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In vaccine studies for infectious diseases such as human immunodefi-
ciency virus (HIV), the frequency and type of contacts between study par-
ticipants and infectious sources are among the most informative risk factors,
but are often not adequately adjusted for in standard analyses. Such adjust-
ment can improve the assessment of vaccine efficacy as well as the assess-
ment of risk factors. It can be attained by modeling transmission per con-
tact with infectious sources. However, information about contacts that rely
on self-reporting by study participants are subject to nontrivial measurement
error in many studies. We develop a Bayesian hierarchical model fitted using
Markov chain Monte Carlo (MCMC) sampling to estimate the vaccine effi-
cacy controlled for exposure to infection, while adjusting for measurement
error in contact-related factors. Our method is used to re-analyze two recent
HIV vaccine studies, and the results are compared with the published pri-
mary analyses that used standard methods. The proposed method could also
be used for other vaccines where contact information is collected, such as
human papilloma virus vaccines.

1. Introduction. Two randomized multi-center Phase III preventive HIV vac-
cine trials were conducted to evaluate the efficacy of two versions of AIDSVAX,
a recombinant glycoprotein 120 (rgp120) vaccine developed by VaxGen and de-
signed to provide protective immunity by inducing antibody response. One trial
(VAX004) was conducted in adults at risk of sexual transmission in North America
and the Netherlands, launched in June, 1998, and the other (VAX003) in injecting
drug users (IDUs) in Bangkok, Thailand, started in March, 1999. In analyses using
Cox proportional hazards models, the vaccine has been shown to be noneffective
in Gurwith et al. (2005) for VAX004 and in Pitisuttithum et al. (2006) for VAX003.

A general definition of vaccine efficacy is VE = 1−RR, where RR is the relative
risk of infection for a vaccinated subject compared to that for a control subject. De-
pending on how risk is defined, various VE measures can be derived. The most fre-
quently used measures were classified by Halloran, Struchiner and Longini (1997)
into two categories: conditional on exposure to infection and unconditional, that
is, whether the measure is controlling for the frequency and type of contacts that
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lead to transmission. A contact can be defined as one sexual act of a certain type
in the context of VAX004 and as one act of sharing a needle for drug injection
in VAX003. The VE measure used in Gurwith et al. (2005) and in Pitisuttithum
et al. (2006) falls in the unconditional category. It is of public health interest to
re-analyze the two vaccine trials using a VE measure conditional on exposure to
infection.

For proper inference conditional on exposure to infection, measurement error in
exposure factors should be taken into account. For example, the numbers of needle-
sharing acts are often under-reported when IDUs are interviewed [Hudgens et al.
(2002)]. Thus, methods depending solely on reported exposure information could
be inappropriate. To handle the problem of measurement error, many methods have
been introduced [Carroll, Ruppert and Stefanski (1995)]. In the nonparametric set-
ting, Fan and Truong (1993) explored the properties of globally consistent non-
parametric regression using deconvolution kernels. Cook and Stefanski (1994) and
Carroll et al. (1996) developed the simulation extrapolation method that imposes
no assumption on the covariates measured with error and uses resampling to de-
tect the trend of measurement error. Richardson and Green (1997) discussed the
use of mixture priors for covariates measured with error in the Bayesian frame-
work, and this method was extended to epidemiological studies with a validation
set [Richardson et al. (2002)]. In these two vaccine trials, the exposure factors that
are subject to measurement error and that are most vital to parameter estimation
are the frequencies and the types of contacts.

In this paper we develop a Bayesian framework under the simple assumption
of conditional independence [Richardson and Gilks (1993)] for infectious disease
incidence data with contact frequency and type recorded for each observation. Us-
ing this Bayesian model, we re-analyze the data from the two AIDSVAX trials.
Our primary focus is to estimate the transmission probability and vaccine efficacy
per infectious contact, while adjusting for measurement error in contact frequency
and type. In addition, these studies provide information to address the following
questions that are useful for understanding HIV transmission:

• Is VE modified by the baseline behavioral risk profile?
• Is the use of condoms in sexual contacts protective?
• Is sharing needles more risky in prison compared to in the general public?
• Is one subtype of HIV more infectious than another subtype via shared needle

injection?

The results are compared to those obtained in Gurwith et al. (2005), Pitisuttithum
et al. (2006) and Hudgens et al. (2002).

2. Data description. Basic characteristics of the two trials are presented in
Table 1. The two trials had similar designs except the ratio of vaccine to placebo
recipients. Each subject was enrolled free of HIV infection and received seven
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TABLE 1
Two randomized multi-center trials conducted for evaluating the efficacy of AIDSVAX,

a recombinant glycoprotein 120 HIV-1 vaccine

VAX004 VAX003

Time of trial 1998–2002 1999–2003
Location North America and The Netherlands Bangkok, Thailand
Type of transmission Sexual acts Sharing needles for drug injection
Population size 5403 2527

Male 5095 (94%) 2361 (93%)
Female 308 (6%) 166 (7%)

Randomization ratio
(vaccine:placebo) 2:1 1:1

Infected/Randomized
Placebo 127/1805 105/1260

Male 123/1704 101/1170
Female 4/101 4/90

Vaccine 241/3598 106/1267
Male 239/3391 100/1191
Female 2/207 6/76

HIV-1 subtypes
B 100% 33 (78%)
E 0 164 (16%)
Untypeable 0 14 (6%)

injections (study vaccine or placebo) at months 0, 1, 6 and every six months there-
after up to month 30. At each immunization visit and the final visit at month 36,
antibody assays of blood samples were performed, and exposure factors, adverse
events and social harm events for each participant in the past six months were
collected. The primary endpoint of the trials was the detection of HIV-1 infec-
tion that is defined as both a positive HIV-1 enzyme immunoassay antibody test
and the development of at least two new nonvaccine bands on confirmatory HIV
immunoblot.

For trial VAX004, in addition to vaccine status, exposure factors were collected
in the form of sexual contact frequencies categorized by the behavioral type of the
contact (vaginal, oral or anal), gender of the partner, the infection status of partners
reported by the subject (HIV-positive, HIV-negative or unknown), and condom
use. To reduce the dimension of parameters, we ignore the effects of behavioral
type and gender on transmission probabilities by summing the frequencies over
the corresponding categories. As the study participants were mostly men that have
sex with men (MSM), with females accounting for only 6% of the population and
1.6% of the infections, we are largely assessing transmission via MSM contacts.

