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Short-range forecasts of precipitation fields are needed in a wealth of
agricultural, hydrological, ecological and other applications. Forecasts from
numerical weather prediction models are often biased and do not provide un-
certainty information. Here we present a postprocessing technique for such
numerical forecasts that produces correlated probabilistic forecasts of precip-
itation accumulation at multiple sites simultaneously.

The statistical model is a spatial version of a two-stage model that repre-
sents the distribution of precipitation by a mixture of a point mass at zero and
a Gamma density for the continuous distribution of precipitation accumula-
tion. Spatial correlation is captured by assuming that two Gaussian processes
drive precipitation occurrence and precipitation amount, respectively. The
first process is latent and drives precipitation occurrence via a threshold. The
second process explains the spatial correlation in precipitation accumulation.
It is related to precipitation via a site-specific transformation function, so as
to retain the marginal right-skewed distribution of precipitation while mod-
eling spatial dependence. Both processes take into account the information
contained in the numerical weather forecast and are modeled as stationary
isotropic spatial processes with an exponential correlation function.

The two-stage spatial model was applied to 48-hour-ahead forecasts of
daily precipitation accumulation over the Pacific Northwest in 2004. The pre-
dictive distributions from the two-stage spatial model were calibrated and
sharp, and outperformed reference forecasts for spatially composite and are-
ally averaged quantities.

1. Introduction. Due to its socioeconomic impact, precipitation is arguably
the most important and most widely studied weather variable. Critical decisions
in agriculture, hydrology, aviation, event planning and other areas depend on the
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presence or absence of precipitation, as well as precipitation accumulation. For
such applications, reliable predictions of precipitation occurrence and precipitation
amount are of great importance.

Operationally, short-range forecasts of precipitation are based on numerical
weather prediction (NWP) models. However, despite an overall steady improve-
ment in the quality of numerical weather predictions, forecasts of precipitation
accumulation are still not as accurate and reliable as those of other meteorological
variables [Applequist et al. (2002), Stensrud and Yussouf (2007)]. Furthermore,
quantitative precipitation forecasts obtained from a single NWP model are deter-
ministic, and thus do not convey any information about the uncertainty about the
prediction, which is a shortcoming in weather-related decision-making [National
Research Council (2006)]. One approach to incorporating uncertainty information
into weather forecasting is via ensembles of numerical forecasts [Palmer (2002),
Gneiting and Raftery (2005)]. While this is a major advance, the use of statistical
postprocessing techniques for numerical forecasts remains essential.

Several methods have been developed to statistically postprocess numerical pre-
dictions of precipitation occurrence and produce probabilistic quantitative pre-
cipitation forecasts. They include linear regression [Glahn and Lowry (1972),
Bermowitz (1975), Antolik (2000)], quantile regression [Bremnes (2004),
Friederichs and Hense (2007)], logistic regression [Applequist et al. (2002),
Hamill, Whitaker and Wei (2004)], neural networks [Koizumi (1999), Ramirez,
de Campos Velho and Ferreira (2005)], binning techniques [Gahrs et al. (2003),
Yussouf and Stensrud (2006)], hierarchical models based on climatic prior distrib-
utions [Krzysztofowicz and Maranzano (2006)], and two-stage models in which a
Gamma density is employed to model precipitation accumulation [Wilks (1990),
Hamill and Colucci (1998), Wilson, Burrows and Lanzinger (1999), Sloughter
et al. (2007)].

All these methods treat forecast errors at different locations as spatially indepen-
dent. This does not invalidate site-specific predictive distributions of precipitation.
However, accounting for spatial correlation is critical for probabilistic forecasts of
precipitation fields, or probabilistic forecasts of composite quantities, such as are-
ally averaged precipitation accumulation, which are important in flood risk man-
agement and similar types of applications. Extended areas of high precipitation
accumulation occur frequently in practice and incur much higher risk than would
be expected under an assumption of spatial independence for the forecast errors.

In this paper we present a statistical method that postprocesses numerical fore-
casts of precipitation and yields calibrated probabilistic forecasts of daily precip-
itation accumulation at multiple sites simultaneously. Our approach builds on the
two-stage model of Sloughter et al. (2007) and adds a spatial component to it,
by using two spatial Gaussian processes driving, respectively, precipitation occur-
rence and precipitation accumulation. The first process is latent and results in a
binary rain/no rain field; the second process drives precipitation amounts via an
anamorphosis or transformation function [Chilès and Delfiner (1999), page 381].
The spatial dependence in the precipitation fields then derives from the spatial
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structure of the underlying Gaussian processes, which we model as stationary
isotropic Gaussian processes equipped with exponential correlation structures.

At any individual site our model coincides with that of Sloughter et al. (2007),
except that the latter has been developed for an ensemble of numerical forecasts,
while our model uses a single numerical forecast only. Thus, at any individual site
the predictive distribution of precipitation is a mixture of a point mass at zero and
a Gamma distribution, with parameters that depend on the numerical forecast.

The paper is organized as follows. In Section 2 we give details of our statistical
model, and we describe the numerical forecasts and precipitation data used in this
study. In Section 3 we present results for probabilistic 48-hour-ahead forecasts of
daily precipitation accumulation over the Pacific Northwest in the 2004 calendar
year. We compare our method to competing prediction techniques, including an en-
semble of NWP forecasts [University of Washington mesoscale ensemble; Grimit
and Mass (2002), Eckel and Mass (2005)], the Bayesian model averaging tech-
nique of Sloughter et al. (2007) and versions of the power truncated normal model
of Bardossy and Plate (1992). In Section 4 we review other statistical postprocess-
ing approaches, and we discuss the limitations and some possible extensions of
our method.

2. Data and methods.

2.1. Numerical forecasts and precipitation data. To illustrate our method, we
use observations and numerical predictions of daily (24-hour) precipitation accu-
mulation during 2003 and 2004. The observations come from meteorological sta-
tions located in the Pacific Northwest, in a region centered on the states of Oregon
and Washington, and are reported in whole multiples of one hundredth of an inch.
Precipitation accumulations less than 0.01 inch were recorded as zeros.

The forecasts were provided by the Department of Atmospheric Sciences at the
University of Washington. They are based on the MM5 [fifth-generation Penn-
sylvania State University—National Center for Atmospheric Research Mesoscale
Model; Grell, Dudhia and Stauffer (1995)] mesoscale numerical weather predic-
tion (NWP) model, run with initial and boundary conditions provided by the
United Kingdom Meteorological Office (UKMO). The NWP forecast was gen-
erated on a 12 km grid, at a prediction horizon of 48 hours, and bilinearly inter-
polated to observation sites. In total, our database consists of 109,996 observa-
tion/forecast pairs distributed over 560 days in the 2003 and 2004 calendar years.
Note that the NWP forecast is one of the eight members of the University of Wash-
ington NWP ensemble [Eckel and Mass (2005)]. Our database contains the other
ensemble members as well, but the UKMO member is considered the best.

