ and the data-generating
mechanism. The literature on this subject is truly enormous; a comprehensive treat-
ment of the problem can be found in the book by Basseville and Nikiforov (1993),
while some recent developments and new challenges are discussed in the review
paper by Lai (2001). An important difference in our setting is the control that the
experimenter exercises over the data generation process and also the absence of
physical time, a crucial element in the sequential change-point problem.
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The remainder of the paper is organized as follows. In Section 2, the one-stage
procedure is briefly reviewed. In Section 3, the proposed procedure based on adap-
tive sampling is introduced and the main results regarding the rate of convergence
of the new estimator of the change point and its asymptotic distribution are estab-
lished; in addition, various generalizations are discussed. In Section 4, the perfor-
mance of the proposed estimator in finite samples is studied through an extensive
simulation and practical guidelines are discussed for its various tuning parame-
ters. In Section 5, various techniques for constructing confidence intervals for the
change-point, based on the two-stage procedure, are discussed. Finally, the major-
ity of the technical details are provided in the Appendix.

2. The classical problem. In this study, we focus on parametric models for
the regression function of the type

Yi = μ(Xi) + εi, i = 1,2, . . . , n,

where

μ(x) = ψl(βl, x)1(x ≤ d0) + ψu(βu, x)1(x > d0)(1)

with ψl(βl, x) and ψu(βu, x) are both (at least) twice continuously differentiable
in β and infinitely differentiable in x and ψl(βl, d

0) �= ψu(βu, d
0), so that d0 is

the unique point of discontinuity—a change point—of the regression function.
The εi’s are assumed to be i.i.d. symmetric mean 0 errors with common (un-

known) error variance σ 2 and are independent of the Xi’s, which are i.i.d. and
are distributed on [0,1] according to some common density fX(·). The simplest
possible parametric candidate for μ(x), which we will focus on largely to illus-
trate the key ideas in the paper, is the simple step function μ(x) = α01(x ≤ d0) +
β01(x > d0).

Estimating d0 based on the above data is coined as the “classical problem.”
A standard way to estimate the parameters (βl, βu, d

0) is to solve a least-squares
problem. We start by introducing some necessary notation. Let Pn denote the em-
pirical distribution of the data vector {Xi,Yi}ni=1 and P the true distribution of
(X1, Y1). For a function f defined on the space [0,1] × R (in which the vec-
tor (X1, Y1) assumes values) and a measure Q defined on the Borel σ -field on
[0,1]×R, we denote

∫
f dQ as Qf . We now turn our attention to the least-squares

problem.
The objective is to minimize Pn[(y −ψl(α, x))21(x ≤ d)+ (y −ψu(βu, x))21×

(x > d)] over all (α,β, d), with 0 ≤ d ≤ 1. Let (β̃l,n, β̃u,n, d̃n) denote a vector of
minimizers. Note that we refer to “a vector” of minimizers, since there will be, in
general, multiple tri-vectors that minimize the criterion function. The asymptotic
properties of such a vector can be studied by invoking either the methods of Pons
(2003) or those (in Chapter 14) of Kosorok (2008) and Kosorok and Song (2007).
We do not provide the details, but state the results that are essential to the multi-
stage learning procedures that we formulate in the next section. We clarify next
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the meaning of a minimizer of a right-continuous, real-valued function with left
limits (say f ) defined on an interval I . Specifically, any point z ∈ I that satisfies
f (z) ∧ f (z−) = minw∈I f (w) is defined to be a minimizer of f . Also, in order
to discuss the results for the classical procedure and those for the proposed multi-
stage procedures, we need to define a family of compound Poisson processes that
arise in the description of the asymptotic properties of the estimators of the change
point.

A family of compound Poisson processes. For a positive constant �, let ν+(·)
be a Poisson process on [0,∞) with right-continuous sample paths, with ν+(s) ∼
Poi(�s) for s > 0. Let ν̃+(·) be another independent Poisson process on [0,∞)

with left-continuous sample paths, with ν̃+(s) ∼ Poi(�s) and define a (right-
continuous) Poisson process on (−∞,0] by {ν−(s) = ν̃+(−s) : s ∈ (−∞,0]}. Let
{ηi}∞i=1 and {η−i}∞i=1 be two independent sequences of i.i.d. random variables
where each ηj (j assumes both positive and negative values) is distributed like η,
η being a mean 0 random variable with finite variance ρ2. Given a positive con-
stant A, define families of random variables {V +

i }∞i=1 and {V −
i }∞i=1 where, for each

i ≥ 1, V +
i = A/2 + ηi and V −

i = −A/2 + η−i . Set V +
0 = V −

0 ≡ 0. Next, de-
fine compound Poisson processes M1 and M2 on (−∞,∞) as follows: M1(s) =
(
∑

0≤i≤ν+(s) V
+
i )1(s ≥ 0) and M2(s) = (

∑
0≤i≤ν−(s) V

−
i )1(s ≤ 0). Finally, define

the two-sided compound Poisson process MA,η,�(s) = M1(s) − M2(s). It is not
difficult to see that M, almost surely, has a minimizer (in which case it has mul-
tiple minimizers, since the sample paths are piecewise constant). Let dl(A,η,�)

denote the smallest minimizer of MA,η,� and du(A,η,�) its largest one, which
are almost surely well defined. Then, the following relation holds:

(dl(A,η,�), du(A,η,�))
d≡

(
dl

(
A

ρ
,
η

ρ
,�

)
, du

(
A

ρ
,
η

ρ
,�

))
(2)

d≡ 1

�

(
dl

(
A

ρ
,
η

ρ
,1

)
, du

(
A

ρ
,
η

ρ
,1

))
.(3)

For the “classical problem,” the following proposition holds.

PROPOSITION 1. Consider the model described at the beginning of Section 2.
Suppose that X has a positive bounded density on [0,1] and that d0 is known to lie
in the interval [ε0,1 − ε0] for some small ε0 > 0. Let (β̂l,n, β̂u,n, d̂n) denote that
minimizing tri-vector (β̃l,n, β̃u,n, d̃n), for which the third component is minimal.
Then, (

√
n(β̂l,n −βl),

√
n(β̂u,n −βu), n(d̂n −d0)) is Op(1). Furthermore, the first

two components of this vector are asymptotically independent of the third and

n(d̂n − d0)
d→ dl

(|μ(d0+) − μ(d0)|, ε1, fX(d0)
)

d≡ 1

fX(d0)
dl

( |μ(d0+) − μ(d0)|
σ

,
ε1

σ
,1

)
.
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Heteroscedastic errors. The proposition can be generalized readily to cover
the case of heteroscedastic errors. A generalization of the classical model to the
heteroscedastic case is as follows: we observe n i.i.d. observations from the model
Y = μ(X) + σ(X)ε̃ where μ(x) is as defined in (1), ε̃ and X are independent,
ε̃ is a mean 0 error with unit variance and σ 2(x) is a variance function (assumed
continuous). As in the homoscedastic case, an unweighted least-squares procedure
is used to estimate the parameters (βl, βu, d

0). As before, letting (β̂l,n, β̂u,n, d̂n)

denote that minimizing tri-vector (β̃l,n, β̃u,n, d̃n), for which the third component is
minimal, we have:

n(d̂n − d0)
d→ dl

(|μ(d0+) − μ(d0)|, σ (d0)ε̃, fX(d0)
)

d≡ 1

fX(d0)
dl

( |μ(d0+) − μ(d0)|
σ(d0)

, ε̃,1
)
.

3. The two-stage procedure. We first describe a two-stage procedure for es-
timating the (unique) change-point. In what follows, we consider a regression
scenario where the response Yx generated at covariate level x can be written as
Yx = μ(x) + ε, where ε is a error variable with finite variance and μ is the regres-
sion function. The errors corresponding to different covariate levels are i.i.d. We
first focus on the simple regression function μ(x) = α01(x ≤ d0) + β01(x > d0)

and discuss generalizations to more complex parametric models later on. We are
allowed to sample n covariate-response pairs at most and are free to sample a re-
sponse from any covariate level that we like.

• Step 1. At stage one, λn covariate values are sampled uniformly from [0,1] and
responses are obtained. Denote the observed data by {Xi,Yi}n1

i=1, n1 = λn and
the corresponding estimated location of the change-point by d̂n1 .

• Step 2. Sample the remaining n2 = (1 − λ)n covariate-response pairs {Ui,

Wi}n2
i=1, where:

Wi = μ(Ui) + εi, Ui ∼ Unif[ân1, b̂n1]
and [ân1, b̂n1] = [d̂n1 −Kn

−γ
1 , d̂n1 +Kn

−γ
1 ], 0 < γ < 1 and K is some constant.

Obtain an updated estimate of the change-point based on the n2 covariate-
response pairs from stage two, which is denoted by d̂n2 .

We discuss the basic procedure in some more detail. Let (α̂n1, β̂n1, d̂n1) denote
the parameter estimates obtained from stage one. Let Pn2 denote the empirical
measure of the data points {Ui,Wi}n2

i=1. The updated estimates are computed by
minimizing

Pn2[{(w − α̂n1)
2I (u ≤ d) + (w − β̂n1)

2I (u > d)],
which, as is readily seen, is equivalent to minimizing the process

M̃n2(d) ≡ Pn2

[{(w − α̂n1)
2 − (w − β̂n1)

2}(I (u ≤ d) − I (u ≤ d0)
)]

.
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The process M̃n2 is a piecewise-constant, right-continuous function with left lim-
its. We let d̂n2,l and d̂n2,u denote its minimal and maximal minimizers, respec-
tively. Our goal is to determine the joint limit distribution of normalized versions
of (d̂n2,l, d̂n2,u). This is described in the theorems that follow.

THEOREM 1. Assume that the error variable ε in the regression model has
a finite moment generating function in a neighborhood of 0. Then, the random
vector n1+γ (d̂n2,l − d0, d̂n2,u − d0) is Op(1).

REMARK. The proof of this theorem is fairly technical and particularly long
and thus deferred to the Appendix. However, a few words regarding the intuition
behind the accelerated rate of convergence are in order. For simplicity, consider
sampling procedures where instead of sampling from a uniform distribution on the
interval of interest, sampling takes place on a uniform grid on the interval. The
interval from which sampling takes place at the second stage has length 2Kn

−γ
1 .

Since the n2 covariate values are equispaced over this interval, the resolution of
the resulting grid at which responses are measured is O(n

−γ
1 /n2) = O(n−(1+γ ))

and this determines the rate of convergence of the two-stage estimator (just as the
rate of convergence in the classical procedure where n covariates are equispaced
over [0,1] is given by the resolution of the resulting grid in that situation, which is
simply (n−1)).

We next describe the limit distributions of the normalized estimates considered
in Theorem 1.

THEOREM 2. Set C(K,λ, γ ) = (2K)−1(λ/(1 − λ))γ . The random vector
n

1+γ
2 (d̂n2,l − d0, d̂n2,u − d0) converges in distribution to(

dl

(|α0 − β0|, ε,C(K,λ, γ )
)
, du

(|α0 − β0|, ε,C(K,λ, γ )
))

.

