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CRESTED PRODUCTS OF MARKOV CHAINS

BY DANIELE D’ANGELI AND ALFREDO DONNO

Université de Genève

In this work we define two kinds of crested product for reversible Markov
chains, which naturally appear as a generalization of the case of crossed and
nested product, as in association schemes theory, even if we do a construction
that seems to be more general and simple. Although the crossed and nested
product are inspired by the study of Gelfand pairs associated with the direct
and the wreath product of two groups, the crested products are a more general
construction, independent from the Gelfand pairs theory, for which a com-
plete spectral theory is developed. Moreover, the k-step transition probability
is given. It is remarkable that these Markov chains describe some classical
models (Ehrenfest diffusion model, Bernoulli–Laplace diffusion model, ex-
clusion model) and give some generalization of them.

As a particular case of nested product, one gets the classical Insect Markov
chain on the ultrametric space. Finally, in the context of the second crested
product, we present a generalization of this Markov chain to the case of many
insects and give the corresponding spectral decomposition.

1. Introduction. The starting point for this work is the paper [4] on Gelfand
pairs (for a general theory and applications see [7]) by Ceccherini-Silberstein,
Scarabotti and Tolli. In that paper, particular cases of homogeneous spaces are pre-
sented. Given two finite groups G and F , together with two subgroups K ≤ G and
H ≤ F , let X = G/K and Y = F/H be the corresponding homogeneous spaces.
The Gelfand pairs associated with the direct product G×F and the wreath product
F �G are studied. A complete spectral decomposition, together with the associated
spherical functions, is given for the space L(X × Y).

One can ask if it is possible to get the same spectral decomposition without
using the group structure, but considering the product (in some sense) of two re-
versible Markov chains P and Q defined on two finite sets X and Y , respectively.

The analogue of direct product and wreath product is developed in Sections 5
and 6, respectively. In particular, in Section 6, the Markov chain on the ultrametric
space, studied by Figà-Talamanca in [11] and that we call “Insect Markov chain,”
is revisited from a different point of view. See also [6].

An equivalent approach to Gelfand pairs product comes from the association
schemes theory (see [2]). In particular, the direct and the wreath product of groups
correspond to the crossed and nested product of association schemes. In [3] Bailey
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and Cameron introduced a more general product for association schemes called
the crested product.

Inspired by this definition, in this paper two new products of Markov chains
are introduced. We will refer to them as the first and the second crested product,
respectively. Actually, the definition does not seem to be the exact analogue, in
terms of Markov chains, of the crested product for association schemes, but it looks
even more interesting. In fact, they extend the crossed and the nested product and
a complete spectral theory is presented in Sections 4 and 7.

In particular, in Section 7, we show that the second crested product is a gener-
alization of a Markov chain that we will call multi-insect, which is an analogue of
the so-called nonbinary Johnson scheme, already studied in [4], that corresponds
to considering h insects living in different subtrees and moving only one per each
step in such a way that their distance is preserved. We give a generalization of the
results of [4] in Section 7 with a more elementary and direct proof. This prob-
lem has been suggested by Scarabotti. As an example, the case of the bi-insect is
studied.

2. Basic examples and motivations. In this section we present some exam-
ples, classical and new, of finite diffusion processes that one can treat using meth-
ods from harmonic analysis. In the next sections, we will study them by introduc-
ing special products of finite Markov chains and performing a complete spectral
analysis of the associated Markov operator.

2.1. Classical models.

2.1.1. The Ehrenfest diffusion model. The classical Ehrenfest diffusion model
consists of two urns numbered 0,1 and n balls numbered 1, . . . , n. A configu-
ration is given by a placement of the balls into the urns. Therefore there are 2n

configurations and each of them can be identified with the subset A of {1, . . . , n}
corresponding to the set of balls contained, for instance, in the urn 0. Note that
there is no ordering inside the urns. The initial configuration corresponds to the
situation when all balls are inside the urn 0.

Then, at each step, a ball is randomly chosen (with probability 1/n) and it is
moved to the other urn. Denoting by Qn the set of all subsets of {1, . . . , n}, we can
describe this random process as follows. If we are in a configuration A ∈ Qn, then,
at the next step, we are in a new configuration B ∈ Qn of the form A

∐{j} for
some j /∈ A or A \ {j ′} for some j ′ ∈ A and each of these configurations is chosen
with probability 1/n.

In [5], the authors give a generalization of this model to the case of m urns and
n balls.
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2.1.2. The Bernoulli–Laplace diffusion model. The Bernoulli–Laplace diffu-
sion model consists of two urns numbered 0,1 and 2n balls, numbered 1, . . . ,2n.
A configuration is a placement of the balls into the two urns, n balls each. There-
fore there are

(2n
n

)
configurations; each of them can be identified with an n-subset A

of {1, . . . ,2n} corresponding to the set of balls contained in the urn 0. The initial
configuration corresponds to the situation when the balls contained in the urn 0
are 1,2, . . . , n. Denoting by �n the set of all n-subsets of {1,2, . . . ,2n}, we can
describe this random process as follows. If we are in a configuration A ∈ �n, then
at the next step we are in a new configuration B ∈ �n of the form A

∐{i} \ {j}, for
some i /∈ A and j ∈ A and each of these configurations is chosen with probability
1/n2.

2.1.3. The exclusion model. Let (X,E) be an undirected connected graph
with n vertices. Fix h ≤ n and choose an h-subset A of X. We put a particle on
each vertex of A. Then the exclusion process is defined as a Markov chain on the
set �h of h-subsets of X. Starting from the state A, we pick a particle on some
vertex of A with probability proportional to the degree of the vertex that it occu-
pies, pick a neighboring site of this vertex at random and move the particle to the
neighboring site provided this site is unoccupied. If the site is occupied by another
particle, the chain stays at A. See [8] and [12] for more examples and details.

2.1.4. The Insect Markov chain. This Markov chain, in its classical version
introduced by Figà-Talamanca [11], is performed on the (finite) ultrametric space
given by the nth level of a q-ary rooted tree. At the starting instant the insect stays
in a fixed vertex of the nth level. It performs a simple random walk on the tree.
The next state of the Markov chain is given when the insect reaches again the
nth level. The probability transition between two vertices only depends on their
ultrametric distance and so this Markov chain is invariant under the action of the
full automorphisms group of the rooted tree.

2.2. Generalizations.

2.2.1. The first crested product. The Ehrenfest model, generalized to the case
of n balls and m urns, is described by the crossed product of n Markov chains
defined on a space of cardinality m (the space of the urns), as will be shown in
Section 5. Actually, the definition of crossed product that we give admits that the
choice of the ith ball is weighted by a not necessarily homogeneous probability
distribution p0

i .
One can ask what happens if a hierarchy in the set of balls is introduced. So

suppose to have n ordered balls, numbered by 1, . . . , n, and m urns.
At each step, one ball (say the ith one) is randomly chosen and it is moved into

another urn following a transition probability Pi defined on the space of the urns.
For all j > i, the ball j is also randomly moved to another urn.
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This model is described by the nested product of n Markov chains defined on a
space of cardinality m (the space of the urns), as will be shown in Section 6, where
we suppose that each ball is chosen according with a probability distribution p0

i .
The Insect Markov chain described in Section 6.3 is obtained from this model

for a particular value of p0
i and forcing the transition probability Pi to be uniform,

as shown in Proposition 6.4.
The first crested product introduced in Section 4 is a generalization of both

crossed and nested product and it describes the following diffusion model.

The (C,N)-Ehrenfest model. We have n balls numbered by 1, . . . , n and m urns.
Suppose that we have a partition of the set of the balls in two subsets C

∐
N .

The balls in C are white, the balls in N are black. At each step, we choose a
ball i according with a probability distribution p0

i : if it is white, then we move
it to another urn following a transition probability Pi and all the other balls are
not moved. If it is black, we move it by Pi and then each ball (white or black)
numbered by j , for j > i, is moved uniformly to a new urn.

The card players model. The previous model can also be described in the fol-
lowing way. Suppose that n card players sit at the same edge of a table. Each of
them has a deck of cards consisting of m cards. Suppose that the set of players is
partitioned in two subsets: blond hair and brown hair. At the starting moment, each
player has a card. A player is randomly chosen, so he puts his card inside the deck
and then chooses another card. If he is blond, the others keep their own card; if he
is brown, then all the players (blond or brown) sitting at his right side also must
change their card.

2.2.2. The second crested product.

The bi-insect. This is a generalization of the Insect Markov chain. In this case we
have two insects that, at the starting time, live in the nth level of a tree, following
the condition that their (ultrametric) distance is maximal, which is equivalent to
requiring that they live in two different subtrees of depth n − 1. At each step, with
probability p0 they do not leave their own subtrees; with probability 1 − p0 one
of them can leave its subtree choosing another subtree not occupied by the other
insect. In the first case, we randomly choose one insect and change its position ac-
cording with the Insect Markov chain on the corresponding subtree. In the second
case, the moved insect randomly chooses its new position in the new subtree that
it has occupied. This yields a Markov chain on the space of all possible configu-
rations of two insects at maximal distance in a tree of depth n; this Markov chain
will be studied in Section 7.2.

The multi-insect. An immediate generalization of the previous construction can
be performed considering h insects living in the nth level of the tree and having
maximal distance from each other. At each step, with probability p0 only one
insect moves to another site staying in the same subtree; with probability 1 − p0
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only one insect occupies a new subtree of depth n − 1 and randomly chooses its
position. This situation will be referred to as the multi-insect in Section 7.

Moreover, the multi-insect can be also regarded as an exclusion process on the
ultrametric space with the constraint that the h insects keep maximal distance from
each other. At each step an insect moves, as in the exclusion process a particle does.

The aim of this work is also to diagonalize a more general Markov chain, that
we call the second crested product, described in Section 7 and that corresponds to
the following model.

The crested Bernoulli–Laplace model. Suppose that we have two urns num-
bered 0,1 and n balls: the urn 0 contains h balls and the urn 1 contains the re-
maining n − h balls. The h balls in the urn 0 are endowed with a label that can
go from 1 to s (note that two different balls can have the same label). Moreover,
we can use a (nonhomogeneous) coin. At each step, we flip the coin: if we get
heads, then we randomly choose a ball i in the urn 0 and a ball j in the urn 1 and
exchange them. Before putting j in the urn 0 we attach a label (randomly chosen
in {1, . . . , s}) on it.

If we get tails, then we randomly choose a ball i in the urn 0 and we change or
not its label according with a transition probability Q on the set {1, . . . , s}.

Observe that, if we get heads, then we perform on the set of the balls an analogue
of the Bernoulli–Laplace diffusion model, where the urns contain h and n−h balls,
respectively.

Although in Section 7.1 the spectral analysis of the second crested product is
given, in Section 7.2 we give explicit computations only in the case of the bi-insect,
which seems to be easier to handle.

2.3. Motivations. The classical models described in the previous sections are
well known in literature and they have been studied by many authors using ap-
proaches deriving from Gelfand pairs theory, representations theory, associations
schemes, distance regular graphs and orthogonal polynomials.