Figure 1 shows forecasts and observations of daily precipitation accumulation
valid for January 5, 2004. The gridded NWP forecast in panel (a) corresponds to
the areally averaged precipitation accumulation over the 12 km grid cells. Panel (b)
shows the NWP forecast at observation sites, obtained from the gridded forecast
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(a) NWP forecast of precipitation
accumulation valid January 5, 2004

(b) NWP forecast of precipitation (c) Observed precipitation
accumulation at observation accumulation on January 5, 2004
sites valid January 5, 2004

FIG. 1. NWP forecast and observations of daily precipitation accumulation valid for January 5,
2004, in hundredths of an inch, at a prediction horizon of 48 hours. The color grey is used to indicate
no precipitation. (a) NWP forecast on a 12 km grid covering the Pacific Northwest. (b) NWP forecast
interpolated to observation sites. (c) Observed precipitation accumulation.

via bilinear interpolation. Panel (c) displays the observed precipitation accumu-
lation. It is clear that the NWP model overpredicted precipitation accumulation.
This wet bias was fairly typical. Over the 2003 and 2004 calendar years, the NWP
model predicted precipitation accumulations larger than observed about 85% of
the time, with a mean error of 4.45 hundredths of an inch. About 61% of the NWP
forecasts indicated nonzero precipitation accumulations, while only 34% of the ob-
servations were nonzero. The other ensemble members showed similar wet biases.

Our goal in this paper is to develop a statistical method that corrects for the
systematic bias present in the NWP forecast, yields calibrated predictive distrib-
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utions for precipitation accumulation, and accounts for spatial correlation in the
precipitation field.

2.2. Spatial statistical model. Several statistical models for precipitation oc-
currence and precipitation accumulation have been proposed in the literature.
Stidd (1973), Bell (1987), Bardossy and Plate (1992), Hutchinson (1995), and
Sansò and Guenni (1999, 2000, 2004) adapted a Tobit model [Tobin (1958),
Chib (1992)] to precipitation accumulation, working with a latent Gaussian
process that relates to precipitation via a power transformation and a truncation.
The resulting power truncated normal (PTN) model offers a unified approach to
precipitation modeling that allows both for a point mass at zero and a right-skewed
distribution for precipitation accumulations greater than zero. However, it may not
be flexible enough for our purposes, as we will see below.

Another approach to precipitation modeling uses two-stage models, which
consider precipitation occurrence first, and then model nonzero precipitation ac-
cumulation conditional on its occurrence. Common choices for the distribution
of nonzero precipitation accumulation include exponential densities [Todorovic
and Woolhiser (1975)], mixtures of exponentials [Woolhiser and Pegram (1979),
Foufoula-Georgiou and Lettenmaier (1987)] and Gamma densities [Stern and
Coe (1984), Wilks (1989), Hamill and Colucci (1998), Wilson, Burrows and
Lanzinger (1999), Sloughter et al. (2007)].

The spatial statistical model underlying our method is an extension of the two-
stage model with a Gamma density for nonzero precipitation accumulation. From
now on time is fixed, and so it is not explicitly included in the notation. Follow-
ing Sloughter et al. (2007), we use the cube root of precipitation as the starting
point of our model. Therefore, we denote by Y(s) the cube root of the observed
daily precipitation accumulation at the location s. We assume that there exists a
latent Gaussian process W(s) that drives precipitation occurrence. If W(s) is less
than or equal to zero, then there is no precipitation at the site; otherwise there is
precipitation at s, that is,

Y(s) = 0 if W(s) ≤ 0 and Y(s) > 0 if W(s) > 0.

We model the latent Gaussian process W(s) as

W(s) = μ(s) + ε(s),(1)

where μ(s) is a spatial trend function that depends on the NWP forecast, and
ε(s) is a mean zero Gaussian spatial process. We follow Sloughter et al. (2007) in
modeling the spatial trend as

μ(s) = γ0 + γ1Ỹ (s) + γ2I(s),(2)

where Ỹ (s) is the cube root of the NWP forecast for the precipitation accumula-
tion at s, and I(s) is an indicator variable equal to 1 if Ỹ (s) = 0 and equal to 0
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otherwise. At any individual site, this is simply a probit model for precipitation
occurrence. The spatial Gaussian process ε(s) has stationary and isotropic covari-
ance function

Cov(ε(s), ε(s ′)) = exp
(
−‖s − s′‖

ρ

)
,(3)

where ‖s − s′‖ is the Euclidean distance between sites s and s ′. The parameter
ρ > 0 is the range and specifies the rate at which the exponential correlation de-
cays.

The second part of our model specifies the distribution of the cube root of
precipitation accumulation given that there is precipitation, that is, conditionally
on Y(s) being greater than zero. At the marginal level, we model this conditional
distribution by a Gamma distribution with site-specific parameters αs and βs , that
is,

Y(s) | Y(s) > 0 ∼ Gs = Gamma(αs, βs).(4)

Following Sloughter et al. (2007), we assume that the mean αsβs and the variance
αsβ

2
s of the Gamma distribution in (4) depend on the NWP forecast. Specifically,

we suppose that

αsβs = η0 + η1Ỹ (s) + η2I(s)(5)

and

αsβ
2
s = ν0 + ν1Ỹ (s)3,(6)

where the parameters ν0 and ν1 are constrained to be nonnegative.
The model specification in (4), (5) and (6) refers to individual sites. However,

our goal is to model precipitation at several sites simultaneously, so as to account
for spatial dependence. Given the right-skewed distribution of precipitation accu-
mulations, it is not possible to model the precipitation field directly using a spatial
Gaussian process, so we consider a transformation approach. Let Gs denote the
Gamma distribution function in (4), and let 	 denote the standard normal dis-
tribution function. We assume that there exists a standardized Gaussian spatial
process Z(s) with covariance function

Cov(Z(s),Z(s ′)) = exp
(
−‖s − s′‖

r

)
,(7)

such that, at each point s at which Y(s) is strictly positive,

Y(s) = 
s(Z(s)) = G−1
s ◦ 	(Z(s)),(8)

where 
s = G−1
s ◦ 	 is a spatially varying anamorphosis or transformation func-

tion [Chilès and Delfiner (1999), page 381]. The anamorphosis has the advantage
of retaining the appropriate conditional distribution (4), while allowing us to model
the spatial structure conveniently, using the Gaussian spatial process Z(s). Note
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that (8) can be expressed as

Z(s) = 
−1
s (Y (s)) = 	−1 ◦ Gs(Y (s)),(9)

conditionally on Y(s) being greater than zero. We refer to Barancourt, Creutin and
Rivoirard (1992) and De Oliveira (2004) for additional discussion of this general
type of random field model.