REMARK. The asymptotic distributions of the “zoom-in” estimators are given
by the minimizers of a compound Poisson process. The underlying Poisson process
is basically the limiting version of the count process {Pn(s) : s ∈ R}, where Pn(s)

counts the number of Ui ’s in the interval (d0, d0 + s/n
1+γ
2 ]∪ (d0 + s/n

1+γ
2 , d0]. It

can be readily checked that marginally, Pn(s), converges in distribution to a Pois-
son random variable with mean C(K,λ, γ )s, using the Poisson approximation to
the Binomial distribution. On the other hand, the size of the jumps of the com-
pound Poisson process is basically determined by |α0 − β0|/σ , the signal-to-noise
ratio in the model.

General parametric models. These results admit ready extensions to the case
where the function μ(x) is as defined in (1). As in the case of a piecewise con-
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stant μ, n1 ≡ λn points are initially used to obtain least-squares estimates of
(βl, βu, d

0), which we denote by (β̂l,n1, β̂u,n1, d̂n1). Step 2 of the two-stage pro-
cedure is identical and the updated estimate d̂n2 is computed by minimizing the
criterion function

Pn2

[(
w − ψl(β̂l,n1, u)

)2
I (u ≤ d) + (

w − ψu(β̂u,n1, u)
)2

I (u > d)
]
,

which is equivalent to minimizing

M̃n2(d) = Pn2

[{(
w − ψl(β̂l,n1, u)

)2 − (
w − ψu(β̂u,n1, u)

)2}
× (

I (u ≤ d) − I (u ≤ d0)
)]

.

Letting d̂n2,l and d̂n2,u denote the smallest and largest argmins of M̃n2, respectively
(as in the piecewise-constant function case), we have the following proposition.

PROPOSITION 2. The random vector n
1+γ
2 (d̂n2,l − d0, d̂n2,u − d0) converges

in distribution to(
dl

(|ψl(βl, d
0) − ψu(βu, d

0)|, ε,C(K,λ, γ )
)
,

du

(|ψl(βl, d
0) − ψu(βu, d

0)|, ε,C(K,λ, γ )
))

.

The heteroscedastic case. Similar results continue to hold for a heteroscedas-
tic regression model. We formulate the heteroscedastic setting as follows. At any
given covariate level x, the observed response Yx = μ(x) + σ(x)ε̃ with μ(x) as
defined in (1), σ 2(x) is a (continuous) variance function and ε̃ is a symmetric error
variable with unit variance. The errors corresponding to different covariate val-
ues are independent. Using the same two-stage procedure as described above, the
following proposition obtains.

PROPOSITION 3. We have

n
1+γ
2 (d̂n2,l − d0, d̂n2,u − d0)

d→ (
dl

(|ψl(βl, d
0) − ψu(βu, d

0)|, σ (d0)ε̃,C(K,λ, γ )
)
,

du

(|ψl(βl, d
0) − ψu(βu, d

0)|, σ (d0)ε̃,C(K,λ, γ )
))

.

REMARK. With choice of a constant variance function, σ 2(x) ≡ σ 2, the het-
eroscedastic model reduces to the homoscedastic one. We nevertheless present re-
sults for these two situations separately. We also subsequently derive our results
for the homoscedastic case, the derivations extending almost trivially to the het-
eroscedastic case.
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3.1. Proof of Theorem 2. For the proof of this theorem (and the proof of
Lemma 3.2 in the Appendix) we denote the process M|α0−β0|,ε,C(K,λ,γ ) simply
by M and its smallest and largest minimizers simply by (dl, du). Our proof of this
theorem will rely on continuous mapping for the arg min functional. For the sake
of concreteness, in what follows, we assume that α0 < β0. Under this assump-
tion, with probability increasing to 1 as n (and consequently n1) goes to infin-
ity, α̂n1 < β̂n1 and d0 belongs to the set [d̂n1 − Kn

−γ
1 , d̂n1 + Kn

−γ
1 ]. On this set

(d̂n2,l, d̂n2,u) can be obtained by minimizing (the equivalent) criterion function

Pn2

[(
w − α̂n1 + β̂n1

2

)(
I (u ≤ d) − I (u ≤ d0)

)]

and d0 is characterized as:

d0 = arg min P
[(

w − α̂n1 + β̂n1

2

)(
I (u ≤ d) − I (u ≤ d0)

)]
,

where P is the distribution of (W,U). Therefore, in what follows, we take:

M̃n2(d) = Pn2

[(
w − α̂n1 + β̂n1

2

)(
I (u ≤ d) − I (u ≤ d0)

)]

and d̂n2,l and d̂n2,u to be the smallest and largest argmins of this stochastic process.

Set (ξn,l, ξn,u) = n
1+γ
2 (d̂n2,l − d0, d̂n2,u − d0). Then (ξn,l, ξn,u) is the vector of

smallest and largest argmins of the stochastic process:

Mn2(s) =
n2∑
i=1

[(
Wi − α̂n1 + β̂n1

2

)(
I

(
Ui ≤ d0 + s

n
1+γ
2

)
− I (Ui ≤ d0)

)]

= M+
n2

(s) − M−
n2

(s),

where M+
n2

(s) = Mn2(s)1(s ≥ 0) and M−
n2

(s) = −Mn2(s)1(s ≤ 0).
We now introduce some notation that is crucial to the subsequent development.

Let S denote the class of piecewise-constant, right-continuous functions with left
limits (from R to R) that are continuous at every integer point, assume the value 0
at 0 and possess finitely many jumps in every compact interval [−C,C] where C >

0 is an integer. Let f̃ denote the pure jump process (of jump size 1) corresponding
to the function f ; that is, f̃ is the piecewise-constant, right-continuous function
with left limits, such that for any s > 0, f̃ (s) counts the number of jumps of the
function f in the interval [0, s], while for s < 0, f̃ (s) counts the number of jumps
in the set (s,0).

For any positive integer C > 0, let D[−C,C] denote the class of all right-
continuous functions with left limits with domain [−C,C] equipped with the Sko-
rokhod topology and let D[−C,C] × [−C,C] denote the corresponding product
space. Finally, let D0

C denote the (metric) subspace of ([−C,C])× ([−C,C]) that



CHANGE-POINT ESTIMATION UNDER ADAPTIVE SAMPLING 1761

comprises all function pairs of the form (f |[−C,C], f̃ |[−C,C]) for f ∈ S. We have
the following lemma that is proved in the Appendix section of Lan, Banerjee and
Michailidis (2007).

LEMMA 3.1. Let {fn} and f0 be functions in S, such that for every posi-
tive integer C, (fn|[−C,C], f̃n|[−C,C]) converges to (f0|[−C,C], f̃0|[−C,C]) in DC

0
where f0 satisfies the property that no two flat stretches of f0 have the same
height. Let ln,C and un,C denote the smallest and the largest minimizers of fn

on [−C,C], and l0,C and u0,C denote the corresponding functionals for f0. Then
(ln,C, un,C) → (l0,C, u0,C).

Consider the sequence of stochastic processes Mn2(s) and let Jn2(s) denote the
corresponding jump processes. We have:

Jn2(s) = sign(s)

n2∑
i=1

[(
I

(
Ui ≤ d0 + s

n
1+γ
2

)
− I (Ui ≤ d0)

)]

= J+
n2

(s) + J−
n2

(s),

where J+
n2

(s) = Jn2(s)1(s ≥ 0) and J−
n2

(s) = Jn2(s)1(s ≤ 0). The jump process
corresponding to M(s) is denoted by J(s) and is given by ν+(s)1(h ≥ 0) +
ν−(s)1(h ≤ 0). For each n, {Mn2(s) : s ∈ R} lives in S with probability one. Also,
with probability one, {M(s) : s ∈ R} lives in S. Also, on a set of probability one
(which does not depend on C), for every positive integer C, ((Mn2(s),Jn2(s)) : s ∈
[−C,C]) belongs to DC

0 and so does ((M(s),J(s)) : s ∈ [−C,C]). Let (ξn,C,l,

ξn,C,u) denote the smallest and largest arg min of Mn2 restricted to [−C,C] and
let (dC,l, dC,u) denote the corresponding functionals for M restricted to [−C,C].
We prove in the Appendix:

LEMMA 3.2. For every C > 0, ((Mn2(s),Jn2(s)) : s ∈ [−C,C]) converges in
distribution to ((M(s),J(s)) : s ∈ [−C,C]) in the space D0

C .

Consider the function h that maps an element (a pair of functions) of DC
0 to

the two-dimensional vector given by the smallest arg min and the largest arg min
of the first component of the element. Using the fact that almost surely no two
flat stretches of M have the same height, it follows by Lemma 3.1 that the
process ((M(s),J(s)) : s ∈ [−C,C]) belongs, almost surely, to the continuity set
of the function h. This, coupled with the distributional convergence established in
Lemma 3.2 leads to the conclusion that

(ξn,C,l, ξn,C,u)
d→ (dC,l, dC,u).(4)

We will show that (ξn,l, ξn,u) → (dl, du). To this end, we use the following lemma.
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LEMMA 3.3. Suppose that {Wnε}, {Wn} and {Wε} are three sets of random
vectors such that:

(i) limε→0 lim supn→∞ P [Wnε �= Wn] = 0,
(ii) limε→0 P [Wε �= W ] = 0 and

(iii) for every ε > 0 , Wnε
d→ Wε as n → ∞.

Then, Wn
d→ W , as n → ∞.

Before applying the lemma, we first note the following facts: (a) The sequence
of (smallest and largest minimizers) (ξn,l, ξn,u) is Op(1), and (b) The minimizers
(dl, du) are Op(1). Now, in the above lemma, set ε = 1/C, Wnε = (ξn,C,l, ξn,C,u),
Wε = (dC,l, dC,u), Wn = (ξn,l, ξn,u) and W = (dl, du). Condition (iii) is estab-
lished in (4). From (a) and (b) it follows that conditions (i) and (ii) of the lemma

are satisfied. We conclude that (ξn,l, ξn,u)
d→ (dl, du). �

REMARK. It is instructive to compare the obtained result on the convergence
of the (nonunique) arg min functional to that considered in Ferger (2004). Ferger
deals with the convergence of the arg max functional under the Skorokhod topol-
ogy in Theorems 2 and 3 of his paper. Since the arg max functional is not contin-
uous under the Skorokhod topology, an exact result on distributional convergence
cannot be achieved. Instead, asymptotic upper and lower bounds are obtained on
the distribution function of the arg max in terms of the smallest maximizer and the
largest maximizer of the limit process [page 88 of Ferger (2004)]. The result we
obtain here is, admittedly, in a more specialized set-up than the one considered in
his paper, but it is stronger since we are able to show exact distributional conver-
gence of argmins. This is achieved at the cost of some extra effort: establishing
the joint convergence of the original processes, whose argmins are of interest, and
their jump processes, and subsequently invoking continuous mapping. Under this
stronger mode of convergence, the arg min functional indeed turns out to be contin-
uous, as Lemma 3.1 shows [the arguments employed are similar in spirit to those
in Section 14.5.1 of Kosorok (2008)]. This result allows us to construct asymp-
totic confidence intervals that have exact coverage at any given level, as opposed
to the conservative intervals proposed in Ferger (2004). That the exact confidence
intervals buy us significant precision over the conservative ones is evident from the
reported simulation results discussed in Section 5.