For trial VAX003, the exposure factors of interest are the frequency of injec-
tions, the fraction of injections using needles shared with other people, the history
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of injection in jail or prison (incarceration injection), and the vaccine status. Since
one of two HIV-1 subtypes (E and B) was found for most infections, it is possi-
ble to estimate the transmission probability and vaccine efficacy for each of the
two subtypes, given that reasonable estimates of the prevalences of these subtypes
among the IDUs in Bangkok, Thailand, are available. Contact information col-
lected in this study is not as detailed as in VAX004. Both the injection frequency
and the fraction using shared needles were reported as a few categories instead of
numbers. There are four categories for the injection frequency (none, < 1/week,
≥ 1/week but < 1/day, and ≥ 1/day), to which we assign values 10−10/day,
0.5/week, 4/week and 1/day respectively. There are five categories for the fraction
of injections using shared needles (none, occasionally, half of the time, most and
always), to which we assign values 0.5%, 15%, 50%, 85% and 99.5% respectively.

3. Methods.

3.1. Model structure. Following Richardson and Gilks (1993), we specify
three submodels for our Bayesian analysis of the measurement error problem: the
regression submodel, the measurement error submodel and the prior submodel. In
the type of study we are considering, risk factors and infection status are obtained
for each subject over consecutive six-month intervals. Let N be the total number
of study participants and Ti be the number of intervals of subject i, i = 1, . . . ,N .
We use data collected from month 6 to month 36, excluding month 0 as an adjust-
ment for left truncation. Visits after the first with positive HIV detection are also
excluded from analysis. For notational convenience, we identify the t th interval of
subject i by (i, t).

3.1.1. The regression submodel. Let p0 be the baseline transmission proba-
bility per infectious contact. An infectious contact refers to a contact with an in-
fectious source. Let nit be the number of contacts and xitj = (xitj1, . . . , xitjK)τ

be the vector of K covariates associated with the j th contact in interval (i, t),
j = 1, . . . , nit . The covariates associated with a contact may include characteris-
tics of the subject (e.g., vaccine status), the partner (e.g., infection status) and the
contact itself (e.g., condom use, incarceration, etc.). To associate the transmission
probability with covariates, we consider a logit model:

p(xitj ) = logit−1(
logit(p0) + xτ

itjθ
)
,(1)

where θ = (θ1, . . . , θK)τ is the coefficient vector with the interpretation that
exp(θk) is the increment in odds of transmission per unit increase in xitjk or the
odds ratio (OR) for xitjk = 1 relative to xitjk = 0 if xitjk is binary. Other regression
submodels such as the complementary log-log could also be used. Also frequently
used is the multiplicative submodel p(xitj ) = p0 exp{xτ

itjθ}. However, it is some-
times difficult to guarantee p(xitj ) < 1 when p0 and θ are simultaneously sam-
pled. In the context of the two AIDSVAX trials, we use ORvac, ORcon and ORinc
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to denote the odds ratios of transmission per infectious contact for vaccination,
condom use and incarceration, respectively. The probability of escaping infection
in interval (i, t) is

Qit =
nit∏
j=1

(
1 − p(xitj )π(xitj )

)
,(2)

where π(xitj ) is the prevalence of infectious contacts among all contacts with
covariates xitj . As p(xitj ) and π(xitj ) always appear as a product, they are not
estimable at the same time, and π(xitj ) is often assumed known and evaluated
from either literature or the data.

As mentioned in the introduction, different measures can be used for vaccine
efficacy, depending on the definition of relative risks. A natural choice is the VE
per infectious contact with the risks being transmission probabilities per infec-
tious contact as given in (1). However, the relative risk obtained from transmission
probabilities per infectious contact depends on not only the vaccine status but also
other covariates. Such dependency may not exist in different models. For example,
if we assume a multiplicative model p(xitj ) = p0 exp(xτ

itjθ), the VE per infec-
tious contact will depend solely on the vaccine status. For the logit model, the
dependency could also be minimal if p(xitj ) is small, where we have VE per in-
fectious contact ≈ 1 − ORvac. The approximation holds for the contact types we
consider here, and thus, we report 1 − ORvac as the VE per infectious contact for
the data analysis.

Expressions (1) and (2) provide a general form for the regression submodel. The
exact form is specific to each study, depending on the covariates under considera-
tion, and is described below.

The North America and Netherlands trial (VAX004). For trial VAX004, we are
interested in the effects of vaccine and condom usage. Let vi indicate the vaccine
status (1: yes, 0: no) and citj indicate the condom use (1: yes, 0: no) for the j th
sexual contact in interval (i, t). Let p0 be the transmission probability for a sexual
contact without a condom between a placebo recipient and an infected partner. We
assume the prevalence, π , of HIV in contacts is identical for all intervals and is
known. The escape probability for interval (i, t) is given by

Qit =
nit∏
j=1

(
1 − p(vi, citj )π

) = (
1 − p(vi,1)π

)mit
(
1 − p(vi,0)π

)nit−mit ,(3)

where p(vi, citj ) = logit−1(logit(p0) + θvvi + θccitj ), θv and θc are the effects of
the vaccine and condom use, and mit = ∑nit

j=1 citj , the total number of contacts
with a condom. The probability distribution of the final transmission status, yit (1:
infection, 0: escape), is then

Pr(yit |nit ,mit , vi;p0, θv, θc) = Qit
1−yit (1 − Qit)

yit .(4)
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The Thai trial (VAX003). For this trial, we consider vaccine status, incarcera-
tion history of the subject and needle-sharing as covariates. Let p0 be the base-
line probability of infection by an injection using a needle shared with an HIV-
infected person. Let ui denote whether the subject had incarceration injection
(1: yes, 0: no) during the study, and sitj denote whether the injection was using
a shared needle (0: yes, 1: no). Also define θv , θu and θs as the effects of the co-
variates, respectively. We assume that injections using nonshared needles were not
infectious. That is, θs = −∞, and the regression submodel is built solely on the
mit = ∑nit

j=1(1 − sitj ) contacts using shared needles. The probability of escaping
infection in interval (i, t) is given by

Qit =
nit∏
j=1

(
1 − p(vi, ui, sitj )π

) = (
1 − p(vi, ui,0)π

)mit ,(5)

where p(vi, ui, sitj ) = logit−1(logit(p0) + θvvi + θuui + θssitj ). The probability
distribution of the final transmission status is the same as (4).

As the HIV subtype was determined for most infected subjects, it is possible
to estimate the transmission probability and vaccine efficacy for each subtype. Let
p

(e)
0 (p(b)

0 ) be the baseline probability of infection by an injection using a nee-

dle shared with somebody infected with HIV of subtype E (B), θ
(e)
v (θ(b)

v ) be the
vaccine effects against transmission of subtype E (B), and π(e) (π(b)) be the preva-
lence of people infected with subtype E (B) among the IDU population. The prob-
abilities of escaping infection from injections using needles shared with infected
partners of subtype E and subtype B, respectively, are given by

Q
(e)
it = (

1 − logit−1(
logit

(
p

(e)
0

) + θ(e)
v vi + θuui

)
π(e))mit

and

Q
(b)
it = (

1 − logit−1(
logit

(
p

(b)
0

) + θ(b)
v vi + θuui

)
π(b))mit .