2.3. Model fitting. For forecasts on any given day, we estimate the parameters
of the statistical model in Section 2.2 using observations and forecasts from a
sliding training period made up of the most recent M days for which they are
available. We assume that the statistical relationships between the forecast and
the observations are static during the training period, with any seasonal evolution
captured by the rolling estimation window. Details on the choice of the length M

of the sliding training period will be given in Section 2.4.
In describing how we fit the model, we first explain how we go about estimating

the parameters for precipitation occurrence, and then we present the procedure for
precipitation accumulation.

In the model for precipitation occurrence, we estimate the trend parameters
γ0, γ1 and γ2 in (2) by a probit regression. The covariance parameter ρ in (3)
is estimated using the stochastic EM algorithm of Celeux and Diebolt (1985). The
implementation requires simulation from a multivariate truncated normal distribu-
tion, for which we adopt the approach of Rodriguez-Yam, Davis and Scharf (2004).

We now turn to the model for precipitation accumulation. The anamorphosis
function 
s that relates the precipitation field Y(s) to the underlying Gaussian
process Z(s) is site-specific, because the Gamma distribution function Gs in (4)
varies spatially. To estimate the Gamma mean parameters η0, η1 and η2 in (5), we
fit a linear regression of the cube root of the nonzero observed precipitation accu-
mulation on the cube root of the NWP forecast and the indicator of this forecast
being equal to zero. The Gamma variance parameters ν0 and ν1 in (6) are esti-
mated by numerically maximizing the marginal likelihood under the assumption
of spatial and temporal independence of the forecast errors. To estimate the range
parameter r of the spatial Gaussian process Z(s) in (7), we fix the other parame-
ters at their estimates and maximize the marginal likelihood under the assumption
of temporal independence. Calculating the Jacobian for the transformation (8), the
likelihood for any given day in the training period is seen to be proportional to

fZ(s1),...,Z(sk)(z1, . . . , zk) ×
k∏

j=1

gsj (yj )e
z2
j /2

,(10)

where sj is a site with observed precipitation accumulation greater than zero,
yj > 0 is the cube root of the precipitation amount, and zj = 	−1 ◦ Gsj (yj ), for
j = 1, . . . , k, with k the number of sites with strictly positive observed precipi-
tation accumulation on this day. The density gsj is that of the Gamma distribu-
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tion Gsj , and f is a zero mean Gaussian density that depends on the range para-
meter r via (7). The full marginal likelihood is proportional to the product of (10)
over the days in the training period and is optimized numerically.

2.4. Choice of training period. In principle, the longer the training period, the
more data, and the more data, the better. On the other hand, a shorter training
period allows changes in atmospheric regimes and the NWP model to be taken
into account more promptly. To make an informed decision about the length of the
training period, we consider the predictive performance of the two-stage spatial
model at individual sites as a function of the length M in days. To assess the
quality of the predictive distributions for daily precipitation accumulation, we use
the continuous ranked probability score [Matheson and Winkler (1976), Gneiting
and Raftery (2007)], which is a strictly proper scoring rule for the evaluation of
probabilistic forecasts of a univariate quantity. It is negatively oriented, that is, the
lower the better, and is defined as

crps(F, x) =
∫ ∞
−∞

(
F(ξ) − I{x ≤ ξ})2

dξ,(11)

where F is the predictive cumulative distribution function, x is the realizing ob-
servation, and I is an indicator function. Gneiting and Raftery (2007) showed that
(11) can be expressed equivalently as

crps(F, x) = EF |X − x| − 1
2EF |X − X′|,(12)

where X and X′ are independent random variables with common distribution F . In
particular, if F = Fens is a forecast ensemble of size m with members x1, . . . , xm,
then

crps(Fens, x) = 1

m

m∑
i=1

|xi − x| − 1

2m2

m∑
i=1

m∑
j=1

|xi − xj |.(13)

It is now immediate that the continuous ranked probability score is reported in
the same unit as the forecast variable, and that it generalizes the absolute error, to
which it reduces if F is a point forecast.

Figure 2 shows the mean continuous ranked probability score as a function of
the length M of the rolling training period, where M = 10,15,20, . . . ,60. The
score is computed for predictive distributions of the original, nontransformed pre-
cipitation accumulation, so it has the unit of hundredths of an inch. It is temporally
and spatially averaged over all predictive distributions at individual sites for the
period March 9, 2003—March 8, 2004, at a prediction horizon of 48 hours, using
the method described in the next section. The score improves (decreases) as the
length M of the rolling training period increases to 30 days, and thereafter does
not change much. We therefore used a 30-day training period. A training period of
length 30 days was also used by Sloughter et al. (2007), who applied a Bayesian
model averaging (BMA) technique to this dataset. It is very possible that different
choices would be best for other forecast lead times and other geographic regions.
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FIG. 2. Mean continuous ranked probability score (CRPS) for probabilistic forecasts of daily pre-
cipitation accumulation at individual sites, for the period March 9, 2003–March 8, 2004, as a func-
tion of the length M of the sliding training period, in hundredths of an inch. The method used is the
two-stage spatial technique.

2.5. Generating forecasts. Once the statistical model has been fitted, proba-
bilistic forecasts of precipitation fields can be generated easily, by sampling from
the underlying Gaussian processes W(s) and Z(s). We first simulate from the
Gaussian process W(s) that drives precipitation occurrence; then we generate re-
alizations of the spatial Gaussian process Z(s) at the sites s where W(s) is strictly
positive. If W(s) ≤ 0, then Y(s) = 0. If W(s) > 0, the realizations of Z(s) are
transformed into the cube root precipitation accumulation Y(s) and the original
precipitation accumulation Y0(s) = Y(s)3 using the site specific anamorphosis
function (9).

We use this method to generate samples of any desired size from the joint pre-
dictive distribution of precipitation occurrence and precipitation accumulation on
spatial grids. The simulation-based approach is a natural choice, because the model
grid contains thousands of cells and it is not feasible to work with the resulting,
very high-dimensional predictive distributions in closed form. The approach is il-
lustrated in Figure 3, which shows two members of a statistical ensemble of pre-
cipitation field forecasts over the Pacific Northwest obtained with the two-stage
spatial method. The forecasts are made at a 48 hour prediction horizon and valid
January 5, 2004. The corresponding NWP forecast and the observed precipitation
pattern are shown in panels (a) and (c) of Figure 1, respectively. The two-stage
spatial postprocessing method corrects for the wet bias present in the NWP model
and provides a predictive distribution in the form of a statistical ensemble of pre-
cipitation fields, of any desired size.
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FIG. 3. Two members of a statistical forecast ensemble for daily precipitation accumulation over
the Pacific Northwest valid for January 5, 2004 at a prediction horizon of 48 hours, using the
two-stage spatial technique. Precipitation accumulation is indicated in hundredths of an inch, with
the color grey representing no precipitation.