In the Ehrenfest model, generalized to the case of m urns and n balls, the
set of all configurations can be identified with the Hamming scheme Xn,m =
{0, . . . ,m − 1}n consisting of all the functions defined on the set {1, . . . , n} tak-
ing values in {0, . . . ,m − 1}. The group that naturally acts on Xn,m is the wreath
product Sm �Sn. The stabilizer of a fixed function in Xn,m is isomorphic to the sub-
group Sm−1 � Sn. In [5], for example, the authors show that (Sm � Sn,Sm−1 � Sn) is
a Gelfand pair, they give the decomposition of the space L(Xn,m) of the complex
functions defined on Xn,m into irreducible submodules and provide an expression
for the respective spherical functions by using Krawtchouk polynomials. These
submodules coincide with the eigenspaces of the Markov operator on L(Xn,m)

describing the Ehrenfest model. A different approach to the Hamming scheme is
given in [2] by using association schemes theory.

Following the idea of Diaconis, it is possible to study the rate of convergence to
the stationary distribution of finite Markov chains by using Gelfand pairs theory. In
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particular, given a Markov chain which is invariant under the action of a group G,
its transition operator can be expressed via a Fourier series where the classical
exponentials are replaced by the irreducible representations of G. In [10] the au-
thors apply this argument to the generalized Bernoulli–Laplace diffusion model,
consisting of two urns containing h and n − h balls, respectively. All the states
of this Markov chain constitute the so-called Johnson scheme associated with the
Gelfand pair (Sn, Sh × Sn−h). The corresponding decomposition into irreducible
subrepresentations (and so into eigenspaces for the associated Markov operator) is
given, for instance, in [5], where the spherical functions are described in terms of
Hahn polynomials. Like the Hamming scheme, also the Johnson scheme can be
presented as an association scheme (see [2]).

Finally, the Insect Markov chain can be studied using a Gelfand pair associated
with the automorphisms group of the rooted tree (see [6] and [11]). The Fourier
analysis that one can develop allows to give a complete spectral analysis and to
investigate some ergodic properties.

The approach proposed in this paper is more elementary. We define and study
several Markov chains, generalizing the classical models described above, by using
only techniques and arguments coming from linear and multilinear algebra. This
allows to give directly the spectral analysis of the associated Markov operator,
without invoking the theory of groups and their representations. Our construction
shows what really are the structures to the base of the analysis of these models and
suggests the way to approach more general cases.

In the case of the first crested product we consider the Cartesian product X =
X1 × · · · × Xn of n finite spaces and a Markov operator P on L(X) given by
a convex combination of Markov operators on L(Xi) depending on a partition
of the set {1, . . . , n}. The eigenspaces of the operator P are expressed as certain
combinations of the tensor products of the eigenspaces of the Markov operators on
every space L(Xi). Their form is easier in the case of the crossed product when
none of the spaces Xi is distinguished from the other ones (see Section 5). On
the other hand, it becomes more complicated if one introduces a hierarchy. The
extremal case gives the nested product (see Section 6), where the space X can be
identified with the nth level of a rooted tree.

In the second crested product we consider the Cartesian product of two finite
spaces X and Y , where we are given the eigenspaces of a Markov operator Q de-
fined on L(Y ). Set �h the space of the functions with domain an h-subset of X

and values in Y . We define a Markov operator P [see (6)] on L(�h) and we in-
vestigate its spectral decomposition by using two differential operators D and D∗
(see Definition 7.1) and the known spectral analysis of Q.

Although the computational aspect can be more or less complicated depending
on the singular cases, the methods used do not require anything more than linear
or multilinear algebra.



420 D. D’ANGELI AND A. DONNO

3. Preliminaries. The following topics about finite Markov chains can be
found in [6].

Consider a finite set X, with |X| = m. Let P be a stochastic matrix of size m

whose rows and columns are indexed by the elements of X, so that∑
x∈X

p(x0, x) = 1,

for every x0 ∈ X. Consider the Markov chain on X with transition matrix P .

DEFINITION 3.1. The Markov chain P is reversible if there exists a strict
probability measure π on X such that

π(x)p(x, y) = π(y)p(y, x),

for all x, y ∈ X.

We will say that P and π are in detailed balance. For a complete treatment about
these and related topics see [1].

Define on L(X) = {f :X −→ C} a scalar product in the following way:

〈f1, f2〉π =∑
x∈X

f1(x)f2(x)π(x),

for all f1, f2 ∈ L(X) and the linear operator P :L(X) −→ L(X) by

(Pf )(x) =∑
y∈X

p(x, y)f (y).

It is easy to verify that π and P are in detailed balance if and only if P is self-
adjoint with respect to the scalar product 〈·, ·〉π . Under these hypotheses, it is
known that the matrix P can be diagonalized over the reals. Moreover, 1 is al-
ways an eigenvalue of P and for any eigenvalue λ one has |λ| ≤ 1.

Let λz be the eigenvalues of the matrix P , for every z ∈ X, with λz0 = 1.
Then there exists an invertible unitary real matrix U = (u(x, y))x,y∈X such that
PU = U�, where � = (λxδx(y))x,y∈X is the diagonal matrix whose entries are
the eigenvalues of P . This equation gives, for all x, z ∈ X,∑

y∈X

p(x, y)u(y, z) = u(x, z)λz.(1)

Moreover, we have UT DU = I , where D = (π(x)δx(y))x,y∈X is the diagonal
matrix of coefficients of π . This second equation gives, for all y, z ∈ X,∑

x∈X

u(x, y)u(x, z)π(x) = δy(z).(2)

Hence, the first equation tells us that each column of U is an eigenvector of P ; the
second one tells us that these columns are orthogonal with respect to the product
〈·, ·〉π .
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PROPOSITION 3.2. The kth step transition probability is given by

p(k)(x, y) = π(y)
∑
z∈X

u(x, z)λk
zu(y, z),(3)

for all x, y ∈ X.

PROOF. The proof is a consequence of (1) and (2). In fact, the matrix UT D is
the inverse of U , so that UUT D = I . In formulæ, we have∑

y∈X

u(x, y)u(z, y) = 1

π(z)
�z(x).

From the equation PU = U� we get P = U�UT D, which gives

p(x, y) = π(y)
∑
z∈X

u(x, z)λzu(y, z).

Iterating this argument, we get

P k = U�kUT D,

which is the assertion. �

Recall that there exists a correspondence between reversible Markov chains and
weighted graphs.

DEFINITION 3.3. A weight on a graph G = (X,E) is a function w :X ×
X −→ [0,+∞) such that:

(1) w(x, y) = w(y, x);
(2) w(x, y) > 0 if and only if x ∼ y.

If G is a weighted graph, it is possible to associate with w a stochastic matrix
P = (P (x, y))x,y∈X on X by setting

p(x, y) = w(x, y)

W(x)
,

with W(x) =∑z∈X w(x, z). The corresponding Markov chain is called the random
walk on G. It is easy to prove that the matrix P is in detailed balance with the
distribution π defined, for every x ∈ X, as

π(x) = W(x)

W
,

with W =∑z∈X W(z). Moreover, π is strictly positive if X does not contain iso-
lated vertices. The inverse construction can be done. So, if we have a transition
matrix P on X which is in detailed balance with the probability π , then we can
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define a weight w as w(x, y) = π(x)p(x, y). This definition guarantees the sym-
metry of w and, by setting E = {{x, y} :w(x, y) > 0}, we get a weighted graph.

There are some important relations between the weighted graph associated with
a transition matrix P and its spectrum. In fact, it is easy to prove that the multi-
plicity of the eigenvalue 1 of P equals the number of connected components of G.
Moreover, the following propositions hold.

PROPOSITION 3.4. Let G = (X,E,w) be a finite connected weighted graph
and denote P the corresponding transition matrix. Then the following are equiva-
lent:

(1) G is bipartite;
(2) the spectrum σ(P ) is symmetric;
(3) −1 ∈ σ(P ).

DEFINITION 3.5. Let P be a stochastic matrix. P is ergodic if there exists
n0 ∈ N such that

p(n0)(x, y) > 0 for all x, y ∈ X.

PROPOSITION 3.6. Let G = (X,E) be a finite graph. Then the following con-
ditions are equivalent:

(1) G is connected and not bipartite;
(2) for every weight function on X, the associated transition matrix P is er-

godic.

So we can conclude that a reversible transition matrix P is ergodic if and only
if the eigenvalue 1 has multiplicity 1 and −1 is not an eigenvalue.

In what follows we always suppose that the eigenvalue 1 has multiplicity 1, so
that the graph associated with the probability P is connected. This is equivalent
to requiring that the probability P is irreducible, according with the following
definition.

DEFINITION 3.7. A stochastic matrix P on a set X is irreducible if, for every
x1, x2 ∈ X, there exists n = n(x1, x2) such that p(n)(x1, x2) > 0.

4. The first crested product. In this section we introduce a particular product
of Markov chains defined on different sets. This idea is inspired by the definition
of crested product for association schemes given in [3].

Let Xi be a finite set, with |Xi | = mi , for every i = 1, . . . , n, so that we can
identify Xi with the set {0,1, . . . ,mi − 1}. Let Pi be an irreducible Markov chain
on Xi and let pi be the transition probability associated with Pi . Moreover, assume
that pi is in detailed balance with the strict probability measure σi on Xi , that is,

σi(x)pi(x, y) = σi(y)pi(y, x),
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for all x, y ∈ Xi .
Consider the product X1 × · · · × Xn. Let {1, . . . , n} = C

∐
N be a partition of

the set {1, . . . , n} and let p0
1,p

0
2, . . . , p

0
n be a probability distribution on {1, . . . , n},

that is, p0
i > 0 for every i = 1, . . . , n and

∑n
i=1 p0

i = 1.

DEFINITION 4.1. The first crested product of Markov chains Pi’s with respect
to the partition {1, . . . , n} = C

∐
N is the Markov chain on the product X1 × · · ·×

Xn whose transition matrix is

P =∑
i∈C

p0
i (I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ii+1 ⊗ · · · ⊗ In)

+∑
i∈N

p0
i (I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ji+1 ⊗ · · · ⊗ Jn),

where Ii denotes the identity matrix of size mi and Ji denotes the uniform matrix
on Xi , that is,

Ji = 1

mi

⎛
⎜⎜⎜⎝

1 1 · · · 1

1
. . .

...
...

. . .
...

1 · · · · · · 1

⎞
⎟⎟⎟⎠ .

In other words, we choose an index i in {1, . . . , n} following the distribution
p0

1, . . . , p
0
n. If i ∈ C, then P acts on the ith coordinate by the matrix Pi and fixes

the remaining coordinates; if i ∈ N , then P fixes the coordinates {1, . . . , i − 1},
acts on the ith coordinate by the matrix Pi and changes uniformly the remaining
ones.

For all (x1, . . . , xn), (y1, . . . , yn) ∈ X1 × · · · × Xn, the transition probability p

associated with P is given by

p((x1, . . . , xn), (y1, . . . , yn))

=∑
i∈C

p0
i (δ1(x1, y1) · · · δi−1(xi−1, yi−1)

× pi(xi, yi)δi+1(xi+1, yi+1) · · · δn(xn, yn))

+∑
i∈N

p0
i

(
δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)∏n

j=i+1 mj

)
,

where δi is defined by

δi(xi, yi) =
{

1, if xi = yi ,
0, otherwise.

We want to study the spectral theory of the operator P . We recall that the fol-
lowing isomorphism holds:

L(X1 × · · · × Xn) ∼=
n⊗

i=1

L(Xi),
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with (f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) := f1(x1)f2(x2) · · ·fn(xn).
Assume that, for every i = 1, . . . , n, the following spectral decomposition holds:

L(Xi) =
ri⊕

ji=0

V i
ji
,

that is, Vji
is an eigenspace for Pi with associated eigenvalue λji

and whose di-
mension is mji

.
Now set N = {i1, . . . , il} and C = {c1, . . . , ch}, with h + l = n and such that

i1 < · · · < il and c1 < · · · < ch.

