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ON MAXIMA OF PERIODOGRAMS OF STATIONARY
PROCESSES1

BY ZHENGYAN LIN AND WEIDONG LIU

Zhejiang University

We consider the limit distribution of maxima of periodograms for sta-
tionary processes. Our method is based on m-dependent approximation for
stationary processes and a moderate deviation result.

1. Introduction. Let {εn;n ∈ Z} be independent and identically distributed
(i.i.d.) random variables and g be a measurable function such that

Xn = g(. . . , εn−1, εn)(1.1)

is a well-defined random variable. Then, {Xn;n ∈ Z} presents a huge class of
processes. In particular, it contains the linear process and nonlinear processes in-
cluding the threshold AR (TAR) models, ARCH models, random coefficient AR
(RCA) models, exponential AR (EAR) models and so on. Wu and Shao [21] ar-
gued that many nonlinear time series are stationary causal with one-sided repre-
sentation (1.1). Let

In,X(ω) = n−1

∣∣∣∣∣
n∑

k=1

Xk exp(iωk)

∣∣∣∣∣
2

, ω ∈ [0, π],

be the periodogram of random variables X1, . . . ,Xn and denote

Mn(X) = max
1≤j≤q

In,X(ωj ), ωj = 2πj/n,

where q = qn = max{j : 0 < ωj < π} so that q ∼ n/2.
If X1,X2, . . . are i.i.d. random variables with N(0,1) distribution, then

{In,X(ωj );1 ≤ j ≤ q} is a sequence of i.i.d. standard exponential random vari-
ables. It is well known that (cf. Brockwell and Davis [2])

Mn(X) − logq ⇒ G,(1.2)

where ⇒ means convergence in distribution, and G has the standard Gumbel dis-
tribution �(x) = exp(− exp(−x)), x ∈ R. However, in the non-Gaussian case, the
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independence of In,X(ωj ) is not guaranteed in general, and, therefore, (1.2) is not
trivial. When X1,X2, . . . are i.i.d. random variables, Davis and Mikosch [4] es-
tablished (1.2) with the assumptions that EX1 = 0, EX2

1 = 1 and E|X1|s < ∞ for
some s > 2. They also conjectured that the condition EX2

1 log+ |X1| < ∞ is suf-
ficient for (1.2). Moreover, a similar result was established in their paper for the
two-sided linear process Xn = ∑

j∈Z ajεn−j under the conditions that E|ε0|s < ∞
for some s > 2 and ∑

j∈Z

|j |1/2|aj | < ∞.(1.3)

The key step in Davis and Mikosch [4] is the approximation that (cf. Walker [17])

max
ω∈[0,π ]

∣∣∣∣ In,X(ω)

2πf (ω)
− In,ε(ω)

∣∣∣∣ →P 0.(1.4)

Generally, it is very difficult to check (1.4) for the stationary process defined
in (1.1). In this paper, we shall establish (1.2), or an analogous result, for (1.1) un-
der some regularity conditions. Let us take a look at the linear process first. In this
case, Xn = ∑m

j=−m ajεn−j + ∑
|j |>m ajεn−j , m > 0. Under the assumptions of∑

j∈Z |aj | < ∞ and E|ε0| < ∞,
∑

|j |>m ajεn−j → 0, in probability, as m → ∞.
This implies that the linear process behaves like a process that is block-wise inde-
pendent. In fact, many time series, such as the GARCH model, have such a prop-
erty. Such an analysis suggests that we approximate Xn by E[Xn|εn−m, . . . , εn].
This method has been employed in Hsing and Wu [11] to establish the asymptotic
normality of a weighted U -statistic.

By the m-dependent approximation developed in Section 3, we show that, for
proving (1.2), the condition (1.3) can be weakened to

∑
|j |≥n |aj | = o(1/ logn).

Meanwhile, the moment condition on ε0 can also be weakened to Eε2
0I {|ε0| ≥

n} = o(1/ logn). This in turn proves that the conjecture by Davis and Mikosch [4]
is true. Furthermore, it is shown that (1.2) still holds for the general process defined
in (1.1).

Below, we explain how (1.2) (or the analogous result) can be used for detecting
periodic components in a time series (see also Priestley [14]). Let us consider the
model

Zt = μ + S(t) + Xt, t = 1,2, . . . , n,

where Xt is a stationary time series with mean zero, and the deterministic part

S(t) = A1 cos(γ1t + φ1)

is a sinusoidal wave at frequency γ1 	= 0 with the amplitude A1 	= 0 and the
phase φ1. Without loss of generality, we assume that μ = 0. A test statistic for the
null hypothesis H0 :S(t) ≡ 0 against the alternative H1 :S(t) = A1 cos(γ1t + φ1)

is

gn(Z) = max1≤i≤q In,Z(ωi)/f̂ (ωi)

q−1 ∑q
i=1 In,Z(ωi)/f̂ (ωi)

,(1.5)
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where f̂ (ω) is an estimator of f (ω), which is the spectral density of Zt . This
statistic was proposed by Fisher [6], who assumed that Xt is a white Gaussian
series and thus chose f̂ (ω) ≡ 1. Often, however, it is not reasonable, as a null
hypothesis, to assert that the observations are independent. Hence, Hannan [9]
assumed that Xt = ∑

j∈Z ajεt−j with εt being i.i.d. normal and {aj } satisfying
some conditions. The results in Section 2 make it possible to obtain the asymptotic
distribution of gn(Z) under H0 for a class of general processes rather than the
linear process and without the requirement of the normality for εt (see Remark 2.4
for more details).