4. Multistage procedures and strategies for parameter allocation.

4.1. Multistage procedures. We consider a generalization of the two-stage
procedure to P stages in the setting of the heteroscedastic model with a gen-
eral parametric regression function μ. Let λ1, λ2, . . . , λP be the proportions of
points used at each stage (where λ1 + λ2 + · · · + λP = 1) and let ni = λin.
Also, fix sequences of numbers 0 < γP−1 < · · · < γ1 < 1 and K1,K2, . . . ,KP−1
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(with Ki > 0). Having used n1 points to construct the initial estimate d̂n1 ,
in the qth (2 ≤ q ≤ P) stage, define the sampling neighborhood as [d̂nq−1 −
Kq−1n

−((q−2)+γq−1)

q−1 , d̂nq−1 + Kq−1n
−((q−2)+γq−1)

q−1 ], sample nq covariate-response

pairs {Wi,Ui}nq

i=1 from this neighborhood: Wi = μ(Ui) + εi and update the esti-
mate of the change-point to d̂nq . Let (d̂nP ,l, d̂nP ,u) denote the smallest and largest
estimates at stage P . It can be shown using analogous arguments as those in The-
orems 3.1 and 3.2 that

n
(P−1)+γP−1
P

(
(d̂nP ,l − d0), (d̂nP ,u − d0)

)
is Op(1) and converges in distribution to (dl, du), where (dl, du) is the vector of
the smallest and the largest argmins of the process

M
(|ψl(βl, d

0) − ψu(βu, d
0)|, σ (d0)ε̃,CP

)
with CP = (1/2KP−1)(λP−1/λP )((P−2)+γP−1).

4.2. Strategies for parameter allocation. In this section, we describe strategies
for selecting the tuning parameters K,γ and λ used in the procedure. We do this in
the setting of the simple regression model μ(x) = α01(x ≤ d0)+β01(x > d0) and
homoscedastic normal errors, obvious analogues holding in more general settings.

Recall that (d̂nq ,l, d̂nq ,u) are the minimal and maximal minimizers at step q,2 ≤
q ≤ P . Set: d̂q,av = (d̂nq ,l + d̂nq ,u)/2. In what follows we use this as our qth stage
estimate of the change-point.

We start with the case of P = 2 to fix ideas and motivate the general result.
Using notation from Theorem 2 of this paper, we have:

n
1+γ
2 (d̂2,av − d0)

d→ dl + du

2
.

It is also not difficult to see that this limit distribution is symmetric about 0.
Henceforth, the notation Argmin will denote the simple average of the minimal

and maximal minimizers of a compound Poisson process. The quantity |α0 −β0|/σ
will be denoted as SNR (signal-to-noise ratio). The higher the SNR, the more
advantageous the estimation of the change-point at any given sample size would
be. By (3), we have

M ≡ M|α0−β0|,ε,C(K1,λ1,γ1)
d≡ 1

C(K1, λ1, γ1)
Arg min MSNR,Z,1,

where Z is the standard normal random variable. This is a consequence of the fact
that ε/σ ∼ N(0,1). From Theorem 2 and the above display, we have

n1+γ1(d̂2,av − d0)
d→ 1

λ
1+γ1
2

2K1

(
λ2

λ1

)γ1

Arg min MSNR,Z,1

d≡ 2K1

λ2λ
γ1
1

Arg min MSNR,Z,1.
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For a given sample size n, the objective is to choose the parameters K1 and γ1,
so that the change-point d0 would be contained in the prescribed interval [d̂1,av −
K1n

−γ1
1 , d̂1,av + K1n

−γ1
1 ] with very high probability. In practice, this translates to

choosing K1 in such a way that K1n
−γ1
1 ≈ Cζ1/n1, where Cζ1 is the upper ζ1th

quantile of the distribution of Arg minMSNR,Z,1, which is symmetric about 0. The
value of ζ1 should be small, say 0.0005. In other words, our goal is to “zoom in,”
but not excessively so that we systematically start missing d0 in the prescribed
sampling interval. With this choice for K1 we then have

d̂2,av − d0 ≈ 2Cζ1

n
1−γ1
1 λ2λ

γ1
1 n−(1+γ1)

Arg minMSNR,Z,1

(5)

= 2Cζ1

n2λ2λ1
Arg min MSNR,Z,1.

It can be seen that the right-hand side is minimized when setting λ1 = λ2 = 1/2
(equal allocation of samples in the first and second stages).

Consider now a one-stage procedure with the covariates sampled from a den-
sity fX , with the estimate of the change-point once again chosen to be the simple
average of the minimal and maximal minimizers; call this d̂av . In this case, the
standard change-point asymptotics in conjunction with (2) and (3) give

n(d̂av − d0)
d→ 1

fX(d0)
Arg min MSNR,Z,1.

This immediately provides an expression of the asymptotic efficiency of the two-
stage procedure with respect to the one-stage (in terms of ratios of approximate
standard deviations) given by

ARE2,1(n) ≈ n

8Cζ1fX(d0)
.(6)

It is not difficult to see that the same approximate formula for the ARE holds for
some other measures of dispersion, besides the standard deviation. Let

ARE2,1,MAD(n) ≡ E|d̂av − d0|
E|d̂2,av − d0| and ARE2,1,IQR(n) ≡ IQR(d̂av)

IQR(d̂2,av)
,

where both first and second-stage estimates are based on samples of size n, and
IQR(X) denotes the interquartile range of the distribution of a random variable X.
Then, following similar steps to those involved in calculating the ARE based on
standard deviations, we conclude that

ARE2,1,MAD(n) ≈ ARE2,1,IQR(n) ≈ n

8Cζ1fX(d0)
.

The accuracy of the above approximation is confirmed empirically through a sim-
ulation study. The setting involves a change-point model given by

yi = 0.5I (xi ≤ 0.5) + 1.5I (xi > 0.5) + εi, xi ∈ (0,1).(7)
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FIG. 2. Top panels: ARE for standard deviation, IQR and MAD measures for SNR = 1 (left) and 2
(right). Bottom panels: corresponding ARE for SNR = 5 (left) and 8 (right).

The variance σ 2 was chosen so that the SNR defined as (β0 −α0)/σ = 1,2,5 and 8
and the sample size varies in increments of 50 from 50 to 1500. The results based
on an interval corresponding to ζ1 = 0.0025 and 5000 replications are shown in
Figure 2. Further, for the two-stage procedure the smallest and largest 5 “outliers”
were dropped, since they introduced too much variability, especially for the stan-
dard deviation based ARE. These “outliers” correspond to the cases where the true
parameters d0 was not contained in the zoom-in sampling interval. It can be seen
that there is great agreement between the theoretical formula for the ARE and the
empirical ARE, for all three performance measures employed.

REMARK. The formula for the ARE in (6) says that the “agnostic” two-stage
procedure (“agnostic” since the covariates are sampled uniformly at each stage)
will eventually, that is, with increasing n, surpass any one stage procedure, no
matter the amount of background information incorporated about the location of
the change-point in the one-stage process. One can think of an “oracle-type” one-
stage procedure where the experimenter samples the covariates from a density that
peaks in a neighborhood of d0 relative to the uniform density [corresponding to
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high values of fX(d0)]. The faster convergence rate of the two-stage procedure
relative to this one-stage procedure guarantees that with increasing n, the ARE
will always go to infinity. Further, expression (6) provides an approximation to
the minimal sample size required for the two-stage procedure to outperform the
“classical” one, a result verified through simulations (not shown here).

REMARK. A uniform density has been considered up to this point for sam-
pling second-stage, covariate-response pairs. We examine next the case of using
an arbitrary sampling density gU(·) supported on the interval [d̂n1 − Kn

−γ
1 , d̂n1 +

Kn
−γ
1 ] and symmetric around d̂n−1. A natural choice for such a density is

gU(d0) = h((d0 − d̂n1)/n
−γ
1 K)(n

γ
1 /K), for a density h(·) supported on [−1,1]

and symmetric about 0. Analogous arguments to those used in the proof of Theo-
rem 2 establish that the random vector n

1+γ
2 (d̂n2,l − d0, d̂n2,u − d0) converges in

distribution to(
dl

(|α0 − β0|, ε,C(K,λ, γ,h)
)
, du

(|α0 − β0|, ε,C(K,λ, γ,h)
))

,

where C(K,λ, γ,h) = (λ/(1 − λ))γ (h(0)/K). With the error term normally dis-
tributed, as assumed in this section, we get

n1+γ (d̂2,av − d0)
d→ K

h(0)(1 − λ)λγ
Arg minMSNR,Z,1

and it can be readily checked that the approximate ARE formula reduces to
ARE2,1(n) ≈ nh(0)/(4Cζ fX(d0)). It can be seen that the more “peaked” the sam-
pling density gU (equivalently h) the greater the efficiency gains. However, one
needs to be careful, since the above formula is obtained through asymptotic con-
siderations. In finite samples, a very peaked density around d̂n1 may not perform
well, since bias issues [involving (d0 − d̂n1)] must also be taken into account.

REMARK. Simulation results indicate that in the presence of a small budget
of available points (n = 20 or 50), the efficiency of the two-stage estimator can
be improved by employing a uniform (equispaced) design in the first-stage. The
reason is that such a design reduces the sampling variability of the covariate x,
which leads to improved localization of the change-point. However, the approx-
imate formula for the ARE discussed above is no longer valid when we use a
uniform design at the first-stage, since the asymptotics of the one-stage estimator
are then no longer described by the minimizer of a compound Poisson process. For
further discussion on uniform sampling designs, see Section 4.1 of Lan, Banerjee
and Michailidis (2007).

We turn our attention to the allocation of parameters Ki,λi and γi,1 ≤ i ≤ P −
1 for the P stage procedure. We start with a three-stage procedure and generalize
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afterward. From the theoretical result of Section 4.1 we have

n
2+γ2
3 (d̂n3,av − d0)

d→ 2K2

(
λ3

λ2

)1+γ2

Arg min MSNR,Z,1

(8)
�⇒ n2+γ2(d̂n3,av − d0)

d→ 2K2

λ3λ
1+γ2
2

Arg min MSNR,Z,1(9)

or

d̂n3,av − d0 d≈ 2K2

n2+γ2λ3λ
1+γ2
2

Arg min MSNR,Z,1.

Once again, our objective is to choose K2 and γ2 so that for any fixed sample size n,
with very high probability d0 would be contained in the sampling interval [d̂n2,av −
K2n

−(1+γ2)
2 , d̂n2,av + K2n

−(1+γ2)
2 ]. Thus, using (5) we require that K2n

−(1+γ2)
2 ≈

(2Cζ1Cζ2)/(n
2λ2λ1), or K2 = (2Cζ1Cζ2)/(λ1λ

−γ2
2 n1−γ2), with both ζ1, ζ2 being

very small. With this choice for K2 we obtain

d̂n3,av − d0 d≈ 4Cζ1Cζ2

n3λ1λ2λ3
Arg min MSNR,Z,1.

It is then easy to see that the right-hand size is minimized when λ1 = λ2 = λ3 =
1/3. The ARE formula for the three-stage procedure under the proposed (equal)
allocation of samples was validated through a simulation based on 5000 replica-
tions. The same stump model was employed and the values for SNR were set equal
to 5 and 8, while those for ζ1 = ζ2 = 0.0025. The results using a similar trimming
of “outliers” for the estimates of the three-stage procedure (3 smallest and 3 largest
in this case) are shown in Figure 3 and exhibit great agreement with the theoretical
formula.