We assume transmission of subtype E is independent of transmission of subtype B.
As infection by both subtypes is rare, we assume an infected subject typed as E (B)
must have escaped transmission from infectious contacts of subtype B (E). The
probability distribution of the final transmission status can be expressed as

Pr(yit , subtype |mit , vi, ui;p0, θv, θu)
(6)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q
(e)
it Q

(b)
it , yit = 0,

Q
(b)
it

(
1 − Q

(e)
it

)
, yit = 1, subtype = E,

Q
(e)
it

(
1 − Q

(b)
it

)
, yit = 1, subtype = B,

1 − Q
(e)
it Q

(b)
it , yit = 1, subtype = U,

where “U” stands for “Untypeable.”
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3.1.2. The measurement error submodel. We consider two types of exposure
information that are measured with error, the total number of contacts, nit , and
the number of a particular subset of contacts, mit . Let ñit and m̃it be the mea-
sured values of nit and mit , respectively. As data in the form of counts over time
periods often arise from a Poisson process, we assume a Poisson distribution for
the true number of contacts nit and an over-dispersed Poisson distribution for the
measured number ñit during a time interval of length lit , given the contact rate λit .
The reason for an over-dispersion structure is that we want some correction for
the potentially under- or over-reported number of contacts, for example, the num-
ber of sexual contacts in a single interval was reported as thousands by several
subjects in trial VAX004. The histograms of reported contact rates in Figure 1(a)
for VAX004 and Figure 1(c) for VAX003 suggested either gamma or log-normal
distributions. We use the log-normal distribution for illustration, but compare both
in the data analyses. Define ni = (ni1, . . . , niTi

)τ , mi = (mi1, . . . ,miTi
)τ , ñit =

(ñi1, . . . , ñiTi
)τ , m̃i = (m̃i1, . . . , m̃iTi

)τ and λi = (λi1, . . . , λiTi
)τ . Let 1 and J de-

note the vector and matrix, respectively, with all elements being 1, and let I denote

FIG. 1. (a) Reported sexual contact rates in VAX004. Values larger than 5/day (<0.1%) are trun-
cated in the graph but not in the analysis. The vertical line segments indicate the location of values
between 1 and 5. (b) Reported proportions of condom use in VAX004. (c) Reported injection rates in
VAX003. (d) Reported proportions of shared needles in VAX003.



1416 Y. YANG, P. GILBERT, I. M. LONGINI, JR. AND M. E. HALLORAN

the identity matrix. The dimensions of 1, J and I are clear from the context and
are thus suppressed. We choose the following measurement error structure for nit :

λi ∼ Log-Normal
(
μ1, σ 2(

ρJ + (1 − ρ)I
))

,

nit ∼ Poisson(λit lit ),
(7)

δit ∼ Gamma(φ,λit lit /φ),

ñit ∼ Poisson(δit ).

An exchangeable within-subject correlation structure is assumed for the con-
tact rates, λi , but other correlation structures could be considered. The mag-
nitude of correlation among elements of λi is measured by ρ, 0 ≤ ρ ≤ 1,
the correlation coefficient for log(λi ). We assume unbiasness for the measure-
ment error, as E(ñit |λit ) = λit lit = E(nit |λit ). The over-dispersion is reflected
by VAR(ñit |λit ) = λit lit (1 + λit lit /φ) and is generated by adding the layer of
δi = (δi1, . . . , δiTi

)τ . The degree of over-dispersion decreases as φ goes to infinity.
By our assumption, nit is conditionally independent of ñit given the contact rate
λit . Zero values of ñit are allowed for intervals in which infections happened since
only nit is required to be nonzero.

Given nit and ñit , it is natural to choose binomial distributions for both the true
number mit and the measured number m̃it based on a beta-distributed proportion
ξit , which is also suggested by the histograms of reported proportions of contacts
with condom use in Figure 1(b) for VAX004 and contacts with needle-sharing in
Figure 1(d) for VAX003. Define �(·) as the standard normal cumulative distribu-
tion function (CDF) and �(·|α,β) as the beta CDF. We have

ξit ∼ Beta(α,β),

mit ∼ Binomial(nit , ξit ),

m̃it ∼ Binomial(ñit , ξit ),(8)

�(εit ) = �(ξit |α,β),

εi ∼ N
(
0, γJ + (1 − γ )I

)
,

where εi = (εi1, . . . , εiTi
)τ . We use a standard normal copula to model the within-

subject correlation among ξ i = (ξi1, . . . , ξiTi
)τ , the proportions of contacts in a

subcategory (condom use or needle-sharing). This copula is formed by generating
a standard normal random vector εi with an exchangeable correlation structure,
the correlation coefficient being γ , and transforming it to a uniform random vector
using � on each component. The uniform random vector is then transformed to
ξ i using �−1 on each element. The ξ i generated in this way has marginal CDF
�(·|α,β) and an exchangeable correlation structure. While the correlation coef-
ficient for ξ i is not the same as that for εi , they share the same rank correlation
because the CDFs are monotonic. Note that the log-normal distribution can be
viewed as a special case utilizing the standard normal copula. Conditional on nit ,
ñit and ξit , mit and m̃it are independent.
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3.1.3. The prior submodel. We use the following priors for p0, θ and hyper-
parameters:

μ ∼ 1,

σ 2 ∼ 1

σ 2 ,

ρ ∼ Uniform(0,1),

φ ∼
[
ln�′′(φ) − 1

φ

]1/2

,

(9)
(α,β) ∼ [

ln�′′(α) ln�′′(β) − ln�′′(α + β)
(
ln�′′(α) + ln�′′(β)

)]1/2
,

γ ∼ Uniform(0,1),

θk ∼ Normal(0, d2
k ), k = 1, . . . ,K,

p0 ∼ Uniform(ap, bp),

where {dk :k = 1, . . . ,K}, ap and bp are assumed known, and ln�′′(·) is the
trigamma function. Jeffreys’ noninformative priors are used for μ, σ 2, φ and
(α,β).

Our choice of a relatively wide range (ap, bp) is guided by the maximum like-
lihood estimate (MLE) of p0 obtained solely from the regression submodel. To
use this simple likelihood method, we assume nit = ñit , and mit is estimated by
nit × ∑

i,t m̃it /
∑

i,t ñit for VAX003. The same assumption of a common propor-
tion of shared needles was employed in Hudgens et al. (2002). However, one will
not be able to differentiate the condom effect with a common proportion of con-
dom use, and thus, we assume mit = m̃it additionally to obtain the MLE of p0 for
VAX004.

