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A PHASE TRANSITION FOR COMPETITION INTERFACES
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We study the competition interface between two growing clusters in a
growth model associated to last-passage percolation. When the initial unoc-
cupied set is approximately a cone, we show that this interface has an asymp-
totic direction with probability 1. The behavior of this direction depends on
the angle θ of the cone: for θ ≥ 180◦, the direction is deterministic, while
for θ < 180◦, it is random, and its distribution can be given explicitly in cer-
tain cases. We also obtain partial results on the fluctuations of the interface
around its asymptotic direction. The evolution of the competition interface
in the growth model can be mapped onto the path of a second-class parti-
cle in the totally asymmetric simple exclusion process; from the existence of
the limiting direction for the interface, we obtain a new and rather natural
proof of the strong law of large numbers (with perhaps a random limit) for
the position of the second-class particle at large times.

1. Introduction. The behavior of the boundary (or “growth interface”) of a
randomly growing cluster has been much investigated. In many models, the grow-
ing region, after linear rescaling, is seen to converge to a deterministic asymp-
totic shape, and the fluctuations of the growth interface follow either Gaussian or
Kardar–Parisi–Zhang scales. See, for example, [19] for a wide-ranging review.

A less well-studied phenomenon is the “competition interface” between two
clusters growing in the same space. Derrida and Dickman [4] describe simulations
of a first-passage percolation model (or Eden model) in which two clusters grow
into a vacant sector of the plane with angle θ . They obtain values for the rough-
ening exponents of the competition interface: the fluctuations of this interface at
distance r are of order rχ , where χ = 1/3 for θ < 180◦, χ = 2/3 for θ = 180◦
and χ = 1 for θ > 180◦. However, they note that χ = 1 does not describe the true
roughness of the interface in the last case, but instead indicates a random direction;
if instead χ is defined in terms of the fluctuations of the interface about its (maybe
random) asymptotic direction, one should expect to see χ = 2/3.

We investigate analogous questions for a related growth model which is asso-
ciated to directed last-passage percolation in the plane. The exact solvability of
this model makes it possible to obtain rigorous results about the existence and
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distribution of an asymptotic direction of the interface, and about its roughness.
A further important motivation is the relation between the competition interface
in this model and the behavior of a second-class particle in the totally asymmetric
simple exclusion process (TASEP), which we describe below.

The growth model can be described as follows (see Section 2 for precise defi-
nitions and notation). At a given time t the occupied set �t is a decreasing subset
of Z2 (i.e., if z is occupied, then so is any point below and to the left of z). If z is
unoccupied but both z − (0,1) and z − (1,0) are occupied, then z is added to the
occupied set at rate 1. That is, if G(z) is the time at which z joins the occupied set,
then the quantities G(z) − max{G(z − (0,1)),G(z − (1,0))} are exponential ran-
dom variables with rate 1 (and independent for different z). Since the occupied set
�t is a decreasing set, we can equivalently consider the growth interface γt which
is the boundary of �t , and which is a path in Z2 taking steps down and to the right.

We consider initial growth interfaces which pass through the points (−1,0),
(0,0) and (0,−1). Hence γ0 consists of one (half-infinite) path in the lower-right
quadrant and another in the upper-left quadrant. The competition occurs as follows.
Each point in the upper-left part of γ0 belongs to cluster 1, and each point in the
lower-right part belongs to cluster 2. When a new point z is added to the occupied
set, it joins the same cluster as z̃, where z̃ is the argument that maximizes G(z −
(0,1)) and G(z − (1,0)). That is, it joins the same cluster as whichever of its
neighbors (below and to the left) was occupied most recently. [The label of the
site (0,0) may be left ambiguous, but we stipulate that site (0,1) always joins
cluster 1 and site (1,0) always joins cluster 2.] Let �1

t and �2
t be the points that

are occupied at time t by cluster 1 or cluster 2, respectively (so �t = �1
t ∪ �2

t ). We
can further consider the sets �1∞ and �2∞ of points which (eventually) join clusters
1 and 2, respectively. These sets are separated by the competition interface, which
is a directed path with up-right steps, lying in the positive quadrant (Figure 1).

(a) (b)

FIG. 1. Numerical simulations of the competing growth model with θ = 90◦, where the unoccupied
set at time 0 is precisely the positive quadrant. The pictures show the clusters �1

t and �2
t at t = 100,

for two different realizations (a) and (b). The darker cluster is �1
t and the gray one is �2

t ; background
is light gray.
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We will assume that both ends of the initial growth interface γ0 have an asymp-
totic direction. Thus the unoccupied set at time 0 is approximately a cone, with
some angle θ ∈ [90◦,270◦]. We will show that under this assumption, the com-
petition interface converges with probability 1 to a limiting direction. There is a
phase transition in the behavior as a function of θ . For concave or flat initial sectors
(θ ≥ 180◦), the limiting direction is deterministic (and we calculate it); for a con-
vex sector (θ < 180◦) the limiting direction is random. (The phases are opposite
to those observed by Derrida and Dickman, since we consider last-passage rather
than first-passage growth rules.)

The last-passage percolation representation is as follows: G(z) can be described
as the maximal weight of a directed (up-right) path starting from some point in
γ0 and ending at z, where the weights at each site of Z2+ are i.i.d. exponential
random variables with mean 1. Since the initial interface γ0 is the union of two
half-lines with asymptotic directions, we are led to develop a sequence of results
concerning a point to half-line percolation model, in order to prove the existence
of the asymptotic direction of the competition interface. In particular, we extend
the concept of “h-straightness” for the forest of optimal paths, developed for point-
to-point percolation models by Newman and co-authors in [22] and later papers.

One of the main motivations is the relation between the competition interface
and the second-class particle in the TASEP, developed by Ferrari and Pimentel [11]
to treat the case where the initial unoccupied sector is exactly the positive quadrant.
The TASEP has state space {0,1}Z. At each site of Z, there is either a particle or
a hole. Each particle tries to jump at rate 1 to the right, and a jump succeeds
if the site to its right is unoccupied (so that the particle and hole then exchange
places). A second-class particle arises when the initial configuration is modified at
a single site, and the two processes with and without the perturbation are allowed
to evolve using the same random mechanism (the so-called basic coupling). At
later times the two processes still differ at exactly one site, and the position of
this discrepancy is called a second-class particle. More concretely, it moves in the
TASEP according to the following rule: it jumps to the right at rate 1 when the
site on its right is unoccupied, and when the site on its left contains a particle, it
exchanges places with this particle at rate 1.

The TASEP and the last-passage percolation growth model can be coupled, us-
ing a construction that originates with Rost [25]. Using the construction from [11],
the TASEP with a second-class particle can be represented by a TASEP with an ex-
tra site, in which the site containing the second-class particle is replaced by a pair
of sites containing a hole on the left and a particle on the right. Thus the TASEP
with a second-class particle can also be coupled with the growth process, and one
obtains in fact that the path of the second-class particle corresponds to the evolu-
tion of the competition interface. Under this coupling, initial growth interfaces γ0
satisfying the conditions described above correspond to initial TASEP configura-
tions η0 with a second-class particle at the origin, and in which the configurations
to the left and to the right of the origin have some asymptotic particle densities, say



284 P. A. FERRARI, J. B. MARTIN AND L. P. R. PIMENTEL

λ and ρ, respectively. The limit result for the direction of the competition interface
can be shown to correspond to a strong law of large numbers for the position of
the second-class particle. If Xt is the position of the second-class particle at time t ,
then Xt/t converges with probability 1, to a limit which is deterministic if λ ≤ ρ

(corresponding to the case θ ≥ 180◦) and random if λ > ρ. See the discussion af-
ter Theorem 3 for references to versions of these laws of large numbers for Xt/t

which have previously appeared in the literature.
A particularly interesting case occurs when λ > ρ and the initial TASEP config-

uration is distributed according to product measure with particle density λ to the
left of the origin and density ρ to the right. In this case the random limit of Xt/t is
precisely the uniform distribution on (1 − 2λ,1 − 2ρ). This had been obtained as
a limit in distribution by Ferrari and Kipnis [8], and the almost sure convergence
was proved by Mountford and Guiol [21]. Using the distributional limit one can
derive the distribution of the limiting direction of the competition interface in the
corresponding case, where the two parts of the initial growth interface γ0 are given
by two independent random walks going up-left and down-right from the origin.
Indeed, the interplay between the two equivalent models of TASEP and growth
process is particularly satisfying in this case. Our methods using the competition
interface provide a new and rather intuitive proof of the almost sure convergence
of Xt/t to some limit; however, the distribution of this limit (and hence also the
distribution of the limiting direction of the competition interface) is most naturally
derived in the context of the TASEP as was done in [8].

