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It is shown that the ratio between the expected diameter of an L;-bound-
ed martingale and the standard deviation of its last term cannot exceed V3.
Moreover, a one-parameter family of stopping times on standard Brownian
motion is exhibited, for which the +/3 upper bound is attained. These stop-
ping times, one for each cost-rate c, are optimal when the payoft for stopping
at time 7 is the diameter D (¢) obtained up to time # minus the hitherto accumu-
lated cost ct. A quantity related to diameter, maximal drawdown (or rise), is
introduced and its expectation is shown to be bounded by +/2 times the stan-
dard deviation of the last term of the martingale. These results complement
the Dubins and Schwarz respective bounds 1 and «/5 for the ratios between
the expected maximum and maximal absolute value of the martingale and the
standard deviation of its last term. Dynamic programming (gambling theory)
methods are used for the proof of optimality.

1. Introduction. Lester Dubins and Gideon Schwarz [3] prove that the ratio
between the expectation of the maximum M of a mean-zero L;-bounded mar-
tingale (thus, uniformly integrable, with a well-defined terminal element) and the
standard deviation (L»-norm) of its last term is bounded above by 1. They go on to
show that this bound is attained by the martingale { B(¢) : ¢ < t}, where the process
B ={B(t) :t = 0} is standard Brownian motion and 7 = 74, given by

(1.1) T =inf{t > 0: M(t) — B(t) > d),

is the first time B displays a drawdown of size d, that is, B drops d units below
the highest position it has visited so far; here M (¢) is the maximum of B on [0, 7]
while d is any positive constant.

Clearly, the dual stopping time 7’ for minimizing the expected minimum m
relative to the standard deviation of the last term would be 7’ = 7, = inf{r > 0:
B(t) — m(t) > d}, m(t) being the minimum of B on [0, ¢]. T’ is the first time B
displays a rise of size d.

The main purpose of the present article is to demonstrate that B stopped at time

(1.2) T =Ty =inf{t > 0:(M(t) — B(®)) A (B(t) —m(1)) > d}
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attains the least upper bound, whose value will be shown to be +/3, on the ratio
between the expected diameter (D = M — m) and the standard deviation of the last
term of any L;-bounded martingale.

It is useful to point out that the stopping time 7 can be implemented in two
stages: first, wait until for the first time a diameter of size 2d is obtained. At this
moment B must be either at its hitherto maximum (up) or minimum (down). If it is
up, continue until from that time on a drawdown of size d is displayed; similarly,
if it is down, continue until a rise of size d is displayed. It is easy to check that this
two-stage procedure terminates exactly at time 7.

Dubins and Schwarz [3] consider also the analogous inequality for the expected
supremum S of a nonnegative L,-bounded submartingale (which by Gilat [5] is
the same as the absolute value of a martingale), proving that the least upper bound
on the ratio between E[S] and the L,-norm (square-root of the second moment) of
the last term is /2. Moreover, as they show, this bound is attained by the absolute
value | B| of B, stopped at time

(1.3) T=T;=inf{t >0:5¢) — |B()| >d},

where S(¢) is the supremum of |B| on [0, ¢] and as before, d is any positive con-
stant.

Rephrasing S and D in terms of M and m by setting S = M Vv |m| and
D =M —m= M + |m|, it is seen that the stopping time t is optimal for M,
its dual 7’ is optimal for |m|, T is optimal for the maximum M V |m| of M and |m)|
and 7 for their sum M + |m|. Optimal here means maximizing the pertinent ratio
of expectation to standard deviation. The respective least upper bounds for these
ratios are 1, 1,+/2 and +/3, the last being the main contribution of the present
paper.

Related to the diameter D of a process X [with X (0) = 0] are its one-sided ver-
sions, the maximal drawdown D™ and the maximal rise D~ (with D = DT v D7)
defined in terms of My (t) = sup,, X (s) and mx (¢) = infs<; X (s5), as follows:

Dt = sup{X(t) — ian(s)} =sup{Mx(t) — X (1)},
>0 s>t >0

(1.4)
D™ = sup{supX(s) — X(t)} =sup{X(t) —mx(t)}.
>0

>0 Us>t
It will be shown (Theorem 2 and Corollary 2) that the supremum, over all
L,-bounded martingales X, of the ratio between E[D™] (similarly for E[D™])
and the standard deviation of the last term of X is \/5 Furthermore, this bound is
attained by the martingale {B(t):t < 7}, where

Tt=7," :inf{t >0:supA(s) — A(r) > d}
s<t

(1.5)
:inf{t >15:B(t)— inf B(s)> d}

Tg<S=<t
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is the earliest time the drop process A(t) = M(t) — B(t) attains a drawdown of
size d. Equivalently, 7T is the earliest time B attains a rise of size d after having
had a drawdown of size d.