THEOREM 4.2. The probability P defined above is reversible if and only if Pk

is symmetric for every k > i1. If this is the case, P is in detailed balance with the
strict probability measure π on X1 × · · · × Xn given by

π(x1, . . . , xn) = σ1(x1)σ2(x2) · · ·σi1(xi1)

mi1+1 · · ·mn

.

PROOF. Consider the elements x = (x1, . . . , xn) and y = (y1, . . . , yn) belong-
ing to X1 × · · ·×Xn. First, we want to prove that the condition σk = 1

mk
, for every

k > i1, is sufficient. Let k ∈ {1, . . . , n} such that xi = yi for every i = 1, . . . , k − 1
and xk 
= yk . Suppose k < i1. Then we have

p(x, y) = p0
k(pk(xk, yk)δk+1(xk+1, yk+1) · · · δn(xn, yn)).

If xi = yi for every i = k + 1, . . . , n, we get

π(x)p(x, y) = σ1(x1) · · ·σk(xk) · · ·σi1(xi1)p
0
k

pk(xk, yk)

mi1+1 · · ·mn

= σ1(y1) · · ·σk(yk) · · ·σi1(yi1)p
0
k

pk(yk, xk)

mi1+1 · · ·mn

= π(y)p(y, x),

since σk(xk)pk(xk, yk) = σk(yk)pk(yk, xk). If the condition xi = yi is not satisfied
for every i = k+1, . . . , n, then the equality π(x)p(x, y) = π(y)p(y, x) = 0 easily
follows.

If k = i1, then we get

p(x, y) = p0
i1

(
pi1(xi1, yi1)

1

mi1+1 · · ·mn

)
and so

π(x)p(x, y) = σ1(x1) · · ·σi1(xi1)p
0
i1

pi1(xi1, yi1)

m2
i1+1 · · ·m2

n

= σ1(y1) · · · · · ·σi1(yi1)p
0
i1

pi1(yi1, xi1)

m2
i1+1 · · ·m2

n

= π(y)p(y, x),
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since σi1(xi1)pi1(xi1, yi1) = σi1(yi1)pi1(yi1, xi1).
In the case k > i1, we have

p(x, y) = ∑
i∈N,i≤k

p0
i

pi(xi, yi)

mi+1 · · ·mn

and so

π(x)p(x, y) = σ1(x1) · · ·σi1(xi1)

mi1+1 · · ·mn

∑
i∈N,i≤k

p0
i

pi(xi, yi)

mi+1 · · ·mn

= σ1(y1) · · ·σi1(yi1)

mi1+1 · · ·mn

∑
i∈N,i≤k

p0
i

pi(yi, xi)

mi+1 · · ·mn

= π(y)p(y, x).

In fact, the terms corresponding to an index i < k satisfy pi(xi, yi) = pi(yi, xi)

since xi = yi ; the term corresponding to the index k satisfies pk(xk, yk) =
pk(yk, xk) since the equality

pk(xk, yk) = pk(yk, xk)

holds by hypothesis.
Now we want to prove that the condition σk = 1

mk
, for every k > i1, is also

necessary. Suppose that the equality π(x)p(x, y) = π(y)p(y, x) holds. By the hy-
pothesis of irreducibility we can consider two elements x0, y0 ∈ X1 × · · · × Xn

such that x0
i1


= y0
i1

and with the property that pi1(x
0
i1
, y0

i1
) 
= 0. Now we have

π(x0)p(x0, y0) = π(y0)p(y0, x0) ⇔
π(x0)pi1(x

0
i1
, y0

i1
) = π(y0)pi1(y

0
i1
, x0

i1
).

This gives

π(x0)

π(y0)
= pi1(y

0
i1
, x0

i1
)

pi1(x
0
i1
, y0

i1
)

= σi1(x
0
i1
)

σi1(y
0
i1
)
.

Consider now the element x = (x0
1 , . . . , x0

i1
, y0

i1+1, . . . , y
0
n). The equality π(x)p(x,

y0) = π(y0)p(y0, x) implies

π(x)

π(y0)
= pi1(y

0
i1
, x0

i1
)

pi1(x
0
i1
, y0

i1
)

= σi1(x
0
i1
)

σi1(y
0
i1
)
.

So we get π(x0) = π(x), that is, the probability π does not depend on the coordi-
nates i1 + 1, . . . , n. Set now x′ = (x0

1 , . . . , x0
i1
, . . . , x0

k−1, xk, . . . , xn). The equality

π(x0)p(x0, x′) = π(x′)p(x′, x0) gives

π(x0)

( ∑
j∈N,j≤k

p0
j (pj (x

0
j , x′

j ))

)
= π(x′)

( ∑
j∈N,j≤k

p0
j (pj (x

′
j , x

0
j ))

)
.
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Since the probability π does not depend on the coordinates i1 + 1, . . . , n, we get
pk(x

0
k , x′

k) = pk(x
′
k, x

0
k ). This implies σk(x

′
k) = σk(x

0
k ) and so the hypothesis of

irreducibility guarantees that σk is uniform on Xk . This completes the proof. �

THEOREM 4.3. The eigenspaces of the operator P are given by:

• W 1 ⊗ · · · ⊗ Wk−1 ⊗ V k
jk

⊗ V k+1
0 ⊗ V k+2

0 ⊗ · · · ⊗ V n
0 , with jk 
= 0, for k ∈ {i1 +

1, . . . , n} and where

Wi =
{

L(Xi), if i ∈ N ,
V i

ji
, ji = 0, . . . , ri, if i ∈ C,

with eigenvalue ∑
i∈C:i<k

p0
i λji

+ p0
kλjk

+∑
i>k

p0
i .

• V 1
j1

⊗ · · · ⊗ V
i1−1
ji1−1

⊗ V
i1
ji1

⊗ V
i1+1
0 ⊗ · · · ⊗ V n

0 , with jt = 0, . . . , rt , for every

t = 1, . . . , i1, with eigenvalue

i1∑
i=1

p0
i λji

+
n∑

i=i1+1

p0
i .

PROOF. Fix an index k ∈ {i1 + 1, i1 + 2, . . . , n} and consider the function ϕ in
the space

W 1 ⊗ · · · ⊗ Wk−1 ⊗ V k
jk

⊗ V k+1
0 ⊗ V k+2

0 ⊗ · · · ⊗ V n
0 ,

with jk 
= 0 and

Wi =
{

L(Xi), if i ∈ N ,
V i

ji
, ji = 0, . . . , ri, if i ∈ C,

so that ϕ = ϕ1 ⊗ · · · ⊗ ϕk−1 ⊗ ϕk ⊗ ϕk+1 ⊗ · · · ⊗ ϕn with ϕi ∈ Wi for i =
1, . . . , k − 1, ϕk ∈ V k

jk
and ϕl ∈ V l

0 for l = k + 1, . . . , n. Set x = (x1, . . . , xn) and
y = (y1, . . . , yn); then

(Pϕ)(x) =∑
y

p(x, y)ϕ(y)

=∑
y

(∑
i∈C

p0
i δ1(x1, y1) · · · δi−1(xi−1, yi−1)

× pi(xi, yi)δi+1(xi+1, yi+1) · · · δn(xn, yn)

+∑
i∈N

p0
i δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)

1

mi+1
· · · 1

mn

)
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× ϕ1(y1) · · ·ϕk−1(yk−1)ϕk(yk)ϕk+1(yk+1) · · ·ϕn(yn)

= ∑
i∈C,i≤k

(∑
yi

p0
i pi(xi, yi)ϕi(yi)

)

× ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+ ∑
i∈C,i>k

(∑
yi

p0
i pi(xi, yi)ϕi(yi)

)

× ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+ ∑
i∈N,i>k

( ∑
yi ,...,yn

p0
i pi(xi, yi)

1

mi+1
· · · 1

mn

ϕi(yi) · · ·ϕn(yn)

)

× ϕ1(x1) · · ·ϕi−1(xi−1)

+ χN(k)
∑

yk,...,yn

p0
kpk(xk, yk)

1

mk+1
· · · 1

mn

× ϕ1(x1) · · ·ϕk−1(xk−1)ϕk(yk) · · ·ϕn(yn)

= ∑
i∈C,i≤k

p0
i λji

ϕ(x) + ∑
i∈C,i>k

p0
i · 1 · ϕ(x)

+ ∑
i∈N,i>k

(∑
yi

p0
i pi(xi, yi)ϕi(yi)

)

× ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+ χN(k)
∑
yk

p0
kpk(xk, yk)

× ϕ1(x1) · · ·ϕk−1(xk−1)ϕk(yk)ϕk+1(xk+1) · · ·ϕn(xn)

= ∑
i∈C,i≤k

p0
i λji

ϕ(x) + ∑
i∈C,i>k

p0
i ϕ(x)

+ ∑
i∈N,i>k

p0
i ϕ(x) + χN(k)p0

kλjk
ϕ(x)

=
( ∑

i∈C,i<k

p0
i λji

+ p0
kλjk

+∑
i>k

p0
i

)
ϕ(x),

where χN is the characteristic function of N . Note that in this case the addends
corresponding to the indices i < k, i ∈ N , are equal to 0 since we have supposed
jk 
= 0.

Consider now the function ϕ in the space

V 1
j1

⊗ · · ·V i1−1
ji1−1

⊗ V
i1
ji1

⊗ V
i1+1
0 ⊗ · · · ⊗ V n

0 ,
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with jt = 0, . . . , rt , for every t = 1, . . . , i1. In this case we have

(Pϕ)(x) =∑
y

p(x, y)ϕ(y)

= ∑
i∈C,i<i1

(∑
yi

p0
i pi(xi, yi)ϕi(yi)

)

× ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+ ∑
i∈C,i>i1

(∑
yi

p0
i pi(xi, yi)ϕi(yi)

)

× ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+ ∑
i∈N,i>i1

( ∑
yi ,...,yn

p0
i pi(xi, yi)

1

mi+1
· · · 1

mn

ϕi(yi) · · ·ϕn(xn)

)

× ϕ1(x1) · · ·ϕi−1(xi−1)

+ ∑
yi1 ,...,yn

(
p0

i1
pi1(xi1, yi1)

1

mi1+1
· · · 1

mn

ϕi1(yi1) · · ·ϕn(xn)

)

× ϕ1(x1) · · ·ϕi1−1(xi1−1)

= ∑
i∈C,i<i1

p0
i λji

ϕ(x) + ∑
i∈C,i>i1

p0
i ϕ(x)

+ ∑
i∈N,i>i1

p0
i ϕ(x) + p0

i1
λji1

ϕ(x)

=
(

i1∑
i=1

p0
i λji

+
n∑

i=i1+1

p0
i

)
ϕ(x).

Observe that, by computing the sum of the dimensions of these eigenspaces, we
get

n∑
k=i1+1

m1 · · ·mk−1(mk − 1) + m1m2 · · ·mi1 = m1m2 · · ·mn,

which is just the dimension of the space X1 × · · · × Xn. �

REMARK 4.4. The expression of the eigenvalues of P given in the previous
theorem tells us that if Pi is ergodic for every i = 1, . . . , n, then also P is ergodic,
since the eigenvalue 1 is obtained with multiplicity 1 and the eigenvalue −1 can
never be obtained.
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We can now give the matrices U,D and � associated with P . For every i, let
Ui , Di and �i be the matrices of eigenvectors, of the coefficients of σi and of
eigenvalues for the probability Pi , respectively. The expression of the matrix U ,
whose columns are an orthonormal basis of eigenvectors for P , easily follows
from Theorem 4.3. In order to get the diagonal matrix D, whose entries are the
coefficients of π , it suffices to consider the tensor product of the corresponding
matrices associated with the probability Pi , for every i = 1, . . . , n, as it follows
from Theorem 4.2. Finally, to get the matrix � of eigenvalues of P it suffices to
replace, in the expression of the matrix P , the matrix Pi by �i and the matrix Ji

by the corresponding diagonal matrix J
diag
i , which has the eigenvalue 1 with mul-

tiplicity 1 and the eigenvalue 0 with multiplicity mi − 1. So we have the following
proposition.