Sometimes, we might suspect that the series might contain several periodic
components. In this case, we should test H0 :S(t) ≡ 0 against the alternative
H1 :S(t) = ∑r

k=1 Ak cos(γkt +φk), where r(> 1) is the possible number of peaks.
Assuming that Xt is a white Gaussian series, Shimshoni [16] and Lewis and
Fieller [8] proposed the statistic

UZ(r) = In,q−r+1(Z)∑q
i=1 In,Z(ωi)

for detecting r peaks. Here, In,1(Z) ≤ In,2(Z) ≤ · · · ≤ In,q(Z) are the order statis-
tics of the periodogram ordinates In,Z(ωi), 1 ≤ i ≤ q . The exact (and asymptotic)
null distribution of UZ(r) can be found in Hannan [10] and Chiu [3]. In the latter
paper, the test statistic RZ(β) = In,q(Z)/

∑[qβ]
j=1 In,j (Z), 0 < β < 1, was given.

Our results may be useful for obtaining the asymptotic distribution of RZ(β),
when Xn is defined in (1.1).

The paper is organized as follows. Our main results, Theorems 2.1 and 2.2, will
be presented in Section 2. In Section 3, we develop the m-dependent approxima-
tion for the Fourier transforms of stationary processes. The proofs of main results
will be given in Sections 4 and 5. Throughout the paper, we let C, C(·) denote
positive constants, and their values may be different in different contexts. When δ

appears, it usually means every δ > 0 and may be different in every place. For two
real sequences {an} and {bn}, write an = O(bn) if there exists a constant C such
that |an| ≤ C|bn| holds for large n, an = o(bn) if limn→∞ an/bn = 0 and an � bn

if C1bn ≤ an ≤ C2bn. With no confusion, we let | · | denote the d-dimensional
Euclidean norm (d ≥ 1) or the norm of a d × d matrix A, which is defined by
|A| = max|x|≤1,x∈Rd |Ax|.

2. Main results. We first consider the two-sided linear process. Let

Yn = ∑
j∈Z

ajεn−j and Xn = h(Yn) − Eh(Yn),(2.1)

where
∑

j∈Z |aj | < ∞ and h is a Lipschitz continuous function. Let us redefine

In,1(X) ≤ In,2(X) ≤ · · · ≤ In,q(X)
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as the order statistics of the periodogram ordinates In,X(ωj )/(2πf (ωj )), 1 ≤ j ≤
q , where f (ω) is the spectral density function of {Xn}, which is defined by

f (ω) = 1

2π

∑
k∈Z

EX0Xk exp(ikω)

and satisfies

f ∗ := min
ω∈R

f (ω) > 0.(2.2)

Note that f (ω) ≡ EX2
1/(2π), if X1,X2, . . . are i.i.d. centered random variables.

THEOREM 2.1. Let Xn be defined in (2.1). Suppose that (2.2) holds and

Eε0 = 0, Eε2
0 = 1 and

∑
|j |≥n

|aj | = o(1/ logn).(2.3)

(i) Suppose that h(x) = x and

Eε2
0I {|ε0| ≥ n} = o(1/ logn).(2.4)

Then,

In,q(X) − logq ⇒ G,(2.5)

where G has the standard Gumbel distribution �(x) = exp(− exp(−x)), x ∈ R.
(ii) Suppose that h is a Lipschitz continuous function on R. If (2.4) is strength-

ened to Eε2
0I {|ε0| ≥ n} = o(1/(logn)2), then (2.5) holds.

REMARK 2.1. From Theorem 2.1, we derive the asymptotic distribution of
the maximum of the periodogram. Note that (2.4) is implied by Eε2

0 log+ |ε0| <

∞. Hence, the conjecture in Davis and Mikosch [4] is true. In order to show
max1≤j≤q In,X(ωj )/(2πf (ωj )) − logq ⇒ G when Xn = ∑

j∈Z ajεn−j , Davis
and Mikosch [4] used the approximation

max
ω∈[0,π ]

∣∣∣∣ In,X(ω)

2πf (ω)
− In,ε(ω)

∣∣∣∣ →P 0,(2.6)

which requires the condition (1.3). Obviously, our condition in (2.3) is weaker
than (1.3). They also required E|ε0|s < ∞ for some s > 2, which is stronger
than (2.4). Moreover, it is difficult to prove (2.6) for the nonlinear transforms of
linear processes considered in (ii).

REMARK 2.2. The (weak) law of logarithm for the maximum of the pe-
riodogram is a simple consequence of Theorem 2.1. Under conditions on the
smoothness of the characteristic function of εn, An, Chen and Hannan [1] proved
the (a.s.) law of logarithm for the maximum of the periodogram.

In the following, we will give a theorem when Xn satisfies the general form
in (1.1). Of course, we should impose some dependency conditions on Xn. For the
reader’s convenience, we list the following notation:
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• Fi,j := (εi, . . . , εj ), −∞ ≤ i ≤ j ≤ ∞;
• Z ∈ Lp if ‖Z‖p := (E|Z|p)1/p < ∞;
• {ε∗

i , i ∈ Z} is an independent copy of {εi, i ∈ Z};
• θn,p := ‖Xn − X∗

n‖p , where X∗
n = g(. . . , ε−1, ε

∗
0,F1,n);

• �n,p := ∑
i≥n θi,p .

REMARK 2.3. θn,p is called the physical dependence measure by Wu [19].
An advantage of such a dependence measure is that it is easily verifiable.

THEOREM 2.2. Let Xn be defined as in (1.1), and let (2.2) hold. Suppose that
EX0 = 0, E|X0|s < ∞ for some s > 2 and �n,s = o(1/ logn). Then, (2.5) holds.