A normal prior N(0, d2
k ) is reasonable for covariate effects because we let the

data drive the 95% credible sets away from the null value if strong effects exist.
The values of {dk :k = 1, . . . ,K} are set relatively large, for example, 2, to provide
a wide domain for the odds ratios.

3.2. Posterior distributions. Bayesian inferences are based on posterior dis-
tributions of all unknown parameters and latent variables given the data and
known parameters, which are derived from the prior and conditional distributions
stated in the previous section. Let y = (yτ

1, . . . ,yτ
N)τ be the vector of observed

infection status, where yi = (yi1, . . . , yiTi
)τ , and let x = (xτ

1, . . . ,xτ
N)τ , where

xi = (xτ
i1, . . . ,x

τ
iTi

)τ and xit = (xit1, . . . ,xitnit
)τ , be the observed covariate ma-

trix for all intervals. Similarly, define n, ñ, m, m̃, λ, δ, ξ and ε as the vectors of
nit , ñit , mit , m̃it , λit , δit , ξit and εit , t = 1, . . . , Ti , i = 1, . . . ,N . Let f (·) denote
the probability density function (PDF) for continuous variables and the probability
mass function (PMF) for discrete variables. The joint posterior distribution of all
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unknown parameters and latent variables is proportional to the joint full probability
of the unknown parameters, latent variables and the data:

f (n,m, δ,λ,ε, ξ ,p0, θ, φ,μ,σ 2, ρ,α,β, γ |y,x, ñ, m̃)

∝ f (y,n, ñ,m, m̃, δ,λ,ε, ξ ,p0, θ, φ,μ,σ 2, ρ,α,β, γ |x)

= f (y|n,m,p0, θ,x) × f (m̃|ñ, ξ) × f (ñ|δ) × f (m|n, ξ)
(10)

× f (n|λ) × f (δ|λ, φ) × f (λ|μ,σ 2, ρ) × f (ε|γ )

× f (μ) × f (σ 2) × f (ρ) × f (φ) × f (α) × f (β)

× f (γ ) × f (p0) × f (θ),

where ξ exists as a function of ε given in (8), and known hyper-parameters are
suppressed.

To illustrate the MCMC algorithm used to obtain the joint posterior distribution
of all parameters, we use VAX004 as an example and give the technical details in
the appendix. In summary, we use the following strategies:

• n, m, δ, μ and σ 2 are sampled directly from their full conditional distributions.
• For λ, ξ and ε, the full conditional distribution is a product of several regular

density functions, and we use Metropolized independence sampling with each
density sequentially serving as the proposal distribution.

• The random-walk style Metropolis–Hastings algorithm is used for sampling all
other parameters.

4. Application. In the following, we report the posterior medians followed
by the 95% credible sets (CS) for parameters in the Bayesian model, and make
comparisons with point estimates followed by the 95% confidence intervals (CI)
from the literature when appropriate.

4.1. VAX004: HIV transmission by sexual contacts. At each semiannual
follow-up visit in trial VAX004, subjects were asked to classify the sexual con-
tacts by the infection status of their partners, that is, positive, negative or un-
known, based on their knowledge. HIV prevalence among partners reported as
HIV-negative may be less than that among partners reported as HIV-positive. How-
ever, an exploratory analysis using a simple likelihood method showed that the
probability of infection per contact was not different across the three types of
partner infection status reported by the study participants. Hence, we assume a
common prevalence π of infection among all partners and estimate it by 0.06, the
proportion of reported contacts with positive partners among all contacts in the
study population. In addition to the analysis for the overall study population, we
performed a stratified analysis by classifying the study population into three sub-
groups corresponding to low, medium and high baseline (month 0) risk levels. We
allow the transmission probability and vaccine effect to vary across, but assume



BAYESIAN FRAMEWORK FOR VACCINE EFFICACY 1419

TABLE 2
VAX004: Summary of the posterior distributions of the transmission probability and the vaccine
efficacy per infectious sexual contact for the overall study population and by baseline risk level,

compared to the standard analysis

Risk
level

p VE (Bayesian) VE (Coxa)

Totalb Infected Median 95% C.S. Median 95% C.S. Estimate 95% C.I.

Overall 8772 368 0.0056 0.0044, 0.0071 0.069 −0.15, 0.26 0.06 −0.17, 0.24
Low 3605 57 0.0020 0.0010, 0.0036 −0.23 −1.48, 0.35 −0.48 −1.93, 0.26
Middle 4546 229 0.0054 0.0041, 0.0071 0.02 −0.28, 0.25 0.03 −0.25, 0.25
High 621 82 0.020 0.013, 0.030 0.56 0.22, 0.75 0.43 0.04, 0.66

aResults based on Cox proportional hazards model in Gurwith et al. (2005).
bTotal number of six-month intervals.

that other parameters are not affected by, risk levels. The baseline risk levels are
determined by a behavioral risk score ranging from 0 to 7, with 0 as low, 1–3 as
medium, and 4–7 as high. The behavioral score is derived from nine baseline risk
factors that are highly predictive of HIV infection [Gurwith et al. (2005)].

Table 2 gives the results regarding transmission probabilities and VEs for
VAX004. The vaccine did not show a significant effect, reducing the risk of in-
fection per infectious contact by about 7% for the overall study population which
is not statistically different from 0. Neither did the low-risk and medium-risk sub-
groups show any significant vaccine effect. However, we do observe a significant
VE of 0.56 (95% CS:0.22, 0.75) in the high-risk subgroup, as the associated 95%
CS excludes 0. The pattern that higher baseline risk tends to be associated with
higher vaccine efficacy was also identified in Gurwith et al. (2005) via a Cox pro-
portional hazards model for grouped times, where they reported an estimate of 0.06
(95% CS:−0.17,0.24) for VE per six-month interval for the overall study popula-
tion and 0.43 (95% CS:0.04, 0.66) for the high-risk subgroup, fairly close to our
estimates.

The baseline transmission probability per infectious sexual contact for the over-
all study population is 0.0056 (95% CS:0.0044, 0.0071), suggesting that 1000 sex-
ual contacts with HIV-positive partners produce about six infections on average,
without intervention of vaccine or condoms. This probability increases across risk
levels, with the value for the high risk level 10 times that for the low risk level.
A possible reason for the increase in transmission probability across risk levels is
that subjects in higher risk levels might more likely under-report the number of
contacts.

Results for all other parameters are presented in Table 3. Surprisingly, the re-
ported use of condoms did not seem to be protective with ORcon estimated as
1.44 (95% CS:1.06, 1.94), suggesting that it increased the odds of transmission by
about 44%. A possible explanation is that the reporting of condom use might be
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TABLE 3
VAX004: Summary of the posterior distributions of other parameters for the overall

study population

Posterior
Quantiles ORcon φ μ σ 2 ρ α β γ

Median 1.44 1.66 −2.54 1.95 0.92 0.30 0.29 0.65
2.5% 1.06 1.61 −2.58 1.87 0.91 0.29 0.28 0.64

97.5% 1.94 1.71 −2.50 2.04 0.92 0.31 0.30 0.67

correlated with certain types of sexual behavior. A more specific speculation is that
subjects in monogamy tended to use condoms much less frequently and yet had
lower risk of infection as compared to those with multiple partners. We included
an indicator for monogamy (on average < 2 partners over the study period), but
the estimate of ORcon did not change much (results not shown).