PROPOSITION 4.5. Let P be the crested product of the Markov chains Pi ,
with i = 1, . . . , n. Then we have:

• U =∑n
k=i1+1 M1 ⊗ · · · ⊗ Mk−1 ⊗ (Uk − Ak) ⊗ Ak+1 ⊗ · · · ⊗ An + U1 ⊗ U2 ⊗

· · · ⊗ Ui1 ⊗ Ai1+1 ⊗ · · · ⊗ An, with

Mi =
{

I
σi-norm
i , if i ∈ N ,

Ui, if i ∈ C,

where

I
σi-norm
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
σi(0)

1√
σi(1)

. . .
1√

σi(mi − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Ai we denote the matrix of size mi whose entries on the first column are all 1
and the remaining ones are 0:

• D =⊗n
i=1 Di .

• � =∑i∈C p0
i (I1 ⊗ · · · ⊗ Ii−1 ⊗ �i ⊗ Ii+1 ⊗ · · · ⊗ In) +∑i∈N p0

i (I1 ⊗ · · · ⊗
Ii−1 ⊗ �i ⊗ J

diag
i+1 ⊗ · · · ⊗ J

diag
n ).

Observe that another matrix U ′ of eigenvectors for P is given by U ′ =⊗n
i=1 Ui .

The matrix U that we have given above seems to be more useful whenever one
wants to compute the kth step transition probability p(k)(0, x) using the for-
mula (3), since it contains a greater number of zeros in the first row with respect
to U ′ and so a small number of terms in the sum are nonzero.
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Suppose x = (x1, . . . , xn) and y = (y1, . . . , yn) elements in X = X1 ×· · ·×Xn.
From (3) and Proposition 4.5, we have

p(k)(x, y)

= π(y)

[∑
z∈X

(
n∑

r=i1+1

m1(x1, z1) · · ·mr−1(xr−1, zr−1)(ur − ar)(xr , zr)

× ar+1(xr+1, zr+1) · · ·an(xn, zn)

+ u1(x1, z1) · · ·ui1(xi1, zi1)

× ai1+1(xi1+1, zi1+1) · · ·an(xn, zn)

)
λk

z

×
(

n∑
r=i1+1

m1(y1, z1) · · ·mr−1(yr−1, zr−1)(ur − ar)(yr , zr)

× ar+1(yr+1, zr+1) · · ·an(yn, zn)

+ u1(y1, z1) · · ·ui1(yi1, zi1)

× ai1+1(yi1+1, zi1+1) · · ·an(yn, zn)

)]
,

where mi,ui, ai are the probabilities associated with the matrices Mi,Ui,Ai oc-
curring in Proposition 4.5.

5. The crossed product. The crossed product of the Markov chains Pi’s can
be obtained as a particular case of the crested product, by setting C = {1, . . . , n}
(so that N = ∅) and it is also called the direct product. The analogous case for
product of groups has been studied in [9].

In this case, we get the following transition probability:

p((x1, . . . , xn), (y1, . . . , yn)) =
n∑

i=1

p0
i δ(x1, y1) · · ·pi(xi, yi) · · · δ(xn, yn).

This corresponds to choosing the ith coordinate with probability p0
i and to chang-

ing it according with the probability transition Pi . So we get

p((x1, . . . , xn), (y1, . . . , yn)) =
{

p0
i pi(xi, yi), if xj = yj for all j 
= i,

0, otherwise.

So, for X1 = · · · = Xn =: X and p1
0 = · · · = p0

n = 1
n

, the probability p defines an
analogue of the Ehrenfest model, where n is the number of balls and |X| = m is
the number of urns. In order to obtain a new configuration, we choose a ball with
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probability 1/n (let it be the ith ball in the urn xi ) and with probability pi(xi, yi)

we put it in the urn yi .
As a consequence of Theorem 4.2, we get that if Pi is in detailed balance

with πi , then P is in detailed balance with the strict probability measure π on
X1 × · · · × Xn defined as

π(x1, . . . , xn) = π1(x1)π2(x2) · · ·πn(xn).

The matrix P associated with the probability p is given by

P =
n∑

i=1

p0
i (I1 ⊗ · · · ⊗ Pi ⊗ · · · ⊗ In).(4)

The following proposition studies the spectral theory of the operator P and it is
a straightforward consequence of Theorem 4.3.

PROPOSITION 5.1. Let ϕi
0 = 1Xi

, ϕi
1, . . . , ϕ

i
mi−1 be the eigenfunctions of Pi

associated with the eigenvalues λi
0 = 1, λi

1, . . . , λ
i
mi−1, respectively. Then the

eigenvalues of P are the m1m2 · · ·mn numbers

λI =
n∑

k=1

p0
kλ

k
ik
,

with I = (i1, . . . , in) ∈ {0, . . . ,m1 −1}× · · ·×{0, . . . ,mn −1}. The corresponding
eigenfunctions are defined as

ϕI ((x1, . . . , xn)) = ϕ1
i1
(x1) · · ·ϕn

in
(xn).

As a consequence of Proposition 4.5, in order to get the matrices U,D and �

associated with P , it suffices to consider the tensor product of the corresponding
matrices associated with the probability Pi , for every i = 1, . . . , n. For every i,
let Ui , Di and �i be the matrices of eigenvectors, of the coefficients of πi and of
eigenvalues for the probability Pi , respectively. We have the following corollary.

COROLLARY 5.2. Let P be the probability defined in (4). Then we have

PU = U�,

UT DU = I,

where U =⊗n
i=1 Ui , � =⊗n

i=1 �i and D =⊗n
i=1 Di .

In particular, we can express the kth step transition probability matrix as

P k =
(

n⊗
i=1

Ui

)(
n⊗

i=1

�i

)k( n⊗
i=1

Ui

)T ( n⊗
i=1

Di

)
.
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Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Then we get

p(k)(x, y) = π(y)
∑
I

ϕI (x)λk
IϕI (y)

= π1(y1) · · ·πn(yn)

×∑
I

ϕ1
i1
(x1) · · ·ϕn

in
(xn)(p

0
1λ

1
i1

+ · · · + p0
nλ

n
in
)kϕ1

i1
(y1) · · ·ϕn

in
(yn),

with I = (i1, . . . , in).
As we said in Remark 4.4, if the matrix Pi is ergodic for every i = 1, . . . , n,

then also the matrix P is ergodic, since the eigenvalue 1 can be obtained only by
choosing I = 0n and the eigenvalue −1 can never be obtained.

REMARK 5.3. Put n = 1 and set X = {0,1, . . . ,m − 1}. Consider the action
of the symmetric group Sm on X. The stabilizer of a fixed element x0 = 0 is iso-
morphic to the symmetric group Sm−1. It is well known (see [5]) that (Sm,Sm−1)

is a Gelfand pair and the following decomposition of L(X) into irreducible repre-
sentations holds:

L(X) = V0 ⊕ V1,

where V0 ∼= C is the space of constant functions on X and V1 = {f :X −→
C :
∑m−1

i=0 f (i) = 0}. So we have dimV0 = 1 and dimV1 = m − 1.
Analogously, one can consider the action of the wreath product Sm �Sn on Xn =

X ×· · ·×X, defined in the natural way, and then one can study the decomposition
of L(Xn). We have

L(Xn) ∼= L(X)⊗n ∼=
n⊕

j=0

Wj,

with

Wj = ⊕
w(i1,...,in)=j

Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vin,

where w(i1, . . . , in) = �{k : ik = 1}. So we have dimWj = (n
j

)
(m − 1)j .

If we define on X the uniform transition probability, that is, pu(x, y) = 1
m

for
all x, y ∈ X, then the matrix Pu is the matrix J of size m.

The eigenvalues of this matrix are 1 (with multiplicity 1) and 0 (with multiplicity
m − 1). The corresponding eigenspaces in L(X) are, respectively, V0 ∼= C and
V1 = {f :X −→ C :

∑m−1
i=0 f (i) = 0}.

This means that, by choosing the uniform transition probability on X, one gets
again the results obtained by considering the Gelfand pair (Sm,Sm−1).

Also in the case of Xn we can find again the results obtained (see [5]) by
considering the Gelfand pair (Sm � Sn,Sm−1 � Sn). For Pu = J we have λ0 = 1,
λ1 = · · · = λm−1 = 0. Consider now the transition probability on Xn defined in (4),
with p0

1 = · · · = p0
n = 1

n
. The eigenfunctions ϕI associated with the eigenvalue
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1
n
(n − j), with j = 0, . . . , n, are in number of

(n
j

)
(m − 1)j . Moreover

n∑
j=0

(
n

j

)
(m − 1)j =

n∑
j=0

(
n

j

)
(m − 1)j 1n−j = mn = dimL(Xn).

For every j = 0, . . . , n, these functions belong to Wj and they are a basis for
Wj . So Wj is the eigenspace associated with the eigenvalue 1

n
(n − j).

More generally, consider the case of any reversible transition probability p

on X. Let λ0 = 1, λ1, . . . , λk be the distinct eigenvalues of P and V0 ∼= C,
V1, . . . , Vk the corresponding eigenspaces. We get

L(Xn) ∼= (V0 ⊕ V1 ⊕ · · · ⊕ Vk)
⊗n

.

The eigenfunctions ϕI associated with the eigenvalue 1
n

∑k
i=0 riλi , with

∑k
i=0 ri =

n, are (
r0 + r1 + · · · + rk

r0, . . . , rk

) k∏
i=0

(dimVi)
ri

and the corresponding eigenspaces are the tensor products in which ri copies of
Vi , for i = 0,1, . . . , k, appear. Moreover, the number of different eigenspaces is
equal to the number of integer solutions of the equation

r0 + r1 + · · · + rk = n, ri ≥ 0,

so it is
(k+n

n

)
.

The definition of multinomial coefficient as
(r0+r1+···+rk

r0,...,rk

)= (r0+···+rk)!
r0!r1!···rk ! guaran-

tees that∑
r0+···+rk=n

(
n

r0, . . . , rk

)
(dimV0)

r0 · · · (dimVk)
rk = (dimV0 + · · · + dimVk)

n

= mn,

as we wanted.

6. The nested product.

6.1. General properties. The nested product of the Markov chains Pi’s can be
obtained as a particular case of the crested product, by setting N = {1, . . . , n} (so
that C = ∅). The term nested comes from the association schemes theory (see [2]).

Consider the product

X1 × · · · × Xn

and let Pi be a transition probability on Xi . We assume that pi is in detailed bal-
ance with the strict probability measure πi , for all i = 1, . . . , n.

The formula of crested product becomes, in this case,

P =
n∑

i=1

p0
i (I1 ⊗ · · · ⊗ Pi ⊗ Ji+1 ⊗ Ji+2 ⊗ · · · ⊗ Jn).(5)
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Theorem 4.2 tells us that P is reversible if and only if Pk is symmetric, for every
k > 1, that is, πi = 1

mi
for every i = 2, . . . , n. In this case, P is in detailed balance

with the strict probability measure π on X1 × · · · × Xn given by

π(x1 . . . , xn) = π1(x1)∏n
i=2 mi

.