Recalling that the variance of B(¢) is ¢ [in fact, {B?(t) —t :t > 0} is a mean-zero
martingale], it can be seen (as also observed in Dubins and Schwarz [3] for maxi-
mizing the expected maximum) that the problem of maximizing the desired ratios
is closely related to that of finding an optimal stopping time on B for the payoff
function R(¢) — ct, ¢ > 0, being the cost per unit time of sampling. For brevity,
refer to this as the c-problem. Here the reward function R(t) can be any of the
quantities M (¢), m(t), S(t), D(t) = M (t) — m(¢) and its two one-sided versions.
In fact, it is not hard to obtain the solution to the ratio-maximization problem from
the solution to the corresponding c-problem and vice versa. We choose to focus on
the latter because it can be conveniently formulated as a continuous time dynamic
programming (or gambling) problem, for which a toolkit is readily available.

REMARK. Dubins and Schwarz [3] solve the ratio-maximization problem
for M directly and then infer the solution to the corresponding c-problem. For S,
however, they go only in the opposite direction. A direct solution to the ratio-
maximization for S can be found in Gilat [6]. We do not know how to solve the
ratio-maximization problem for D other than by first solving the corresponding
c-problem.

Recalling the definition (1.2) of the stopping time 7, our main result now fol-
lows:

THEOREM 1. (i) For each ¢ > 0, T = T1,¢) is optimal for the c-problem
with reward function R(t) = D(t). It is the unique optimal stopping time within
the family {74 :d > 0}.

(i) E[T]= 2.

(iii) The optimal expected payoffis EID(T) —cT ] = %.

COROLLARY 1. The expected diameter of any L,-bounded martingale cannot
exceed /3 times the standard deviation of its last term. The upper bound /3 is
attained by the segment of Brownian motion between zero and any of the stopping
times 7.

To state the next theorem, let DT (¢) be the DT variable [see (1.4)] defined
on the martingale X (-) = B(- A t), and recall the definition (1.5) of the stopping
time 7.

THEOREM 2. (i) For each ¢ >0, T+ = Tl—}_(zc) is optimal for the c-problem

with reward function R(t) = DT (t). It is the unique optimal stopping time within
the family {74 :d > 0}.
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(i) E[TT]= c%
(iii) The optimal expected payoffis E[DT(T1) — cT 7] = %

COROLLARY 2. The expected maximal drawdown of any Ly-bounded mar-
tingale cannot exceed /2 times the standard deviation of its last term. The upper
bound /2 is attained by the segment of Brownian motion between zero and any of
the stopping times Ty ™.

Comment on the special relevance of Brownian motion. It should not be surpris-
ing that in a variety of martingale inequalities (those considered here included), the
extremal martingales, namely those for which equality is attained, are segments of
Brownian motion determined by a suitable stopping time. Moreover, in order to es-
tablish an inequality for the class of L;-bounded martingales, it typically suffices
to consider the subclass of these processes of the form {B(¢):t < T}, where T
is a stopping time with E[T] < oo. This is so simply because Brownian motion
is a universal martingale in the following very specific sense. Recall the Sko-
rokhod [12] embedding of a random variable Z with E[Z] =0 and E[Z 21 < ooin
Brownian motion by a stopping time 7', such that B(T) ~ Z and E[T]=FE [Z2];
following I. Monroe [10] call such a stopping time minimal (for Z). Monroe ([10],
Theorem 11) extends Skorokhod’s result as follows: given a right-continuous,
mean-zero, L,-bounded martingale X, there exists an increasing family {7} : r > 0}
of minimal stopping times such that the embedded process {B(7;)} has the same
distribution as X. By Ly-boundedness it follows that the limiting stopping time
T = lim;_, » T; is minimal and that B(T) has the same distribution as the last
term of X. Note also that a process in discrete time can always be extended to
continuous time and made right-continuous by setting it constant between con-
secutive integer time points. Clearly, the maximum or the diameter of the entire
Brownian path up to time 7 dominates the respective quantities in any embed-
ded process. Consequently, it is enough to establish our inequalities for Brownian
motion stopped at minimal stopping times.