High within-subject correlation is found among the contact rates and propor-
tions of condom use, with ρ and γ estimated as 0.92 (95% CS:0.91, 0.92) and
0.65 (95% CS:0.64, 0.67) respectively. These correlation parameters indicate the
magnitude of, but do not directly measure, the correlation coefficients among λi

and among ξ i . Based on posterior medians of μ, σ 2, α and β , we found that the
mean contact rate in this cohort is 0.21 (95% CS:0.20, 0.22) times per day, and the
mean proportion of condom use is 0.51 (95% CS:0.50, 0.52).

If a marginal gamma distribution is assumed for λi , we use the same copula
technique used for ξ i to introduce within-subject correlation. Changing the distri-
bution of the contact rate from log-normal to gamma does not affect the estimates
appreciably except for a slight increase in φ and decrease in ρ. We compare pre-
dicted population-level means and variances of the reported number of contacts
yielded by the two distributions to the observed values, shown in Figure 2(a)–(c).
While the gamma distribution gives a predicted mean closer to the observed mean,
the log-normal distribution gives a more realistic standard deviation. The heavier
tail of the log-normal distribution can better catch extreme reported values. We
choose not to ignore the extreme reported values, and therefore, all above results
for VAX004 are based on the log-normal distribution for the contact rate.

While we believe that our prior assumptions over most parameters are nonin-
formative or toward-null, we performed a brief sensitivity analysis by changing
the prior distribution of p0. We impose a strong beta prior with mean 0.0073 and
standard deviation 0.001, instead of Uniform(0.0001,0.1), on p0. The posterior es-
timates increase to 0.0063 (0.0052,0.0075) for p0 and 0.12 (−0.08,0.29) for VE,
and decrease to 1.28 (0.99,1.68) for ORcon, all changes being mild. A higher prior
mean of p0 will cause more substantial changes in the same directions.

4.2. VAX003: HIV transmission among IDUs using shared needles. In the
Bayesian probability structure for trial VAX003, the over-dispersion structure
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FIG. 2. (a) Reported number of sexual contacts in VAX004. Values larger than 1000 are truncated.
The vertical line segments indicate the location of values between 200 and 1000. (b) Predicted num-
ber of sexual contacts in VAX004, assuming gamma distribution for contact rate. (c) Predicted num-
ber of sexual contacts in VAX004, assuming log-normal distribution for contact rate. (d) Reported
number of injections in VAX003. (e) Predicted number of injections in VAX003, assuming gamma
distribution for injection rate. (f) Predicted number of injections in VAX003, assuming log-normal
distribution for injection rate.

and the related parameters, φ and δit , are dropped, that is, we assume ñit ∼
Poisson(λit ). The reason is that there is not sufficient information about over-
dispersion with only four categories for the contact rate. We stratify the shape and
scale parameters by incarceration injection history (ui) for both injection rate (λit )
and the proportion of needle sharing (ξit ), an attempt to control for confounding
factors when we evaluate the effect of incarceration injection history on the trans-
mission probability. The prevalence of HIV among IDUs in Bangkok was around
30% [Kitayaporn et al. (1998)]. It was estimated that the relative prevalence be-
tween subtypes E and B was growing at a decreasing rate between 1998 and 2000,
and reached 70%:30% in 2000 [Kitayaporn et al. (1998), Hudgens et al. (2002)].
Based on this information, the average relative prevalence most likely is between
0.7:0.3 to 0.8:0.2. We use π(e) = 0.75×0.3 = 0.225 and π(b) = 0.075 for analyses
stratified by subtype.
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TABLE 4
VAX003: Summary of the posterior distributions of the transmission probability and the vaccine

efficacy per infectious needle-sharing act for the overall study population and by baseline risk level
and HIV subtype, compared to the standard analysis

Risk
level

Sub-
type

Infect-
edc

p VE (Bayesian) VE (Coxa)

Totalb Median 95% C.S. Median 95% C.S. Estimate 95% C.I.

Overall 13797 206 0.026 0.021, 0.031 −0.08 −0.43,0.20 0.001 −0.31, 0.24
E 160 0.028 0.022, 0.034 −0.12 −0.52,0.17 −0.014 −0.38, 0.25
B 32 0.019 0.012, 0.029 0.18 −0.57,0.60

E/B 1.45 0.91, 2.39
Low 6622 80 0.033 0.024, 0.045 0.06 −0.49,0.41

E 55 0.034 0.022, 0.048 0.04 −0.66,0.42
B 16 0.032 0.015, 0.058 0.18 −1.33,0.67

E/B 1.06 0.51, 2.54
High 7175 126 0.023 0.017, 0.029 −0.10 −0.60,0.23

E 105 0.025 0.019, 0.032 −0.21 −0.77,0.19
B 16 0.015 0.008, 0.026 0.34 −0.63,0.77

E/B 1.68 0.92, 3.31

aResults based on Cox proportional hazards model in Pitisuttithum et al. (2006).
bTotal number of six-month intervals.
cIntervals for 5 subjects infected by visit 0 (E:4, B:1) are excluded. The 14 untypeable infections are
not shown.

We performed additional analyses stratified by two baseline behavioral risk lev-
els defined in Pitisuttithum et al. (2006). A subject (and all his six-month intervals)
is classified into the high baseline risk level if 2 or more of the following risk fac-
tors were present at visit 0: use of injection drugs regularly, use of injection drugs
daily or weekly, use of injection drugs with shared needles, history of incarcera-
tion during the past 6 months, partner was an IDU, or shared needles with partner.
Otherwise, the subject is classified into the low risk level.

The results for transmission probabilities and vaccine efficacies are presented
in Table 4. None of the VE estimates are significantly different from 0. We es-
timate the VE per infectious needle-sharing act as −0.08 (95% CS:−0.43,0.20)
for overall transmission and as −0.12 (95% CS:−0.52,0.17) for subtype E. Al-
though subtype B tends to have a better VE than subtype E, the difference is not
significant. Pitisuttithum et al. (2006) reported similar VE estimates, 0.001 (95%
CI:−0.31,0.24) for the overall IDU cohort and −0.014 (95% CI:−0.38,0.25) for
subtype E, based on a Cox proportional hazards model for grouped times.