FIG. 3. ARE for standard deviation, IQR and MAD measures for SNR = 5 (left) and 8 (right).
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Proceeding analogously to the three-stage procedure, we obtain that at stage
q − 1,

d̂nq−1,av − d0 d≈ 2q−2Cζ1 · · ·Cζq−2

nq−1λ1 · · ·λq−1
Arg min MSNR,Z,1.

A level 1 − 2ζq−1 C.I. for d0 (for a small ζq−1) is then given by

[
d̂nq−1,av − 2q−2Cζ1 · · ·Cζq−2Cζq−1

nq−1λ1 · · ·λq−1
, d̂nq−1,av + 2q−2Cζ1 · · ·Cζq−2Cζq−1

nq−1λ1 · · ·λq−1

]
.(10)

The sampling neighborhood of d̂nq−1,av from which we sample at stage q is for-
mally given by [

d̂nq−1,av − Kq−1

n
q−2+γq−1
q−1

, d̂nq−1,av + Kq−1

n
q−2+γq−1
q−1

]
(11)

and yields that

(d̂nq ,av − d0)
d≈ 2Kq−1

λqλ
(q−2)+γq−1
q−1 n(q−1)+γq−1

Arg min MSNR,Z,1.

Equating the neighborhoods (10) and (11) gives

Kq−1 = 2q−2Cζ1 · · ·Cζq−2Cζq−1

n1−γq−1λ1 · · ·λq−2λ
−γq−1−q+3
q−1

.

Plugging this choice of Kq−1 into the expression for the approximate distribution
of d̂nq ,av − d0 gives

d̂nq ,av − d0 d≈ 2q−1Cζ1 · · ·Cζq−2Cζq−1

nqλ1 · · ·λq−1λq

Arg min MSNR,Z,1.

Therefore, the P stage estimate (d̂np − d0) is approximately distributed as

2P−1Cζ1 · · ·CζP−1

λ1 · · ·λP nP
Arg minMSNR,Z,1,

which shows that an equal allocation of samples is warranted (i.e., λi = 1/P,1 ≤
i ≤ P ). Some straightforward algebra establishes that

AREP,1(n) ≈ nP−1λ1λ2 · · ·λP

2P−1Cζ1 · · ·CζP−1fX(d0)
= nP−1

2P−1P P fX(d0)Cζ1 · · ·CζP−1

,

where fX(d0) has the same connotation as in (6).
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REMARK. An interesting question that arises in practice is that of how many
stages to use given a fixed budget of n points. Obviously the answer depends on
the underlying SNR, but n/P should be fairly large. Extensive numerical work
with two, three and four-stage procedures indicates that n/P in the range of 35–50
points performs well. A related issue is how to choose the values of ζi that deter-
mine the coverage of the successive neighborhoods. Notice that with probability
1 − (1 − 2ζ1), d0 is not contained in the sampling interval neighborhood around
d̂n1 . Proceeding analogously and due to the independence of sampling at subse-
quent stages, it can be seen that with probability 1 − ∏P−1

i=1 (1 − 2ζi) the shrinking
sampling intervals are going to miss d0 at some stage. Taking all the 2ζi’s to be
equal to ψ , we get that this probability is given by 1 − (1 − ψ)P−1. Setting the
probability of trapping d0 after P stages equal to (1 − δ) (δ very small) we get
that ψ = 1 − (1 − δ)1/(P−1), which provides a good guideline for determining the
size of the sampling neighborhoods. There remains the issue of the sampling in-
terval not containing d0 at some stage. The ARE results based on simulations for a
3-stage procedure, that are shown in Figure 3, are somewhat optimistic due to the
trimming of outliers discussed previously; however, even with outliers included,
improvements still occur, albeit small compared to the one-stage procedure.

5. Confidence intervals for the change-point. We compare next the perfor-
mance of exact confidence intervals based on the result established in Theorem 2 to
those proposed in Ferger (2004). Moreover, confidence intervals for finite samples
will be constructed following the discussion in Section 4.

For all these comparisons, simulations were run for a stump model with
α0 = 0.5, β0 = 1.5, d0 = 0.5 and sample sizes n = 50,100,200,500,1000 with
N = 2000 replicates for each n. Confidence intervals for d0 based on the min-
imal minimizer d̂n2,l , the maximal minimizer d̂n2,u and the average minimizer
d̂n2,av = (d̂n2,l + d̂n2,u)/2 were constructed. Two values of γ = 1/2 and 2/3
and two values of K = 1 and 2 were used together with the optimal alloca-
tion λ ≡ γ /(1 + γ ) as discussed in Section 4. The confidence level was set at
1 − τ = 0.95 and the percentage of replicates for which the true change-point
was included in the corresponding intervals, as well as the average length of each
interval, were recorded. In what follows, the symbols dl and du have the same
connotations as in the proof of Theorem 3.2.

5.1. Conservative intervals. Using the results of Ferger (2004), based on any
two-stage estimator d̂n2 , we propose an asymptotically conservative confidence
interval for d0 at level 1 − τ :

In2(τ ) := (d̂n2 − b/n
1+γ
2 , d̂n2 − a/n

1+γ
2 ),

where a < b are any solutions of the inequality

Prob(du < b) − Prob(dl ≤ a) ≥ 1 − τ.
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Based on the smallest, largest and average minimizers at stage two, we therefore
obtain intervals

In2,l(τ ) = (d̂n2,l − b/n
1+γ
2 , d̂n2,l − a/n

1+γ
2 ),

In2,u(τ ) = (d̂n2,u − b/n
1+γ
2 , d̂n2,u − a/n

1+γ
2 )

and

In2,av(τ ) = (d̂n2,av − b/n
1+γ
2 , d̂n2,av − a/n

1+γ
2 ),

where a is the τ/2th quantile of dl and b is the (1 − τ/2)th quantile of du. At this
point, these quantiles do not seem to be analytically determinable but can certainly
be simulated to a reasonable degree of approximation.

In Table 1 the coverage probabilities together with the length of the confidence
intervals are shown for a number of combinations of sample sizes and tuning para-
meters and with the SNR set equal to 5. It can be seen that the recorded coverage
exceeds the nominal level of 95% and almost approaching perfect (100%) cover-
age for the average minimizer.

5.1.1. Exact confidence intervals. On the other hand, since Theorem 3.2 pro-
vides us with the exact asymptotic distributions of the sample minimizers, we can
construct asymptotically exact (level 1 − τ confidence intervals) as follows:

Ĩn2,l(τ ) = (d̂n2,l − bl/n
1+γ
2 , d̂n2,l − al/n

1+γ
2 ),

Ĩn2,u(τ ) = (d̂n2,u − bu/n
1+γ
2 , d̂n2,u − au/n

1+γ
2 ),

Ĩn2,av(τ ) = (d̂n2,av − bav/n
1+γ
2 , d̂n2,av − aav/n

1+γ
2 ),

where al, bl, au, bu, aav and bav are the exact quantiles [al, au and aav correspond
to τ/2th quantiles and bl, bu and bav correspond to (1 − τ/2)th quantiles] of dl ,
du and (dl + du)/2, respectively.

In Table 2 the coverage probabilities together with the length of the confidence
intervals are shown for a number of combinations of sample sizes and tuning pa-
rameters and with the SNR set equal to 5. It can be seen that the coverage prob-
abilities are fairly close to their nominal values, especially for γ = 2/3. Further,
their length is almost half of those obtained according to Ferger’s (2004) method.
Finally, it should be noted that analogous results were obtained for SNR = 2 and
8 (not shown due to space considerations).

5.1.2. Construction of confidence intervals in finite samples. Confidence in-
tervals in finite samples can also be based on the adaptive parameter allocation
strategies discussed in Section 4 for the two-stage procedure. We briefly discuss
this below, adopting notation from that section.
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TABLE 1
95% conservative confidence intervals for a combination of sample sizes and the tuning parameters γ,K and for SNR = 5

n = 50 n = 100 n = 200 n = 500 n = 1000

K = 1 K = 2 K = 1 K = 2 K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

γ = 1
2

În2,l 97.40% 97.55% 97.40% 98.20% 97.65% 98.00% 96.55% 97.05% 97.15% 97.75%
(0.0580) (0.1208) (0.0205) (0.0427) (0.0072) (0.0151) (0.0018) (0.0038) (0.0006) (0.0014)

În2,u 97.05% 98.60% 97.65% 97.05% 97.65% 97.85% 97.40% 97.90% 97.80% 98.00%
(0.0580) (0.1208) (0.0205) (0.0427) (0.0072) (0.0151) (0.0018) (0.0038) (0.0006) (0.0014)

În2,av 99.80% 99.95% 99.80% 99.95% 100% 100% 99.80% 100% 99.70% 99.95%
(0.0580) (0.1208) (0.0205) (0.0427) (0.0072) (0.0151) (0.0018) (0.0038) (0.0006) (0.0014)

γ = 2
3

În2,l 98.15% 97.70% 97.65% 98.30% 97.90% 97.70% 97.65% 97.30% 97.75% 97.70%
(0.0299) (0.0581) (0.0094) (0.0183) (0.0030) (0.0058) (0.0006) (0.0013) (0.0002) (0.0004)

În2,u 98.00% 98.20% 97.85% 98.55% 97.90% 98.10% 98.30% 97.75% 97.60% 98.50%
(0.0299) (0.0581) (0.0094) (0.0183) (0.0030) (0.0058) (0.0006) (0.0013) (0.0002) (0.0004)

În2,av 99.60% 99.95% 99.60% 99.90% 99.85% 99.95% 99.85% 99.90% 99.85% 99.95%
(0.0299) (0.0581) (0.0094) (0.0183) (0.0030) (0.0058) (0.0006) (0.0013) (0.0002) (0.0004)
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TABLE 2
95% exact confidence intervals for a combination of sample sizes and tuning parameters γ,K for SNR = 5

n = 50 n = 100 n = 200 n = 500 n = 1000

K = 1 K = 2 K = 1 K = 2 K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

γ = 1
2

Ĩn2,l 95.00% 94.20% 93.80% 95.25% 95.25% 94.10% 93.40% 94.50% 95.05% 94.90%
(0.0283) (0.0599) (0.0100) (0.0212) (0.0035) (0.0075) (0.0009) (0.0019) (0.0003) (0.0007)

Ĩn2,u 94.20% 96.50% 94.80% 94.95% 94.45% 95.85% 94.85% 95.90% 95.50% 95.85%
(0.0294) (0.0602) (0.0104) (0.0213) (0.0037) (0.0075) (0.0009) (0.0019) (0.0003) (0.0007)

Ĩn2,av 94.30% 95.25% 94.35% 94.05% 94.40% 95.45% 93.20% 94.85% 94.55% 95.30%
(0.0236) (0.0487) (0.0083) (0.0172) (0.0029) (0.0061) (0.0007) (0.0015) (0.0003) (0.0005)

γ = 2
3

Ĩn2,l 95.65% 95.40% 95.05% 96.05% 95.35% 95.45% 95.30% 95.30% 95.05% 95.90%
(0.0148) (0.0277) (0.0047) (0.0087) (0.0015) (0.0027) (0.0003) (0.0006) (0.0001) (0.0002)

Ĩn2,u 95.40% 96.00% 95.65% 96.60% 95.80% 96.15% 96.20% 96.60% 95.15% 96.85%
(0.0149) (0.0302) (0.0047) (0.0095) (0.0015) (0.0030) (0.0003) (0.0006) (0.0001) (0.0002)

Ĩn2,av 95.15% 96.45% 95.20% 96.95% 94.75% 96.10% 95.30% 96.15% 94.05% 96.10%
(0.0120) (0.0253) (0.0038) (0.0080) (0.0012) (0.0025) (0.0003) (0.0005) (0.0001) (0.0002)
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TABLE 3
95% confidence intervals constructed using the adaptive parameter allocation strategy

for different sample sizes and SNR with ζ1 = 0.0005

SNR = 2 SNR = 5 SNR = 8

N Coverage Length Coverage Length Coverage Length

50 93.24% 0.2780 95.48% 0.0383 95.68% 0.0329
100 94.08% 0.0695 95.24% 0.0096 95.54% 0.0082
200 94.48% 0.0174 94.78% 0.0024 95.16% 0.0021
500 94.82% 0.0028 95.08% 0.00038 94.94% 0.00033

From (5) with equal allocation of points between the two stages we have that

d̂n2,av − d0 d≈ 8Cζ1

n2 Arg min MSNR,Z,1.