The spatial grid is of size approximately 10,000, so even simulation from the
required multivariate normal distributions is not a straightforward task. For doing
this, we use the circulant embedding technique [Wood and Chan (1994), Dietrich
and Newsam (1997), Gneiting et al. (2006)] as implemented in the R package
RANDOMFIELDS [Schlather (2001)]. This is a very fast technique that can readily
be used in real time.

For verification purposes, we need statistical forecast ensembles at observation
sites, as opposed to the gridded forecasts in Figure 3. This can be done analogously,
using NWP forecasts interpolated to observation sites as described in Section 2.1.
However, the task is much easier computationally, since on average there were
only 197 observation sites for precipitation accumulation in the Pacific Northwest
on any given day.

3. Results.

3.1. Reference forecasts. We now evaluate the out-of-sample predictive per-
formance of our probabilistic forecasting method, to which we refer as the “two-
stage spatial” method.

We used the two-stage spatial method to obtain forecasts of daily precipita-
tion accumulation in the 2004 calendar year at observation sites over the Pacific
Northwest and compared them to reference forecasts, as described below. All fore-
casts use a 48 hour prediction horizon and a sliding training period consisting of
forecasts and observations for the most recent 30 days available, if applicable.
Specifically, we consider the following types of forecasts:

(a) As basic reference standard, we use “empirical climatology,” that is, a static,
temporally invariant predictive distribution that equals the empirical distribution of
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observed precipitation accumulation in the prior calendar year, 2003. Details are
given below.

(b) The numerical forecast described in Section 2.1, namely, the UKMO mem-
ber of the University of Washington NWP ensemble [Eckel and Mass (2005)],
which we refer to as the “NWP” forecast.

(c) The full University of Washington NWP ensemble, which is a collection of
eight numerical forecasts, each based on the MM5 NWP model, with initial and
boundary conditions provided by eight distinct meteorological centers. We refer to
this as the “NWP ensemble” forecast.

(d) The Bayesian model averaging (BMA) postprocessing technique of
Sloughter et al. (2007) applied to the NWP ensemble in (c). The BMA predictive
distribution is a mixture distribution, where each component is associated with an
ensemble member and is based on a two-stage model that uses a Gamma density
for precipitation accumulations greater than zero. The method ignores dependence
of forecast errors between sites. We call this the “BMA” forecast.

(e) A postprocessing technique based on the NWP forecast in (b) and the power
truncated normal (PTN) model of Bardossy and Plate (1992), in which a power
transformed and truncated, stationary and isotropic spatial Gaussian process with
mean structure similar to (5) and exponential correlation drives both precipita-
tion occurrence and precipitation accumulation. The transformation power used
here is γ = 2. We call this the “power truncated normal” or “PTN” method. See
Berrocal (2007) for details.

(f) The PTN method in (e) with transformation power γ = 2.33, a value that is
obtained by maximizing the marginal likelihood for this parameter.

(g) The “two-stage spatial” method described in this paper, which is a post-
processing technique based on the NWP forecast in (b).

Table 1 summarizes properties and characteristics of the various forecasting meth-
ods, which are listed roughly in order of increased complexity of the spatial model-
ing. The NWP forecast is deterministic; all the other methods are probabilistic, in
that they provide predictive distributions. Among the probabilistic techniques, em-

TABLE 1
An overview of the forecast techniques used in the case study. See text for details

Forecasting Gives predictive Uses NWP Uses NWP Uses statistical Spatial
technique distribution model ensemble postprocessing modeling

Empirical climatology yes no no no no
NWP no yes no no no
NWP ensemble yes yes yes no no
BMA yes yes yes yes no
PTN yes yes no yes yes
Two-stage spatial yes yes no yes yes
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pirical climatology does not use any information from NWP models, as opposed to
the others. The BMA method is a statistically postprocessed version of the NWP
ensemble, but does not involve any spatial modeling. The PTN and two-stage spa-
tial methods are built around a single NWP forecast, rather than an ensemble. They
use statistical postprocessing to correct for biases and to generate predictive distri-
butions, and employ spatial processes to account for spatial correlation in forecast
errors.

In the remainder of this section we assess the predictive performance of these
methods both marginally and jointly. For the marginal assessment, we evaluate
forecasts of daily precipitation accumulation at individual sites. For the joint eval-
uation, we consider predictions of areally averaged precipitation accumulation,
and forecasts of precipitation accumulation at several sites simultaneously. In our
assessment, we are guided by the principle of maximizing the sharpness of the
predictive distributions subject to calibration [Gneiting, Balabdaoui and Raftery
(2007)]. In other words, we aim at predictive distributions that are as concen-
trated as possible, while being statistically consistent with the observations. To
provide summary measures of predictive performance that address calibration and
sharpness simultaneously, we use strictly proper scoring rules, such as the contin-
uous ranked probability score, the Brier score and the energy score [Gneiting and
Raftery (2007)].

3.2. Verification results for precipitation accumulation at individual sites. We
now present verification results for probabilistic forecasts of daily precipitation ac-
cumulation at individual sites in the Pacific Northwest in the 2004 calendar year.
Numerical forecasts and observations were available for a total of 249 days in
2004. All results and scores are spatially and temporally aggregated, comprising
a total of 66,663 individual forecast cases at a prediction horizon of 48 hours.
Our basic reference standard is empirical climatology, here taken to be the static,
spatially and temporally invariant predictive distribution that equals the empiri-
cal distribution of observed precipitation accumulation, when aggregated over the
2003 calendar year and the Pacific Northwest.