We also provide some partial results about the fluctuations of the competition
interfaces. When the initial interface is of random-walk type and the initial growth
interface is concave, we show that the roughening exponent of the interface is
χ = 1/2. In this case we show that the behavior of the interface on the scale of
the fluctuations can effectively be read off from the initial growth interface, and
we compute explicitly the covariance matrix of the bidimensional Gaussian vector
describing the fluctuations about the asymptotic inclination. For flat initial sectors
of random-walk type, we show that χ = 2/3; this is done by showing that the
competition interface has the same distribution as an infinite geodesic in the last-
passage percolation model, whose roughening exponent can be derived from the
results of Balázs, Cator and Seppäläinen [1]. For convex initial sectors we can
show that χ ≤ 3/4, by an argument involving the bounding of the competition
interface between two infinite geodesics with the same asymptotic direction.

We now comment briefly on other recent results concerning related competi-
tion growth models. In a first-passage model in which each cluster starts from, say,
a single grain, it is already possible that one cluster is surrounded by the other and
is unable to grow further. Various results showing that mutual unbounded growth
is possible have been obtained in, for example, [3, 12, 13, 15]. In these models
on Zd , the lack of information about the asymptotic shape typically makes it im-
possible to prove that the competition interface has a limiting direction; in models
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with rotational symmetry, however, more is possible; see, for example, [23] for re-
sults in the case of a model based on a Delaunay triangulation. For the polynuclear
growth model, which is closely related to last-passage percolation, results on as-
ymptotic directions and fluctuations for competition interfaces and similar objects
are obtained in [2]. Similar phenomena are also observed in [17, 18] for competi-
tion interfaces in models which include voter-type dynamics as well as growth, so
that the cluster to which an occupied site belongs may not be constant over time.

The rest of the paper is organized as follows. In Section 2 we describe the mod-
els precisely, and state the main results. Theorem 1 concerns the existence of a
limiting direction for the competition interface and Theorem 2 concerns the dis-
tribution of this direction. The corresponding results for the TASEP are given in
Theorem 3 (followed by references on related results which already exist in the
literature for the TASEP). Our results on fluctuations are given in Theorems 4–6.
During Section 2 we also give a “shape theorem” for the percolation model (Propo-
sition 2.1) and explain how the different possible behaviors of the asymptotic shape
correspond to the different phases observed for the limiting direction of the com-
petition interface. In Section 3 we prove a sequence of results concerning the point
to half-line last-passage percolation model, and use them to prove the laws of large
numbers for the competition interface. The proofs of fluctuation results are given
in Section 4.

2. Definitions and results.

2.1. Last-passage percolation and competition interfaces. Let X := {X(z),

z ∈ Z2} be a family of i.i.d. exponential random variables with mean 1. Let P be
the probability induced by these variables. For z ∈ Z2, we write z = (z(1), z(2))

and |z| = |z(1)|+|z(2)|. A directed path in Z2 is a (finite or infinite) path z1, z2, . . .

such that zi+1 − zi ∈ {(0,1), (1,0)} for each i = 1,2, . . . . For z ≤ z′, let 	(z, z′)
be the set of directed paths starting at z and ending at z′. The last-passage time
from z to z′ is defined by

T (z → z′) = max
π∈	(z,z′)

{∑
y∈π

X(y)

}
.(2.1)

The path π realizing the maximum is called the geodesic connecting z to z′.
A semi-infinite path z0, z1, . . . is called a semi-infinite geodesic if for all k, �,
the subpath zk, . . . , z� is the geodesic connecting zk and z�. Geodesics satisfy the
backward recurrence property

T (z → zk−1) = max
{
T

(
z → zk − (0,1)

)
, T

(
z → zk − (1,0)

)}
.(2.2)

We define a random region in the plane as follows. Let 0 > α1 ≥ α2 ≥ · · · and
0 > β1 ≥ β2 ≥ · · · be nonincreasing integer sequences. Define the set �0 ⊂ Z2
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FIG. 2. The initial configuration: α1 = −3, α2 = α3 = −6, β1 = −1, β2 = −2. �0 is the region
below the line γ0.

to be

{(m, k) :m ≤ 0, k ≤ 0} ∪ {(m, k) :k > 0,m ≤ αk}
(2.3)

∪{(m, k) :m > 0, k ≤ βm}.
The union of the point (0,0) and the points in the sequences (αk, k)k>0 and
(m,βm)m>0 is denoted γ0. The set γ0 coincides with the upper-right corners of
the line defining the boundary of �0; abusing notation, we also call this line γ0.
See Figure 2. We assume that γ0 has asymptotic directions:

lim
k→∞

αk

k
= −(1 − λ)

λ
and lim

m→∞
βm

m
= −ρ

1 − ρ
,(2.4)

for some λ ∈ (0,1] and ρ ∈ [0,1). Then γ0 is the boundary of a “cone” containing
the complement of �0, including the positive quadrant, whose asymptotic angle is
in [90◦,270◦). The angle is in [90◦,180◦) if and only if λ > ρ.

We write Ak = (αk + 1, k), k ≥ 1, and Bm = (m,βm + 1), m ≥ 1. For z /∈ �0,
define

G1(z) = max
0<k≤z(2)

T (Ak → z)

and

G2(z) = max
0<m≤z(1)

T (Bm → z),

with, say, G1(z) = 0 if z(2) ≤ 0 and G2(z) = 0 if z(1) ≤ 0.
Define

G(z) = max{G1(z),G2(z)}.(2.5)

This is the last-passage time from the set

{Ak, k ≥ 1} ∪ {Bm,m ≥ 1}(2.6)
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to z. The quantities G(z) satisfy the recurrence relation

G(z) = X(z) + max
{
G

(
z − (0,1)

)
,G

(
z − (1,0)

)}
,(2.7)

with boundary condition G(z) = 0 if z ∈ �0. Since the weights are independent
with a continuous distribution, with probability 1 all paths have different weights,
and so G(z) is achieved by a unique optimal path z0 ∈ �0, z1, . . . , zn = z, which
can be recovered backward with the recurrence relation

zk−1 =
{

zk − (1,0), if G
(
zk − (1,0)

)
> G

(
zk − (0,1)

)
,

zk − (0,1), otherwise,
(2.8)

so that zk−1 = arg max{G(zk − (0,1)),G(zk − (1,0))}. Of course, the length n of
the optimal path depends on z, �0 and X.

For t > 0, define the growth process

�t = {z :G(z) ≤ t},(2.9)

and the competing growth process

�1
t = {z /∈ �0 :G2(z) < G1(z) ≤ t},(2.10)

�2
t = {z /∈ �0 :G1(z) < G2(z) ≤ t};(2.11)

see Figure 3. Hence if z /∈ �0 and G(z) ≤ t , then z ∈ �1
t if the optimal path to z

comes from some Ak , and z ∈ �2
t if the optimal path to z comes from some Bm.

The dynamics of the model can be explained as follows. �t is the set of “oc-
cupied vertices” at time t . We denote by γt its boundary, the growth interface at
time t . This set is increasing in t , and at any t it is a decreasing set: if z ∈ �t and
z′ ≤ z, then z′ ∈ �t also. Each site z becomes occupied at rate 1, once the sites
z − (0,1) and z − (1,0) are both occupied. Each added site joins one of two clus-
ters as follows: sites (m, k) with m ≤ 0, k > 0 (upper-left quadrant) join cluster 1;
sites (m, k) with m > 0, k ≤ 0 (lower-right quadrant) join cluster 2; sites (m, k)

with m > 0, k > 0 may join either cluster, depending on which cluster contains

FIG. 3. Growth and competition interfaces. �1
t is the set with boundaries γ0, γt above φ and �2

t is
the set with boundaries γ0, γt below φ.
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sites (m − 1, k) and (m, k − 1); if these two neighbors both belong to the same
cluster, then (m, k) joins this cluster also; if they differ [and then in fact we must
have that (m − 1, k) is in cluster 1 and (m, k − 1) is in cluster 2], then (m, k) joins
the cluster of the neighbor which became occupied more recently.