Therefore, an approximate level 1 − τ confidence interval is given by[
d̂n2,av − 8Cζ1Cτ/2

n2 , d̂n2,av + 8Cζ1Cτ/2

n2

]
.(12)

Simulations were run for the above stump model for four different sample sizes:
50, 100, 200 and 500 with 5000 replicates for each sample size and for three dif-
ferent values of SNR = 2,5,8. Confidence intervals as defined above were con-
structed (with τ = 0.05). The percentage of intervals containing the true change-
point together with their length were recorded and shown in Table 3.

We examine next the performance of confidence intervals in finite samples, but
where a uniform (equispaced) design is used in the first-stage (results shown in
Table 4) and in both stages (results shown in Table 5). The setting is identical to
that used in Table 3. It is not clear how the tuning parameter Cζ1 , that determines
the interval from which sampling is done at the second stage, should be chosen in
this case, since the first-stage estimate may not even have an asymptotic distribu-
tion in the proper sense. Therefore, the same Cζ1 value as the one used in Table 3

TABLE 4
95% confidence interval constructed using the adaptive parameter allocation strategy

for different sample sizes and SNR with ζ1 = 0.0005 using a uniform design in the first-stage

SNR = 2 SNR = 5 SNR = 8

N Coverage Length Coverage Length Coverage Length

50 93.72% 0.2780 95.14% 0.0383 95.56% 0.0329
100 93.88% 0.0695 95.12% 0.0096 95.20% 0.0082
200 94.62% 0.0174 95.52% 0.0024 95.52% 0.0021
500 94.72% 0.0028 94.96% 0.00038 95.12% 0.00033
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TABLE 5
95% confidence interval constructed using the adaptive parameter allocation strategy

for different sample sizes and SNR with ζ1 = 0.0005 using a uniform design in both stages

SNR = 2 SNR = 5 SNR = 8

N Coverage Length Coverage Length Coverage Length

50 95.06% 0.2780 100.00% 0.0383 100.00% 0.0329
100 96.66% 0.0695 99.98% 0.0096 100.00% 0.0082
200 96.94% 0.0174 100.00% 0.0024 100.00% 0.0021
500 97.32% 0.0028 99.96% 0.00038 100.00% 0.00033

was employed. It can be seen that a uniform design used in the first-stage does not
improve performance in terms of coverage or length. However, using a uniform de-
sign in both stages and setting Cζ1 and Cτ/2 to the same values as in Table 3 leads
to rather conservative confidence intervals, especially for larger sample sizes and
higher values of SNR. Notice that the lengths of the confidence intervals are iden-
tical to those in Table 3 due to the choice of the tuning parameters Cζ1 and Cτ/2.
Nevertheless, experience shows that a uniform design used in the first-stage gives
better mean squared errors in small samples, or when d0 is closer to the boundary
of the covariate’s support.

5.2. Data application. We revisit the motivating application and estimate the
change-point using both the “classical” and the developed two-stage procedures.
The total budget was set to n = 70 and the model fitted to the natural logarithm
of the delays comprised two linear segments with a discontinuity. Given that the
data (134 system loadings and their corresponding average delays) have been col-
lected in advance, a sampling mechanism close in spirit to selecting covariate val-
ues from a uniform distribution was employed for both procedures. Specifically,
the necessary number of points was drawn from a uniform distribution in the [0,1]
interval and amongst the available 134 loadings the ones closest to the sampled
points were selected, together with their corresponding responses. An analogous
strategy was used when a uniform design was employed in the first-stage of the
adaptive procedure. For the two-stage procedure, we set λ = 1/2 and the remain-
ing tuning parameters to those values provided by the adaptive strategy discussed
in Section 4, with ζ1 = 0.0005. The results of the “classical” procedure, the two-
stage adaptive procedure with sampling from a uniform distribution in both stages
and from a uniform design in the first-stage and the uniform distribution in the sec-
ond stage are depicted in the left, center and right panels of Figure 4, respectively.
The depicted fitted regression models are based on the first-stage estimates for the
two-stage procedure. Further, the sampled points from the two stages are shown
as solid (first-stage) and open (second stage) circles. It can be seen that the heav-
ier sampling in the neighborhood of the first-stage estimate of the change-point
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FIG. 4. Sampled points (from first-stage solid circles and from second-stage open circles) together
with the fitted parametric models and estimated change-point, based on a total budget of n = 70
points, obtained from the “classical” procedure (left panel), the two-stage adaptive procedure with
sampling from a uniform distribution in both stages (center panel) and from a uniform design in the
first-stage and the uniform distribution in the second stage (right panel).

improves the estimate given the available evidence from all 134 points shown in
Figure 1.

The estimated change-point from the “classical” procedure is d̂n = 0.737 with
a 95% confidence interval (0.682,0.793). Using a uniform distribution in both
stages gave an estimate d̂n2 = 0.796 with a 95% confidence interval (0.781,0.811).
On the other hand, a combination of a uniform design in the first-stage with that
of a uniform distribution in the second stage yielded an estimate d̂n2 = 0.802 with
a 95% confidence interval (0.787,0.817). As shown in this case and validated
through other data examples, the use of uniform design in the first-stage proves
advantageous in practice, especially for small samples or in situations where the
discontinuity lies fairly close to the boundary of the design region.

6. Concluding remarks. In this study, a multistage adaptive procedure for
estimating a jump discontinuity in a parametric regression model was introduced
and its properties investigated. Specifically, it was established that the rate of con-
vergence of the least squares estimator of the change-point can be accelerated and
its asymptotic distribution derived. Several issues pertaining to the tuning of the
parameters involved in the procedure were examined and resolved. In practice, it
is generally recommended that in the presence of a small budget of points, a uni-
form design in the first-stage be employed. At present the parameters of the para-
metric model are estimated in the first-stage of the experiment and held fixed in
subsequent stages. One may wonder why the parameters are not re-estimated in
the presence of additional samples. The main reason is that the additional samples
obtained from a shrinking neighborhood around d0 are not particularly helpful for
estimating global regression parameters. The sole exception is the stump model,
where using all n points provides better estimates, especially for small budgets.

The results have been established under the assumption of a bounded covari-
ate, because this is usually the case in applications. However, the accelerated con-
vergence can be achieved with an unbounded covariate as well, so long as the
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first-stage estimate is consistent at rate n, which will be the case under fairly mild
conditions.

Another issue is the case where there are multiple change-points, but with their
number known a priori. In such a case, one will estimate each of the change-
points at stage one (at rate n) and subsequently construct appropriate neighbor-
hoods around these estimates. Notice that asymptotically the neighborhoods are
disjoint and therefore one can perform the second-stage experiment for a single
change-point model independently on each of them. However, there is an issue of
allocation of second-stage points in the neighborhoods. Some algebra involving
minimization of the sum of the asymptotic variances of the second stage estima-
tors shows that 50% of the budget should be allocated at the first-stage, while the
remaining budget should be allocated proportionally to the limiting standard de-
viations of the first-stage estimates, which can be estimated from the first-stage
experiment. The real challenge with multiple change-points is when their number
is unknown and needs to be determined from the data. This topic remains to be
studied.

We briefly address the case of multiple covariates next. The simplest possible
model is for two covariates x1, x2 on the unit square and defined as follows:

Yi = α11(x1
i ≤ d1) + β11(x1

i > d1) + α21(x2
i ≤ d2) + β21(x2

i > d2) + εi.

For the sake of simplicity, suppose that a budget of 2n points is available. The
change-points d1 and d2 can be estimated at rate n, by sampling n points from a
uniform distribution on the unit square and solving the corresponding least squares
problem. One can then form neighborhoods around d̂1 and d̂2, respectively, of the
type employed in the univariate models. Hence, a “shrunken” rectangular neigh-
borhood of (d̂1, d̂2) is obtained, from which one can sample n points uniformly at
the second stage. The least squares estimates from stage two will inherit the ac-
celerated rate of convergence. Similar considerations apply to general parametric
models.

Note that in this setting, there are changing regression models on each quadrant
of R2 defined by two orthogonally intersecting lines. A more complex model arises
when the lines intersect at an unknown angle. However, a treatment of such models
is beyond the scope of this paper and is left as a topic of future research.

Finally, it should be noted that a multistage adaptive procedure would also work
in the context of a nonparametric model with a jump discontinuity and produce
analogous accelerations to the convergence rate of the employed estimator; a com-
prehensive treatment of this topic is currently under study.

APPENDIX

PROOF OF LEMMA 3.2. We first note that D0
C (which we view as a met-

ric subspace of D[−C,C] × D[−C,C]) is a measurable subset of D[−C,C] ×
D[−C,C]. To establish convergence in distribution in the space D0

C , it therefore
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suffices to establish convergence in distribution in the larger space D[−C,C] ×
D[−C,C] [see the discussion in Example 3.1 of Billingsley (1999)]. This can
be achieved by (a) establishing finite-dimensional convergence: showing that
{Mn2(hi),Jn2(hi)}li=1 → {M(hi),J(hi)}li=1 for all h1, h2, . . . , hl in [−C,C] and
(b) verifying tightness of the processes (Mn2(h),Jn2(h)) under the product topol-
ogy. But this boils down to verifying marginal tightness.

Let L+(t) = E[eit (W−(α0+β0)/2)|U = d0+] ≡ limd→d0+ E[eit (W−(α0+β0)/2)|
U = d] and L−(t) = E[eit (W−(α0+β0)/2)|U = d0]. It is not difficult to see that L+
is the characteristic function of the V +

i ’s while L− is the characteristic function of
the V −

i ’s. In order to establish finite-dimensional convergence, we first show the
convergence of one-dimensional marginals: that is, for a fixed s, Mn2(s) converges
in distribution to M(s). We do this via characteristic functions. Consider φs(t), the
characteristic function of M(s) (with s > 0). We have

E
[
eitM1(s)

] = E
[
e
it

∑
0≤k≤ν+(s) V +

k
]

=
∞∑
l=0

E
[
eit (V +

1 +···+V +
l )]e−(s/2K)λ/(1−λ)γ (s/(2K)λ/(1 − λ)γ )l

l!