REMARK 2.4. To derive the asymptotic distribution (under H0) of gn(Z) de-
fined in (1.5) from Theorem 2.2, we should prove that∣∣∣∣∣q−1

q∑
i=1

In,Z(ωi)/(2πf (ωi)) − 1

∣∣∣∣∣ = oP(1/ logn)(2.7)

and choose f̂ (ω), an estimator of f (ω), to satisfy

max
1≤j≤q

|f̂ (ωj ) − f (ωj )| = oP(1/ logn).(2.8)

Note that, under H0, we have Zn = Xn. For briefness, we assume that Xn satisfies
E|Xn|4+γ < ∞ for some γ > 0, and the geometric-moment contraction (GMC)
condition θn,4+γ = O(ρn) for some 0 < ρ < 1 holds. Many nonlinear time series
models (e.g., GARCH models, generalized random coefficient autogressive mod-
els, nonlinear AR models and bilinear models) satisfy GMC (see Section 5 in Shao
and Wu [15] for more details). By Lemma A.4 in Shao and Wu [15], we have

max
j,k≤q

|Cov(In,X(ωk), In,X(ωj )) − f (ωj )δj,k| = O(1/n),(2.9)

where δj,k = Ij=k , and it follows that

q−1
q∑

i=1

(
In,X(ωi) − EIn,X(ωi)

)
/f (ωi) = OP

(
1/

√
n
)
.

Moreover, since In,X(ω) = n−1 ∑n−1
k=−n+1

∑n−|k|
t=1 XtXt+|k| exp(−ikω), we see that

maxω∈R |EIn,X(ω)

2πf (ω)
− 1| = O(1/n). This implies (2.7).

Now, we choose the estimator

f̂ (ω) = 1

2π

Bn∑
k=−Bn

r̂(k)a(k/Bn) exp(−ikω),

where r̂(k) = n−1 ∑n−|k|
j=1 XjXj+|k|, |k| < n, a(·) is an even Lipschitz continuous

function, with support [−1,1], a(0) = 1 and a(x) − 1 = O(x2) as x → 0, and Bn
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is a sequence of positive integers with Bn → ∞ and Bn/n → 0. Now, suppose
Bn = O(nη), 0 < η < γ/(4 + γ ), 0 < γ < 4. Then, Theorem 3.2 in Shao and
Wu [15] gives

max
ω∈[0,π ] |f̂ (ω) − Ef̂ (ω)| = OP

(√
Bn(logn)/n

)
.

Moreover, simple calculations, as in Woodroofe and Van Ness [18], imply
maxω∈[0,π ] |Ef̂ (ω) − f (ω)| = O(B−2

n ). Hence, (2.8) holds by letting Bn � nη,
0 < η < γ/(4 + γ ). Finally, Theorem 2.2 together with (2.7) and (2.8) yields,
under H0, gn(Z) − logq ⇒ G, where G has the standard Gumbel distribution.

3. Inequalities for Fourier transforms of stationary process. In this sec-
tion, we prove some inequalities for Xn defined in (1.1). Suppose that EX0 = 0
and EX2

0 < ∞. Note that

Xn = ∑
j∈Z

(E[Xn|F−j,∞] − E[Xn|F−j+1,∞]) =: ∑
j∈Z

Pj (Xn).

By virtue of Hölder’s inequality, we have, for u ≥ 0,

|r(u)| = |EX0Xu| =
∣∣∣∣∑
j∈Z

EPj (X0)Pj (Xu)

∣∣∣∣ ≤
∞∑

j=0

θj,2θu+j,2,(3.1)

and, hence,
∑

u≥n |r(u)| ≤ �0,2�n,2.
Next, we approximate the Fourier transforms of Xn by the sum of m-dependent

random variables. Set

Xk(m) = E[Xk|εk−m, . . . , εk], k ∈ Z, m ≥ 0.

LEMMA 3.1. Suppose that E|X0|p < ∞ for some p ≥ 2 and �0,p < ∞. We
have

sup
ω∈R

E

∣∣∣∣∣
n∑

k=1

(
Xk − Xk(m)

)
exp(iωk)

∣∣∣∣∣
p

≤ Cpnp/2�p
m,p,

where Cp is a constant only depending on p.

REMARK 3.1. This lemma, together with Proposition 1 in Wu [20], would
lead to the maximal inequality, for p > 2,

sup
ω∈R

E max
1≤j≤n

∣∣∣∣∣
j∑

k=1

(
Xk − Xk(m)

)
exp(iωk)

∣∣∣∣∣
p

≤ Cpnp/2�p
m,p.
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PROOF OF LEMMA 3.1. We decompose Xk − Xk(m) as

Xk − Xk(m) =
∞∑

j=−k+m

(E[Xk|F−j−1,k] − E[Xk|F−j,k]) =:
∞∑

j=−k+m

Rk,j .

Therefore,
n∑

k=1

{Xk − Xk(m)} exp(iωk) =
∞∑

j=−n+m

n∑
k=1∨(−j+m)

Rk,j exp(iωk).

For every fixed n and m, {∑n
k=1∨(−j+m) Rk,j exp(iωk), j ≥ −n+m} is a sequence

of martingale differences. Hence, by the Marcinkiewicz–Zygmund–Burkholder in-
equality,

E

∣∣∣∣∣
∞∑

j=−n+m

n∑
k=1∨(−j+m)

Rk,j exp(iωk)

∣∣∣∣∣
p

≤ Cp

( ∞∑
j=−n+m

(
n∑

k=1∨(−j+m)

‖Rk,j‖p

)2)p/2

≤ Cp

( ∞∑
j=−n+m

(
n∑

k=1∨(−j+m)

θj+1+k,p

)2)p/2

≤ Cpnp/2�p
m,p.

This proves the lemma. �

Letting m = 0 in Lemma 3.1 and noting that X1(0),X2(0), . . . are i.i.d. random
variables, we obtain the following moment inequalities.

LEMMA 3.2. Under the conditions of Lemma 3.1, we have, for p ≥ 2,

E

∣∣∣∣∣
n∑

k=1

Xk exp(ikω)

∣∣∣∣∣
p

≤ Cnp/2 and E

∣∣∣∣∣
n∑

k=1

Xk(m) exp(ikω)

∣∣∣∣∣
p

≤ Cnp/2,

where C is a constant that does not depend on ω and m.