�
j∞ is the set of sites which eventually join cluster j . �1∞ and �2∞ are con-

nected and have the following “increasing set” properties. If (m, k) ∈ �1∞, then
also (m, k′) ∈ �1∞ for all k′ > k; if (m, k) ∈ �2∞, then also (m′, k) ∈ �2∞ for all
m′ > m. The sets �1∞ and �2∞ are separated by the competition interface. This
consists of the path of sites z such that z+ (0,1) ∈ �1∞ while z+ (1,0) ∈ �2∞. This
path starts at φ0 := (0,0): we write it as φ = (φ0, φ1, φ2, . . .). It can be constructed
recursively as follows. Given φn, let φn+1 be equal to φn + (1,0) if φn + (1,1)

belongs to �1∞, and be equal to φn + (0,1) if φn + (1,1) belongs to �2∞. Equiv-
alently, φn+1 equals φn + (1,0) if G(φn + (1,0)) < G(φn + (0,1)), and equals
φn + (0,1) otherwise [because the point φn + (1,1) takes the color of whichever
of its neighbors below or to the left is occupied later]. Thus

φn+1 = arg min
{
G

(
φn + (1,0)

)
,G

(
φn + (0,1)

)}
.(2.12)

So the competition interface starts at (0,0), and thereafter takes steps either to the
vertex above or to the vertex to the right, choosing whichever is occupied first. We
show that this interface φ converges almost surely to an asymptotic direction:

THEOREM 1. If the initial growth interface γ0 satisfies (2.4), then P-a.s. there
exists an angle θ ∈ [0,90◦] (which may be random, with a distribution depending
on γ0), such that

φn

|φn| → eiθ := (cos θ, sin θ) as n → ∞.(2.13)

The convergence of the competition interface is proved in Section 3, using re-
sults for point to half-line percolation.

In the case λ > ρ especially, we emphasize one particular class of initial distrib-
utions of the growth interface. Let λ ∈ (0,1] and ρ ∈ [0,1) and define a random ini-
tial growth interface γ0 = (γ0(j))j∈Z ⊆ Z2 with γ0(−1) = (−1,0), γ0(0) = (0,0),
γ0(1) = (0,−1), as follows. Starting from (−1,0), walk one unit up with proba-
bility λ and one unit left with probability 1−λ to obtain (γ0(j))j<0. Then, starting
from (0,−1) walk down with probability ρ and right with probability 1 − ρ to get
(γ0(j))j>0. [In this case, the sequences (αk −αk+1) and (βm −βm+1) are indepen-
dent, and each is an i.i.d. sequence of geometric random variables taking values
in {0,1,2, . . .} with means (1 − λ)/λ and ρ/(1 − ρ), respectively.] We denote by
ν = νλ,ρ the law of γ0.

We show that there is a phase transition from a random to a deterministic di-
rection for the competition interface when the initial growth interface goes from
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convex to concave:

THEOREM 2. (a) If γ0 satisfies (2.4) with λ ≤ ρ then the angle θ in Theorem 1
is P-a.s. constant, and is given by

tan θ = λρ

(1 − λ)(1 − ρ)
.(2.14)

(b) If γ0 satisfies (2.4) with λ > ρ then P-a.s the angle θ satisfies

(
ρ

1 − ρ

)2
≤ tan θ ≤

(
λ

1 − λ

)2

.(2.15)

(c) If furthermore γ0 is distributed according to νλ,ρ with λ > ρ, then the
distribution of the angle θ is given by

tan θ =
(

1 − U

1 + U

)2

,(2.16)

where U is a random variable uniformly distributed on [1 − 2λ,1 − 2ρ].

The condition that γ0 is distributed according to the measure νλ,ρ is essential
to the result of (2.16). A local perturbation of the measure would give rise to a
different asymptotic law.

In Section 3, we give a direct proof of Theorem 1, which also yields the bounds
in (2.15) and the limiting direction in (2.14). The results for λ ≤ ρ also follow from
the law of large numbers in Seppäläinen [26] for the second-class particle and the
correspondence of the interface with the second-class particle described later in
this paper. This correspondence is also crucial in our proof of (2.16), where we use
the weak law of large numbers proved by Ferrari and Kipnis [8] for the path of the
second-class particle.

In Section 3 we will also prove and use the following result which describes the
linear growth of the passage times in each direction in the positive quadrant:

PROPOSITION 2.1. Suppose that γ0 satisfies (2.4). Then with probability 1,

lim
|z|→∞,z∈Z2+

G(z) − p(z)

|z| = 0,(2.17)
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where

p(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√
z(1) + √

z(2)
)2

,

if
(

ρ

1 − ρ

)2

≤ z(2)

z(1)
≤

(
λ

1 − λ

)2

,

z(1)

1 − λ
+ z(2)

λ
,

if
z(2)

z(1)
≥ max

((
λ

1 − λ

)2

,
λρ

(1 − λ)(1 − ρ)

)
,

z(1)

1 − ρ
+ z(2)

ρ
,

if
z(2)

z(1)
≤ min

((
ρ

1 − ρ

)2

,
λρ

(1 − λ)(1 − ρ)

)
.

(2.18)

[The definition in (2.18) makes sense since λρ
(1−λ)(1−ρ)

is always between ( λ
1−λ

)2

and (
ρ

1−ρ
)2, whatever the values of λ and ρ.]

Note that p(αz) = αp(z) for all α > 0 and z ∈ Z2+. Then Proposition 2.1 can
easily be rewritten in the form of a “shape theorem,” giving an asymptotic shape
under linear rescaling for the covered region, or rather its intersection with the
positive quadrant. Recall that �t = {z :G(z) ≤ t} and let �t = (�t + [0,1]2) ∩ R2+
(we have added a box of area 1 to each point to form a subset of R2+ from the set of
points in Z2+). Now let � be the set {y ∈ R2+ :p(y) ≤ 1}. Then for all ε > 0, with
probability 1, for sufficiently large t > 0

t (1 − ε)� ⊆ �t ⊆ t (1 + ε)�.(2.19)

Equally, this implies that the intersection of the rescaled growth interface
γt/t with the positive quadrant eventually lies between the curves (1 − ε)γ and
(1 + ε)γ , where γ is the curve {y :p(y) = 1}. We can relate the law of large
numbers for the competition interface to the form of the curve p(y) = 1 given
in Proposition 2.1. When λ > ρ, the limiting curve consists of two straight line-
segments joined smoothly by a curved part. The angle of the competition inter-
face is random, and its distribution is supported on the cone spanning the curved
part. As λ − ρ approaches 0 from above, this cone becomes smaller and disap-
pears when λ = ρ. In this case p(y) = 1 is a straight line and the competition
interface has a deterministic direction. For λ < ρ, the curve p(y) = 1 consists
of two straight line-segments, and the competition interface has a deterministic
angle, along the direction of the “shock” joining these two line-segments. See Fig-
ure 4.

2.2. Simple exclusion and second-class particles. The totally asymmetric sim-
ple exclusion process (TASEP) (ηt , t ≥ 0) is a Markov process in the state space
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FIG. 4. A plot of the curve p(z) = 1 for λ = 0.5 and ρ = 0.2, together with the lines z(2)
z(1)

= ( λ
1−λ

)2

and z(2)
z(1)

= (
ρ

1−ρ
)2 which separate the linear parts of the curve from the curved part when ρ < λ.

{0,1}Z whose elements are particle configurations. ηt (j) = 1 indicates a particle
at site j at time t ; otherwise ηt (j) = 0 (a hole is at site j at time t). With rate 1,
if there is a particle at site j , it attempts to jump to site j + 1; if there is a hole at
j + 1 the jump occurs, otherwise nothing happens.

To construct a realization of this process à la Harris, one considers independent
one dimensional Poisson processes N = (Nx(·), x ∈ Z) of intensity 1; let Q be the
law of N . The process (ηt , t ≥ 0) can be constructed as a deterministic function
of the initial configuration η0 and the Poisson processes N as follows: if s is a
Poisson epoch of Nx and there is a particle at x and no particle at x + 1 in the
configuration ηs−, then at time s the new configuration is obtained by making
the particle jump from x to x + 1. Let � be the function that takes η0 and N to
(ηt , t ≥ 0).

Connection to the growth interface. We relate the simple exclusion process to
the growth model by the following method which originates with Rost [25].

We first relate initial configurations for the exclusion processes and initial
growth interfaces bijectively: given an initial configuration η0, define γ0 by
γ0(0) = (0,0) and

γ0(j) − γ0(j − 1) = (
1 − η0(j),−η0(j)

)
.(2.20)
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Observe that γ0 has the asymptotics (2.4) if and only if η0 satisfies

lim
n→∞

1

n

−n∑
j=−1

η(j) = λ and lim
n→∞

1

n

n∑
j=1

η(j) = ρ.(2.21)

We will consider initial configurations η0 for which η0(0) = 0 and η0(1) = 1,
so that there is a hole at site 0 and a particle at site 1. This corresponds to the
condition that γ0(0)−γ0(−1) = (1,0) and γ0(1)−γ0(0) = (0,−1) (which is what
we assumed when setting up the growth model). Furthermore, in the case where
γ0 is distributed according to the measure νλ,ρ described after Theorem 1, the
distribution of η0 is product measure, with density λ of particles to the left of site
0 and density ρ of particles to the right of site 1. We will denote this measure by
νλ,ρ also.