=
∞∑
l=0

(L+(t))l(s/(2K)λ/(1 − λ)γ )l

l! e−(s/2K)λ/(1−λ)γ

= e−(s/2K)λ/(1−λ)γ eL(t)(s/2K)λ/(1−λ)γ = e−(s/2K)λ/(1−λ)γ (1−L(t)).

We show that Qn2,s(t) ≡ E[eitMn2 (s)] converges to φs(t). Let ξn1 = n1(d̂n1 −
d0), ηn1,1 = √

n1(α̂n1 − α0), ηn1,2 = √
n1(β̂n1 − β0). We have

Qn2,s(t) =
∫

Q�
n2,s

(t, η1, η2, ξ) dZn1(η1, η2, ξ),

where Zn1 is the joint distribution of (ηn1,1, ηn1,2, ξn1) and

Q�
n2,s

(t, η1, η2, ξ)

= E
[
e
itM+

n2
(s)|ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ

]
= E

[
eit (W1−(α̂n1+β̂n1 )/2)(I (U1≤d0+s/n

1+γ
2 )−I (U1≤d0))|ηn1,1 = η1,

ηn1,2 = η2, ξn1 = ξ
]n2 .

Let ε > 0 be pre-assigned. By Proposition 1, we can find L > 0 such that for
all sufficiently large n, Zn1([−L,L]3) ≥ 1 − ε/3. Using the fact that character-
istic functions are bounded by 1, it follows immediately that for all n ≥ N0 (for
some N0),

|Qn2,s(t) − φs(t)| ≤
∫
[−L,L]3

|Q�
n2,s

(t, η1, η2, ξ) − φs(t)|dZn1(η1, η2, ξ) + 2ε/3

≤ sup(η1,η2,ξ)∈[−L,L]3 |Q�
n2,s

(t, η1, η2, ξ) − φs(t)| + 2ε/3.
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For this fixed L, we now show that for all sufficiently large n

Dn ≡ sup
(η1,η2,ξ)∈[−L,L]3

|Q�
n2,s

(t, η1, η2, ξ) − φs(t)| ≤ ε/3,

whence it follows that eventually |Qn2,s(t) − φs(t)| ≤ ε. To show the uniform
convergence of Q�

n2,s
(t, η1, η2, ξ) to φs(t) over the compact rectangle [−L,L]3

we proceed as follows.
For given L and C, it is the case that for all sufficiently large n, for any ξ ∈

[−L,L] and any 0 < s < C,

d0 + ξ/n1 − Kn
−γ
1 < d0 < d0 + s/n

1+γ
2 < d0 + ξ/n1 + Kn

−γ
1 .

Let Pn2,d(s) ≡ Pr(d0 ≤ U1 ≤ d0 + s/n
1+γ
2 |d̂n1 = d). Consider the conditional

characteristic function Q�
n2,s

(t, η1, η2, ξ), for (η1, η2, ξ) ∈ [−L,L]3. It follows
from the above display that for all sufficiently large n (depending only on L

and C),

Q�
n2

(t, η1, η2, ξ)

=
[
[1 − Pn2,d

0+ξ/n1
(s)]

+
∫ d0+s/n

1+γ
2

d0
E

[
eit (W1−(α̂n1+β̂n1 )/2)|U1 = u

]
pU1(u) du

]n2

(
where α̂n1 = α0 + η1√

n1
, β̂n1 = β0 + η2√

n1

)

=
[
[1 − Pn2,d

0+ξ/n1
(s)]

+ n
γ
1

2K

∫ d0+s/n
1+γ
2

d0
E

[
eit (W1−(α̂n1+β̂n1 )/2)|U1 = u

]
du

]n2

=
[
1 − 1

n2

s

2K

(
λ

1 − λ

)γ

+ n
γ
1

2K

∫ d0+s/n
1+γ
2

d0
E

[
eit (W1−(α̂n1+β̂n1 )/2)|U1 = u

]
du

]n2

=
[
1 − 1

n2

s

2K

(
λ

1 − λ

)γ

+ n
γ
1

2K

×
∫ s

0
E

[
exp

{
it

(
W1 − α0 + η1/

√
n1 + β0 + η2/

√
n1

2

)}∣∣∣
U1 = d0 + v

n
1+γ
2

]
1

n
1+γ
2

dv

]n2
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=
[
1 − 1

n2

s

2K

(
λ

1 − λ

)γ

+ 1

2Kn2

(
λ

1 − λ

)γ

e−it (η1+η2)/(2
√

n1)

×
∫ s

0
E

[
eit (W1−(α0+β0)/2)|U = d0 + v

n
1+γ
2

]
dv

]n2

=
[
1 − 1

n2

s

2K

(
λ

1 − λ

)γ (
1 − Bn1,n2,η1,η2(s)

)]n2

,

where

Bn1,n2,η1,η2(s) = 1

s
e−it (η1+η2)/(2

√
n1)

∫ s

0
E

[
eit (W1−(α0+β0)/2)|U1 = d0 + v

n
1+γ
2

]
dv

and

Dn = sup
(η1,η2)∈[−L,L]2

∣∣∣∣
[
1 − 1

n2

s

2K

(
λ

1 − λ

)γ (
1 − Bn1,n2,η1,η2(s)

)]n2

− φs(t)

∣∣∣∣.
Let zn(η1, η2) = − s

2K
( λ

1−λ
)γ (1 − Bn1,n2,η1,η2(s)). It is easy to see that

D̃n ≡ sup
(η1,η2)∈[−L,L]2

|zn(η1, η2) − z0| → 0,

where z0 = −(s/2K)(λ/(1 − λ))γ (1 − L+(t)). Consider now

Dn = sup
(η1,η2)∈[−L,L]2

∣∣∣∣
(

1 + 1

n2
zn(η1, η2)

)n2

− ez0

∣∣∣∣.
This is dominated by In + IIn where

In =
∣∣∣∣
(

1 + 1

n2
z0

)n2

− ez0

∣∣∣∣ → 0

and

IIn = sup
(η1,η2)∈[−L,L]2

∣∣∣∣
(

1 + 1

n2
zn(η1, η2)

)n2

−
(

1 + 1

n2
z0

)n2
∣∣∣∣.

Since D̃n goes to 0, for all sufficiently large n, |z0|∨(supη1,η2)∈[−L,L]2 |zn(η1, η2)|)
is bounded by a constant, say M . Straightforward algebra shows that for all suffi-
ciently large n,

IIn ≤
(

sup
(η1,η2)∈[−L,L]2

|zn(η1, η2) − z0|
)(

n2∑
j=1

(
n2
j

)
jMj−1

n
j
2

)

=
(

sup
(η1,η2)∈[−L,L]2

|zn(η1, η2) − z0|
)(

1 + M

n2

)n2−1

→ 0.
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Thus, Dn → 0 and the uniform convergence of Q�
n2

(t, η1, η2, ξ) to φs(t) = ez0 on
[−L,L]3 is established.

The next step is to establish the weak convergence of the finite-dimensional dis-
tributions of (Mn2,Jn2) to those of (M,J). For convenience, we restrict ourselves
only to the set [0,C]. Let J be a positive integer and consider 0 = s0 < s1 < s2 <

· · · < sJ ≤ C. Let c1, c2, . . . , cJ and d1, d2, . . . , dJ be constants. We want to show
that

An ≡ E
(
e
it

∑
j≤J (cj (M+

n2
(sj )−M+

n2
(sj−1))+dj (J+

n2
(sj )−J+

n2
(sj−1)))

)
→ A ≡ E

(
eit

∑
j≤J (cj (M(sj )−M(sj−1))+dj (J(sj )−J(sj−1)))

)
for any vector of constants (c1, c2, . . . , cj , d1, d2, . . . , dj ). By the Cramer–Wold
device it follows that({Mn2(si) − Mn2(si−1)}Ji=1, {Jn2(si) − Jn2(si−1)}Ji=1

)
d→ ({M(si) − M(si−1)}Ji=1, {J(si) − J(si−1)}Ji=1

)
,

establishing the claim. As before, An = ∫
K�

n2
(t, η1, η2, ξ) dZn1(η1, η2, ξ), where

K�
n2

(t, η1, η2, ξ) = E
[
e
it

∑
j≤J (cj (M+

n2
(sj )−M+

n2
(sj−1))+dj (J+

n2
(sj )−J+

n2
(sj−1)))|

ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ
]
.

Proceeding as before, the convergence of An to A follows if we establish the uni-
form convergence of K�

n2
(t, η1, η2, ξ) to A on a compact rectangle of the form

[−L,L]3. This is achieved by using arguments similar to those involved in the
proof of the convergence of the one-dimensional marginals above. The details of
the algebra are available in the Appendix of Lan, Banerjee and Michailidis (2007).
The derivation there can be extended readily to allow for sj ’s that can also be nega-
tive but that has been avoided as that extension involves no new ideas but becomes
more cumbersome.

We finally show that the process Mn2 restricted to [−C,C] is tight. We know
that (α̂n1, β̂n1, d̂n1) −→p (α0, β0, d

0) and n1(d̂n1 − d0) = Op(1). Let

�n =
{
|α̂n1 − α0| ≤ �, |β̂n1 − β0| ≤ �,

d̂n1 − K

n
γ
1

< d0 − C

n
1+γ
2

< d0 + C

n
1+γ
2

< dn1 + K

n
γ
1

}
.

Clearly, P(�n) −→ 1. The event �n can be written as (α̂n1, β̂n1, d̂n1) ∈ Rn,
where Hn(Rn) −→ 1, Hn being the joint distribution of (α̂n1, β̂n1, d̂n1). Note that
Mn21(�n) is also a process in D(R). We verify tightness of Mn21(�n) restricted to
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[−C,C]. To this end, we verify (the analogue of) condition (13.14) on page 143 of
Billingsley (1999), with β = 1/2 and α = 1. Once again, let 0 ≤ s1 ≤ s ≤ s2 ≤ C,

E[|M+
n2

(s) − M+
n2

(s1)| · |M+
n2

(s2) − M+
n2

(s)|1(�n)]
=

∫
Rn

E[|M+
n2

(s) − M+
n2

(s1)| · |M+
n2

(s2) − M+
n2

(s)|

× |(α̂n1, β̂n1, d̂n1) = (α,β, d)]dHn(α,β, d),

where

E[|M+
n2

(s) − M+
n2

(s1)| · |M+
n2

(s2) − M+
n2

(s)||(α̂n1, β̂n1, d̂n1) = (α,β, d)]

= Eα,β,d

[∣∣∣∣∣
n2∑
i=1

(
Wi − α + β

2

)(
I

(
Ui ≤ d0 + s

n
1+γ
2

)

− I

(
Ui ≤ d0 + s1

n
1+γ
2

))∣∣∣∣∣
×

∣∣∣∣∣
n2∑
i=1

(
Wi − α + β

2

)(
I

(
Ui ≤ d0 + s2

n
1+γ
2

)

− I

(
Ui ≤ d0 + s

n
1+γ
2

))∣∣∣∣∣
]

= Eα,β,d

[∣∣∣∣∣
∑
i �=j

I

(
d0 + s1

n
1+γ
2

≤ Ui < d0 + s

n
1+γ
2

)

× I

(
d0 + s

n
1+γ
2

≤ Uj < d0 + s2

n
1+γ
2

)

×
(
Wi − α + β

2

)(
Wj − α + β

2

)∣∣∣∣∣
]

≤ ∑
i �=j

Eα,β,d

[∣∣∣∣I
(
d0 + s1

n
1+γ
2

≤ Ui < d0 + s

n
1+γ
2

)

× I

(
d0 + s

n
1+γ
2

≤ Uj < d0 + s2

n
1+γ
2

)

×
(
Wi − α + β

2

)(
Wj − α + β

2

)∣∣∣∣
]

= ∑
i �=j

sup
t∈[d0+s1n

−(1+γ )
2 ,d0+sn

−(1+γ )
2 ]

Eα,β,d

[∣∣∣∣Wi − α + β

2

∣∣∣∣∣∣∣Ui = t

]
n

γ
1

2K

s − s1

n
1+γ
2
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× sup
t∈[d0+sn

−(1+γ )
2 ,d0+s2n

−(1+γ )
2 ]

Eα,β,d

[∣∣∣∣Wj − α + β

2

∣∣∣∣
∣∣∣Uj = t

]
n

γ
1

2K

s2 − s

n
1+γ
2

≤ ∑
i �=j

H1

(
s − s1

2Kn2

(
λ

1 − λ

)γ )
H2

(
s2 − s

2Kn2

(
λ

1 − λ

)γ )

for any (α,β, d) ∈ Rn

= H1H2
∑
i �=j

(s − s1)(s2 − s)

n2
24k2

(
λ

1 − λ

)2γ

≤ c∗(s2 − s1)
2.