Define Sn,j,1 = ∑n
k=1 Xk cos(kωj ), Sn,j,2 = ∑n

k=1 Xk sin(kωj ), 1 ≤ j ≤ q .

LEMMA 3.3. Suppose that EX0 = 0, EX2
0 < ∞ and �0,2 < ∞. Then:

(i) max
1≤j≤q

∣∣∣∣ ES2
n,j,1

πnf (ωj )
− 1

∣∣∣∣ ≤ Cn−1
n∑

k=0

�k,2;

(ii) max
1≤j≤q

∣∣∣∣ ES2
n,j,2

πnf (ωj )
− 1

∣∣∣∣ ≤ Cn−1
n∑

k=0

�k,2;
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(iii) max1≤i,j≤q |ESn,i,1Sn,j,2| ≤ C
∑n

k=0 �k,2 and max1≤i 	=j≤q |ESn,i,l ×
Sn,j,l | ≤ C

∑n
k=0 �k,2 for l = 1,2.

PROOF. We only prove (i), since the others can be obtained in an analogous
way. We recall the following propositions on the trigonometric functions:

(1)
∑n

k=1 cos(ωjk) cos(ωlk) = δj,ln/2;
(2)

∑n
k=1 sin(ωjk) sin(ωlk) = δj,ln/2;

(3)
∑n

k=1 cos(ωjk) sin(ωlk) = 0.

By applying the above propositions, it is readily seen that

ES2
n,j,1

n
= 1

2
EX2

1 + 2n−1
n∑

k=2

k−1∑
i=1

EXkXi cos(kωj ) cos(iωj)

= 1

2
EX2

1 + 2n−1
n−1∑
k=1

r(k)

n−k∑
i=1

cos(iωj) cos
(
(i + k)ωj

)

= 1

2
EX2

1 +
n−1∑
k=1

r(k) cos(kωj )

− 2n−1
n−1∑
k=1

r(k)

n∑
i=n−k+1

cos(iωj ) cos
(
(i + k)ωj

)
,

which, together with (3.1) and the Abel lemma, implies∣∣∣∣ ES2
n,j,1

πnf (ωj )
− 1

∣∣∣∣ ≤ C

∞∑
k=n

|r(k)| + Cn−1
n−1∑
k=1

k|r(k)|

≤ C�n,2 + Cn−1
∞∑

j=0

θj,2

n∑
k=1

k(�k+j,2 − �k+j+1,2)

≤ Cn−1
n∑

k=0

�k,2.

The proof of the lemma is complete. �

Let m = [nβ] for some 0 < β < 1 and Jn,X(ω) = |∑n
k=1{Xk − Xk(m)} ×

exp(iωk)|.
LEMMA 3.4. Suppose that EX2

0 < ∞ and �n,2 = o(1/ logn). We have, for
any 0 < β < 1,

max
1≤i≤q

Jn,X(ωi) = oP
(√

n/ logn
)
.



2684 Z. LIN AND W. LIU

PROOF. Since �m,2 = o((logn)−1), there exists a sequence {γn} with γn > 0
and γn → 0 such that �m,2 ≤ γn(logn)−1. By the decomposition used in the proof
of Lemma 3.1, Jn,X(ω) = |∑∞

j=−n+m

∑n
k=1∨(m−j) Rk,j exp(ikω)|. Set

Rj(ω) =
n∑

k=1∨(m−j)

Rk,j exp(ikω),

R̃j (ω) = Rj(ω)I

{
|Rj(ω)| ≤ γn

√
n

(logn)3

}
,

Rj (ω) = R̃j (ω) − E[R̃j (ω)|F−j,∞], R̂j (ω) = Rj(ω) − Rj(ω).

Using the fact maxω∈R |Rj(ω)| ≤ ∑n
k=1∨(m−j) |Rk,j |, we see that, for any δ > 0,

P

(
max
ω∈R

∣∣∣∣∣
∞∑

j=−n+m

R̂j (ω)

∣∣∣∣∣ ≥ δ
√

n/ logn

)

≤ Cδn
−1/2(logn)1/2

∞∑
j=−n+m

E max
ω∈R

|R̂j (ω)|

≤ 2Cδ

(logn)2γ −1
n

n

∞∑
j=−n+m

(
n∑

k=1∨(m−j)

θk+j+1,2

)2

≤ 2Cδ(logn)2γ −1
n �2

m,2 = o(1).

Hence, in order to prove the lemma, it is sufficient to show that

max
1≤i≤q

∣∣∣∣∣
∞∑

j=−n+m

Rj (ωi)

∣∣∣∣∣ = oP
(√

n/ logn
)
.(3.2)

Setting the event A = {maxω∈R

∑∞
j=−n+m E[|Rj(ω)|2|F−j,∞] ≥ γnn/(logn)2},

we have

P(A) ≤ Cδ

(logn)2γ −1
n

n

∞∑
j=−n+m

E

(
n∑

k=1∨(m−j)

|Rk,j |
)2

≤ Cδ(logn)2γ −1
n �2

m,2 = o(1).