Now label the particles sequentially from right to left and the holes from left to
right, with the convention that the particle at site 1 and the hole at site 0 are both
labeled 0. Let Pj (0) and Hj(0), j ∈ Z be the positions of the particles and holes,
respectively, at time 0. The position at time t of the j th particle Pj (t) and the ith
hole Hi(t) are functions of the variables G(z) with z ∈ C0 \ γ0 (defined earlier for
the growth model) by the following rule: at time G((i, j)), the j th particle and
the ith hole interchange positions. Disregarding labels and defining ηt (Pj (t)) = 1,

ηt (Hj (t)) = 0, j ∈ Z, the process ηt indeed realizes the exclusion dynamics. At
time t the particle configuration ηt and the growth interface γt still satisfy the same
relation as η0 and γ0 (2.20).

Note that the shape result in Proposition 2.1 is closely related to the hydro-
dynamics for the TASEP. The macroscopic density evolution is governed by the
Burgers equation; if λ = ρ, then the density profile is constant, while if the densi-
ties to the right and to the left are different, the discontinuity at the origin produces
a shock if λ < ρ and a rarefaction fan if λ > ρ. See [10] for further details in this
context and for references.

Coupling and second-class particles. Let η and η′ be two arbitrary config-
urations. The basic coupling between two exclusion processes with initial con-
figurations η and η′, respectively, is the joint realization (�(η,N ),�(η′,N )) =
((ηt , η

′
t ), t ≥ 0) obtained by using the same Poisson epochs for the two different

initial conditions.
Given a configuration of particles η, let η′ be a configuration which differs from

η only at the origin. Call X(0) = 0 the site where both configurations differ at time
zero. With the basic coupling, the configurations at time t differ only at the site
X(t) defined by

X(t) := ∑
x

x1{ηt (x) �= η′
t (x)}.(2.22)

(X(t), t ≥ 0) is the trajectory of a “second-class particle.” The process ((ηt ,X(t)),

t ≥ 0) is Markovian but the process (X(t), t ≥ 0) is not. The motion of X(t) de-
pends on the configuration of η′

t in its neighboring sites. The second-class particle



A PHASE TRANSITION FOR COMPETITION INTERFACES 293

FIG. 5. The position of the interface at time t .

jumps one unit to the right at rate 1 if there is no η′ particle in its right nearest
neighbor and it jumps one unit to the left at rate 1 if there is a η′ particle in its left
nearest neighbor site, interchanging positions with it.

Define the process ψ(t) by

ψ(t) := (I (t), J (t)) := φn for t ∈ [G(φn),G(φn+1)).(2.23)

Note that ψ(t) gives the position of the farthest (to the North-East) intersecting
point between the competition interface φ and the growth interface γt (Figure 5).
The relation between competition interfaces and second-class particles is given by
the following proposition:

PROPOSITION 2.2. There exists a coupling of the growth process (γt , t ≥ 0)

and the exclusion process with second-class particle ((ηt ,X(t)), t ≥ 0) under
which, for all t , J (t) equals the number of leftward jumps of the second-class
particle in [0, t], and I (t) is the number of rightward jumps of the second-class
particle in [0, t]. Thus the trajectory (X(t), t ≥ 0) is identical to the trajectory
(I (t) − J (t), t ≥ 0).

OUTLINE OF PROOF. The proof of this proposition can be carried out using
the techniques introduced by Ferrari and Pimentel in [11]. There are two main el-
ements. First, the exclusion process with a second-class particle is shown to be
equivalent to an exclusion process with no second-class particle, but with an extra
site. In this construction, the second-class particle is replaced by a pair of sites, of
which the left site contains a hole and the right site contains a particle. When this
is done, an initial configuration with a second-class particle at the origin becomes
an initial configuration with a hole at the origin and a particle at site 1. The second
element is then the correspondence described around (2.20) between the exclu-
sion process (specifically, one starting from such an initial configuration) and the
growth process. For details of the construction, see Proposition 3 and Lemma 6 of
Ferrari and Pimentel [11]. �

We obtain a strong law of large numbers for the second-class particle:
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THEOREM 3. Suppose the initial condition η0 satisfies (2.21).

(a) The limit

U = lim
t→∞

X(t)

t
(2.24)

exists Q-a.s.
(b) If λ > ρ, then U ∈ [1 − 2λ,1 − 2ρ] a.s.
(c) If moreover η0 is distributed according to the product measure νλ,ρ with

λ > ρ, then U has the uniform distribution on [1 − 2λ,1 − 2ρ].
(d) If λ ≤ ρ, then U = 1 − λ − ρ a.s.

We give an independent proof of the strong law of the almost sure convergence
for all λ and ρ, using the correspondence between the second-class particle and
the competition interface. This approach also gives the bounds on the distribution
in part (b) [and could also easily be used to provide the limiting value for λ < ρ

in part (d)]. We include the statements in parts (c) and (d) for completeness. The
convergence and the limit in part (d) for the case λ ≤ ρ was proved by Ferrari [5]
in the case of product measure νλ,ρ and by Seppäläinen [26] in the general case of
initial configurations satisfying (2.21). Rezakhanlou [24] proved, convergence in
probability for more general initial conditions when the limit is not random. In the
case of part (c) of product measure νλ,ρ with λ > ρ, Ferrari and Kipnis [8] proved
convergence in distribution to the uniform distribution, and Mountford and Guiol
[21] proved the almost sure convergence.

In Section 3, we give the proofs of Theorem 1 and of parts (a) and (b) of Theo-
rem 2, along with Proposition 2.1. Using these results, we can prove the remaining
properties stated above:

PROOFS OF THEOREMS 3(a), (b) AND 2(c). From Theorem 1, we know that
with probability 1, the limit I (t)/J (t) → tan θ exists for some (maybe random)
angle θ .

Also (I (t), J (t)) = ψ(t) ∈ γt , and so by the shape theorem (Proposition 2.1),
we have that p(I (t)/t, J (t)/t) = t−1p(ψ(t)) → 1 with probability 1, as t → ∞.

Hence (I (t)/t, J (t)/t) → (I, J ) as t → ∞, where (I, J ) is the point on the
curve p(y) = 1 which is at angle θ from the origin. Since by Proposition 2.2 we
have X(t) = I (t) − J (t), this implies that X(t)/t also converges with probabil-
ity 1, as required for Theorem 3(a). Its limit, U say, is given by U = I − J .

If λ > ρ, we have from Theorem 2(b) that the limiting direction θ satisfies
(2.15). In this case p(I, J ) = 1 implies that

√
I + √

J = 1. Putting this together
with U = I − J , we obtain I = (1 + U)2/4 and J = (1 − U)2/4. Substituting
tan θ = J/I and using (2.15), we obtain U ∈ [1 − 2λ,1 − 2ρ] as required for
part (b) of Theorem 3.

To prove Theorem 2(c), we will use the weak law of large numbers for the
second-class particle in the case of an initial configuration νλ,ρ with λ > ρ (from
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Ferrari and Kipnis [8]), which gives that X(t)/t converges in distribution to the
uniform distribution on [1 − 2λ,1 − 2ρ]. So this is also the distribution of the
almost sure limit U . Then from the previous paragraph we obtain

tan θ = J

I
=

(
1 − U

1 + U

)2

,(2.25)

as required. �

We have shown a law of large numbers for competition interfaces and second-
class particles under conditions (2.4) and (2.21), respectively. However, for λ > ρ,
we can compute the law of the asymptotic direction only when γ and η have dis-
tribution νλ,ρ . It would be nice to have a description of those laws in more general
cases. In this direction, we can say that it depends strongly on the microscopic
details of the initial condition, and we have an example which shows such depen-
dence. Let L > 0 and consider an initial growth interface γ L where αk = −L and
βk = L for all k ≥ 1. In the exclusion context, this corresponds to an initial con-
figuration ηL with ηL(k) = 0 for k = −1, . . . ,−L and k > L and with ηL(k) = 1
for k = 0, . . . ,L and k < −L. Thus for all L > 0, γ L satisfies (2.4) as well as
ηL satisfies (2.21), with λ = 1 and ρ = 0. By Theorems 1 and 3, there exist θL

and UL which correspond to the asymptotic direction of the competition interface
and of the second-class particle, respectively. Using the same approach as in [23],
one can show that θL → π/4 in probability as L → ∞ (this would correspond to
a multi-type shape theorem for the LPP model). Correspondingly for the second
class particle one has that UL → 0 in probability. Thus we see that the law of θL

is quite different for L = 1 and for large L. More generally it is not hard to see that
the laws of θ or U are sensitive to local changes in the initial condition. For exam-
ple, consider starting from the distribution ν1,0 in which with probability 1 every
negative site has a particle and every positive site has a hole. In this case, the state
at any finite time t differs only at finitely many sites from the initial state; neverthe-
less θ and U converge almost surely to nondeterministic limits. Such convergence
is only possible if their distributions are sensitive to local changes.