So let us assume πi to be uniform for every i = 2, . . . , n. The transition probability
associated with P is

p((x1, . . . , xn), (y1, . . . , yn))

= p0
1p1(x1, y1)

m2m3 · · ·mn

+
n−1∑
j=2

δ((x1, . . . , xj−1), (y1, . . . , yj−1))p
0
jpj (xj , yj )

mj+1 · · ·mn

+ δ((x1, . . . , xn−1), (y1, . . . , yn−1))p
0
npn(xn, yn).

As we did in the case of the crossed product, we want to study the spectral
theory of the operator P defined in (5).

Let

L(Xi) =
ri⊕

ki=0

Wi
ki

be the spectral decomposition of L(Xi), for all i = 1, . . . , n and let λi
0 = 1,

λi
1, . . . , λ

i
ri

be the distinct eigenvalues of Pi associated with these eigenspaces.
From Theorem 4.3 we get the following proposition.

PROPOSITION 6.1. The eigenspaces of L(X1 × · · · × Xn) are:

• L(X1) ⊗ · · · ⊗ L(Xn−1) ⊗ Wn
kn

, of eigenvalue p0
nλ

n
kn

, for kn = 1, . . . , rn, with
multiplicity m1 · · ·mn−1 dim(Wn

kn
);

• L(X1) ⊗ · · · ⊗ L(Xj) ⊗ W
j+1
kj+1

⊗ W
j+2
0 ⊗ · · · ⊗ Wn

0 , of eigenvalue p0
j+1λ

j+1
kj+1

+
p0

j+2 + · · · + p0
n, with kj+1 = 1, . . . , rj+1 and for j = 1, . . . , n − 2, with multi-

plicity m1 · · ·mj dim(W
j+1
kj+1

);

• W 1
k1

⊗W 2
0 ⊗· · ·⊗Wn

0 , of eigenvalue p0
1λ

1
k1

+p0
2 +· · ·+p0

n, for k1 = 0,1, . . . , r1,

with multiplicity dim(W 1
k1

).

Moreover, as in the general case, one can verify that, under the hypothesis that
the operators Pi are ergodic, for i = 1, . . . , n, then also the operator P is ergodic.

The application of Proposition 4.5 to the case of the nested product yields the
following corollary.

COROLLARY 6.2. Let P be the nested product of the probabilities Pi , with
i = 1, . . . , n. Then we have:

• U = U1 ⊗ A2 ⊗ · · · ⊗ An +∑n
k=2 I

σ1-norm
1 ⊗ · · · ⊗ I

σk−1-norm
k−1 ⊗ (Uk − Ak) ⊗

Ak+1 ⊗ · · · ⊗ An;
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• D =⊗n
i=1 Di ;

• � =∑n
i=1 p0

i (I1 ⊗ · · · ⊗ Ii−1 ⊗ �i ⊗ J
diag
i+1 ⊗ · · · ⊗ J

diag
n ).

6.2. k-steps transition probability. The formula that describes the transition
probability after k steps in the case of the nested product can be simplified using
the base of eigenvectors given in Corollary 6.2 and supposing that the starting point
is 0 = (0, . . . ,0).

From the general formula, with the usual notation, we get

p(k)(0, y)

= π(y)

[∑
z∈X

(
n∑

r=2

δσ1(0, z1) · · · δσr−1(0, zr−1)(ur − ar)(0, zr)

× ar+1(0, zr+1) · · ·an(0, zn)

+ u1(0, z1)a2(0, z2) · · ·an(0, zn)

)
λk

z

×
(

n∑
r=2

δσ1(y1, z1) · · · δσr−1(yr−1, zr−1)(ur − ar)(yr , zr)

× ar+1(yr+1, zr+1) · · ·an(yn, zn)

+ u1(y1, z1)a2(y2, z2) · · ·an(yn, zn)

)]

= π(y)

[
1 +

n∑
j=2

∑
zj 
=0

zi=0,i 
=j

(
n∑

r=j

1√
σ1(0) · · ·√σr−1(0)

(ur − ar)(0, zr)

)

×
(
p0

r λ
r
zr

+∑
m>r

p0
m

)k

×
(

n∑
r=j

δσ1(y1,0)δσ2(y2, z2) · · ·

× δσr−1(yr−1, zr−1)(ur − ar)(yr , zr)

× ar+1(yr+1, zr+1) · · ·an(yn, zn)

)

+ ∑
z1 
=0

zi=0,i>1

u1(0, z1)

(
p0

1λ
1
z1

+
n∑

m=2

p0
m

)k

u1(y1, z1)

]
.
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Observe that in this case the sum consists of no more than

|X1| +
n∑

i=2

(|Xi | − 1) =
n∑

i=1

|Xi | − n + 1

nonzero terms.

EXAMPLE 6.3. We want to express the kth step transition probability in
the case n = 2. So consider the product X × Y , with X = {0,1, . . . ,m} and
Y = {0,1, . . . , n}. Let

L(X) =
r⊕

j=0

Vj and L(Y ) =
s⊕

i=0

Wi

be the spectral decomposition of the spaces L(X) and L(Y ), respectively. Let
λ0 = 1, λ1, . . . , λr and μ0 = 1,μ1, . . . ,μs be the distinct eigenvalues of PX

and PY , respectively. Then the eigenspaces of L(X × Y) are L(X) ⊗ Wi , for
i = 1, . . . , s, with dimension (m + 1)dimWi and associated eigenvalue p0

Y μi ,
and Vj ⊗ W0, for j = 0, . . . , r , with dimension dimVj and associated eigenvalue
p0

Xλj + p0
Y .

The expression of U becomes
U = I

σX-norm
X ⊗ (UY − AY ) + UX ⊗ AY .

In particular, let {v0, v1
1, . . . , v1

dim(V1)
, . . . , vr

1, . . . , v
r
dim(Vr )

} and {w0,w1
1, . . . ,

w1
dim(W1)

, . . . ,ws
1, . . . ,w

s
dim(Ws)

} be the eigenvectors of PX and PY , respectively,
that is, they represent the columns of the matrices UX and UY .

Then, the columns of the matrix U corresponding to the elements (i,0) ∈
{0, . . . ,m} × {0, . . . , n} are the eigenvectors vi ⊗ (1, . . . ,1) with eigenvalue
p0

Xλi +p0
Y . On the other hand, the columns corresponding to the elements (i, j) ∈

{0, . . . ,m} × {0, . . . , n}, with j = 1, . . . , n, are the eigenvectors(
0, . . . ,0,

1√
σX(i)︸ ︷︷ ︸

ith place

,0, . . . ,0
)

⊗ wj

whose eigenvalue is p0
Y μj . As a consequence, only m+1+n of these eigenvectors

can be nonzero in the first coordinate, so the probability p(k)((0,0), (x, y)) can be
expressed as a sum of m + 1 + n nonzero terms; moreover, these terms become
m + 1 if x 
= 0. We have

p(k)((0,0), (x, y))

= π((x, y))

(
m∑

i=0

vi(0)vi(x)(p0
Xλi + p0

Y )k

+ 1√
σX(0)σX(x)

n∑
j=1

wj(0)δ0(x)wj (y)(p0
Y μj )

k

)



CRESTED PRODUCTS OF MARKOV CHAINS 437

= σX(x)

n + 1

[
r∑

i=0

(dim(Vi)∑
a=1

vi
a(0)vi

a(x)

)
(p0

Xλi + p0
Y )k

+
s∑

j=1

(
1√

σX(0)σX(x)

dim(Wj )∑
b=1

w
j
b(0)δ0(x)w

j
b(y)

)
(p0

Y μj )
k

]
.

6.3. The insect. It is clear that the product X1 × · · · × Xn can be regarded as
the rooted tree T of depth n, such that the root has degree m1, each vertex of the
first level has m2 children and in general each vertex of the ith level of the tree
has mi+1 children, for every i = 1, . . . , n − 1. We denote the ith level of the tree
by Li . In this way, every vertex x ∈ Li can be regarded as a word x = x1 · · ·xi ,
where xj ∈ {0,1, . . . ,mj − 1}.

We want to show that the nested product of Markov chains is the generalization
of the “insect problem” studied by Figà-Talamanca in [11].

Let us imagine that an insect lives in a leaf x ∈ Ln and that it performs a simple
random walk on the graph T starting from x.

Then there exists a probability distribution μx on Ln such that, for every y ∈ Ln,
μx(y) is the probability that y is the first point in Ln visited by the insect in the
random walk. If we put p(x, y) = μx(y), then we get a stochastic matrix P =
(p(x, y))x,y∈Ln . Since the random walk is Aut(T )-invariant, we can suppose that
the random walk starts at the leftmost vertex, that we will call x0 = (0, . . . ,0). We
recall that Aut(T ) is the group of all automorphisms of T , given by the iterated
wreath product Smn � Smn−1 � · · · � Sm1 . We want to study this Markov chain defined
on Ln.

Set ξn = ∅ and ξi = 00 . . .0 (n − i times). For j ≥ 0, let αj be the proba-
bility that the insect reaches ξj+1 given that ξj is reached at least once. This
definition implies α0 = 1 and α1 = 1

mn+1 . In fact, with probability 1, the insect

reaches the vertex ξ1 at the first step and, starting from ξ1, with probability 1
mn+1 it

reaches ξ2, while with probability mn

mn+1 it returns to Ln. Finally, we have αn = 0.
For 1 < j < n, there is the following recursive relation:

αj = 1

mn+1−j + 1
+ αj−1αj

mn+1−j

mn+1−j + 1
.

In fact, starting at ξj , with probability 1
mn+1−j+1 the insect reaches in one step ξj+1,

otherwise with probability
mn+1−j

mn+1−j+1 it reaches ξj−1 or one of its brothers; then,
with probability αj−1 it reaches again ξj and one starts the recursive argument.

The solution, for 1 ≤ j ≤ n − 1, is given by

αj = 1 + mn + mnmn−1 + mnmn−1mn−2 + · · · + mnmn−1mn−2 · · ·mn−j+2

1 + mn + mnmn−1 + mnmn−1mn−2 + · · · + mnmn−1mn−2 · · ·mn−j+1

= 1 − mnmn−1mn−2 · · ·mn−j+1

1 + mn + mnmn−1 + mnmn−1mn−2 + · · · + mnmn−1mn−2 · · ·mn−j+1
.
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Moreover, we have

p(x0, x0) = 1

mn

(1 − α1) + 1

mnmn−1
α1(1 − α2) + · · ·

+ 1

mnmn−1 · · ·m2
α1α2 · · ·αn−2(1 − αn−1) + 1

mn · · ·m1
α1 · · ·αn−1.

Indeed the j th summand is the probability of returning back to x0 if the corre-
sponding random walk in T reaches ξj but not ξj+1. It is not difficult to compute
p(x0, x), where x is a point at distance j from x0. For j = 1, we clearly have
p(x0, x0) = p(x0, x). We observe that, for j > 1, to reach x one is forced to first
reach ξj , so that we have

p(x0, x) = 1

mn · · ·mn−j+1
α1α2 · · ·αj−1(1 − αj ) + · · ·

+ 1

mn · · ·m2
α1α2 · · ·αn−2(1 − αn−1) + 1

mn · · ·m1
α1α2 · · ·αn−1.