Note that Rj(ω), j ≥ −n+m, are martingale differences. By applying Freedman’s
inequality [7], one concludes that

P

(
max

1≤i≤q

∣∣∣∣∣
∞∑

j=−n+m

Rj (ωi)

∣∣∣∣∣ ≥ δ
√

n/ logn

)

≤ 2n exp
(
− δ2 logn

γn(8 + 8δ)

)
+ P(A) = o(1).
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This proves (3.2). �

REMARK 3.2. Let Xn = g((εn−i)i∈Z) be a two-sided process. For n ∈ Z, de-
note X∗

n by replacing ε0 with ε∗
0 in Xn. Define the physical dependence measure

θn,p = ‖Xn − X∗
n‖p and �n,p = ∑

|i|≥n θi,p . Also, let Xk(m) = E[Xk|εk−m, . . . ,

εk+m]. Then, Lemmas 3.1–3.4 still hold for Xn = g((εn−i)i∈Z). This can be proved
similarly by observing that

Xk − Xk(m) =
∞∑

j=−k+m

(E[Xk|F−j−1,∞] − E[Xk|F−j,∞])

+
∞∑

j=m+k

(E[Xk|Fk−m,j+1] − E[Xk|Fk−m,j ])(3.3)

=:
∞∑

j=−k+m

R
(1)
k,j +

∞∑
j=m+k

R
(2)
k,j ,

‖R(1)
k,j‖p ≤ θk+j+1,p and ‖R(2)

k,j‖p ≤ θk−j−1,p . The details can be found in [12].

4. Proof of Theorem 2.1. Let h be a Lipschitz continuous function on R. Set

ε′
i = εiI

{|εi | ≤ γn

√
n/ logn

} − EεiI
{|εi | ≤ γn

√
n/ logn

}
, i ∈ Z,

where γn → 0. Put Y ′
k = ∑

i∈Z aiε
′
k−i , X′

k = h(Y ′
k) − Eh(Y ′

k) for 1 ≤ k ≤ n. Since
Eε2

0I {|ε0| ≥ n} = o(1/ logn), we can choose γn → 0 sufficiently slowly such that√
n lognE|ε0|I{|ε0| ≥ γn

√
n/ logn

} → 0.

This, together with the Lipschitz continuity of h, implies that√
lognE max1≤j≤q |∑n

k=1(Xk − X′
k) exp(ikωj )|√

n

≤ C
√

n logn
∑
j∈Z

|aj |E|ε0|I{|ε0| ≥ γn

√
n/ logn

} → 0.

In addition, note that, for 1 ≤ j ≤ q ,

|In,X(ωj ) − In,X′(ωj )| ≤ √
Mn(X′) max

1≤j≤q

∣∣∣∣∣
n∑

k=1

(Xk − X′
k) exp(ikωj )

∣∣∣∣∣/√
n

+ max
1≤j≤q

∣∣∣∣∣
n∑

k=1

(Xk − X′
k) exp(ikωj )

∣∣∣∣∣
2/

n.

Then, in order to prove Theorem 2.1, we only need to show that

In,q(X
′) − logq ⇒ G.
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Recall that m = [nβ] for some 0 < β < 1. Let

X′
k(m) = E[X′

k|εk−m, . . . , εk+m], 1 ≤ k ≤ n,

and

J̃n,X(ω) =
∣∣∣∣∣

n∑
k=1

(
X′

k − X′
k(m)

)
exp(iωk)

∣∣∣∣∣.
By Lemma 3.4 and Remark 3.2, it is readily seen that

max
1≤i≤q

J̃n,X(ωi) = oP
(√

n/ logn
)
.(4.1)

We define the periodogram In,X′(m)(ω) = n−1|∑n
k=1 X′

k(m) exp(ikω)|2 and let
In,1(X

′(m)) ≤ · · · ≤ In,q(X′(m)) be the order statistics of In,X′(m)(ωj )/

(2πf (ωj )), 1 ≤ j ≤ q . In view of (4.1), it is sufficient to prove that

In,q(X
′(m)) − logq ⇒ G.(4.2)

For 0 < β < α < 1/10, let us split the interval [1, n] into

Hj = [(j − 1)(nα + 2nβ) + 1, (j − 1)(nα + 2nβ) + nα],
Ij = [(j − 1)(nα + 2nβ) + nα + 1, j (nα + 2nβ)],

1 ≤ j ≤ mn − 1, mn − 1 = [n/(nα + 2nβ)] ∼ n1−α,

Hmn = [(mn − 1)(nα + 2nβ) + 1, n].
Here and below, the notation nα is used to denote [nα] for briefness. Put vj (ω) =∑

k∈Ij
X′

k(m) exp(ikω), 1 ≤ j ≤ mn − 1. Then, vj (ω), 1 ≤ j ≤ mn − 1, are inde-
pendent and can be neglected by observing the following lemma.

LEMMA 4.1. Under (2.3), we have max1≤l≤q |∑mn−1
j=1 vj (ωl)| =

oP(
√

n/ logn).

PROOF. First, Corollary 1.6 of Nagaev [13], which is a Fuk–Nagaev-type in-
equality, shows that, for any large Q,

q∑
l=1

P

(∣∣∣∣∣
mn−1∑
j=1

vj (ωl)

∣∣∣∣∣ ≥ δ
√

n/ logn

)

≤ CQ,δ

q∑
l=1

(∑mn−1
j=1 Ev2

j (ωl)

n/ logn

)Q

+ CQ

q∑
l=1

mn−1∑
j=1

P
(|vj (ωl)| ≥ CQδ

√
n/ logn

)
.
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By Lemma 3.2 and Remark 3.2,
∑mn−1

j=1 Ev2
j (ωl) ≤ Cn1−α+β . So, the first term

above tends to zero. To complete the proof of Lemma 4.1, we shall show that the
second term also tends to zero. In fact, using the fact that |h(x)| ≤ C(|x| + 1), we
can get

|vj (ωl)| ≤ C

∣∣∣∣∣∑
k∈Ij

m∑
i=−m

|ai |(|ε′
k−i | − E|ε′

k−i |)
∣∣∣∣∣ + C|Ij |

=d C

∣∣∣∣∣∑
k∈I1

m∑
i=−m

|ai |(|ε′
k−i | − E|ε′

k−i |)
∣∣∣∣∣ + C|I1|(4.3)

= C

∣∣∣∣∣
3m∑

t=−m

(m+t)∧(2m)∑
k=1∨(t−m)

|ak−t |(|ε′
t | − E|ε′

t |)
∣∣∣∣∣ + C|I1|,

where X =d Y means X and Y have the same distribution. Hence

q∑
l=1

mn−1∑
j=1

P
(|vj (ωl)| ≥ CQδ

√
n/ logn

)