2.3. Fluctuations.

Concave sector: central limit theorem. We now turn to questions concerning
the fluctuation of the competition interface around its asymptotic direction (ran-
dom or deterministic).

When λ < ρ, the cone into which the occupied set grows has a concave angle.
In the case of an initial configuration distributed according to the product measure
νλ,ρ , the interface position on the scale

√
t is determined by the initial configu-

ration. This makes it possible to compute explicitly the joint asymptotic law of
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(I (t), J (t)) after centering and rescaling by
√

t . The proof is based on results in
the same vein for the second-class particle and the flux of particles. Let

N
η

r,r ′ =
r ′∑

i=r

η(i)(2.26)

with the convention
∑r ′

r = −∑r
r ′ if r ′ < r . Denote Iη(t) and J η(t) the coordinates

of ψ(t) when the initial particle configuration is η. Denote 1 − η the configuration
defined by (1 − η)(x) = 1 − η(x).

THEOREM 4. Dependence of the initial configuration and the central limit
theorem:

lim
t→∞

1

t

∫
νλ,ρ(dη)E

(
Iη(t) − (1 − λ)N

1−η
0,(ρ−λ)t − (1 − ρ)N

η
−(ρ−λ)t,0

ρ − λ

− λ(1 − ρ)t

)2

(2.27)

= 0,

lim
t→∞

1

t

∫
νλ,ρ(dη)E

(
J η(t) − −λN

1−η
0,(ρ−λ)t + ρN

η
−(ρ−λ)t,0

ρ − λ
− λ(1 − ρ)t

)2

(2.28)
= 0.

The limiting covariance matrix is given by

lim
t→∞

1

t
VI (t) = (1 − ρ)(1 − λ)(ρ(1 − λ) + λ(1 − ρ))

ρ − λ
,(2.29)

lim
t→∞

1

t
VJ (t) = λρ(ρ(1 − λ) + λ(1 − ρ))

ρ − λ
,(2.30)

lim
t→∞

1

t
Cov(I (t), J (t)) = −2λ(1 − λ)ρ(1 − ρ)

ρ − λ
,(2.31)

and the central limit theorem holds: the vector

1√
t

(
I (t) − (1 − ρ)(1 − λ)t, J (t) − ρλt

)
(2.32)

converges in law to a two-dimensional normal distribution with covariance matrix
(2.29), (2.30) and (2.31), as t → ∞.

Fluctuations: convex or flat sectors. In the case λ ≥ ρ, we relate the compe-
tition interface with the semi-infinite geodesics defined at the beginning of the
section.
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Ferrari and Pimentel [11] proved that the following holds with probability 1: for
every semi-infinite geodesic (zk)k>0, there exists α ∈ [0, π/2] such that (zk)k>0
has asymptotic direction eiα , and for every α ∈ [0, π/2] there exists a semi-infinite
geodesic with asymptotic direction eiα .

For r > 0, α ∈ (0, π/2) and z ∈ Z2, let Hz(α, r) be the hyperplane that is per-
pendicular to the angle α and contains z + reiα . Given a semi-infinite up-right
path (zk)k>0 with asymptotic direction eiα , we denote by yz1(α, r) the intersection
between Hz1(α, r) and (zk)k>0.

We say that a path (zk)k>0, with direction eiα , “has fluctuation at most κ” if
|yz0(α, r) − (z1 + reiα)| ≤ rκ for all sufficiently large r .

Now define fluctuation exponents of the set of geodesics by

ξ1(α) = inf{κ : P(all semi-infinite geodesics with

direction eiα have fluctuation at most κ) = 1},
for α ∈ (0, π/2), and

ξ2 = inf{κ : P(all semi-infinite geodesics havefluctuation at mostκ) = 1}.(2.33)

In fact, Balázs, Cator and Seppäläinen [1] prove probability estimates giving
upper and lower bounds on the fluctuations of finite geodesics which can be used
to show that ξ1(α) = 2/3 for all α ∈ (0, π/2).

It is immediate that ξ2 ≥ supα ξ1(α), but the reverse inequality is not obvious
(since we consider uncountably many directions α). The method used to prove the
existence of semi-infinite geodesics (see [11]) yields the upper bound ξ2 ≤ 3/4.
However, under an assumption on the asymptotic behavior of P(T (z′ → z) ≤ n),
as in (1.5) of Johansson [16] (see also the last paragraph of Section 1 in the same
work), one can mimic the argument developed by Wüthrich [28] to prove that

ξ1(α) ≤ ξ2 ≤ 2/3,(2.34)

which, together with the bounds from [1], would imply ξ2 = 2/3.
In an analogous way we define the fluctuation exponent χ of the competition

interface by

χ = inf{κ : P(the competition interface hasfluctuation at most κ) = 1}.(2.35)

(Of course the exponent χ depends on the initial configuration γ0.)
In equilibrium we exhibit a duality between competition interfaces and semi-

infinite geodesics and prove that they have the same fluctuation exponent (which,
from the discussion above, is equal to 2/3). This duality is also developed in [1].

THEOREM 5. Assume that γ0 has distribution νλ,ρ with λ = ρ. Then χ =
ξ1(α), where tan(α) = ρ2/(1 − ρ)2.

For a convex initial growth interface (λ > ρ) we show that the fluctuations of
semi-infinite geodesics dominate the fluctuations of competition interfaces:



298 P. A. FERRARI, J. B. MARTIN AND L. P. R. PIMENTEL

THEOREM 6. Assume that λ > ρ and that γ0 satisfies (2.4). Then χ ≤ ξ2.

This is proved by showing that the competition interface (with random direc-
tion θ ) is contained between two disjoint semi-infinite geodesics with direction θ .
Observe that this implies that the random direction θ chosen by the interface is
somehow exceptional, since it can be shown that for any fixed direction α, the
probability that there exist two disjoint geodesics with direction α is 0 [although
with probability 1, the set of such exceptional directions is dense in (0, π/2)]. It
would be natural to conjecture that in fact χ = 2/3 in this case also.

The central limit theorem in the last section for λ < ρ with initial distribution
νλ,ρ indicates that in that case χ = 1/2. However, as already observed, the fluctu-
ations in that case are controlled by the fluctuations of the initial growth interface.
If, for example, the growth interface was replaced by a “periodic” one with the
same asymptotic directions, one would expect to see fluctuations of order 1/3 (as
observed by Derrida and Dickmann [4] in an analogous first-passage percolation
model).

Theorems 4–6 are proved in Section 4.
Because of the correspondence between the competition interface and the

second-class particle (Proposition 2.2) one would expect that for all initial condi-
tions, the competition interface and the second-class particle have the same order
of fluctuations. In order to derive this in general, one would need to control the
order of the fluctuations of the boundary of the occupied region, for which the
first-order behavior is given by the shape theorem (Proposition 2.1).

3. Point to half-line geodesics. Consider the point to half-line percolation
model as follows: define {Bm,m ≥ 1}, where Bm = (m,βm + 1), and β1, β2, . . . is
a nonincreasing sequence taking negative integer values. Assume that

lim
m→∞

−βm

m
= ρ

1 − ρ
:= dρ.(3.1)

We have

G2(z) = max
0<m≤z(1)

{T (Bm → z)}.(3.2)

In this section we will develop the properties of the point to half-line percolation
model in order to prove Theorem 1 and parts (a) and (b) of Theorem 2, along with
the shape result of Proposition 2.1.

Let M(z) be the m which maximizes in the expression above (i.e., the horizontal
coordinate of the point from which the maximizing path to z starts):

M(z) = arg max
0<m≤z(1)

{T (Bm → z)}.(3.3)
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We note the importance of the “critical direction” d2
ρ . Its significance is as fol-

lows. Suppose |zi | → ∞ with zi(2)/zi(1) → w. We will show that if w > d2
ρ , the

contact point M(zi) stays small [in fact, one can show by extending the methods
below that, with probability 1, M(zi) is eventually constant]. On the other hand, if
w < d2

ρ , then M(zi) grows linearly with |zi |.
The first aim is to establish the following proposition, which is the key to show-

ing Theorem 1 in the case λ > ρ.

PROPOSITION 3.1. Let w̃ > w > d2
ρ . Let |xi | → ∞ with xi(2)/xi(1) → w.

Let |yj | → ∞ with yj (2)/yj (1) → w̃. Then there are a.s. only finitely many i such
that, for some j , the optimal path from {Bm,m ≥ 1} to yj passes through xi .