Table 2 shows summary measures of predictive performance, including the
mean absolute error (MAE) and mean continuous ranked probability score (CRPS)
for precipitation accumulation, and the mean Brier score (BS) for precipitation oc-
currence. The absolute error is a performance measure for a deterministic forecast,
here taken to be the median of the predictive distribution. The continuous ranked
probability score (11) is a proper scoring rule for a probabilistic forecast of a scalar
quantity; for a deterministic forecast, it reduces to the absolute error. The Brier
score or quadratic score [Brier (1950)] for a probability forecast of a binary event
is defined as

bs(f, o) = (f − o)2,

where f is the forecast probability for the event and o equals 1 if the event occurs
and 0 otherwise. As the representation (12) shows, the continuous ranked proba-
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TABLE 2
Mean absolute error (MAE) and mean continuous ranked probability score (CRPS) for daily

precipitation accumulation, and mean Brier score (BS) for precipitation occurrence, at individual
sites, for the various types of forecasts. The scores are temporally and spatially aggregated over the

2004 calendar year and the Pacific Northwest

MAE CRPS BS

Empirical climatology 7.71 7.19 0.222
NWP 9.55 9.55 0.325
NWP ensemble 8.46 6.76 0.271
BMA 6.68 5.02 0.141
PTN (γ = 2) 7.17 5.63 0.164
PTN (γ = 2.33) 6.99 5.53 0.148
Two-stage spatial 6.73 5.12 0.148

bility score for a predictive distribution equals the integral over the Brier score for
the induced probability forecasts at all real-valued thresholds ξ . The entry in the
table refers to precipitation occurrence, that is, the threshold ξ = 0.

The table shows that the statistically postprocessed forecasts (BMA, PTN and
two-stage spatial method) outperformed the others. The BMA forecast had slightly
lower scores than the two-stage spatial and PTN methods; this is not surprising,
given that it is based on the full NWP ensemble rather than a single member only.
The superiority of the two-stage spatial method over the PTN technique may stem
from a lack of flexibility of the latter, as it depends on a power transform and
attempts to accommodate precipitation occurrence and precipitation accumulation
using a single latent spatial process.

To assess the calibration of the predictive distributions, we use verification
rank histograms [Anderson (1996), Talagrand, Vautard and Strauss (1997), Hamill
and Colucci (1997), Hamill (2001)] and probability integral transform (PIT) his-
tograms [Diebold, Gunther and Tay (1998), Gneiting, Balabdaoui and Raftery
(2007)]. Verification rank histograms are used for ensemble forecasts when the
number of members m is small. For each forecast case, the rank of the verifying
observation is tallied within the combined set of m+ 1 values given by the ensem-
ble members and the observation. If the ensemble members and the observation
are exchangeable, the verification rank follows a discrete uniform distribution over
the set {1,2, . . . ,m + 1}. Thus, under the assumption of exchangeability and over
a large number of forecast cases, the verification rank histogram is expected to
be statistically uniform. Similarly, the PIT histogram displays the PIT value, that
is, the value that the predictive cumulative distribution function attains at the ob-
servation. If the observation is a random draw from the forecast distribution, the
PIT value is uniformly distributed, and over a large number of forecast events, we
expect the PIT histogram to be uniform. Deviations from uniformity can be inter-
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preted diagnostically in terms of dispersion errors and biases [Diebold, Gunther
and Tay (1998), Hamill (2001), Gneiting, Balabdaoui and Raftery (2007)].

Predictive distributions for quantitative precipitation have point masses at zero,
so to retain uniformity under the null assumption, we need to randomize. We first
consider forecasting methods that produce a NWP ensemble. In situations in which
the observation and one or more ensemble members equal zero, we draw a veri-
fication rank from the set {1, . . . ,m0 + 1}, where m0 is the number of ensemble
members equal to zero.

In the case of the PIT histogram, in instances in which the observation equals
zero, a PIT value is obtained by drawing a random number from a uniform distri-
bution between 0 and the predicted probability of precipitation. With these modi-
fications, verification rank and PIT values remain uniformly distributed under the
corresponding null assumptions.

Figure 4 shows verification rank histograms and PIT histograms for the various
types of probabilistic forecasts. The NWP ensemble consists of eight members,
that is, the verification ranks range from 1 to 9. The ensemble is underdispersed and
has a wet bias, so the observations tend to overpopulate the lowest rank, which is

FIG. 4. Verification rank and probability integral transform (PIT) histograms for probabilistic fore-
casts of daily precipitation accumulation at individual sites, temporally and spatially aggregated
over the 2004 calendar year and the Pacific Northwest. (a) Empirical climatology. (b) NWP ensem-
ble. (c) BMA method. (d) PTN method with γ = 2. (e) PTN method with γ = 2.33. (f) Two-stage
spatial technique.
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FIG. 5. Reliability diagram for probability forecasts of precipitation occurrence at individual sites,
for the various types of forecasts, temporally and spatially aggregated over the 2004 calendar year
and the Pacific Northwest.

seen in the rank histogram. The other techniques are considerably better calibrated,
with the two-stage spatial method showing the most uniform PIT histogram. The
histograms for the PTN technique indicate that observations of precipitation accu-
mulation have heavier tails than can be modeled by a power transformed normal
distribution.

We complete this section by assessing the reliability of the induced probability
forecasts for the occurrence of precipitation. The reliability diagram in Figure 5
shows the empirically observed frequency of precipitation occurrence as a func-
tion of the binned forecast probability. For a calibrated forecast, we expect the
graph to be close to the diagonal. Due to its wet bias, the NWP ensemble tends to
overpredict precipitation occurrence, which results in a reliability curve below the
diagonal. The BMA method, the PTN technique with γ = 2.33 and the two-stage
spatial method were reliable. Overall, the BMA and two-stage spatial methods
performed best.

3.3. Verification results for areally averaged precipitation accumulation.
When predicting spatially composite quantities, it can be critically important that
spatial correlation be taken into account. One such quantity, which is important in
hydrological and agricultural applications, is total or average precipitation over an
area, such as a river catchment. Probabilistic forecasts of the average precipitation
accumulation over a region A with area |A| can be derived easily using the two-
stage spatial method. Let Y0(A) denote the average precipitation accumulation
over A, and write Y0(s) = Y(s)3 for the original, nontransformed precipitation
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accumulation at the site s ∈ A, expressed in terms of the cube root accumula-
tion Y(s). Then

Y0(A) = 1

|A|
∫
A

Y0(s) ds,

which can be approximated by the composite quantity

Ȳ0 = 1

J

J∑
j=1

Y0(sj ) = 1

J

J∑
j=1

Y(sj )
3,(14)

where s1, . . . , sJ are sites located within A. The two-stage spatial method allows
us to sample from the predictive distribution of Ȳ0 as follows:

(i) Generate a realization of the latent Gaussian process W(s) at the sites
s1, . . . , sJ using (1), (2) and (3).

(ii) Generate a realization of the spatial Gaussian process Z(s) at the sites sj
at which W(sj ) > 0 using (7).

(iii) If W(sj ) ≤ 0, let Y(sj ) = 0. If W(sj ) > 0, find Y(sj ) using (9) and the site
specific Gamma parameters in (5) and (6).