≤
q∑

l=1

mn−1∑
j=1

P

(∣∣∣∣∣
3m∑

t=−m

(m+t)∧(2m)∑
k=1∨(t−m)

|ak−t |(|ε′
t | − E|ε′

t |)
∣∣∣∣∣ ≥ CQδ

√
n/ logn

)
(4.4)

≤ C

q∑
l=1

mn−1∑
j=1

(
m

n/ logn

)Q

→ 0,

where the last inequality follows from the Fuk–Nagaev inequality, by noting that
|ε′

t | ≤ γn

√
n/ logn. The desired conclusion is established, and the proof is now

complete. �

We now deal with the sum of large blocks. Let

uj (ω) = ∑
k∈Hj

X′
k(m) exp(ikω), u′

j (ω) = uj (ω)I
{|uj (ω)| ≤ γ 1/2

n

√
n/ logn

}
,

uj (ω) = u′
j (ω) − Eu′

j (ω), 1 ≤ j ≤ mn.

Noting that |uj (ω)| ≤ ∑
k∈Hj

|X′
k(m)| =: ξj , mn ∼ n1−α and using similar argu-

ments to those employed in (4.3) and (4.4), it is readily seen that, for any large Q,
√

logn
∑mn

j=1 Eξj I {ξj ≥ γ
1/2
n

√
n/ logn}√

n

≤ C
√

lognn1/2−α
∞∑

k=n

1√
k logk

P
(
ξ1 ≥ γ 1/2

n

√
k/ log k

)
(4.5)
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+ Cn1−αP(ξ1 ≥ γ 1/2
n

√
n/ logn)

≤ C
√

lognn1/2−α
∞∑

k=n

1√
k log k

(
nα

γnk/ log k

)Q

+ Cn1−α(γ −1
n nα−1 logn)Q

= o(1),

which implies max1≤l≤q |∑mn

j=1(uj (ωl) − uj (ωl))| = oP(
√

n/ logn). Combining
this and Lemma 4.1 yields that we only need to show

In,q(X) − logq ⇒ G,(4.6)

where In,q(X) denotes the maximum of∣∣∣∣∣
mn∑
k=1

uk(ωl)

∣∣∣∣∣
2/

(2πnf (ωl)), 1 ≤ l ≤ q.

In order to prove (4.6), we need the following moderate deviation result, whose
proof is based on a Gaussian approximation technique due to Einmahl [5], Corol-
lary 1(b), page 31 and remark on page 32. The detailed proof is given in [12].

LEMMA 4.2. Let ξn,1, . . . , ξn,kn be independent random vectors with mean

zero and values in R
2d , and let Sn = ∑kn

i=1 ξn,i . Assume that |ξn,k| ≤ cnB
1/2
n , 1 ≤

k ≤ kn, for some cn → 0, Bn → ∞ and

|B−1
n Cov(ξn,1 + · · · + ξn,kn) − I2d | = O(c2

n),

where I2d is a 2d ×2d identity matrix. Suppose that βn := B
−3/2
n

∑kn

k=1 E|ξn,k|3 →
0. Then, ∣∣P(|Sn|2d ≥ x) − P(|N |2d ≥ x/B1/2

n )
∣∣

≤ o
(
P(|N |2d ≥ x/B1/2

n )
)

+ C

(
exp

(
−δ2

n min(c−2
n ,β

−2/3
n )

16d

)
+ exp

(
Cc2

n

β2
n logβn

))
,

uniformly for x ∈ [B1/2
n , δn min(c−1

n ,β
−1/3
n )B

1/2
n ], with any δn → 0 and δn ×

min(c−1
n ,β

−1/3
n ) → ∞. N is a centered normal random vector with covari-

ance matrix I2d . | · |2d is defined by |z|2d = min{(x2
i + y2

i )1/2 : 1 ≤ i ≤ d}, z =
(x1, y1, . . . , xd, yd).

We begin the proof of (4.6) by checking the conditions in Lemma 4.2. We define
the following notation: uk(ωl)/f

1/2(ωl) =: uk,l(1) + iuk,l(2),

Zk = (uk,i1(1), uk,i1(2), . . . , uk,id (1), uk,id (2)),
(4.7)

1 ≤ i1 < · · · < id ≤ q,
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and Un = ∑mn

k=1 Zk . Then, it is easy to see that Z1, . . . ,Zmn are independent.

LEMMA 4.3. Under the conditions of Theorem 2.1, we have

|Cov(Un)/(nπ) − I2d | = o(1/ logn)

uniformly for 1 ≤ i1 < · · · < id ≤ q .

PROOF. Let Bn,i = ∑mn

k=1 E(uk,i(1))2. Similar arguments to those in (4.5),
together with some elementary calculations, give that max1≤l≤q E|uj (ωl) −
uj (ωl)|2 = O(n−Q) for any large Q. This yields that, for any large Q,∣∣∣∣∣Bn,i −

mn∑
j=1

E
( ∑

k∈Hj

X′
k(m) cos(kωi)

)2
∣∣∣∣∣

≤ C

mn∑
j=1

|Hj |1/2(
E|uj (ωi) − uj (ωi)|2)1/2

(4.8)

+
mn∑
j=1

E|uj (ωi) − uj (ωi)|2

≤ Cn−Q.

Moreover, it follows from Lemmas 3.1 and 3.2 and Remark 3.2 that∣∣∣∣∣E
(

n∑
k=1

X′
k(m) cos(kωi)

)2

−
mn∑
j=1

E
( ∑

k∈Hj

X′
k(m) cos(kωi)

)2
∣∣∣∣∣

≤ Cn1−(α−β)/2,
(4.9) ∣∣∣∣∣E

(
n∑

k=1

X′
k(m) cos(kωi)

)2

− E

(
n∑

k=1

X′
k cos(kωi)

)2∣∣∣∣∣
= o(n/ logn).