The baseline transmission probability per injection using a needle shared
with an HIV-positive IDU is 0.026 (95% CS:0.021,0.031), suggesting that, out
of 100 such injections, 2.6 on average will transmit the virus. The subtype-
specific baseline transmission probabilities are estimated as 0.028 (95% CS:0.022,
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TABLE 5
VAX003: Summary of the posterior distributions of other parameters for the overall

study population

With incarceration Without incarceration

Posterior
quantiles

injection history injection history

ORinc ρ γ αλ
a βλ

b α β αλ
a βλ

b α β

Median 0.47 0.50 0.47 0.24 1.87 0.23 1.36 0.20 1.25 0.23 5.28
2.5% 0.30 0.48 0.44 0.21 1.60 0.20 1.12 0.19 1.18 0.22 4.85

97.5% 0.72 0.52 0.51 0.27 2.24 0.26 1.66 0.21 1.32 0.25 5.75

aShape of the gamma distribution for contact rate.
bScale of the gamma distribution for contact rate.

0.034) for p
(e)
0 and 0.019 (95% CS:0.012,0.029) for p̂

(b)
0 , higher than the 0.016

(95% CI:0.012, 0.02) and 0.0063 (95% CI:0.0041, 0.0092) estimated in Hudgens
et al. (2002) based on a likelihood method. It is interesting that the transmission
probability per injection is somewhat higher for the low versus high baseline risk,
opposite to the direction observed in VAX004. The ratio of p

(e)
0 to p

(b)
0 , with a

posterior median of 1.45 (95% CS:0.91, 2.39), is only marginally different from 1,
lower than the 2.48 (95% CI:1.63, 3.88) reported in Hudgens et al. (2002).

Table 5 summarizes estimates for all other parameters. The odds ratio for incar-
ceration injection is estimated as 0.47 (95% CS:0.30, 0.72). Hudgens et al. (2002)
reported a much higher value, 4.47 (95% CI:2.63, 7.19), where a time-varying
prevalence ratio with an average about 0.55:0.45 between subtypes E and B and
a common proportion of 4% for needle sharing across the whole population were
assumed. Among subjects with incarceration injection history, the mean injection
rate is 0.45 (95% CS:0.37, 0.54) times per day and 14% (95% CS:12%, 17%) in-
volved shared needles. In contrast, among those without incarceration history, the
mean injection rate is 0.25 (95% CS:0.24, 0.27) times per day and 4.2% (95%
CS:4.0%, 4.5%) involved shared needles. The assumption of a common propor-
tion of needle-sharing in Hudgens et al. (2002) lowers the injection frequency and
proportion of needle-sharing down to the overall level, and consequently increases
the adjusted transmission probability for subjects with incarceration history. In ad-
dition, the incarceration injection indicator is defined for each interval in Hudgens
et al. (2002), whereas we define it for each individual. Posterior estimates of ρ,
0.50 (95% CS:0.48, 0.52), and γ , 0.47 (95% CI:0.44, 0.51), suggest substantial
within-subject correlation, though not as high as those in VAX004.

Similar to VAX004, log-normal and gamma distributions for the injection rate
lead to similar results, with a slight difference in ρ. In Figure 2(d)–(f), we see
that the heavy tail of the log-normal distribution yields extremely large predicted
moments for the reported number of injections and thus makes it less competitive
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than the gamma distribution for modeling injection rates reported in a few cate-
gories. Consequently, all results presented for VAX003 are based on the gamma
distribution for injection rate.

We performed sensitivity analyses by changing the relative prevalence π(e) :π(b)

to 0.7 : 0.3 and 0.8 : 0.2. As expected, the transmission probability tends to decrease
for subtype E but to increase for subtype B, as the relative prevalence of subtype E
increases. For each subtype and risk level, the VE estimate changes in the direction
opposite to that of the corresponding transmission probability, but none of the VE
estimates differ significantly from 0. The magnitude of all these changes are rela-
tively small, especially for subtype E. The estimated transmission probability ratio
of subtype E to subtype B decreases as the relative prevalence of subtype E in-
creases. Particularly, subtype E becomes statistically more infectious than subtype
B with an estimate of 1.88 (95% CS: 1.18, 3.21) for p

(e)
0 /p

(b)
0 , if the prevalence of

subtype E is as low as 70% among the IDUs.

5. Discussion. We established a Bayesian hierarchical model for analyzing
clinical studies of infectious disease with transmission and exposure data observed
over discrete time intervals. This model provides assessment of the transmission
probability and vaccine efficacy conditioning on an infectious contact, whereas
standard methods of analyzing vaccine trials do not. Assuming conditional inde-
pendence between observed and true but unobserved quantities, this model pro-
vides an approach to adjustment for the measurement error in some key risk fac-
tors. We used the method to re-analyze two HIV-1 vaccine trials on populations
who are at high risk of HIV-transmission via sexual contacts or sharing needles for
drug injection. The proposed method could be applied to studies of other vaccines,
such as human papilloma virus vaccines, where contact information is collected.

We obtained estimates of vaccine efficacy similar to the primary study re-
sults, especially for VAX004, confirming the findings of no protective efficacy.
Two factors may contribute to this similarity in VE estimates. First, the mea-
surement error might be relatively small for the majority of the study popula-
tion. Second, our model assumes unbiasness, that is, E(ñit |λit ) = E(nit |λit ) and
E(m̃it |λit , ξit ) = E(mit |λit , ξit ). However, if the bias trend is similar in both treat-
ment groups, even a model with bias correction will likely yield a similar VE
estimate as well. Despite the similarity, our hierarchical model provides joint infer-
ence on not only the transmission probability and VE but also the population-level
behavioral characteristics such as the contact rate and proportion of condom use
(needle-sharing).

We have assumed an exchangeable structure for within-subject correlation
among contact (injection) rates and proportions of condom use (needle-sharing),
using the copula method. A more sophisticated structure may be considered given
sufficient data. Within-subject sample correlation coefficients among the logarithm
of reported contact rates, {log(ñit / lit ) : t = 1, . . . , Ti}, and among reported propor-
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tions of condom use, {m̃it /ñit : t = 1, . . . , Ti}, in VAX004 do indicate that corre-
lation wanes away as two intervals are further apart, but the variation range is
relatively small, 0.3–0.5 for the former and 0.45–0.67 for the latter. Therefore, an
exchangeable structure is a reasonable assumption, albeit an autoregressive struc-
ture such as the ARMA(p, q) model [Chib and Greenberg (1994)] may be more
realistic. The range of 0.3–0.5 for {log(ñit / lit ) : t = 1, . . . , Ti} may seem contra-
dictory to the Bayesian estimate of ρ around 0.9. A plausible explanation is that
the addition of δit to reflect the over-dispersion may attenuate the true correlation
among the elements of λi , as the elements of δi are independent given λi . Conse-
quently, a high correlation among the elements of λi is needed to yield a moderate
marginal correlation among the elements of δi . In fact, the parameter estimates,
especially for transmission probabilities and VEs, do not change much if we as-
sume intervals within the same subject are independent. A possible reason is that
only the overall magnitude of ni and mi matter in the estimation of p0 and the VE,
and the magnitude mainly depends on the observed ñi and m̃i and is much less af-
fected by the correlation. However, we do see that correlation adjustment changes
the shape and scale of the distributions of the contact rate λit and the proportion
ξit in a more noticeable way. For example, without incarceration injection history,
the estimates for the shape parameter β for the proportion of needle-sharing in
VAX003 change from 5.28 (95% CS:4.85, 5.75) to 6.3 (95% CS:5.92, 6.69) when
within-subject independence is assumed.