It follows that

E[|M+
n2

(s) − M+
n2

(s1)| · |M+
n2

(s2) − M+
n2

(s)|1(�n)]
≤ Hn(Rn)c

∗(s2 − s1)
2 ≤ c∗(s2 − s1)

2,

which establishes tightness of Mn21(�n).
Then, given any ε > 0, ∀n > N1,

Prob[ω : Mn21(�n)(ω) ∈ K] ≥ 1 − ε,

where K is a compact set. But Prob[ω :ω ∈ �n] ≥ 1 − ε eventually. Therefore,
eventually

Prob[ω ∈ �n and Mn21(�n) ∈ K] ≥ 1 − 2ε

and consequently Prob[Mn2 ∈ K] ≥ 1 − 2ε. This establishes the tightness of Mn2

in the space of right-continuous left limits endowed functions on [−C,C]. Sim-
ilarly, the tightness of Jn2 can be established. This completes the verification of
marginal tightness and therefore joint tightness.

Before embarking on the proof of Theorem 1, we need some auxiliary lemmas.
We first state these below.

LEMMA A.1. Suppose that X1,X2, . . . ,Xn are i.i.d. random elements assum-
ing values in a space X. Let F be a class of functions with domain X and range
in [0,1] with finite VC dimension V (F ) and set V = 2(V (F ) − 1). Denoting
by Pn the empirical measure corresponding to the sample and by P the distribu-
tion of X1, we have

Pr�
(∥∥√n(Pn − P)

∥∥
F ≥ λ

) ≤
(

Dλ√
V

)V

exp(−2λ2).

This lemma is adapted from Talagrand (1994).



CHANGE-POINT ESTIMATION UNDER ADAPTIVE SAMPLING 1783

LEMMA A.2. Let Ũ1, Ũ2, . . . , Ũn be i.i.d. random variables following the
uniform distribution on (0,1). Let ε̃1, ε̃2, . . . , ε̃n be i.i.d. mean 0 random vari-
ables with finite variance σ 2 that are independent of the Ũi ’s. Let βn(s) =∑n

i=1 ε̃i1(Ũi ≤ s). Then for any 0 < α < β < 1, we have

Pr
(

sup
α≤s≤β

|βn(s)|
s

≥ λ

)
≤ (α−1 − β−1)λ−2σ 2.

The proof of this lemma follows the proof of Theorem 1. �

PROOF OF THEOREM 1. For simplicity and ease of exposition, in what fol-
lows we assume that n points are used at the first-stage to compute estimates
α̂n, β̂n, d̂n1 of the three parameters of interest. At the second stage n i.i.d. Ui ’s
are sampled from the uniform distribution on D̃n ≡ [d̂n1 − Kn−γ , d̂n1 + Kn−γ ]
and the updated estimate of d0 is computed as

d̂n2 = arg min
u∈D̃n

1

n

n∑
i=1

[Wi − α̂n1(Ui ≤ u) − β̂n1(Ui > u)]2 ≡ arg min
u∈D̃n

SS(u).

In the above display Wi = f (Ui)+ εi where εi ’s are i.i.d. error variables. Working
under this more restrictive setting (of equal allocation of points at each stage) does
not compromise the complexity of the arguments involved. Finally, recall that by
our assumption, E[eC|ε1|] is finite, for some C > 0.

Before proceeding further, a word about the definition of arg min in the above
display. The function SS is a right-continuous function endowed with left lim-
its. For this derivation, we take the arg min to be the smallest u in D̃n for which
min(SS(u), SS(u−) = inf

x∈D̃n
SS(x).

Denote by Gn the distribution of (α̂n, β̂n, d̂n1). Now, given ε > 0, find L so large
that for all sufficiently large n, say n ≥ N0,

(α̂n, β̂n, d̂n1) ∈ [
α0 − L/

√
n,α0 + L/

√
n
] × [

β0 − L/
√

n,β0 + L/
√

n
]

× [d0 − L/n,d0 + L/n]
with probability greater than 1 − ε. Denote the region on the right-hand side of the
above display by Rn. Then, for all n ≥ N0,

Pr(n1+γ |d̂n2 − d0| > a)

≤
∫
Rn

Pr(n1+γ |d̂n2 − d0| > a|α̂n = α, β̂n = β, d̂n1 = t) dGn(α,β, t) + ε,

which is dominated by sup(α,β,t)∈Rn
Prt,α,β(n1+γ |d̂n2 − d0| > a) + ε. By making

a large, we will show that for all sufficiently large n (say n > N1 > N0), the supre-
mum is bounded by ε. This will complete the proof.
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First note that since N0 is chosen to be sufficiently large, whenever n ≥ N0

and t ∈ [d0 − L/n,d0 + L/n], it is the case that t − Kn−γ < d0 − Kn−γ /2 <

d0 + Kn−γ /2 < t + Kn−γ ]. Let P̃n be the distribution of the pair (W1,U1) gen-
erated at stage two under first-stage parameters (α,β, t) and P̃n is the empiri-
cal measure corresponding to n i.i.d. observations from P̃n. It is not difficult to
see that d̂n2 ≡ arg mind∈[t−Kn−γ ,t+Kn−γ ] M̃n(d) where M̃n(d) = P̃n[(w − (α +
β)/2)(1(u ≤ d)−1(u ≤ d0))], while, d = arg mind∈[t−Kn−γ ,t+Kn−γ ] M̃n(d) where
M̃n(d) = P̃n[(w − (α + β)/2)(1(u ≤ d) − 1(u ≤ d0))]. We have

M̃n(d) = {|β0 − (α + β)/2||d − d0|1(d ≥ d0)

+ |α0 − (α + β)/2||d − d0|1(d < d0)}(nγ /2K).

Now, for 0 < r ≤ K/2, set a(r) = min{M̃n(d) : |d − d0| ≥ rn−γ }. Then a(r) =
min(|β0 − (α + β)/2)|, |α0 − (α + β)/2)|)r/2K and let b(r) = (a(r) − M̃n(d

0))/

3 = a(r)/3. Now, for all n ≥ N0, for α,β in the region under consideration, b(r) is
readily seen to be uniformly bounded below by κr for some constant κ depending
only on α0, β0,K,N0. We then have:

sup
d∈[t−Kn−γ ,t+Kn−γ ]

|M̃n(d) − M̃n(d)| ≤ b(r) ⇒ |d̂n2 − d0| ≤ rn−γ .(13)

To prove this, assume that the inequality on the left-hand side of the above dis-
play holds and consider d ∈ [t − Kn−γ , t + Kn−γ ] with |d − d0| > rn−γ . Then,
M̃n(d) ≥ M̃n(d) − b(r) ≥ a(r) − b(r) and M̃n(d

o) ≤ M̃n(d
0) + b(r) jointly im-

ply that M̃n(d) − M̃n(d
0) ≥ a(r) − b(r) − M̃n(d

0) − b(r) = b(r) > 0. Hence,
M̃n(d) > M̃n(d

0).
Now, since d̂n2 is the smallest d ∈ D̃n for which M̃n(d) ∧ M̃n(d−) =

inf
x∈D̃n

M̃n(x) and M̃n is a (right-continuous left limits endowed) piecewise con-

stant function with finitely many flat stretches, it is easy to see that M̃n(d̂n2) =
inf

x∈D̃n
M̃n(x). Therefore, M̃n(d̂n2) ≤ M̃n(d

0), showing that |d̂n2 − d0| ≤ rn−γ in
view of the last display above.

Now, consider Prα,β,t (|d̂n2 − d0| > rn−γ ), which is

Prα,β,t (|d̂n2 − d0| > rn−γ )

≤ Prα,β,t (rn
−γ < |d̂n2 − d0| ≤ δn−γ )(14)

+ Prα,β,t (|d̂n2 − d0| > δn−γ )

≡ Pn(α,β, t) + Qn(α,β, t),(15)

where δ (is sufficiently small, say less than K/3) does not depend on t, α,β . We
deal with Qn(α,β, t) later. We first consider Pn(α,β, t) ≡ Prα,β,t (rn

−γ < |d̂n2 −
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d0| ≤ δn−γ ). Since,

{rn−γ < |d̂n2 − d0| ≤ δn−γ } ⊆
[ ⋃

d0+rn−γ <d≤d0+δn−γ

{M̃n(d) ≤ M̃n(d
0)}

]

∪
[ ⋃

d0−δn−γ ≤d<d0−rn−γ

{M̃n(d) ≤ M̃n(d
0)}

]
,

we conclude that

Pn(α,β, t) ≤ Pn,1(α,β, t) + Pn,2(α,β, t)

≡ Prα,β,t

( ⋃
d0+rn−γ <d≤d0+δn−γ

{M̃n(d
0) − M̃n(d) ≥ 0}

)

+ Prα,β,t

( ⋃
d0−δn−γ ≤d<d0−rn−γ

{M̃n(d
0) − M̃n(d) ≥ 0}

)
.

We first construct an upper bound on sup(α,β,t)∈Rn
Pn,1(α,β, t). For any d ∈ (d0 +

rn−γ , d0 + δn−γ ] we have

M̃n(d
0) − M̃n(d)

= (
M̃n(d

0) − M̃n(d
0)

) − (
M̃n(d) − M̃n(d)

) − (
M̃n(d) − M̃n(d

0)
)

= −(
M̃n(d) − M̃n(d)

) −
∣∣∣∣β0 − α + β

2

∣∣∣∣ nγ

2K
|d − d0|.