Since the random walk is invariant with respect to the action of Aut(T ), which
acts isometrically on the tree, we get the same formula for any pair of vertices
x, y ∈ Ln such that d(x, y) = j .

PROPOSITION 6.4. The stochastic matrix

p((x1, . . . , xn), (y1, . . . , yn))

= p0
1p1(x1, y1)

m2m3 · · ·mn

+
n−1∑
j=2

δ((x1, . . . , xj−1), (y1, . . . , yj−1))p
0
jpj (xj , yj )

mj+1 · · ·mn

+ δ((x1, . . . , xn−1), (y1, . . . , yn−1))p
0
npn(xn, yn),

defined in (5), gives rise to the Insect Markov chain on Ln, regarded as X1 ×· · ·×
Xn, choosing p0

i = α1α2 · · ·αn−i(1−αn−i+1) for i = 1, . . . , n−1 and p0
n = 1−α1

and the transitions probabilities pj ’s to be uniform for all j = 1, . . . , n.

PROOF. Set, for every i = 1, . . . , n − 1,

p0
i = α1α2 · · ·αn−i(1 − αn−i+1)

and p0
n = 1 − α1. Moreover, assume that the probability pi on Xi is uniform, that

is,

Pi = Ji.

If d(x0, x) = n, then we get

p(x0, x) = α1α2 · · ·αn−1

m1m2 · · ·mn

.
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If d(x0, x) = j > 1, that is, x0
i = xi for all i = 1, . . . , n − j , then

p(x0, x) = α1α2 · · ·αn−1

m1m2 · · ·mn

+
n−j∑
i=1

α1 · · ·αn−i−1(1 − αn−i)

mn · · ·mi+2mi+1
.

Finally, if x = x0, we get

p(x0, x0) = α1α2 · · ·αn−1

m1m2 · · ·mn

+
n−2∑
i=1

α1 · · ·αn−i−1(1 − αn−i)

mn · · ·mi+2mi+1
+ (1 − α1)

mn

.

This completes the proof. �

The decomposition of the space L(Ln) = L(X1 × · · · × Xn) under the action of
Aut(T ) is known (see [6]). Denote Z0 ∼= C the trivial representation and, for every
j = 1, . . . , n, define the following subspace:

Zj =
{
f ∈ L(Ln) :f = f (x1, . . . , xj ),

mj−1∑
i=0

f (x1, . . . , xj−1, i) ≡ 0

}

of dimension m1 · · ·mj−1(mj − 1). In virtue of the correspondence between
Aut(T )-invariant operators and bi-StabAut(T )(0n)-invariant functions, the corre-
sponding eigenvalues are given by the spherical Fourier transform of the convolver
that represents P , namely

λj = ∑
x∈Ln

P (x0, x)φj (x),

where φj is the j th spherical function, for all j = 0,1, . . . , n. It is easy to verify
that one gets:

• λ0 = 1;
• λj = 1 − α1α2 · · ·αn−j , for every j = 1, . . . , n − 1;
• λn = 0.

In particular, if we set

p0
i = α1α2 · · ·αn−i(1 − αn−i+1)

for every i = 1, . . . , n − 1, with p0
n = 1 − α1 and Pi = Ji for every i = 1, . . . , n,

the eigenspaces given for L(X1 ×· · ·×Xn) in Proposition 6.1 are exactly the Zj ’s
with the corresponding eigenvalues.

Let us prove that the eigenvalues that we have obtained in Proposition 6.1 coin-
cide with the eigenvalues corresponding to the eigenspaces Z0,Z1, . . . ,Zn.

We want to get these eigenvalues by using the formulas given in Proposi-
tion 6.1 for the eigenvalues of the nested product P by setting Pi = Ji , then
p0

i = α1α2 · · ·αn−i(1 − αn−i+1) for i = 1, . . . , n − 1 and p0
n = 1 − α1. First of all,

we observe that the eigenvalues of the operator Pi are 1, with multiplicity 1 and 0,
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with multiplicity mi − 1. So we get L(Xi) = Wi
0 ⊕ Wi

1, with dim(Wi
1) = mi − 1,

for all i = 1, . . . , n. Following the formulas that we have given, the eigenspaces
of P are:

• L(X1) ⊗ L(X2) ⊗ · · · ⊗ L(Xn−1) ⊗ Wn
1 ;

• L(X1) ⊗ L(X2) ⊗ · · · ⊗ L(Xn−j−1) ⊗ W
n−j
1 ⊗ W

n−j+1
0 ⊗ · · · ⊗ Wn

0 , for every
j = 1, . . . , n − 1;

• W 1
0 ⊗ W 2

0 ⊗ · · · ⊗ Wn
0 .

The corresponding eigenvalues are:

• p0
nλ

n
1 = 0;

• ∑n
i=n−j+1 p0

i , for every j = 1, . . . , n − 1;

• ∑n
i=1 p0

i = 1.

We need to prove that, for every j = 1, . . . , n − 1, the eigenvalue
∑n

i=n−j+1 p0
i

is equal to 1 − α1α2 · · ·αj . We prove the assertion by induction on j .
If j = 1, we have p0

n = 1 − α1. Now suppose the assertion to be true for j and
show that it holds also for j + 1. We get

n∑
i=n−j

p0
i =

n∑
i=n−j+1

p0
i + p0

n−j = 1 − α1α2 · · ·αj + α1 · · ·αj (1 − αj+1)

= 1 − α1 · · ·αjαj+1.

7. The second crested product. In this section we define a different kind of
product of two spaces X and Y , that we will call the second crested product. In
fact it contains, as particular cases, the crossed product and the nested product
described in Sections 5 and 6, respectively. We will study a Markov chain P on
the set �k of functions from X to Y whose domains are k-subsets of X, giving the
spectrum and the relative eigenspaces.

7.1. General theory. Let X be a finite set of cardinality n, say X = {1,2,

. . . , n}. For every k = 1, . . . , n, denote by �k the set of k-subsets of X, so that
|�k| = (nk).

Now let Y be a finite set and let Q be a transition matrix on Y , which is in
detailed balance with the strict probability τ . Let λ0 = 1, λ1, . . . , λm be the distinct
eigenvalues of Q and denote by Wj the corresponding eigenspaces, for every j =
0,1, . . . ,m, so that the following spectral decomposition holds:

L(Y ) =
m⊕

j=0

Wj.

Moreover, assume that the dimension of the eigenspace associated with the eigen-
value 1 is 1 and set dim(Wj ) = mj , for every j = 1, . . . ,m.
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Recall that the eigenspace W0 is generated by the vector

(1, . . . ,1︸ ︷︷ ︸
|Y | times

)

and that Wj is orthogonal to W0 with respect to the scalar product 〈·, ·〉τ , for every
j = 1, . . . ,m.

For every k = 1, . . . , n, consider the space

�k = {(A, θ) :A ∈ �k and θ ∈ YA},
that is, the space of functions θ whose domain A = dom(θ) is a k-subset of X and
which take values in Y .

The set � =∐n
k=0 �k is a poset with respect to the relation ⊆ defined in the

following way:

ϕ ⊆ χ if dom(ϕ) ⊆ dom(χ) and ϕ = χ |dom(ϕ).

The Markov chain P on �k that we are going to define can be regarded as follows.
Let 0 < p0 < 1 a real number. Then, starting from a function θ ∈ �k , with prob-
ability p0 we can reach a function ϕ ∈ �k having the same domain as θ and that
can differ from θ at most in one image, according with the probability Q on Y .

On the other hand, with probability 1 − p0 we can reach in one step a function
ϕ ∈ �k whose domain intersects the domain of θ in k − 1 elements (on which the
functions coincide), and in such a way that the image of the kth element of the
domain of ϕ is uniformly chosen.

Note that P defines a Markovian operator on the space L(�k) of all complex
functions defined on �k .

When Y is the ultrametric space, the Markov chain P represents the so-called
multi-insect, which generalizes the Insect Markov chain already studied. In par-
ticular if |X| = n, we consider k insects living in k different subtrees and moving
only one per each step in such a way that their distance is preserved, giving rise to
a Markov chain on the space of all possible configurations of k insects having this
property.

In fact each element in �k can be regarded as a configuration of k insects and
vice versa. For example, let θ ∈ �k be a function such that dom(θ) = {x1, . . . , xk}
and θ(xi) = yi , with xi ∈ X and yi ∈ Y for all i = 1, . . . , k. Then the correspond-
ing configuration of k insects has an insect at each leaf (xi, yi). They live in all
different subtrees since xi 
= xj for i 
= j .

We observe that the cardinality of this space is
(n
k

)|Y |k . This space can be re-
garded as the variety of subtrees (see [4]) of branch indices (k,1) in the rooted tree
(n, |Y |).

If θ,ϕ ∈ �k , with domains A and B respectively, then define the matrix �,
indexed by �k , whose entries are

�θ,ϕ =
{

1, if |A ∩ B| = k − 1 and θ |A∩B = ϕ|A∩B ,
0, otherwise.
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Observe that the matrix � is symmetric.
The operator P can be expressed in terms of the operator associated with � and

of another operator M as

P = p0M + (1 − p0)
�

norm(�)
,(6)

where M describes the situation in which the domain is not changed and only one
of the images of the function θ ∈ �k is changed according with the probability Q

on Y . An analytic expression for M will be presented below. On the other hand,
� describes the situation in which we pass from a function whose domain is A to
a function whose domain is A � {i} \ {j}, with i /∈ A and j ∈ A, and we choose
uniformly the image in Y of the element i. So the action of � on �k is an analogue
of the Bernoulli–Laplace diffusion model. By norm(�) we indicate the number of
nonzero entries in each row of the matrix associated with �.

It is easy to check that M is in detailed balance with the strict probability mea-
sure defined as

τM(θ) = 1(n
k

) ∏
i∈A

τ(θ(i)),

where θ ∈ �k and dom(θ) = A. On the other hand, it follows from the definition
of the Markov chain � that the weighted graph associated with � is connected.
From this and from the fact that the nonzero entries of � are all equal to 1, we
can deduce that � is reversible and in detailed balance with a uniform probability
measure. This forces τM to be uniform and so we have to assume that τ is uniform
on Y and the matrix Q is symmetric.

In this way, P is in detailed balance with the uniform probability measure π

such that π(θ) = 1
(n
k)|Y |k , for every θ ∈ �k . This choice of τ guarantees that, if f

is any function in Wj , with j = 1, . . . ,m, then
∑

y∈Y f (y) = 0.
The spectral theory of the operator M has been studied in Section 5. In fact, it

corresponds to choosing, with probability 1
k

, only one element of the domain and
to changing the corresponding image with respect to the probability Q on Y , fixing
the remaining ones. So we focus our attention to investigate the spectral theory of
the operator �.

Let us introduce two differential operators.

DEFINITION 7.1. (1) For every k = 2, . . . , n the operator Dk :L(�k) −→
L(�k−1) is defined by

(DkF )(ϕ) = ∑
θ∈�k :ϕ⊆θ

F (θ),

for every F ∈ L(�k) and ϕ ∈ �k−1.



CRESTED PRODUCTS OF MARKOV CHAINS 443

(2) For k = 1, . . . , n the operator D∗
k :L(�k−1) −→ L(�k) is defined by

(D∗
kF )(θ) = ∑

ϕ∈�k−1:ϕ⊆θ

F (ϕ),

for every F ∈ L(�k−1) and θ ∈ �k .

Observe that the operator D∗
k is the adjoint of Dk . The following decomposition

holds:

L(�k) = L

( ∐
A∈�k

YA

)
= ⊕

A∈�k

L(YA).