(iv) Find a realization of the composite quantity Ȳ0 using (14).

We applied this method to generate probabilistic forecasts of areally averaged daily
precipitation accumulation over the Upper Columbia River basin in 2004 using the
two-stage spatial method, and compared to reference techniques. The Columbia
River basin is a 259,000-square-mile basin that spans seven states (Oregon, Wash-
ington, Idaho, Montana, Nevada, Wyoming and Utah) and one Canadian province
(British Columbia). It is the most hydroelectrically developed river system in the
world, with more than 400 dams and a generating capacity of 21 million kilowatts.

Here, we consider only the upper part of the Columbia River basin that lies
within the state of Washington. Fifteen of the 441 meteorological stations in our
data base are located in this area. On 212 days in 2004, two or more of these
stations reported daily precipitation accumulation, so we consider the composite
quantity (14), where J may vary from day to day. The minimum, median and
maximum of J among the 212 forecast cases were 2, 10 and 14, respectively.
To obtain a predictive distribution for the composite quantity Ȳ0 with the two-
stage spatial method, we repeated steps (i) through (iv) to obtain a sample of size
10,000. For verification purposes, this can be handled as a continuous predictive
distribution, and we do so in the following. The reference forecasts are treated
analogously.

Table 3 shows summary measures of predictive performance. The PTN and two-
stage spatial methods, which invoke statistical postprocessing and model spatial
structure, outperformed the other techniques. The two-stage spatial method per-
formed best, showing both the lowest MAE and the lowest CRPS.

Figure 6 shows verification rank and PIT histograms for the probabilistic fore-
casts. The rank histogram for the NWP ensemble is U-shaped and left-skewed, as
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TABLE 3
Mean absolute error (MAE) and mean continuous ranked probability

score (CRPS) for forecasts of areally averaged daily precipitation
accumulation over the Upper Columbia River basin in 2004

MAE CRPS

Empirical climatology 5.78 4.72
NWP 7.76 7.76
NWP ensemble 7.99 6.20
BMA 5.31 4.01
PTN (γ = 2) 5.04 3.74
PTN (γ = 2.33) 5.05 3.77
Two-stage spatial 4.90 3.63

a result of its underdispersion and wet bias. The PIT histogram for the BMA tech-
nique is also U-shaped; its underdispersion stems from the fact that it does not take
account of spatial dependence. A similar pattern is seen for empirical climatology,

FIG. 6. Verification rank and probability integral transform (PIT) histograms for probabilistic fore-
casts of areally averaged daily precipitation accumulation over the Upper Columbia River basin in
2004. (a) Empirical climatology. (b) NWP ensemble. (c) BMA technique. (d) PTN method with γ = 2.
(e) PTN method with γ = 2.33. (f) Two-stage spatial technique.
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hinting at interannual variability that cannot be captured by a one-year record. The
PIT histograms for the PTN method point at the aforementioned tail issues. The
empirical distribution of areally averaged precipitation accumulation has a heavier
tail than the PTN method allows, so PIT values close to 1 appear too often. The
PIT histogram for the two-stage spatial method is the most uniform.

3.4. Spatial verification. To assess further whether the forecasting methods
capture spatial correlation, we consider multivariate probabilistic forecasts of daily
precipitation accumulation at several sites simultaneously. In the experiment re-
ported here, we selected the four stations in the Upper Columbia River basin that
had the most observations in 2004, namely, Brown Mountain Orchard, Gold Moun-
tain, Nespelem and Teepee Seed Orchard, which have a median inter-station dis-
tance of 43 miles. Observations of daily precipitation accumulation at these four
stations simultaneously were available on 141 days in the 2004 calendar year.

For these 141 days, we generated four-dimensional probabilistic forecasts of
precipitation accumulation at these sites, using the same techniques, 48 hour pre-
diction horizon and 30 day sliding training period as before. In the case of empir-
ical climatology, we used the four-dimensional empirical distribution of observed
precipitation accumulation at the four sites in 2003. For the other methods, we gen-
erated statistical ensembles from the joint predictive distribution of precipitation
accumulation. For the BMA method, this four-dimensional distribution has inde-
pendent components; for the PTN and two-stage spatial methods, the components
are correlated.

Given that the predictive distributions are for a four-dimensional, vector-valued
quantity, we need to adapt our verification methods [Gneiting et al. (2008)]. For
a combined assessment of sharpness and calibration, we use the energy score.
Specifically, if F is the predictive distribution for a vector-valued quantity and x
materializes, the energy score is defined as

es(F,x) = EF ‖X − x‖ − 1
2EF ‖X − X′‖,(15)

where ‖ · ‖ denotes the Euclidean norm and X and X′ are independent random
vectors with common distribution F . Note that (15) is a proper scoring rule that
is a direct multivariate generalization of the continuous ranked probability score
in the kernel representation (12). In particular, if F = Fens is an ensemble forecast
with vector-valued members x1, . . . ,xm, then

es(Fens,x) = 1

m

m∑
i=1

‖xi − x‖ − 1

2m2

m∑
i=1

m∑
j=1

‖xi − xj‖,

which is a multivariate generalization of (13). Like the continuous ranked proba-
bility score, the energy score is negatively oriented.

To assess calibration for ensemble forecasts of multivariate weather quan-
tities, we use the minimum spanning tree (MST) rank histogram [Smith and
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TABLE 4
Mean energy score for ensemble forecasts of daily

precipitation accumulation at four sites in the Upper
Columbia River basin simultaneously, in 2004

Energy score

Empirical climatology 12.96
NWP 20.72
NWP ensemble 15.08
BMA 10.49
PTN (γ = 2) 10.57
PTN (γ = 2.33) 10.90
Two-stage spatial 10.45

Hansen (2004), Wilks (2004)]. If the ensemble has m members, the MST rank
is found by tallying the length of the MST that connects the m ensemble members
within the combined set of the m+1 lengths of the ensemble-only MST and the m

MSTs obtained by substituting the observation for each of the ensemble members.
If the ensemble members and the observation are exchangeable, these lengths are
also exchangeable. Therefore, for a calibrated forecast technique and over a large
number of forecast events, we expect the MST rank histogram to be statistically
uniform. For an underdispersed ensemble, the lowest ranks are overpopulated.

Verification results for the four-dimensional probabilistic forecasts of precipi-
tation accumulation at Brown Mountain Orchard, Gold Mountain, Nespelem and
Teepee Seed Orchard are shown in Table 4 and Figure 7. The two-stage spatial
method has the lowest energy score, with the PTN techniques and, perhaps sur-
prisingly, the BMA method being close competitors. The MST rank histogram for
the NWP ensemble is based on the m = 8 members of the University of Washing-
ton ensemble and attests to its underdispersion, which is typical for unprocessed
NWP ensembles. The MST rank histograms for the other methods are computed
from statistical ensembles with m = 19 members. They are nearly uniform for the
BMA, PTN and two-stage spatial techniques.