2. Excessivity and supermartingales—Proofs.

2.1. Proof of Theorem 2 and its corollary. Recalling the definition of D™ (¢)
preceding the statement of Theorem 2 and the definition of the drop process A
following (1.5), observe that DT (¢) = sup,.; A(s). Since A is distributed like the
absolute value of a Brownian motion (see Karatzas and Shreve [8], page 97, who
attribute this result to Paul Lévy), the c-problems for maximal drawdown and max-
imal absolute value are equivalent. Consequently, Theorem 2 and its corollary fol-
low from the «/E—inequality of Dubins and Schwarz [3] (quoted in the Introduction)
regarding the absolute value of a martingale.
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2.2. Proofof Theorem 1. Define areal-valued function ¢ = g, 4 on the domain
{(5,)/,1):05)/5%<oo,t20}ine7¥3 by

qg@,y,1)
2.1) 0, . y >d,
=8 —ct+ 3d—8—c{y(8—y)+3d2—5}, § <2d,
(d -yl —cld+y)l, §>2d,y <d.

Note that ¢ is a continuous function.

Let D(t) = M(t) — m(t) be the diameter attained by B by time ¢ and let
G(t) = (M) — B()) AN (B(t) —m(t)) be the gap, or minimal distance of the
current position from the extremal points visited so far. Consider the process
0@)=0c.a@) =qca(D(t),G(t),t) and set [1(¢+) = D(t) — ct, the payoff func-
tion.

With the help of Lemmas 1 and 2 and Corollary 3 below, Q can be identified
as the conditional expected payoff for the c-problem [with reward R(¢) = D(¢)]
given a partial history {B(s):s <t} with current diameter D(¢) and gap G(¢),
when the following stopping time 7. 4 is used: If G(t) > d, 7. 4, = t; otherwise,
7.4, 18 the first time after ¢ at which the gap G is at least d. In other words,
7.4, extends Ty [see (1.2)] to general initial conditions. That 75, with d = %, is
optimal for the c-problem will follow from properties of the Q process to be es-
tablished in Proposition 1: Q majorizes the payoff I1, Q(0) is the expected payoff
when using 7y and Q is a supermartingale. Thus, for every integrable stopping
time 7, E[I1(r)] < E[Q(7r)] < Q(0) = E[I1(T4)]. O being a supermartingale is
the same as g being excessive in the gambling theoretic terminology of Dubins
and Savage [2], a notion closely related to no-arbitrage pricing in finance (see,
e.g., page 92 in Dana and Jeanblanc [1]).

The following two lemmas summarize known results, most of which are used
in the sequel.

LEMMA 1. Recall (1.1) and let g, ., with a < x < b, be the first exit time
from the interval (a, b) by Brownian motion starting at x.

(i) (Common knowledge, see, e.g., [4], page 71). Elegpx] = (x —a)(b —x)
and P(B(eqpx) =a) = 2%2. Similarly for simple random walk when a, b and x
are integers.

(i) (Dubins and Schwarz [3]). M (t7) = B(tq) +d is exponentially distributed
with mean d. Hence, E[M(t7)] = d and E[t;] = Var[B(z;)] = d>.

LEMMA 2. Let 8;, be the first time B attains a diameter of size h.

(i) (Pitman [11]). M (85) and m(8y) are uniformly distributed on their respec-
tive ranges [0, h] and [—h, 0].
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(i1)) (Imhof [7]). The distribution of B(8y) is given by the V—shc;ped density
function fn(x) = sz‘ |x| < h. Consequently, E[6,] = E[Bz(Sh)] = % Similarly,
for positive integer h and integer x € [—h, h], the probability that the simple ran-

-
dom walk stopped at 5, terminates at X is 775 ESVE

Imbhof (formula (2.1), [7]) identifies the joint distribution of (&5, B(5;)) and ob-
tains [formula (2.2)] the V-shaped marginal density of B(§;,). Here is a direct
argument for random walk, from which the statement for B follows by a standard
limiting argument: for x € {1, 2, ..., h} (similarly for x € {—h, —h +1,..., —1}),
termination occurs at x if and only if x — & is reached before x and then x is
reached before going below x — h. Since the probability of the second stage is
independent of x, the probability of terminating at x is proportional to the prob-

ability of the first stage, which by Lemma 1(i) is m =. The consequence

for E[8y] is implied by B?(t) — t being a mean-zero rnartmgale, and the V-shaped
density having variance g

Pitman ([11], page 322) infers Lemma 2(i) from (ii) in the framework of Brown-
ian motion on a circle, when first covering the entire circle. Here is a direct argu-
ment: For 0 < x < h, M(6,) < x if and only if B reaches x — h before x. By

Lemma 1(i), this event has probability 7.