In order to get a basis for the space L(YA), for every A ∈ �k , we introduce
some special functions that we will call fundamental functions.

DEFINITION 7.2. Suppose that A ∈ �k and that Fj ∈ L(Y ) for every j ∈ A.
Suppose also that each Fj belongs to an eigenspace of Q and set ai = |{j ∈
A :Fj ∈ Wi}|. Then the tensor product

⊗
j∈A F j will be called a fundamental

function of type a = (a0, a1, . . . , am) in L(YA).
In other words, we have(⊗

j∈A

F j

)
(θ) = ∏

j∈A

F j (θ(j)),

for every θ ∈ YA. We also set �(a) = a1 + · · · + am = k − a0.

The introduction of the fundamental functions allows to give a useful expression
for the operators M and �.

If F ∈ L(YA) ⊆ L(�k) is the fundamental function F = ⊗j∈A F j , with

|A| = k and Fj :Y −→ C, then MF = 1
k

∑
j∈A[(⊗i∈A,i 
=j F i) ⊗ QFj ]. So, if

θ ∈ �k and dom(θ) = A, we get

(MF)(θ) = 1

k

∑
j∈A

[ ∏
i∈A,i 
=j

F i(θ(i))

(∑
y∈Y

q(θ(j), y)F j (y)

)]
.

Analogously one has (�F)(θ) =∑ϕ F (ϕ), where the sum is over all ϕ ∈ �k

such that dom(ϕ) ∩ dom(θ) = k − 1 and ϕ ≡ θ on dom(ϕ) ∩ dom(θ). If A =
(dom(θ) ∩ A) � {i} (we denote by � the disjoint union), then(

�

(⊗
j∈A

F j

))
(θ) =∑

ϕ

⊗
j∈A

F j (ϕ) = ∏
j∈dom(ϕ)∩A

F j (θ(j))

(∑
y∈Y

F i(y)

)
.

Denote Pk,a,A the subspace of L(YA) spanned by the fundamental functions of
type a and

Pk,a = ⊕
A∈�k

Pk,a,A.
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LEMMA 7.3. Dk maps Pk,a to Pk−1,a′ , where a′ = (a0 − 1, a1, . . . , am).
Conversely D∗

k maps Pk−1,a′ to Pk,a .

PROOF. Let F be a fundamental function of type a in L(YA) and let B ⊂ A

such that A = B � {i}. Then for every ϕ ∈ YB , we have

(DkF )(ϕ) = ∑
θ∈YA:ϕ⊆θ

F (θ)

= ∑
θ∈YA:ϕ⊆θ

∏
j∈A

F j (θ(j))

=
(∑

y∈Y

F i(y)

) ∏
j∈B

F j (ϕ(j)).

The value of
∑

y∈Y F i(y) is zero if F i ∈ Wj for j = 1, . . . ,m and so DkF ≡ 0
if a0 = 0. If F i ∈ W0, then DkF ∈ Pk−1,a′ .

Analogously, let F ∈ Pk−1,a′,B with B ∈ �k−1. Then for every θ ∈ YA, A =
B � {i}, one has

(D∗
kF )(θ) = ∑

ϕ∈YB :ϕ⊆θ

F (ϕ)

= ∏
j∈B

F j (ϕ(j))

= F i(θ(i))
∏
j∈B

F j (θ(j)),

where F i ≡ 1 on Y (and so F i ∈ W0). �

The restriction of Dk to Pk,a will be denoted by Dk,a and the restriction of D∗
k

to Pk−1,a′ by D∗
k,a .

The study of the compositions of the operators Dk,a and D∗
k,a plays a cen-

tral role. In fact it will be shown that the eigenspaces of these operators are
also eigenspaces for �. Consider, for example, Dk+1D

∗
k+1 applied to a function

F ∈ L(�k) and calculated on θ ∈ �k . The functions ϕ ∈ �k+1 such that ϕ ⊇ θ

are in number of |Y |(n − k). Each of them covers k + 1 functions in �k ; one of
them is the function θ , the other ones are functions in �k whose domains differ
by the domain of θ of an element and coincide on their intersection. These func-
tions are in number of |Y |(n − k)k and they correspond to functions that one can
reach starting from θ in the Markov chain described by �. From this it follows
that norm(�) = |Y |(n − k)k.
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LEMMA 7.4. Let F ∈ Pk,a,A, with A ∈ �k . Then

D∗
k,aDk,a = |Y |(k − �(a)

)
I + Qk,a,

where Qk,a is defined by setting

(Qk,aF )(θ) =
{

0, if F i /∈ W0,
|Y |F(θ), if F i ∈ W0,

(7)

for every θ ∈ �k such that |dom(θ)∩A| = k − 1 and A \ dom(θ) = {i}. We denote
by θ the function in �k whose domain is A and such that θ |A\{i} = θ and θ(i) =
θ(i0), where dom(θ) \ A = {i0}.

PROOF. Take F ∈ Pk,a,A and θ ∈ �k . We have

(D∗
k,aDk,aF )(θ) = ∑

ϕ∈�k−1:ϕ⊆θ

(Dk,aF )(ϕ)

= ∑
ϕ∈�k−1:ϕ⊆θ

∑
ω∈�k :ω⊇ϕ,

dom(ω)=A

F(ω).

If dom(θ) = A, then we get

(D∗
k,aDk,aF )(θ) =∑

j∈A

(∑
y∈Y

F j (y)

) ∏
t∈A\{j}

F t(θ(t))

= |Y |(k − �(a)
)∏
t∈A

F t(θ(t))

= |Y |(k − �(a)
)
F(θ),

where the second equality follows from the fact that
∑

y∈Y F j (y) = |Y | if Fj ∈ W0

and
∑

y∈Y F j (y) = 0 whenever Fj /∈ W0.
On the other hand, if |dom(θ) ∩ A| = k − 1, with A \ dom(θ) = {i}, then

(D∗
k,aDk,aF )(θ) =

(∑
y∈Y

F i(y)

) ∏
j∈A\{i}

Fj (θ(j))

=
{

0, if F i /∈ W0,
|Y |F(θ), if F i ∈ W0,

which is just the definition of Qk,a . �

LEMMA 7.5. Let F ∈ Pk,a′,A, with A ∈ �k . Then

Dk+1,aD
∗
k+1,a = |Y |(n − k)I + Qk,a,

where Qk,a is defined as in (7).
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PROOF. Take F ∈ Pk,a′,A and θ ∈ �k . We have

(Dk+1,aD
∗
k+1,aF )(θ) = ∑

ϕ∈�k+1:θ⊆ϕ

(D∗
k+1,aF )(ϕ)

= ∑
ϕ∈�k+1:θ⊆ϕ

∑
ω∈�k :ω⊇ϕ,

dom(ω)=A

F(ω).

If dom(θ) = A, then we get

(Dk+1,aD
∗
k+1,aF )(θ) = ∑

j∈AC

∑
y∈Y

F (θ)

= |Y |(n − k)F (θ).

On the other hand, if |dom(θ) ∩ A| = k − 1, with A \ dom(θ) = {i}, then

(Dk+1,aD
∗
k+1,aF )(θ) =

(∑
y∈Y

F i(y)

) ∏
j∈A\{i}

Fj (θ(j))

=
{

0, if F i /∈ W0,
|Y |F(θ), if F i ∈ W0,

= (Qk,aF )(θ).

This completes the proof. �

The following corollary easily follows.

COROLLARY 7.6. Let F ∈ Pk,a′,A, with A ∈ �k . Then

Dk+1,aD
∗
k+1,a − D∗

k,a′Dk,a′ = |Y |(n + �(a) − 2k)I.

Consider now the operator Dk,a :Pk,a −→ Pk−1,a′ .

DEFINITION 7.7. For 0 ≤ �(a) ≤ k ≤ n, set

Pk,a,k = Ker(Dk,a)

and inductively, for k ≤ h ≤ n, set

Ph,a,k = D∗
h,aPh−1,a′,k.

These spaces have a fundamental importance because they exactly constitute
the eigenspaces of the operator �. This will be a consequence of the following
proposition.

PROPOSITION 7.8. Ph,a′,k is an eigenspace for the operator Dh+1,aD
∗
h+1,a

and the corresponding eigenvalue is |Y |(n + �(a) − k − h)(h − k + 1).
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PROOF. We prove the assertion by induction on h. If h = k, from the last
corollary we get Dk+1,aD

∗
k+1,a|Pk,a′,k = |Y |(n+�(a)−2k)I , since Dk,a′Pk,a′,k = 0

by definition of Pk,a′,k .
Now suppose the lemma to be true for k ≤ t ≤ h and recall that, by definition,

we have Ph+1,a′,k = D∗
h+1,a′Ph,a′′,k . Moreover, Corollary 7.6 gives

Dh+2,aD
∗
h+2,a − D∗

h+1,a′Dh+1,a′ = |Y |(n + �(a) − 2(h + 1)
)
I.

So we get

Dh+2,aD
∗
h+2,a|Ph+1,a′,k = D∗

h+1,a′ |Dh+1,a′D∗
h+1,a′Ph,a′′,k

+ |Y |(n + �(a) − 2(h + 1)
)
Ph+1,a′,k

= |Y |(n + �(a) − k − h
)
(h − k + 1)D∗

h+1,a′Ph,a′′,k

+ |Y |(n + �(a) − 2(h + 1)
)
Ph+1,a′,k

= |Y |(n + �(a) − k − h − 1
)
(h − k + 2)Ph+1,a′,k,

where the second equality follows from the inductive hypothesis and the third one
from an easy computation. This completes the proof. �

COROLLARY 7.9. Ph,a′,k is an eigenspace for � of eigenvalue |Y |(n+�(a)−
k − h)(h − k + 1) − |Y |(n − h).

PROOF. It suffices to observe that the operator Qh,a defined in (7) coin-
cides with the operator � on the space Ph,a and then the assertion follows from
Lemma 7.5 and Proposition 7.8. �

In particular, after normalizing the matrix � we obtain �
norm(�)

and the corre-

sponding eigenvalue is 1
|Y |(n−h)h

(|Y |(n + �(a) − k − h)(h − k + 1) − |Y |(n − h)).
The following lemma holds.

LEMMA 7.10. Given �(a) and h, then, for �(a) ≤ k ≤ min{h,
n+�(a)

2 }, the
spaces Ph,a′,k are mutually orthogonal.

PROOF. Each Ph,a′,k is an eigenspace for the self-adjoint operator Dh+1,a ×
D∗

h+1,a . Since the eigenvalue |Y |(n+�(a)−k −h)(h−k +1) is a strictly decreas-

ing function of k for k ≤ n+�(a)
2 , then to different values of k correspond different

eigenvalues. This proves the assertion. �

Recall that, if a = (a0, a1, . . . , am), we set a′ = (a0 − 1, a1, . . . , am) and, induc-
tively, ah+1 = ah − (1,0, . . . ,0).
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PROPOSITION 7.11. Let F be a function in Pk,ah−k,k . Then, for �(a) ≤ k ≤
n+�(a)

2 and k ≤ h ≤ n + �(a) − k, we have

‖D∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1F‖2 = (n + �(a) − 2k)!(h − k)!
(n + �(a) − k − h)! |Y |h−k‖F‖2.

In particular, D∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1 is an isomorphism of Pk,ah−k,k onto
Ph,a,k .