4. Discussion. We have presented a statistical method for obtaining proba-
bilistic forecasts of precipitation fields from a numerical forecast. The method
builds on the two-stage model of Sloughter et al. (2007) developed for precipi-
tation forecasts at individual sites, and extends it by accounting for spatial cor-
relation. At any individual site, the distribution of precipitation is modeled by a
mixture of a point mass at zero and a Gamma distribution for precipitation accu-
mulations greater than zero. The spatial dependence between precipitation at dif-
ferent sites is captured by introducing two spatial Gaussian processes, that drive,
respectively, precipitation occurrence and precipitation accumulation. The latter
process is linked to precipitation via a site specific transformation function. This
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FIG. 7. Minimum spanning tree (MST) rank histograms for ensemble forecasts of daily precipita-
tion accumulation at four sites in the Upper Columbia River basin simultaneously, in 2004. (a) Em-
pirical climatology. (b) NWP ensemble. (c) BMA technique. (d) PTN method with γ = 2. (e) PTN
method with γ = 2.33. (f) Two-stage spatial technique.

allows us to retain the marginal Gamma distribution while conveniently modeling
the spatial correlation using techniques for Gaussian random fields. The method
entails an implicit downscaling, in which NWP forecasts on a 12 km grid scale are
statistically corrected to apply to observation sites.

In a case study on probabilistic forecasts of daily precipitation accumulation
over the Pacific Northwest in 2004, the two-stage spatial model captured the spatial
dependence in precipitation fields. It resulted in predictive distributions which gen-
erally were calibrated and outperformed reference forecasts. The increased flex-
ibility of the two-stage spatial model over the BMA method stems from the fact
that it accounts for spatial correlation, while the BMA method does not. The power
truncated normal (PTN) technique also accounts for spatial dependence; however,
it is less flexible than the two-stage spatial method, since it uses a power transfor-
mation and relies on a single Gaussian process to accommodate both precipitation
occurrence and precipitation accumulation.

Typically, statistical postprocessing methods for precipitation accumulation op-
erate site by site [Applequist et al. (2002)]. However, a number of methods to
generate correlated probabilistic forecasts of precipitation accumulation at several
sites simultaneously have been proposed. Possibly the most prevalent approach
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is the aforementioned PTN technique, which has been adapted by Bardossy and
Plate (1992) and Sansò and Guenni (2004) to honor information from NWP mod-
els. The method of Seo et al. (2000) is a downscaling technique that generates en-
sembles of precipitation fields at a finer spatial resolution than the original model
grid. Kim and Mallick (2004) explored the use of skew-Gaussian random fields
in precipitation forecasting. Herr and Krzysztofowicz (2005) proposed a bivariate
statistical model for precipitation at two locations that uses a two-stage approach
with a meta-Gaussian distribution that represents nonzero precipitation accumu-
lation. Unlike ours, the method is restricted to two sites and does not exploit the
information in NWP models.

There are various ways in which the two-stage spatial method could be ex-
panded. The spatial processes that account for the spatial correlation in precipi-
tation occurrence and precipitation accumulation are modeled as stationary and
isotropic Gaussian processes with an exponential correlation function. More gen-
eral covariance structures such as the Matérn covariance function [Stein (1999),
Guttorp and Gneiting (2006)] could be employed. It would also be possible to
adopt the fully Bayesian approach described by De Oliveira, Kedem and Short
(1997). However, this would be much more computationally intense and might be
impractical in real time, where fast implementation is vital.

Finally, the two-stage spatial method is built around a single member of the
University of Washington NWP ensemble [Eckel and Mass (2005)]. It seems fea-
sible, though technically difficult, to account for the flow-dependent uncertainty
information contained in the NWP ensemble by combining our method with the
full Bayesian model averaging (BMA) framework of Sloughter et al. (2007). This
would be similar to the way in which Berrocal, Raftery and Gneiting (2007) com-
bined the geostatistical model of Gel, Raftery and Gneiting (2004) and the BMA
technique of Raftery et al. (2005) to provide probabilistic forecasts of temperature
fields, but would be considerably more complex due to the non-Gaussian char-
acter of precipitation fields. With the continued development of NWP ensemble
systems, the combined method remains a challenge for future work; at present, its
marginal benefits are likely to be incremental.
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GNEITING, T., ŠEVČÍKOVÁ, H., PERCIVAL, D. B., SCHLATHER, M. and JIANG, Y. (2006). Fast
and exact simulation of large Gaussian lattice systems in R

2: Exploring the limits. J. Comput.
Graph. Statist. 15 483–501. MR2291260

GRELL, G. A., DUDHIA, J. and STAUFFER, D. R. (1995). A description of the fifth-generation Penn
State/NCAR Mesoscale Model (MM5). Technical Note NCAR/TN-398 + STR.

GRIMIT, E. P. and MASS, C. F. (2002). Initial results of a mesoscale short-range ensemble forecast-
ing system over the Pacific Northwest. Weather and Forecasting 17 192–205.

GUTTORP, P. and GNEITING, T. (2006). Studies in the history of probability and statistics XLIX:
On the Matérn correlation family. Biometrika 93 989–995. MR2285084

HAMILL, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly
Weather Review 129 550–560.

HAMILL, T. M. and COLUCCI, S. J. (1997). Verification of Eta-RSM short-range ensemble fore-
casts. Monthly Weather Review 125 1312–1327.

HAMILL, T. M. and COLUCCI, S. J. (1998). Evaluation of Eta-RSM ensemble probabilistic precip-
itation forecasts. Monthly Weather Review 126 711–724.

HAMILL, T. M., WHITAKER, J. S. and WEI, X. (2004). Ensemble reforecasting: Improving
medium-range forecast skill using retrospective forecasts. Monthly Weather Review 132 1434–
1447.

HERR, H. D. and KRZYSZTOFOWICZ, R. (2005). Generic probability distribution of rainfall in
space: The bivariate model. J. Hydrology 306 234–263.

HUTCHINSON, M. F. (1995). Stochastic space-time weather models from ground-based data. Agri-
cultural and Forest Meteorology 73 237–264.

KIM, H.-M. and MALLICK, B. K. (2004). A Bayesian prediction using the skew Gaussian distrib-
ution. J. Statist. Plann. Inference 120 85–101. MR2026484

KOIZUMI, K. (1999). An objective method to modify numerical model forecasts with newly given
weather data using an artificial neural network. Weather and Forecasting 14 109–118.