In the case h(x) ≡ x, we have
∑n

k=1 X′
k cos(kωi) = ∑∞

t=−∞
∑n

k=1 ak+t cos(kωi)×
ε′−t . Hence, condition (2.4) ensures that∣∣∣∣∣E

(
n∑

k=1

X′
k cos(kωi)

)2

− E

(
n∑

k=1

Xk cos(kωi)

)2∣∣∣∣∣ = o(n/ logn).(4.10)

Suppose now that h is Lipschitz continuous. We write ζk = |εk|I {|εk| ≥ γn ×√
n/ logn}. Then, since |Xk − X′

k| ≤ C
∑

j∈Z |aj |(ζk−j + Eζk−j ), we have, from
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Eε2
0I {|ε0| ≥ n} = o(1/(logn)2) and the fact γn → 0 sufficiently slowly, that

E

(
n∑

k=1

(Xk − X′
k) cos(kωi)

)2

≤ CE

(
n∑

k=1

∑
j∈Z

|aj |(ζk−j − Eζk−j )

)2

+ C

(
n∑

k=1

∑
j∈Z

|aj |Eζk−j

)2

≤ CnEζ 2
0 + Cn2(Eζ0)

2 = o
(
n/(logn)2)

,

which implies (4.10) by virtue of Lemma 3.2 and the inequality |EX2 − EY 2| ≤
‖X − Y‖2‖X + Y‖2 for any random variables X and Y . From Lemma 3.3, Re-
mark 3.2 and (4.8)–(4.10), we have |Bn,i/(nπ) − 1| = o(1/ logn) uniformly for
1 ≤ i ≤ q .

In the following, we show that the off-diagonal elements in Cov(Un) are
o(n/ logn). We only deal with Bn,i,j := E{∑mn

k=1 uk,i(1)
∑mn

k=1 uk,j (1)}, i 	= j ,
since the other elements can be estimated similarly. As in (4.8) and (4.9), we have∣∣∣∣∣Bn,i,j − (f (ωi)f (ωj ))

−1/2E

(
n∑

k=1

X′
k(m) cos(kωi)

n∑
k=1

X′
k(m) cos(kωj )

)∣∣∣∣∣
≤ C

∣∣∣∣∣E
[{

mn∑
k=1

uk,i(1) − (f (ωi))
−1/2

n∑
k=1

X′
k(m) cos(kωi)

}
mn∑
k=1

uk,j (1)

]∣∣∣∣∣
+ C|f (ωi)|−1/2

∣∣∣∣∣E
[

n∑
k=1

X′
k(m) cos(kωi)

×
{

mn∑
k=1

uk,j (1) − (f (ωj ))
−1/2

×
n∑

k=1

X′
k(m) cos(kωj )

}]∣∣∣∣∣
≤ Cn1−(α−β)/2.

Moreover, by virtue of Lemmas 3.1–3.3 and Remark 3.2, we have

E

(
n∑

k=1

X′
k(m) cos(kωi)

n∑
k=1

X′
k(m) cos(kωj )

)
= o(n/ logn).

Hence, Bn,i,j = o(n/ logn), i 	= j . This proves the lemma. �
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LEMMA 4.4. Under the conditions of Theorem 2.1, we have, uniformly for
1 ≤ i1 < · · · < id ≤ q , that

βn := n−3/2
mn∑
j=1

E|Zj |3 = o
(
1/(logn)3/2)

.

PROOF. By the arguments in (4.3), the Fuk–Nagaev inequality and the fact
that α < 1/10 and γn → 0 sufficiently slowly,

mn∑
j=1

E|uj (ωi)|3

≤
mn∑
j=1

n∑
k=1

(
k

log k

)3/2

P

(
γ 1/2
n

√
k

log k
< |uj (ωi)| ≤ γ 1/2

n

√
k + 1

log(k + 1)

)

≤ Cn1+5α + C

mn∑
j=1

n∑
k=n4α

k1/2

(log k)3/2 P

(
|uj (ωi)| ≥ γ 1/2

n

√
k

log k

)

+ C

mn∑
j=1

n6α

(logn)3/2 P

(
|uj (ωi)| ≥ γ 1/2

n

√
n4α

logn4α

)

≤ Cn1+5α + C

mn∑
j=1

n∑
k=n4α

k1/2

(log k)3/2

(
nα

γnk/ log k

)Q

+ C

mn∑
j=1

n∑
k=n4α

k1/2nα

(log k)3/2 P

(
|ε0| ≥ Cγ 1/2

n

√
k

log k

)

+ C

mn∑
j=1

n7α

(logn)3/2 P

(
|ε0| ≥ Cγ 1/2

n

√
n4α

logn4α

)

= o
(
(n/ logn)3/2)

, uniformly for 1 ≤ i ≤ q.

The desired result now follows. �

By Lemmas 4.3 and 4.4, we may write βn = ν
3/2
n (logn)−3/2 and |Cov(Un)/

(nπ) − I2d | = γn,1(logn)−1, where νn → 0, γn,1 → 0. Let us take cn = {(4dγn ×
(πf ∗)−1)1/2 ∨ γ

1/2
n,1 }(logn)−1/2 =: γ

1/2
n,2 (logn)−1/2 and δn = max{γ 1/4

n,2 , ν
1/4
n } in

Lemma 4.2. Note that γn,2 → 0 sufficiently slowly. Then, simple calculations show
that

exp
(
−δ2

n min(c−2
n ,β

−2/3
n )

16d

)
≤ Cn−4d, exp

(
Cc2

n

β
2
n logβn

)
≤ Cn−4d .
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By virtue of Lemma 4.2, it holds that, for any fixed x ∈ R,

P
(
(2nπ)−1/2|Un|2d ≥

√
x + logq

)
= P

(|N |2d ≥
√

2(x + logq)
)(

1 + o(1)
)

(4.11)

= q−d exp(−dx)
(
1 + o(1)

)
,

uniformly for 1 ≤ i1 < · · · < id ≤ q . We write Vj := |∑mn

k=1 uk(ωj )|2/(2πn ×
f (ωj )), 1 ≤ j ≤ q , and

A := {In,q(X) ≥ x + logq} =
q⋃

j=1

{Vi ≥ x + logq} =:
q⋃

j=1

Aj .