PROOF. We prove the assertion by induction on h. For h = k + 1 and F ∈
Pk,a′,k , we have

‖D∗
k+1,aF‖2 = 〈D∗

k+1,aF,D∗
k+1,aF 〉

= 〈Dk+1,aD
∗
k+1,aF,F 〉

= |Y |(n + �(a) − 2k
)‖F‖2

by Proposition 7.8, so the assertion is true. For h > k +1, applying Proposition 7.8
to Dh,aD

∗
h,a , we get

‖D∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1F‖2

= 〈Dh,aD
∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1F,D∗
h−1,a′ · · ·D∗

k+1,ah−k−1F 〉
= |Y |(n + �(a) − k − h + 1

)
(h − k)‖D∗

h−1,a′ · · ·D∗
k+1,ah−k−1F‖2.

Now the proposition follows by induction. �

PROPOSITION 7.12. Assume �(a) ≤ h ≤ n+�(a)
2 . Then:

(1) Ph,a =⊕min{h,n+�(a)−h}
k=�(a) Ph,a,k ;

(2) D∗
h+1,a :Ph,a′ −→ Ph+1,a is an injective map.

PROOF. We prove the assertion by induction on h.
Assume that (1) and (2) are true for �(a) − 1 ≤ h ≤ t ≤ n+�(a)−1

2 . For h =
�(a) − 1 we have P�(a)−1,a = 0 and so the proposition trivially holds.

Since the operator D∗
h,a is the adjoint of Dh,a we have the following decompo-

sition:

Ph,a = Ker(Dh,a) ⊕ D∗
h,aPh−1,a′

= Ph,a,h ⊕ D∗
h,aPh−1,a′ .

In particular

Pt+1,a = Pt+1,a,t+1 ⊕ D∗
t+1,aPt,a′ .
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By induction

Pt,a′ =
t⊕

k=�(a)

Pt,a′,k

and so

Pt+1,a = Pt+1,a,t+1 ⊕ D∗
t+1,a

(
t⊕

k=�(a)

Pt,a′,k

)

=
t+1⊕

k=�(a)

Pt+1,a,k.

This proves (1), while (2) follows from (1) and Proposition 7.11. �

COROLLARY 7.13. The dimension of the spaces Ph,a,k that appear in the
decomposition of Ph,a is

n + �(a) + 1 − 2k

n − k + 1

(
n

k

)(
k

�(a)

)(
�(a)

a1, . . . , am

) m∏
j=1

(dim(Wj ))
aj .

PROOF. From the previous proposition it follows that

dim(Pt+1,a,t+1) = dim(Pt+1,a) − dim(Pt,a′).

Now

dim(Pt+1,a) =
(

n

t + 1

)(
t + 1

a0, a1, . . . , am

) m∏
j=1

(dim(Wj ))
aj .

In fact,
( n
t+1

)
represents the number of (t + 1)-subsets in X and

( t+1
a0,a1,...,am

) ×∏m
j=1(dim(Wj ))

aj represents the number of possible choices in the fundamental
function F =∏r∈A F r of ai functions belonging to the eigenspace Wi of L(Y ).
Thus

dim(Pt+1,a,t+1) =
(

n

t + 1

)(
t + 1

a0, a1, . . . , am

) m∏
j=1

(dim(Wj ))
aj

−
(

n

t

)(
t

a0 − 1, a1, . . . , am

) m∏
j=1

(dim(Wj ))
aj

= n − t − a0

n − t

(
n

t + 1

)(
t + 1

a0, a1, . . . , am

) m∏
j=1

(dim(Wj ))
aj .

Since, by Proposition 7.11, dim(Ph,a,k) = dim(Pk,ah−k,k) one can obtain the result
replacing t by k − 1 and a by ah−k . �
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We want to find now the eigenvector of �
norm(�)

associated with the eigenvalue 1.
Consider in P1,(1,0,...,0) the function

f =
n∑

i=1

fi,

where fi is the fundamental function of type (1,0, . . . ,0) whose domain is {i}. Set

〈f 〉 = P1,(1,0,...,0),0 =: D∗
1,(1,0,...,0)P0,(0,...,0),0.

So the element F0 = D∗
h,(h,0,...,0) · · ·D∗

3,(3,0,...,0)D
∗
2,(2,0,...,0)f is the generator

of the space Ph,(h,0,...,0),0, which has dimension 1. Corollary 7.9 implies that
Ph,(h,0,...,0),0 is an eigenspace for �

norm(�)
and the corresponding eigenvalue is 1.

Moreover, the connectedness of the graph associated with � implies that this is the
unique (up to constant) eigenvector of eigenvalue 1. We denote by P1,(1,0,...,0),1 the
orthogonal subspace to P1,(1,0,...,0),0 in P1,(1,0,...,0). It has dimension n − 1.

Observe that the definition of fundamental functions is strictly linked to the
spectral theory of the operator Q and so of the operator M restricted to each do-
main. In fact, if F is a fundamental function in Ph,a,A, with a = (a0, a1, . . . , am)

and A ∈ �h, then it is an eigenvector for the operator M and the corresponding
eigenvalue is 1

h

∑m
j=0 ajλj . So the set of the eigenvalues of M is given by

(n
h

)
copies of these values. In particular, the eigenspace Ph,a,k of �

norm(�)
is also an

eigenspace for M and an eigenvector in this space has eigenvalue 1
h

∑m
j=0 ajλj .

So, by Corollary 7.9 and definition (6) of P , we get the following theorem.

THEOREM 7.14. Ph,a,k is an eigenspace for P with eigenvalue

p0 · 1

h

m∑
j=0

ajλj + (1 − p0)
(n + �(a) − k − h)(h − k + 1) − (n − h)

h(n − h)
.

REMARK 7.15. It is easy to check that the operator M is not ergodic. In fact
its associated graph contains

(n
h

)
connected components and so the multiplicity of

the eigenvalue 1 for M is
(n
h

)
.

On the other hand we already observed that the operator �
norm(�)

has the eigen-
value 1 with multiplicity 1. To conclude that it is ergodic it suffices to show that −1
is not an eigenvalue, that is, the associated graph is not bipartite. In fact consider
θ ∈ �h with domain {i1, . . . , ih} and θ(ij ) = yj , for every j = 1, . . . , h. By defini-
tion of � we can connect θ with ϕ, whose domain is {i1, . . . , ih−1, it }, ih 
= it and
such that ϕ(ij ) = yj = θ(ij ) for all j = 1, . . . , h − 1 and ϕ(it ) = yt . Moreover θ

can also be connected with � whose domain is {i1, . . . , ih−2, ih, it } and such that
�(ij ) = yj = θ(ij ) for all j = 1, . . . , h − 2, h and �(it ) = yt = ϕ(it ). On the other
hand ϕ and � are connected as well and this proves that the graph is not bipartite.

From Proposition 3.4 we can deduce the ergodicity for the operator P , since the
multiplicity of the eigenvalue 1 is 1 and the eigenvalue −1 does not appear in the
spectrum of P .
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REMARK 7.16. The second crested product reduces to the crossed product if
k = n and to the nested product if k = 1.

In fact, if k = n, the domain of a function θ ∈ �n cannot be changed and θ

can be identified with the n-tuple (y1, . . . , yn) ∈ Yn of its images. The operator P

becomes

P = 1

n

n∑
i=1

I1 ⊗ · · · ⊗ Ii−1 ⊗ Q ⊗ Ii+1 ⊗ · · · ⊗ In,

which is the crossed product on the space Yn.
If k = 1, then � has the following expression:

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · · · · 1

1 0 1
...

... 1
. . .

...
...

. . . 1
1 · · · · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and norm(�) = n − 1. So we get

P = p0(IX ⊗ Q) + (1 − p0)

(
�

norm(�)
⊗ JY

)
,

which is just the nested product of X and Y , with PX = �
norm(�)

and PY = Q.

7.2. Bi-insect. In what follows, we take Y as a homogeneous rooted tree of
degree q and depth m − 1 and we give an explicit description of the spectrum of
the operator P = p0M + (1−p0)

�
norm(�)

acting on the space L(�2). Therefore we
are considering functions in �2 such that the image of each element of the domain
is an insect. In other words, our aim is to diagonalize the bi-insect Markov chain
defined in Section 2.2.2.

Suppose X to be a set of cardinality n and let m ≥ 3. Recall that we have the
decomposition

L(Y ) =
m−1⊕
j=0

Wj,

where W0 ∼= C and

Wj =
{
f ∈ L(Lm−1) :f = f (x1, . . . , xj ),

q−1∑
i=0

f (x1, . . . , xj−1, i) ≡ 0

}
,

for every j = 1, . . . ,m − 1. Observe that dim(Wj ) = qj−1(q − 1).
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The eigenspaces relative to the operator �/norm(�) are the subspaces of the
form P2,(a0,a1,...,am−1),k , with k = 0,1,2. The corresponding eigenvalue is

1

qm−1(n − 2)2

[
qm−1(n + �(a) − k − 2

)
(2 − k + 1) − qm−1(n − 2)

]
.

So, by dependence of �(a), we get the following eigenspaces:

• P2,(a0,a1,...,am−1),2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0 = 0, with eigenvalue λ = 0,

a0 = 1, with eigenvalue λ = − 1

2(n − 2)
,

a0 = 2, with eigenvalue λ = − 1

n − 2
,

• P2,(a0,a1,...,am−1),1

⎧⎪⎪⎨
⎪⎪⎩

a0 = 1, with eigenvalue λ = 1

2
,

a0 = 2, with eigenvalue λ = n − 4

2(n − 2)
,

• P2,(2,0,...,0),0 ⇒ a0 = 2 with eigenvalue λ = 1.

Now we describe the eigenvalues of these eigenspaces with respect to the oper-
ator M and to join the results.

If F is a fundamental function of type (a0, a1, . . . , am−1), then it has eigenvalue
1
2
∑m−1

j=0 ajλj , where λj = 1 − q−1
qm−j−1

is the eigenvalue of the eigenspace Wj , of

dimension qj−1(q − 1), occurring in the spectral decomposition of L(Y ). From
this we can fill the following table in which we give the eigenspaces, together with
the corresponding eigenvalue and dimension.

• P2,(a0,a1,...,am−1),2. We have three different cases:

(1) if a0 = 0, the corresponding eigenspace is

P2,(0,...,0, 1︸︷︷︸
ith place

,0,...,0, 1︸︷︷︸
j th place

,0,...,0),2

of dimension n(n − 1)(q − 1)2qi−1qj−1, with eigenvalue p0
2 (λi + λj );

(2) if a0 = 1, the corresponding eigenspace is

P2,(1,...,0, 1︸︷︷︸
ith place

,0,...,0),2

of dimension n(n − 2)(q − 1)qi−1, with eigenvalue p0
1+λi

2 + (1 − p0)
−1

2(n−2)
;

(3) if a0 = 2, the corresponding eigenspace is P2,(2,0,...,0),2 of dimension
n(n−3)

2 with eigenvalue p0 + (1 − p0)
−1
n−2 .

• P2,(a0,a1,...,am−1),1. We have two different cases:
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(1) if a0 = 1, the corresponding eigenspace is

P2,(1,...,0, 1︸︷︷︸
ith place

,0,...,0),1

of dimension n(q − 1)qi−1, with eigenvalue p0
1+λi

2 + 1−p0
2 ;

(2) if a0 = 2, the corresponding eigenspace is P2,(2,0,...,0),1 of dimension
n − 1, with eigenvalue p0 + (1 − p0)

n−4
2(n−2)

.

• P2,(2,0,...,0),0. In this case, the dimension of the eigenspace is 1 with eigen-
value 1.
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