3.1. Sublinear growth. For z ≥ 0, let μ(z) = (
√

z(1) + √
z(2))2. The function

μ identified by Rost [25] represents the “asymptotic shape” for the last-passage
percolation model. One has for example that

lim|z|→∞
ET ((0,0) → z)

μ(z)
= 1.(3.4)

The following moderate deviations estimate is useful several times (proved in
Lemma 12 of [11]):

LEMMA 3.1. For all η > 0 there is a b > 0 such that for all z1 ≤ z2 and for
all r ∈ [|z2 − z1|1/2+η, |z2 − z1|3/2−η],

P
(|T (z1 → z2) − μ(z2 − z1)| ≥ r

) ≤ b exp(−br|z2 − z1|−1/2).(3.5)

To prove Proposition 3.1, first we show that the growth of M(zi) is sublinear:

PROPOSITION 3.2. If |zi | → ∞ with zi(2)/zi(1) → w > d2
ρ , then M(zi)/

|zi | → 0 a.s.

To prove this we need a couple of estimates:

LEMMA 3.2. Let δ, ε > 0. Then there exist η > 0, c > 0 and R < ∞ such that
if z(2)/z(1) > d2

ρ + δ with n > ε|z| and |z| > R, then

μ
(
z − (0,1)

) − μ
(
z − (n,−[dρ + η]n)

)
> c|z|.(3.6)

PROOF. Fix z and let η > 0. For 0 ≤ x < z(1), let

f (x) = μ
(
z − (x,−[dρ + η]x)

)
= (√

z(1) − x +
√

z(2) + (dρ + η)x
)2

= g(x)2,
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say. We have f ′(x) = 2g(x)g′(x).
Suppose that η is small enough that

dρ + η

(d2
ρ + δ)1/2 ≤ 1 − u,(3.7)

for some u > 0. Then, using z(2) > (d2
ρ + δ)z(1), we have that for all x ≥ 0,

g′(x) = −1
2{[z(1) − x]−1/2 − [dρ + η][z(2) + (dρ + η)x]−1/2}

≤ −1
2{z(1)−1/2 − [dρ + η]z(2)−1/2}

≤ −1
2{z(1)−1/2 − [1 − u]z(1)−1/2}

= −uz(1)−1/2/2.

Also for all x ≥ 0, g(x) ≥ √
z(2) ≥ dρ

√
z(1). So f ′(x) = 2g(x)g′(x) ≤ −udρ for

all x ≥ 0. Then

μ(z) − μ
(
z − (n,−[dρ + η]n)

) = f (0) − f (n)

≥ udρn(3.8)

≥ εudρ |z| for n ≥ ε|z|.
Finally we need to bound μ(z) − μ(z − (0,1)):

μ(z) − μ
(
z − (0,1)

) = (√
z(1) + √

z(2)
)2 − (√

z(1) + √
z(2) − 1

)2

= 1 + 2
√

z(1)
(√

z(2) − √
z(2) − 1

)
,

which is less than some constant c̃, uniformly over z satisfying z(2) > d2
ρz(1).

Combining this with (3.8),

μ
(
z − (0,1)

) − μ
(
z − (n,−[dρ + η]n)

)
> εudρ |z| − c̃ > c|z|(3.9)

for all large enough |z| and suitable constant c, as required. �

LEMMA 3.3. Let ε, δ > 0. Then there exists b̃ such that if |z| is sufficiently
large and z(2)/z(1) > d2

ρ + δ, then

P
(
M(z) > ε|z|) ≤ |z|b̃ exp(−b̃|z|1/2).(3.10)

PROOF.

P
(
M(z) > ε|z|)

(3.11)
≤ ∑

ε|z|<m≤z(1)

P
{
T

(
(m,βm + 1) → z

)
> T

(
(1, β1 + 1) → z

)}
.
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Choose R and η according to Lemma 3.2. Assume that |z| > R, and that |z|
is large enough that for all m ≥ ε|z|, we have βm > −(dρ + η)m. Note also that
β1 + 1 ≤ 0. Using Lemma 3.2, we bound each term in the sum above:

P
{
T

(
(m,βm + 1) → z

)
> T

(
(1, β1 + 1) → z

)}
≤ P

{
T

(
(m,−[dρ + η]m) → z

)
> T

(
(1,0) → z

)}
= P

{[
T

(
(m,−[dρ + η]m) → z

) − μ
(
z − (m,−[dρ + η]m)

)]
− [

T
(
(1,0) → z

) − μ
(
z − (1,0)

)]
> μ

(
z − (1,0)

) − μ
(
z − (m,−[dρ + η]m)

)}
≤ P

{[
T

(
(m,−[dρ + η]m) → z

) − μ
(
z − (m,−[dρ + η]m)

)]
− [

T
(
(1,0) → z

) − μ
(
z − (1,0)

)]
> c|z|}

≤ P{|T (z1) − μ(z1)| > c|z|/2} + P{|T (z2) − μ(z2)| > c|z|/2},
where z1 = z − (1,0) and z2 = z − (m,−[dρ + η]m). We have |z|/2 < |z1| < |z|,
and v|z| ≤ z(2) ≤ |z2| ≤ (1+dρ +η)|z|, where v = (d2

ρ +δ)/(d2
ρ +δ+1). Thus for

large enough |z|, we can apply the moderate deviations estimate from Lemma 3.1
to bound the last expression above by b̃ exp(−b̃|z|1/2). Summing over m then gives
the desired result. �

PROOF OF PROPOSITION 3.2. Using the bound in Lemma 3.3 and summing
over i, we have that

∑
i P(M(zi) > ε|zi |) < ∞ for any ε. Applying Borel–Cantelli

then gives the result. �

3.2. Good pairs and good points. We need some definitions and results which
extend the idea of “h-straightness” (from Newman [22] and later papers).

For x ≤ z ∈ Z2, let Rout[x, z] be the set of z′ ≥ z such that the optimal path from
x to z′ passes through the point z.

For x ≤ z ∈ Z2 and φ > 0, define the cone C(x, z,φ) to be the set of those z′ ≥ x

such that angle(z − x, z′ − x) ≤ φ.
Fix ε > 0 and 0 < δ < 1/4. For x ≤ z, say that (x, z) is a good pair if

Rout[x, z] ⊆ C(x, z, |z − x|−δ) ∪ ⋃
z′∈C(x,z,|z−x|−δ)

|z′−x|>2|z−x|

Rout[x, z′].(3.12)

(This is almost the same thing as saying that

Rout[x, z] ⊆ C(x, z, |z − x|−δ) ∪ {z′ : |z′ − x| > 2|z − x|},(3.13)

except for some possible differences at the boundary of the cone.)
Say that z > 0 is a good point if (Bm, z) is a good pair for every 0 ≤ m ≤ ε|z|.
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Let d(x, y) be the Euclidean distance between two points x and y, and d(x,A)

the minimal Euclidean distance between a point x and a set A. Let [x, y] be the
straight line segment joining x and y.

We use the following lemma, which is a direct consequence of Lemma 11 of
[11]. (The proof of that lemma uses the moderate deviations estimate in Lemma 3.1
and an estimate on the convexity of μ which is essentially Lemma 2.1 of Wüthrich
[28].)

LEMMA 3.4. Let 0 < δ′ < 1/4. Then there exist positive and finite C1, C2, C3,
C4 such that if |z′| ≥ C1 and d(z, [(0,0), z′]) ≥ |z′|1−δ′

, then

P
(
z′ ∈ Rout[(0,0), z]) ≤ C2 exp(−C3|z′|C4).(3.14)

LEMMA 3.5. There exist positive and finite C̃1, C̃2 such that for |z| ≥ C̃1,

P
(
((0,0), z) is not a good pair

) ≤ C̃2|z|2 exp(−C3|z|C4).(3.15)

PROOF. From the definition of a good pair, the following is sufficient
for ((0,0), z) to be a good pair: for all z′ with |z| ≤ |z′| ≤ 3|z| and z′ /∈
C((0,0), z, |z|−δ), we have z′ /∈ Rout[(0,0), z].

We bound the probability that this fails for any such z′. So, suppose that |z| ≤
|z′| ≤ 3|z| and angle(z, z′) ≥ |z|−δ . Choose δ′ with δ < δ′ < 1/4 and then let C̃1
be sufficiently large that:

(i) C̃1 ≥ C1;
(ii) if r ≥ C̃1, then 1

2( r
3)1−δ ≥ r1−δ′

;
(iii) if r ≥ C̃1, then sin(r−δ) ≥ r−δ/2.