COROLLARY 3. (i) The expected additional time Brownian motion needs to
2 2
increase its diameter from hy to hy > hy is E[5p,] — E[6p,] = u
(i) E[T4]= E[824] + Elval = 3d>.
(iii) E[D(Tg)]=3d.

PROOF. Claim (i) follows directly from Lemma 2(ii). By the two-stage de-
scription of 73 which follows its definition (1.2), 7y is the sum of ;7 and a ran-
dom time distributed like 7;. Claim (ii) now follows from Lemmas 1(ii) and 2(ii)
by taking expectations. The diameter at time J; consists of the initial 2d plus the
increment obtained during the second stage. By Lemma 1(ii) this increment has
mean d, verifying claim (iii). O

The next lemma is instrumental in proving (in the following Proposition 1) that
the process QO 1/(2¢) 18 a supermartingale.

LEMMA 3. (i) (Paul Lévy [9]). The processes {|B(t)|:t > O}, {M(t) —
B(t):t =0}, {B(t) —m(t) :t > 0} are identically distributed.

(ii) The processes {B*(t) —t:t > 0}, {(M(t) — B(t))> —t:t > 0}, {(B(t) —
m(1))? —t:t > 0}, adapted to the filtration of B, are mean-zero martingales.

(iii) The processes {max(B(t),0)> — t:¢ > 0}, {min(B(t),0)> — t:¢ > 0} are
supermartingales.
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PROOF. Assuming that the martingale nature of {B(1)? — 1} is well known,
statement (ii) follows from (i). To prove Lemma 3(iii), let 0 < ¢ < s. In terms of the
stopping time p = min(s, inf{u :u > ¢, B(u) > 0}), there are three possible cases to
consider: {B(t) > 0}, {B(t) <0,p =s}and {B(t) <0,t < p < s}. In the first case,
by statement (ii) of the lemma, E[max(B(s),0)> — s|8B;] < E[B2(s) — s|8,] =
B%(t) —t = max(B(r), 0)> —1 a.s. For the other two cases, condition on B, (which
contains B;) to obtain

E[max(B(s), 0)* — 5| B;]
(2.2) = E[E[max(B(s), 0)* — (s — p)|B,11B:] —t — Elp — 1|8
< E[E[max(B(s), 0)2 — (s — P)|B,11B: ] —t.

In the second case, max(B(s), 0)2 — (s — 0) =0 =max(B(1), 0)2 a.s. In the
third case, by statement (ii) of the lemma, E[max(B(s), 0)2 — (s — P)|Byl <
E[B2(s) — (s — p)|B,] = B%(p) = 0 = max(B(t), 0)?> a.s. So in each of these
two cases we obtain that the RHS of (2.2) is bounded from above by max(B(¢),
02—t O

PROPOSITION 1. Ford = 2% the process Q = Q¢.qa = Q¢ 1/2¢) has the fol-
lowing properties:
i) Ve =0, 0(@) =TI1(t) a.s.
() Q) = E[I(T1/20)] = E[Q(T1/2c)]. Moreover, TI(T1,20) =
O(T1/@c)) a.s.
(iii) Q is a supermartingale and {Q(t) = Q0 AT1/@2c)) it = 0} is a martingale
(w.r.t. the filtration {8B;} of the underlying Brownian motion).

PROOF. Substituting % for d in (2.1), a straightforward calculation yields

Q) — I1(z)
(2.3)

1
0, G(@) > —,
()_26

420030}

= D(t) 2 1
+<——G(r>) ] D() < -,
2 c

i Gtz D(t>lGl‘ i
C|:2c_ <>], )22.6(0) < 5

which is nonnegative, thus verifying claim (i). Since G(0) = D(0) =TI1(0) =0, it
follows from (2.3) that Q(0) = %. The first equality in claim (ii) now follows by
applying (ii) and (iii) of Corollary 3 (with d = %). To prove the third, a fortiori
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the second equality in claim (ii), just note that by definition G(77,2¢)) = 2—1C and
D(T1/0¢) = %