To adjust for error in self-reported contact information, we assumed a Poisson
process for the true number of contacts and an over-dispersed Poisson process
for the reported one, and that the two processes are conditionally independent
given the underlying contact rate. Ideally, validation data would be available so
that the measurement error could be modeled parametrically or without parametric
assumptions as in Golm, Halloran and Longini (1999). The collection of validation
data would be useful in future vaccine trials. In this Bayesian framework, a more
general bivariate distribution could be modeled between nit and ñit given λit or
between λit and a latent rate λ̃it that determines the distribution of ñit , had vali-
dation data been available on contact frequency. Another form of additional data,
replication of ñit and m̃it in all or some of the intervals, can also improve model
precision [Carroll, Ruppert and Stefanski (1995)], but the assumption of unbias-
ness of ñit for the true nit has to be retained. A possible parametric utilization of
replication data in our model is to allow for within-interval correlation.

Other than log-normal and gamma distributions, a more flexible option for mod-
eling the contact rate may be mixture prior densities [Richardson et al. (2002)]. It is
likely that the true number of contacts also comes from an over-dispersed Poisson
process, but whether such a model is identifiable needs further investigation. When
the number of contacts is given as K categories and K is small, for example, in
trial VAX003, the Poisson and over-dispersed Poisson structure may not be realis-
tic. In that case, a more flexible probability structure is to assume that nit and ñit

independently follow a discrete distribution indexed by pit = (pit1, . . . , pitK)τ ,
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where pitk is the probability of falling in the kth category for interval (i, t), and
pit ∼ Dirichlet(α) for some random or known vector α.

The model is sensitive to the contact-related information when such information
is limited. For instance, when the value assigned to the “None” category of the re-
ported proportion of needle-sharing was increased from 0.5% to 5% or higher, we
were unable to obtain convergence, likely due to the lack of curvature supporting
the estimation of a beta density. We emphasize for future studies that, in terms of
contact frequency, numbers are more informative than categories, and more cate-
gories are preferred to fewer. Another factor to which the analyses are sensitive is
the prevalence of infections among partners. While it is impossible to obtain the
infection status of all partners, a validation set of partners randomly selected for
verification of infection would help improve the inference. To alleviate under- or
over-reporting of contact frequency, it is also important to ensure that study par-
ticipants understand the definition of a contact, especially when the study involves
multiple contact types. Extremely high frequencies, for example, the numbers of
sexual contacts that were reported as over thousands per six-month interval by sev-
eral participants in VAX004, may indicate misunderstanding of the definition, and
should be verified with the participants during the follow-up visits. The underly-
ing mechanism of measurement error in contact-related factors in real studies may
never be known, and the best way to improve the VE estimation is to reduce the
error at the data collection step.

APPENDIX: MCMC METHODS AND RELATED SAMPLING ISSUES

MCMC sampling schemes. We use fdist(·|·) to denote the PDF for continu-
ous variables or the PMF for discrete variables, and Fdist(·|·) to denote the CDF
of a random variable given parameters. The subscript “dist” could be “Bin” for
binomial, “Pois” for Poisson, “Beta” for beta, “G” for gamma, “IG” for inverse
gamma, “N” for normal and “LN” for log-normal distributions. Whether the dis-
tribution is univariate or multivariate is determined by the parameter input.

Sampling nit . Define qi1 = 1 − p(vi,1) as the probability of escaping in-
fection from a contact protected by condom use, and similarly, define qi0 =
1−p(vi,0) for an un-protected contact. The conditional probability of nit is given
by

Pr(nit = n|·) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(λit lit (1 − ξit )qi0)
n−mit exp{−λit lit (1 − ξit )qi0}
(n − mit )! , yit = 0,

(λit lit (1 − ξit ))
n−mit exp{−λit lit (1 − ξit )}
(n − mit )!

× [1 − q
mit

i1 q
n−mit

i0 ]/Cit , yit = 1,

where Cit = 1 − qi1
mit exp{λit lit (1 − ξit )(qi0 − 1)}. When yit = 0, we sample

nit − mit directly from Poisson(λit lit (1 − ξit )qi0). When yit = 1, note that the



BAYESIAN FRAMEWORK FOR VACCINE EFFICACY 1427

conditional CDF of nit is

Pr(nit ≤ n|·, yit = 1)

= [
exp{λit lit (1 − ξit )}FPois

(
n|λit lit (1 − ξit )

)
(11)

− qi1
mit exp{λit lit (1 − ξit )q0}FPois

(
n|λit lit (1 − ξit )qi0

)]
× [exp{λit lit (1 − ξit )} − qi1

mit exp{λit lit (1 − ξit )qi0}]−1.

As the CDF is a nondecreasing function, we use direct sampling in combination
with binary searching. For example, to sample nit , we generate a value z from
Uniform(0,1); then, the smallest n satisfying Pr(nit ≤ n|·, yit = 1) ≥ z is the sam-
pled value of nit and can be found using binary searching or other advanced search-
ing methods.

Sampling mit . The conditional probability of mit is

Pr(mit = m|·) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
nit

m

)
ξitqi1

ξitqi1 + (1 − ξit )qi0

m

×
(

1 − ξitqi1

ξitqi1 + (1 − ξit )qi0

)nit−m

, yit = 0,

(
nit

m

)
ξm
it (1 − ξit )

nit−m × [1 − qm
i1q

nit−m
i0 ]/Dit , yit = 1,

where Dit = 1 − [ξitqi1 + (1 − ξit )qi0]nit . When yit = 0, we sample mit directly
from Binomial(nit ,

ξit qi1
ξqi1+(1−ξit )qi0

). When yit = 1, we have

Pr(mit ≤ m|·, yit = 1)
(12)

= FBin(m|nit , ξit ) − (ξqi1 + (1 − ξit )qi0)
nit FBin(m|nit ,P )

1 − (ξitqi1 + (1 − ξit )qi0)
nit

,

where P = ξit qi1
ξit qi1+(1−ξit )qi0

. We use the same technique in sampling nit , that is,
direct sampling in combination with binary searching.