Assume that |z| > C̃1. Then

d(z, [(0,0), z′]) ≥ |z| sin(angle(z, z′)) ≥ |z| sin(|z|−δ)

≥ 1

2
|z|1−δ ≥ 1

2

∣∣∣∣z
′

3

∣∣∣∣
1−δ

≥ |z′|1−δ′
.

Then from Lemma 3.4,

P
(
z′ ∈ Rout[(0,0), z]) ≤ C2 exp(−C3|z′|C4)

≤ C2 exp(−C3|z|C4)

for all such z′. Since there are fewer than 9|z|2 such z′, we can sum to get the
result. �

PROPOSITION 3.3. Let ε > 0, 0 < δ < 1/4. With probability 1, all but finitely
many z > 0 are good points.
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PROOF. As before, choose K large enough that |Bm| ≤ Km for all m ≥ 1.
Suppose that |z| ≥ (1 − ε)−1C̃1. If m ≤ ε|z|, then C̃1 ≤ (1 − ε)|z| ≤ |z − Bm| ≤
(K + 1)|z|. By translation invariance, one has that

P
(
(x, z) is a good pair

) = P
((

(0,0), z − x
)

is a good pair
)
.(3.16)

So, using Lemma 3.5, we have

P(z is not a good point) ≤ ∑
1≤m≤ε|z|

P
(
(Bm, z) is not a good pair

)

= ∑
1≤m≤ε|z|

P
((

(0,0), z − Bm

)
is not a good pair

)

≤ ε|z|C̃2[(K + 1)|z|]2 exp
(−C3[(1 − ε)|z|]C4

)
.

This sums to a finite amount over all z ∈ Z2+, so the proposition follows from
Borel–Cantelli. �

COROLLARY 3.1. For any 0 < ε < 1/2 and 0 < δ < 1/4, there is C = C(δ)

such that, with probability 1, for all but finitely many z > 0 one has

Rout[Bm, z] ⊆ C(Bm, z,C|z|−δ)(3.17)

for all m ≤ ε|z|.

PROOF. The idea is the same as for the end of the proof of Proposition 3.2 in
[22].

From Proposition 3.3, there is a.s. some L such that every z > 0 with |z| ≥ L is
a good point.

Choose any such z and let x = Bm for some 1 ≤ m ≤ ε|z|. The “good point”
property gives that

Rout[x, z] ⊆ C(x, z, |z − x|−δ) ∪ ⋃
z′∈C(x,z,|z−x|−δ)

|z′−x|>2|z−x|

Rout[x, z′].(3.18)

Note that if z′ ∈ C(x, z,φ1) and z′′ ∈ C(x, z′, φ2), then z′′ ∈ C(x, z,φ1 + φ2). So,
applying the good point property repeatedly, we can obtain by induction that for
m = 1,2, . . . ,

Rout[x, z] ⊆ C
(
x, z, η(m)) ∪ ⋃

z̃∈C(x,z,η(m))

|z̃−x|>2m|z−x|

Rout[x, z̃],(3.19)

where

η(m) =
m−1∑
k=0

(2k|z − x|)−δ ≤ (1 − 2−δ)−1|z − x|−δ ≤ C(δ)|z|−δ,
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say, since |z − x| ≥ (1 − ε)|z| ≥ |z|/2.
Now the intersection of Rout[x, z̃] with any finite subset of Z2+ is eventu-

ally empty as |z̃ − x| → ∞, so we can let m → ∞ to obtain that Rout[x, z] ⊆
C(x, z,C|z|−δ) as desired. �

PROOF OF PROPOSITION 3.1. Put another way: there are only finitely many
points xi in the sequence such that yj ∈ Rout[BM(xi), xi] for some j .

We know from Proposition 3.2 that M(xi)/|xi | → 0 a.s. So it is enough to
show that for some ε > 0, there are a.s. only finitely many points i such that
yj ∈ Rout[Bm,xi] for some j and some 0 ≤ m ≤ ε|xi |.

Let η be small enough that w̃ − η > w + η. For large enough j we have
yj (2)/yj (1) > w̃ − η, and for large enough i we have xi(2)/xi(1) < w + η.

There exists K < ∞ such that, for all m ≥ 1, |Bm| ≤ Km. Hence one can find
ε and ζ small enough that if xi(2)/xi(1) < w + η and 1 ≤ m ≤ ε|z|, then the cone
C(Bm, z, ζ ) does not intersect {y :y(2)/y(1) > w̃ − η}.

Hence if ε is small enough and i is large enough, the cone C(Bm,xi,C|xi |−δ)

does not intersect with {y :y(2)/y(1) > w̃ − η}.
From Corollary 3.1,

Rout[Bm,xi] ⊆ C(Bm,xi,C|xi |−δ)(3.20)

for all m ≤ ε|xi | eventually, w.p.1. Thus we indeed have that for |xi |, |yj | large,

yj /∈ Rout[Bm,xi].(3.21)

for all m ≤ ε|xi |.
Then for i large enough, for all m ≤ ε|xi |, the set Rout[Bm,xi] does not intersect

with {y :y(2)/y(1) > w̃ − η}.
But if i is large enough, and so xi is large enough, then, for every j with |yj | ≥

|xi |, we have yj ∈ {y :y(2)/y(1) > w̃−η}. Since Rout[Bm,xi] contains only points
y with |y| ≥ |xi |. This completes the proof of Proposition 3.2. �

3.3. Asymptotic shape. In this section we prove Proposition 2.1. We are in-
terested in G(z) which is equal to max(G1(z),G2(z)), where G1(z) =
sup1≤k≤z(2) T (Ak → z) and G2(z) = sup1≤m≤z(1) T (Bm → z). Proposition 2.1
is an immediate consequence of the following proposition, since p(z) defined
in (2.18) is the maximum of p1(z) and p2(z) defined below.

PROPOSITION 3.4. Suppose that γ0 satisfies (2.4). Then with probability 1,

lim
|z|→∞,z∈Z2+

G2(z) − p2(z)

|z| = 0,(3.22)
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where

p2(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(√
z(1) + √

z(2)
)2

, if
z(2)

z(1)
≥

(
ρ

1 − ρ

)2

,

z(1)

1 − ρ
+ z(2)

ρ
, if

z(2)

z(1)
≤

(
ρ

1 − ρ

)2

,

(3.23)

and similarly

lim
|z|→∞,z∈Z2+

G1(z) − p1(z)

|z| = 0,(3.24)

where

p1(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(√
z(1) + √

z(2)
)2

, if
z(2)

z(1)
≤

(
λ

1 − λ

)2

,

z(1)

1 − λ
+ z(2)

λ
, if

z(2)

z(1)
≥

(
λ

1 − λ

)2

.

(3.25)

PROOF. We prove (3.22), since (3.24) is the symmetric statement.
We will use the moderate deviations estimate of Lemma 3.1 together with sim-

ple deterministic estimates (which we sometimes indicate in outline since their
justification is simple but long).

We are interested in G2(z) = sup1≤m≤z(1) T (Bm → z) for z ∈ Z2+.
Recall that Bm = (m,βm + 1), and that from (2.4) we have that

βm

m
→ − ρ

1 − ρ
:= −dρ ≤ 0.(3.26)

From this convergence, we have that, for any ε̃ > 0, there exists some K such that

βm + 1 − (−mdρ) ≤ max(K, ε̃m)(3.27)

for all m ≥ 1. From the form of the function μ(z) = (
√

z(1)+√
z(2))2, this implies

that for any ε > 0, ∣∣μ(z − Bm) − μ
(
z − (m,−mdρ)

)∣∣ ≤ ε|z|(3.28)

for all m ≤ z(1), for all except finitely many z ∈ Z2+.
Because βm ≤ −1 for each m, and using the convergence in (3.26) again, we

have that for some M ,

|z|
M

≤ |z − Bm| ≤ M|z|(3.29)

for all z ∈ Z2+ and all 1 ≤ m ≤ z(1). Then we can apply the moderate deviations
estimate of Lemma 3.1 to obtain that for any ε > 0, there exists b̃ > 0 such that for
all z ∈ Z2+ and 1 ≤ m ≤ z(1),

P
(|T (Bm → z) − μ(z − Bm)| > ε|z|) ≤ b̃ exp(−b̃|z|1/2).(3.30)
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Summing over z and m, and applying Borel–Cantelli, gives the following holds
with probability 1: for all except finitely many z ∈ Z2+,

|T (Bm → z) − μ(z − Bm)| ≤ ε|z|(3.31)

for all 1 ≤ m ≤ z(1).
Since ε > 0 is arbitrary, we can combine (3.28) and (3.31) and use G2(z) =

sup1≤m≤z(1) to give that, with probability 1,

G2(z) = sup
1≤m≤z(1)

μ
(
z − (m,−mdρ)

) + o(|z|)(3.32)

as |z| → ∞ with z ∈ Z2+.
Finally we will estimate the RHS of (3.32). We have

sup
1≤m≤z(1)

μ
(
z − (m,−mdρ)

)

= sup
1≤m≤z(1)

(√
z(1) − m +

√
z(2) + mdρ

)2(3.33)

= z(1) sup
x= 1

z(1)
, 2
z(1)

,...,1

(√
1 − x +

√
z(2)

z(1)
+ xdρ

)2

,

where we put x = m/z(1). As |z| → ∞ with z ∈ Z2+, it can easily be shown that
(3.33) is

z(1) sup
0≤x≤1

(√
1 − x +

√
z(2)

z(1)
+ xdρ

)2

+ o(|z|).(3.34)

Calculating this supremum, one finds that it is exactly equal to p2(z). So combin-
ing with (3.32), we have that with probability 1, G2(z) = p2(z) + o(|z|), which is
what we require. �

3.4. Proofs of laws of large numbers.

PROOF OF THEOREM 1 FOR λ > ρ . Assume λ > ρ. Let dρ = ρ/(1 − ρ) as
before, and let dλ = λ/(1 − λ), so dρ < dλ.