Hence 0 ≤ M̃n(d
0)−M̃n(d) ⇒ (2K)−1|β0 − α+β

2 | ≤ −(M̃n(d)−M̃n(d))

nγ |d−d0| . Now, for all

(α,β, t) ∈ Rn (with n ≥ N0), |β0 − α+β
2 | is bounded below by some constant B ,

whence it follows that 0 ≤ M̃n(d
0) − M̃n(d) ⇒ |M̃n(d)−M̃n(d)|

nγ |d−d0| ≥ B
2K

. Thus,
⋃

d0−δn−γ <d≤d0−rn−γ

{M̃n(d
0) − M̃n(d) ≥ 0}

⊂
{

sup
d0+rn−γ <d≤d0+δn−γ

|M̃n(d) − M̃n(d)|
nγ |d − d0| ≥ B̃

}
,

where B̃ = B/2K . We thus have

Pn,1(α,β, t) ≤ Prα,β,t

[
sup

d0+rn−γ <d≤d0+δn−γ

|M̃n(d) − M̃n(d)|
nγ |d − d0| ≥ B̃

]

= Prα,β,t

(
sup

d0+rn−γ <d≤d0+δn−γ

|√n(P̃n − P̃n)fd,α,β(u,w)|
|d − d0|nγ

≥ √
nB̃

)
,
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where

fd,α,β(u,w) = (
w − (α + β)/2

)(
1(u ≤ d) − 1(u ≤ d0)

)
.

Using the fact that for d > d0, (Wj − (α + β)/2)(1(Uj ≤ d) − 1(Uj ≤ d0)) =
(β0 − (α + β)/2)(1(Uj ≤ d) − 1(Uj ≤ d0)) + εj (1(Uj ≤ d) − 1(Uj ≤ d0)),
this upper bound on Pn,1(α,β, t) is easily seen to be dominated by In + IIn

where

In = Prα,β,t

(
|β0 − (α + β)/2|

× sup
r<s≤δ

|√n(P̃n − P̃n)(1(u ≤ d0 + sn−γ ) − 1(u ≤ d0))|
s

≥ √
nB̃/2

)
,

which in turn is dominated by

I ′
n = Prα,β,t

(
sup

r<s≤δ

|√n(P̃n − P̃n)(1(u ≤ d0 + sn−γ ) − 1(u ≤ d0))|
s

≥
√

nB̃

2B ′
)
,

where, for n ≥ N0 and (α,β, t) ∈ Rn, B ′ is an upper bound on |β0 − (α + β)/2|,
while

IIn = Prt

(
sup

r<s≤δ

|(1/
√

n)
∑n

i=1 εi(1(Ui ≤ d0 + sn−γ ) − 1(Ui ≤ d0))|
s

≥ √
nB̃/2

)
.

Since the Ui ’s are i.i.d. Uniform on [t −Kn−γ , t +Kn−γ ], it is easy to see that I ′
n

is simply

Pr
(

sup
r<s≤δ

|√n(Qn − Q)(1(w̃ ≤ s))|
s

≥
√

nB̃

2B ′
)
,

where W̃1, W̃2, . . . , W̃n are i.i.d. Unif[0,2K], Qn is the empirical measure of
the W̃is and Q is the distribution of W̃1. In terms of Ũ1, Ũ2, . . . , Ũn, which are
i.i.d. Unif[0,1], this expression is simply:

Pr
(

sup
r/2K<s≤δ/2K

|√n(Pn − P)(1(ũ ≤ s))|
s

≥
√

n2KB̃

2B ′
)
.

By Lemma A.3 of Ferger (2005), this is bounded above by a constant (that
depends only on α0, β0,K,N0) times 1/rn. Now, in terms of Ũ1, . . . , Ũn

and ε̃1, . . . , ε̃n (where the ε̃i ’s are defined on the same probability space as
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the Ũi ’s, but independently of them, and are distributed like the εi ’s) IIn is sim-
ply

Pr
(

sup
r/2K<s≤δ/2K

|(1/
√

n)
∑n

i=1 ε̃i (1(Ũi ≤ s))|
s

≥
√

n2KB̃

2

)

and this, by Lemma A.2, is dominated up to a constant (that only depends on
α0, β0, σ,K,N0) by (1/rn). It follows that for some constant C0, for all n ≥ N0,
sup(α,β,t)∈Rn

Pn1(α,β, t) ≤ C0/rn. A similar (uniform) bound works Pn2(α,β, t).
It follows that sup(α,β,t)∈Rn

Pn(α,β, t) ≤ C0/rn, at the expense of a larger con-
stant C0. Thus, from (15), we have

sup
(α,β,t)∈Rn

Prα,β,t (|d̂n2 − d0| > rn−γ ) ≤ C0(rn)−1 + sup
(α,β,t)∈Rn

Qn(α,β, t).

To find a uniform upper bound on Qn(α,β, t) note that, from (13), we have, for
all n > N0

Prα,β,t (|d̂n2 − d0| > δn−γ )

≤ Prα,β,t

(
sup

d∈[t−Kn−γ ,t+Kn−γ ]
|M̃n(d) − M̃n(d)| > b(δ)

)

≤ Prα,β,t

(
sup

d∈[t−Kn−γ ,t+Kn−γ ]
|M̃n(d) − M̃n(d)| > κδ

)

and it suffices to find a uniform upper bound for this last expression. But this is
bounded by

Prα,β,t

[
sup

d∈[t−Kn−γ ,t+Kn−γ ]
∣∣√n(P̃n − P̃n)

(
μ(u) − (α + β)/2

)

× (
1(u ≤ d) − 1(u ≤ d0)

)∣∣ >
√

nκδ/2
]

+ Prα,β,t

[
sup

d∈[t−Kn−γ ,t+Kn−γ ]

∣∣∣∣∣n−1
n∑

i=1

εi

(
1(Ui ≤ d) − 1(Ui ≤ d0)

)∣∣∣∣∣ > κδ/2

]
.

To tackle the first term, we invoke Lemma A.1. For (α,β, t) ∈ Rn, the class
[(μ(u) − (α + β)/2)(1(u ≤ d) − 1(u ≤ d0)) :d ∈ [t − Kn−γ , t + Kn−γ ]] is a
bounded VC class of functions (with the bound not depending on α,β, t) and with
finite VC dimension, say V (which does not depend on α,β, t). Hence, we can
apply Lemma A.1 to conclude that

Prα,β,t

[
sup

d∈[t−Kn−γ ,t+Kn−γ ]
∣∣√n(P̃n − P̃n)

(
μ(u) − (α + β)/2

)

× (
1(u ≤ d) − 1(u ≤ d0)

)∣∣ >
√

nκδ/2
]

≤ C̃1 × (√
nκδ

)2(V−1) exp(−C̃2nκ2δ2),
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where the constants C̃1 and C̃2 depend solely on the VC dimension and the up-
per bound on the functions. For all sufficiently large n, the right-hand side of
the above display is less than ε/3. To deal with the second term, we use the
results on pages 132, 133 of Van de Geer (2000). We write the second term
as:

∫
Prα,β,t

(
sup

d∈[t−Kn−γ ,t+Kn−γ ]

∣∣∣∣∣n−1
n∑

i=1

εi

(
1(ui ≤ d)

− 1(ui ≤ d0)
)∣∣∣∣∣

> κδ/2

)
dHn(u1, u2, . . . , un),

where Hn is the joint distribution of (U1,U2, . . . ,Un). For each fixed (u1, u2, . . . ,

un), Corollary 8.8 of Van de Geer (2000) can be used to show that for δ sufficiently
small and n sufficiently large (where the thresholds do not depend on the ui’s or
α,β, t),

Prα,β,t

(
sup

d∈[t−Kn−γ ,t+Kn−γ ]

∣∣∣∣∣n−1
n∑

i=1

εi

(
1(ui ≤ d) − 1(ui ≤ d0)

)∣∣∣∣∣ > κδ/2

)

≤ C̃ exp(−C̃′nδ2)

for some constants C̃ and C̃′ that do not depend on α,β, t or the points
(u1, u2, . . . , un). This implies that the second term can be made less than ε/3
by choosing n sufficiently large. It follows, that for all sufficiently large n (say
n > N1 > N0) and an appropriate choice of δ, we have

sup
(α,β,t)∈Rn

Prα,β,t (|d̂n2 − d0| > rn−γ ) ≤ C0(rn)−1 + 2ε/3;

the first term on the right-hand side can be made less than ε/3 by choosing
r = A/n where A is large enough, showing that for all sufficiently large n, we
can find A large enough so that:

sup
(α,β,t)∈Rn

Prα,β,t (n
1+γ |d̂n2 − d0| > A) < ε.

For the details as to how Corollary 8.8 of Van de Geer (2000) is applied in
our setting, see the longer version of this proof in Lan, Banerjee and Michai-
lidis (2007). �
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PROOF OF LEMMA A.2. Let βn(s) = 1√
n

∑n
i=1 ε̃i1(xi ≤ s). Let {sk = α +

(β − α)2−m : 0 ≤ k ≤ 2m}, m ∈ N be a dyadic partition of [α,β]. Consider

P(α,β,λ)

= P

(
sup

α≤s≤β

|βn(s)|
s

≥ λ

)

= lim
m→∞P

(
max

1≤k≤2m

|βn(sk)|
sk

≥ λ

)

= lim
m→∞

∫
(x1,...,xn)∈(0,1)n

P

(
max

1≤k<2m

(∣∣∣∣∣ 1√
n

n∑
i=1

ε̃i1(xi ≤ sk)

∣∣∣∣∣
)

× (sk)
−1 ≥ λ

)
dx1 dx2 · · ·dxn.

For fixed (x1, x2, . . . , xn) ∈ (0,1)n, set Mk = 1√
n

∑n
i=1 ε̃i1(xi ≤ sk),0 ≤ k ≤ 2m.

Define Xk = Mk − Mk−1 for k ≥ 1. Then the Xk’s are independent random vari-
ables, each with mean 0 and finite variance and Mk = X1 + X2 + · · · + Xk . Since
1/sk is a decreasing sequence of constants, we can apply the Hajek–Renyi inequal-
ity [see, e.g., the Appendix of Lan, Banerjee and Michailidis (2007)] to conclude
that

P

(
max

1≤k≤2m

|Mk|
sk

≥ λ

)
≤ 1

λ2

∑
1≤k≤2m

s−2
k E(Mk − Mk−1)

2

= 1

λ2

∑
1≤k≤2m

s−2
k (EM2

k − EM2
k−1).

Now,

EM2
k = E

[(
1√
n

n∑
i=1

ε̃i1(xi ≤ sk)

)2]
= Var

[
1√
n

n∑
i=1

ε̃i1(xi ≤ sk)

]2

= 1

n
σ 2

n∑
i=1

1(xi ≤ sk).

It follows that EM2
k − EM2

k−1 = σ 2

n

∑n
i=1 1(sk−1 < xi ≤ sk). Therefore

P(α,β,λ) ≤ lim
m→∞

∫
(x1,...,xn)∈(0,1)n

{
1

λ2

∑
1≤k<2m

s−2
k

σ 2

n

×
n∑

i=1

1(sk−1 < xi ≤ sk)

}
dx1 dx2 · · ·dxn
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= lim
m→∞

1

λ2

∑
1≤k<2m

s−2
k

σ 2

n

n∑
i=1

∫
1(sk−1 < xi ≤ sk) dxi

= lim
m→∞

1

λ2 σ 2
∑

1≤k<2m

s−2
k (sk − sk−1)

= σ 2

λ2

∫ β

α

1

s2 ds = (α−1 − β−1)
σ 2

λ2 . �
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