Sampling λit . Define μi = μ1Ti×1 and 
i = σ 2(ρJ Ti×Ti
+ (1 − ρ)ITi×Ti

)).
The likelihood part concerning the contact rate vector λi is given by

Li(λi |·) ∝ fLN(λi |μi ,
i)

(
Ti∏

t=1

fG(λit |nit + 1, l−1
it )

)

×
(

Ti∏
t=1

fIG

(
λit

∣∣∣∣φ,
lit

φδit

))(
Ti∏

t=1

λit

)
.

To sample λi , we take the following steps:
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• First sample λ�
i from Log-Normal(μi ,
i ), and accept it with the probability

min
(

1,

∏Ti

t=1{fG(λ�
it |nit + 1, l−1

it )fIG(λ�
it |φ, lit /(φδit ))λ

�
it }∏Ti

t=1{fG(λit |nit + 1, l−1
it )fIG(λit |φ, lit /(φδit ))λit }

)
.

Update λi with λ�
i if the new sample is accepted;

• Sample a new λ�
i from

∏Ti

t=1(fG(λ�
it |nit + 1, l−1

it ), and accept it with the proba-
bility

min
(

1,
fLN(λ�

i |μi ,
i )
∏Ti

t=1{λ�
itfIG(λ�

it |φ, lit /(φδit ))}
fLN(λi |μi ,
i )

∏Ti

t=1{λitfIG(λit |φ, lit /(φδit ))}
)
.

Update λi with λ�
i if the new sample is accepted;

• Sample a new λ�
i from

∏Ti

t=1 fIG(λit |φ, lit
φδit

) and accept it with the probability

min
(

1,
fLN(λ�

i |μi ,
i )
∏Ti

t=1{λ�
itfG(λ�

it |nit + 1, l−1
it )}

fLN(λi |μi ,
i )
∏Ti

t=1{λitfG(λit |nit + 1, l−1
it )}

)
.

This cross-sampling procedure is a generalization of the Metropolized inde-
pendence sampling algorithm [Chib and Greenberg (1995)]. Liu (1996) showed
that Metropolized independence sampling is superior to rejection sampling with
respect to asymptotic efficiency and ease of computation, given that the proposal
density provides a reasonable coverage over the domain of the posterior density. In
this case, we have a composite full likelihood L(x) ∝ f (x)g(x) in which f (x) and
g(x) are both ready for sampling. Using f (x) and g(x) alternately as the proposal
density can better cover the reasonable range of x as compared to using either f (x)

or g(x) alone as the proposal density.

Sampling εi and ξ i . Define ϒ i = γJ Ti×Ti
+ (1 − γ )ITi×Ti

. The likelihood
part concerning εi is given by

Li(εi |·) ∝ fN(εi |0,ϒi ) ×
Ti∏

t=1

ξ
mit+m̃it

it (1 − ξit )
nit−mit+ñit−m̃it .(13)

The above likelihood is expressed in terms of εi , and ξ i exists through ξit =
�−1(�(εit )|α,β). To express the likelihood in terms of ξ i , (13) becomes

Li(ξ i |·) ∝ exp
{−1

2ετ
i ϒ

−1
i εi + 1

2ετ
i εi

}
(14)

×
Ti∏

t=1

fBeta(ξ i |α + mit + m̃it , β + nit − mit + ñit − m̃it ),

where εi exists via εit = �−1(�(ξit |α,β)). |∏Ti

t=1{�−1′
(�(ξit ))�

′(ξit )}| is the

Jacobian term, and �−1′
(x) = [fN(�−1(x)|0,1)]−1.

The sampling of εi and ξ i proceeds as the following:
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• Based on (13), sample ε�
i from Normal(0,ϒi ), and accept it with the probability

min

(
1,

Ti∏
t=1

ξ�
it

mit+m̃it (1 − ξ�
it )

nit−mit+ñit−m̃it

ξit
mit+m̃it (1 − ξit )nit−mit+ñit−m̃it

)
,

where ξ�
it = �−1(�(ε�

it )). Update εi and ξ i if the new sample is accepted;

• Based on (14), sample ξ �
i from

∏Ti

t=1 fBeta(α + mit + m̃it , β + (nit − mit ) +
(ñit − m̃it )), and accept it with the probability

min
(

1,
exp{(−1/2)ε�

i
τϒ−1

i ε�
i + (1/2)ε�

i
τε�

i }
exp{(−1/2)ετ

i ϒ
−1
i εi + (1/2)ετ

i εi}
)
,

where ε�
it = �−1(�(ξ�

it )).

Sampling other parameters. Let logλi = (logλi1, . . . , logλiTi
)τ , μi =

μ1Ti×1, and let Ri = ρJ Ti×Ti
+ (1 − ρ)ITi×Ti

such that 
i = (σ 2)Ri .
The following parameters are sampled directly from their full conditional dis-

tributions:

δit |· ∼ Gamma
(
ñit + φ,

(
1 + φ

λit lit

)−1)
,

μ|· ∼ Normal

(∑N
i=1 1τ
−1

i logλi∑N
i=1 1τ
−1

i 1
,

(
N∑

i=1

1τ
−1
i 1

)−1)
,

σ 2|· ∼ Inverse Gamma

(
1
2

∑
i

Ti,

[
1
2

N∑
i=1

(logλi − μi )
τR−1

i (logλi − μi )

]−1)
.

A random-walk style Metropolis–Hastings algorithm is used to sample ρ, φ,
α, β , γ , p0 and θ , that is, a new value is sampled from a normal density with
the current value as its mean. The variance of each proposal normal density is
dynamically adapted to reach an acceptance rate of 0.3–0.4. To apply this sampling
scheme, appropriate transformation may be necessary so that the domain of the
transformed parameter is (−∞,∞), for example, a logit transformation for the
transmission probability.

Diagnostics for convergence. We run three chains simultaneously and use the
scale reduction factor to monitor the convergence of the chains. The scale reduction
factor is defined as √

R̂ =
√

M − 1

M
+ 1

M

B

W
,

where M is the number of runs, and B and W are the between-sequence and
within-sequence variances, respectively. Gelman and Rubin (1992) showed that
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the factor
√

R̂ will approach 1 as M → ∞, and recommended that the conver-

gence can be considered as reached if
√

R̂ < 1.2 for all parameters. We calculate√
R̂ for each 5000 iterations afterward and the criteria

√
R̂ < 1.2 is adopted as the

stopping rule.
The results of analyzing the two AIDSVAX trials are based on the last 5000 it-

erations of three parallel chains. A burn-in period of 5000 runs is enforced after the
variances of proposal normal densities are fixed. To reduce the correlation within
each successive chain, we loop over the last 5000 runs of the three parallel chains,
and at each loop we randomly pick one chain to read in the samples.
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