KRZYSZTOFOWICZ, R. and MARANZANO, C. J. (2006). Bayesian processor of output for proba-
bilistic quantitative precipitation forecasts. Working paper, Dept. Systems Engineering and De-
partment of Statistics, Univ. Virginia.

MATHESON, J. E. and WINKLER, R. L. (1976). Scoring rules for continuous probability distribu-
tions. Management Sci. 22 1087–1096.

NATIONAL RESEARCH COUNCIL (2006). Completing the Forecast: Characterizing and Commu-
nicating Uncertainty for Better Decisions Using Weather and Climate Forecasts. The National
Academies Press.

PALMER, T. N. (2002). The economic value of ensemble forecasts as a tool for risk assessment:
From days to decades. Quarterly J. Roy. Meteorological Society 128 747–774.

RAFTERY, A. E., GNEITING, T., BALABDAOUI, F. and POLAKOWSKI, M. (2005). Using Bayesian
model averaging to calibrate forecast ensembles. Monthly Weather Review 133 1155–1174.

RAMIREZ, M. C., DE CAMPOS VELHO, H. F. and FERREIRA, N. J. (2005). Artificial neural net-
work technique for rainfall forecasting applied to the São Paulo region. J. Hydrology 301 146–
162.

RODRIGUEZ-YAM, G., DAVIS, R. A. and SCHARF, L. L. (2004). Efficient Gibbs sampling of trun-
cated multivariate normal with application to constrained linear regression. Working paper, Col-
orado State Univ., Fort Collins.

SANSÒ, B. and GUENNI, L. (1999). Venezuelan rainfall data analysed by using a Bayesian space-
time model. Appl. Statist. 48 345–362.

SANSÒ, B. and GUENNI, L. (2000). A nonstationary multisite model for rainfall. J. Amer. Statist.
Assoc. 95 1089–1100. MR1821717

http://www.ams.org/mathscinet-getitem?mr=2291260
http://www.ams.org/mathscinet-getitem?mr=2285084
http://www.ams.org/mathscinet-getitem?mr=2026484
http://www.ams.org/mathscinet-getitem?mr=1821717


PROBABILISTIC QUANTITATIVE PRECIPITATION FORECASTING 1193

SANSÒ, B. and GUENNI, L. (2004). A Bayesian approach to compare observed rainfall data to
deterministic simulations. Environmetrics 15 597–612.

SCHLATHER, M. (2001). Simulation and analysis of random fields. R News 1 18–20.
SEO, D.-J., PERICA, S., WELLES, E. and SCHAAKE, J. C. (2000). Simulation of precipitation

fields from probabilistic quantitative precipitation forecast. J. Hydrology 239 203–229.
SLOUGHTER, J. M., RAFTERY, A. E., GNEITING, T. and FRALEY, C. (2007). Probabilistic quan-

titative precipitation forecasting using Bayesian model averaging. Monthly Weather Review 135
3209–3220.

SMITH, L. A. and HANSEN, J. A. (2004). Extending the limits of ensemble forecast verification
with the minimum spanning tree. Monthly Weather Review 132 1522–1528.

STEIN, M. L. (1999). Interpolation of Spatial Data. Some Theory for Kriging. Springer, New York.
MR1697409

STENSRUD, D. J. and YUSSOUF, N. (2007). Reliable probabilistic quantitative precipitation fore-
casts from a short-range ensemble forecasting system. Weather and Forecasting 22 2–17.

STERN, R. D. and COE, R. (1984). A model fitting analysis of rainfall data. J. Roy. Statist. Soc. Ser.
A 147 1–34.

STIDD, C. K. (1973). Estimating the precipitation climate. Water Resources Research 9 1235–1241.
TALAGRAND, O., VAUTARD, R. and STRAUSS, B. (1997). Evaluation of probabilistic prediction

systems. In Proceedings of ECMWF Workshop on Predictability 1–25. Reading, UK.
TOBIN, J. (1958). Estimation of relationships for limited dependent variables. Econometrica 26 24–

36. MR0090462
TODOROVIC, P. and WOOLHISER, D. A. (1975). A stochastic model of n-day precipitation. J. Appl.

Meteorology 14 17–24.
WILKS, D. S. (1989). Conditioning stochastic daily precipitation models on total monthly precipi-

tation. Water Resources Research 25 1429–1439.
WILKS, D. S. (1990). Maximum likelihood estimation for the gamma distribution using data con-

taining zeros. J. Climate 3 1495–1501.
WILKS, D. S. (2004). The minimum spanning tree histogram as a verification tool for multidimen-

sional ensemble forecasts. Monthly Weather Review 132 1329–1340.
WILSON, L. J., BURROWS, W. R. and LANZINGER, A. (1999). A strategy for verifying weather

element forecasts from an ensemble prediction system. Monthly Weather Review 127 956–970.
WOOD, A. T. A. and CHAN, G. (1994). Simulation of stationary Gaussian processes in [0,1]d .

J. Comput. Graph. Statist. 3 409–432. MR1323050
WOOLHISER, D. A. and PEGRAM, G. G. S. (1979). Maximum likelihood estimation of Fourier

coefficients to describe seasonal variations of parameters in stochastic daily precipitation models.
J. Appl. Meteorology 18 34–42.

YUSSOUF, N. and STENSRUD, D. J. (2006). Prediction of near-surface variables at independent
locations from a bias-corrected ensemble forecasting system. Monthly Weather Review 134 3415–
3424.

V. J. BERROCAL

DEPARTMENT OF STATISTICAL SCIENCE

DUKE UNIVERSITY

DURHAM, NORTH CAROLINA 27705
USA
E-MAIL: vjb2@stat.duke.edu

A. E. RAFTERY

T. GNEITING

DEPARTMENT OF STATISTICS

UNIVERSITY OF WASHINGTON

SEATTLE, WASHINGTON 98195-4322
USA
E-MAIL: raftery@u.washington.edu

tilmann@stat.washington.edu

http://www.ams.org/mathscinet-getitem?mr=1697409
http://www.ams.org/mathscinet-getitem?mr=0090462
http://www.ams.org/mathscinet-getitem?mr=1323050
mailto:vjb2@stat.duke.edu
mailto:raftery@u.washington.edu
mailto:tilmann@stat.washington.edu

	Introduction
	Data and methods
	Numerical forecasts and precipitation data
	Spatial statistical model
	Model fitting
	Choice of training period
	Generating forecasts

	Results
	Reference forecasts
	Verification results for precipitation accumulation at individual sites
	Verification results for areally averaged precipitation accumulation
	Spatial verification

	Discussion
	Acknowledgments
	References
	Author's Addresses