By the Bonferroni inequality, we have, for any fixed k satisfying 1 ≤ k ≤ q ,

2k∑
t=1

(−1)t−1Et ≤ P(A) ≤
2k−1∑
t=1

(−1)t−1Et,

where Et = ∑
1≤i1<···<it≤q P(Ai1 ∩ · · · ∩ Ait ). In view of (4.11), it follows that

limn→∞ Et = e−tx/t !. Since
∑k

t=1(−1)t−1e−tx/t ! → 1 − e−e−x
as k → ∞, the

proof of Theorem 2.1 is complete.

5. Proof of Theorem 2.2. Recall that m = [nβ], and β is sufficiently small.
Let Sn,m(ω) = ∑n

k=1 Xk(m) exp(iωk) and In,1(m) ≤ · · · ≤ In,q(m) be the order
statistics of |Sn,m(ωj )|2/(2πnf (ωj )), 1 ≤ j ≤ q . By Lemma 3.4, we only need to
prove that

In,q(m) − logq ⇒ G.(5.1)

We use the same notation and blocking method as in the proof of Theorem 2.1
[replacing X′

k(m) with Xk(m)]. For example, vj (ω) = ∑
k∈Ij

Xk(m) exp(ikω). As
in Lemma 4.1, we claim that

max
1≤j≤q

∣∣∣∣∣
mn−1∑
k=1

vk(ωj )

∣∣∣∣∣ = oP
(√

n/ logn
)
.(5.2)

We come to prove it. Recall that s > 2 and β < α. Then, we can choose α,β

sufficiently small and τ sufficiently close to 1/2 such that

(s − 1)−1(1 − α + αs − 1/2) < τ < 1/2.(5.3)

We define vk(ωj ) = v′
k(ωj ) − Ev′

k(ωj ), where v′
k(ωj ) = vk(ωj )I {|vk(ωj )| ≤ nτ },

1 ≤ j ≤ q , 1 ≤ k ≤ mn − 1. So,

max
1≤j≤q

∣∣∣∣∣
mn−1∑
k=1

vk(ωj )

∣∣∣∣∣ ≤ max
1≤j≤q

∣∣∣∣∣
mn−1∑
k=1

vk(ωj )

∣∣∣∣∣ + max
1≤j≤q

∣∣∣∣∣
mn−1∑
k=1

(
vk(ωj ) − vk(ωj )

)∣∣∣∣∣.
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By the Fuk–Nagaev inequality and Lemma 3.2, we have, for any large Q,

P

(
max

1≤j≤q

∣∣∣∣∣
mn−1∑
k=1

vk(ωj )

∣∣∣∣∣ ≥ δ

√
n

logn

)
≤ Cn

(
n1−α+β

n/ logn

)Q

→ 0.(5.4)

Also, using (5.3), the condition E|X0|s < ∞ and |vk(ω)| ≤ ∑
j∈Ik

|Xj(m)|, we can
get

E
max1≤j≤q |∑mn−1

k=1 (vk(ωj ) − vk(ωj ))|√
n/ logn

≤ 2n1−αE[∑nβ

k=1 |Xk(m)|I {∑nβ

k=1 |Xk(m)| ≥ nτ }]√
n/ logn

(5.5)

≤ Cn1−α+βs−τ(s−1)−1/2(logn)1/2 = o(1).

This, together with (5.4), implies (5.2).
Set

u′
k(ωj ) = uk(ωj )I {|uk(ωj )| ≤ nτ },

uk(ωj ) = u′
k(ωj ) − Eu′

k(ωj ), 1 ≤ j ≤ q,1 ≤ k ≤ mn.

By the similar arguments as (5.5), using (5.3), we can show that

max
1≤j≤q

∣∣∣∣∣
mn∑
k=1

(
uk(ωj ) − uk(ωj )

)∣∣∣∣∣ = oP
(√

n/ logn
)
.

So, in order to get (5.1), similarly to (4.6), it is sufficient to prove

In,q(X) − logq ⇒ G.(5.6)

In fact, (5.6) follows from Lemmas 5.1 and 5.2 and similar arguments to those
employed in the proof of Theorem 2.1.

LEMMA 5.1. Under the conditions of Theorem 2.2, we have

|Cov(Un)/(nπ) − I2d | = o(1/ logn).

PROOF. The same arguments as those of Lemma 4.3 give that∣∣∣∣∣Bn,i − E

(
n∑

k=1

Xk cos(kωi)

)2/
(πf (ωi))

∣∣∣∣∣ = o(n/ logn).

The lemma then follows from Lemma 3.3. �
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LEMMA 5.2. Under the conditions of Theorem 2.2, we have

βn = n−3/2
mn∑
j=1

E|Zj |3 = O(nt−1/2),

where t = max{(3 − s)τ + α(s − 2)/2, α/2} < τ < 1/2.

PROOF. Suppose that 2 < s < 3. Then, by virtue of Lemma 3.2, we have

βn ≤ Cn−3/2+(3−s)τ
mn∑
j=1

E|Zj |s ≤ Cn−3/2+(3−s)τ
mn∑
j=1

|Hj |s/2 ≤ Cnt−1/2.

The case of s ≥ 3 can be similarly proved. �
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