To establish claim (iii), the time axis [0, c0) will be partitioned into a se-
quence of intervals with suitably chosen stopping times as their end-points. The
process Q(-) will then be represented in an appropriate form, tailored for the ap-
plication of Lemma 3, over each of these subintervals. To exhibit this partition,
fix an arbitrary f € (0, d) and inductively define an increasing sequence of stop-
ping times as follows: 7o = 0 a.s., 77 is the first time B achieves diameter 2d and
1) = J4. Note that B(tp) is an end-point of the a.s. nonempty central interval
(m(t) +d, M(1p) — d). Let 73 be the earlier between the next time B reaches
the other end-point of the central interval or the gap decreases to f. Generically
now, for n > 3, if B(t,—1) and B(z,) are the end-points of the central interval
(m(ty) +d, M(t,) — d), define 1,4 similarly to 73. If, on the other hand, the gap
at B(ty) is f, let 7,41 be the first time after 7, at which the gap reaches d again.
We now use (2.3) to represent Q(-) over each of the partition intervals [t,,—1, ;)
in a form conducive to the application of Lemma 3.

Between times 19 and 71, Q is equal to the martingale [see Lemma 3(ii)]
2+ S{M (1) — B(H))? — 1]+ [(B(t) — m(1))? — t]}. Resorting to the short-hand
t* = max(ty, min(y, t)), between times t; and 12, Q is equal to the martingale
defined as Q up to 7| and, thereafter [see again Lemma 3(ii)], 4—1c + B(@™*) —
m(z1) + c[(M(t*) — B(t*))* — t*] or its mirror image, depending on B(t|) be-
ing M(t1) or m(ty). A similar representation of Q(-) is readily available for
the time increments during which the gap increases from f to d. Finally, con-
sider a time 7, at which B is at an end-point of the then-central interval. Letting
t* = max(z,, min(t,+1,t)), from time 7, to time 7,4, the process Q is equal
to the supermartingale defined as Q up to 7, and thereafter [see Lemma 3(iii)],
M (1) —m(z,) —cTp 4+ c[max(W (t*), 0)> — (1* — 7,)], where, depending on B(z,)
being M(zt,) +d or m(t,) —d, W(-) = B(-) — B(t,) or its mirror image.

Since UZOZI [th—1, Tn) = [0, 00) a.s., Q(-) is a supermartingale throughout. [

Concluding the proof of Theorem 1. As argued prior to the statement of
Lemma 1, Proposition 1 establishes the optimality of T L for the current c-problem.

By Corollary 3, E[I1(T3)] = E[D(T3)] —cE[Tq] = Qd +d) — c(% +d*) =
3d — 3cd?, which is uniquely maximized at d = 217 Thus 77/(2c) is the unique
optimal stopping time within the family {7 :d > 0}.

Claims (ii) and (iii) of Theorem 1 follow straightforwardly from Lemma 2.

PROOF OF COROLLARY 1. As argued in the last paragraph of the Introduc-

tion, it is enough to consider martingales of the form {B(¢):t < T}, where T is
a stopping time with E[T] = E[(B(T))?] < 00. Let o = «/E[T] and consider the
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c-problem with ¢ = % Then
E[D(T)] = (E[D(T)] — cE[T]) + cE[T]
(2.4) < E[D(Ti/@0)] = cE[Tije0] +co®
3 5 3 V3
4C+ca 4\/§/(2o)+ 20 fo

That the +/3-bound is attained by{B(t):t < 74} for any d > 0 follows from Corol-
lary 3. O

3. Anopen problem: the spider process. Larry Shepp has recently reminded
us that the +/3-inequality treated here is a special case of the so-called spider prob-
lem raised some time ago by the first author. Informally speaking, Brownian mo-
tion may be viewed as an absolute value of Brownian motion, each of whose excur-
sions is assigned a random sign. The spider process (sometimes called the Walsh
process) with n > 3 rays emanating from the origin is the extension from Brownian
motion (n = 2) to an n-valued sign. (Thus, n = 4 corresponds to randomly switch-
ing at visits to zero between an absolute value of BM on the y axis and another on
the x axis.) The maximal distance from the origin in the spider process is simply
the maximal absolute value of Brownian motion, independently of n. On the other
hand, the sum of the distances from the origin along the rays reduces in the case
n = 2 to the diameter of Brownian motion studied here. The maximization of the
expected value of this sum of distances when n > 3 seems harder to handle and
evidently requires new ideas.
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