LEMMA 3.6. Let d2
ρ < w < w̃. Let (x1, x2, . . .) and (y1, y2, . . .) be infinite

directed paths, with xi(2)/xi(1) → w and yj (2)/yj (1) → w̃. Then

P({xi} contains infinitely many points of �1∞
and {yj } contains infinitely many points of �2∞) = 0.
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PROOF. Suppose there are infinitely many j such that yj ∈ �∞
2 . For such a

yj , its optimal path starts at the point BM(yj ) = (M(yj ), βM(yj ) + 1).
Suppose xi ∈ �1∞, so that its optimal path starts at some (αk + 1, k) = Ak .

Choose j such that yj > xi and yj ∈ �∞
2 .

The path from BM(yj ) to yj cannot pass to the left of xi , since then it would cross
the path from Ak to xi . (With probability 1, two maximizing paths which start at
different points in {Ak, k ≥ 1} ∪ {Bm,m ≥ 1} cannot cross; this would contradict
the uniqueness of the maximizing path to the point which they share.) Hence the
path must pass to the right of xi , and will pass through xi′ for some i ′ > i. Then
xi′ is on the optimal path from BM(yj ) to yj .

If there are infinitely many i with xi ∈ �1∞, then there will be infinitely many
such i′. But from Proposition 3.1, this is an event of probability 0. �

Consider some countable collection of directed paths (z
q
i , i = 1,2, . . .),

q ∈ Q+, each having direction q in the sense that z
q
i (2)/z

q
i (1) → q .

For q ∈ Q+ and r ∈ {1,2}, let P
q
r be the property that {zq

i } includes infinitely
many points of �∞

r .
Let W = inf{q :P q

1 holds}. If P
q
1 holds, then there are infinitely many points in

{zq
i } which lie above the competition interface. Let q̃ > q; eventually the path (z

q
i )

lies above the path (z
q̃
i ), so P

q̃
1 also holds. Thus P

q
1 holds for all q > W .

LEMMA 3.7.
(i) If d2

ρ < q < q̃ , then P(P
q
1 and P

q̃
2 both hold) = 0.

(ii) If q < q̃ < d2
λ , then P(P

q
1 and P

q̃
2 both hold) = 0.

PROOF. Part (i) follows directly from Lemma 3.6. Part (ii) is the exactly sym-
metric statement, reversing the roles of {Ak} and {Bm}, of clusters 1 and 2, and of
ρ and λ. �

So suppose q < q̃ with q̃ −q < d2
λ −d2

ρ . Then either d2
ρ < q < q̃ or q < q̃ < d2

λ .

So using Lemma 3.7 and countable additivity, P(P
q
1 and P

q̃
2 both hold for some

such pair q, q̃) = 0.
Hence also W = sup{q̃ :P q̃

2 holds}, and P
q̃
2 holds for all q̃ < W .

So for all q, q̃ with q̃ < W < q , all but finitely many points in (z
q̃
i ) lie in �2∞,

and all but finitely many points in (z
q
i ) lie in �1∞. So the competition interface φn

eventually lies between these two paths. Hence indeed φn has direction W , and the
proof of Theorem 1 in the case λ > ρ is complete. �

PROOFS OF THEOREM 1 FOR λ ≤ ρ , AND OF THEOREM 2(b) AND (c).
Suppose λ ≤ ρ. Let w∗ = λρ

(1−λ)(1−ρ)
. Note that p1((1,w∗)) = p2((1,w∗)); the

angle α with tanα = w∗ marks the direction of the shock.
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Let ε > 0 and consider the set

M+ =
{
z ∈ Z2+ :

z(2)

z(1)
> tan(α + ε)

}
.(3.35)

If z ∈ M+, then p1(z) > p2(z), and in fact it is easy to show from the form of the
functions p(1) and p(2) that this inequality is “uniform” in the following sense:
there exists δ > 0 such that for all but finitely many z ∈ M+,

p1(z) > p2(z) + δ|z|.(3.36)

Hence by the limiting shape result Proposition 3.4, with probability 1, for all but
finitely many z ∈ M+ one has G1(z) > G2(z), and so z ∈ �1∞.

Similarly if

M− =
{
z ∈ Z2+ :

z(2)

z(1)
< tan(α − ε)

}
,(3.37)

then w.p.1, for all but finitely many z ∈ M−, G2(z) > G1(z) and so z ∈ �2∞.
Hence the competition interface must eventually lie within the cone of width 2ε

around the angle α. But ε is arbitrary, and so Theorem 1 follows for λ ≤ ρ, along
with the limiting value given in Theorem 2(a).

An analogous argument implies the result in Theorem 2(b). One just needs to
check from the form of p1 and p2 for λ > ρ that if

M̃+ =
{
z ∈ Z2+ :

z(2)

z(1)
>

(
λ

1 − λ

)2

+ ε

}
,(3.38)

then for some δ > 0 and all but finitely many z ∈ M̃+, one has p1(z) > p2(z) +
δ|z|; and similarly for

M̃− =
{
z ∈ Z2+ :

z(2)

z(1)
<

(
ρ

1 − ρ

)2

− ε

}
,(3.39)

with p1 and p2 reversed. The shape result Proposition 3.4 can then be applied as
above. �

4. Proofs of fluctuation results.

4.1. Fluctuations with a concave initial growth interface. The proof of Theo-
rem 4 follows the same method due to Ferrari and Fontes [6] applied to the vector
ψ(t) = (I (t), J (t)).

PROOF OF THEOREM 4. The limiting covariances (2.29), (2.30) and (2.31)
and the central limit theorem follow from (2.27) and (2.28) and the fact that under
νλ,ρ the variables N are just sum of independent Bernoulli random variables.
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Let F
ζ
t,r be the flux of exclusion particles through the space–time line (0,0)–

(r, t) when the initial configuration is ζ , defined by

F
ζ
t,r = number of ζ particles to the left of 0 at time 0 and

to the right of r at time t
(4.1)

− number of ζ particles to the right of 0 at time 0 and

to the left of r at time t .

If ζ is distributed according to the product measure with density ρ̄ and r �= 1−2ρ̄,
Ferrari and Fontes [6] proved that the flux F

ζ
t,r depends on the initial configuration

in the following sense:

lim
t

1

t

∫
νρ̄(dζ )E

(
F

ζ
t,rt − N

ζ
t(r−1+2ρ̄),0 − ρ̄2t

)2 = 0.(4.2)

Consider a system of first- and second-class particles (σt , ξt ) such that σt is the
exclusion process with (marginal) law νρ and σt + ξt is the exclusion process with
marginal law νλ. Call ν2 the distribution of (σ0, ξ0) and ν′

2 this measure condi-
tioned to have a ξ particle at the origin. The σ particles are first-class particles and
the ξ particles are second-class; see [9]. Let Tx(σ, ξ)(y) = σ(y) + ξ(y)1{y > x}
be the transformation that identifies the σ and ξ particles to the right of x and holes
and ξ particles to the left of x. If η0 = T0(σ0, ξ0), then

ηt = TX(t)(σt , ξt ).(4.3)

In [7] it is proved that Xη(t), the second-class particle in the exclusion process with
initial distribution η, is the same as Xσ,ξ (t), a tagged ξ particle with initial config-
uration (σ, ξ). It is also proved that Xσ,ξ (t) depends on the initial configuration in
the following sense:

lim
t→∞

1

t

∫
ν2(d(σ, ξ))

(4.4)
× E

(
Xσ,ξ (t) − ((

N
γ
0,(ρ−λ)t − Nσ−(λ−ρ)t,0

)
/(λ − ρ)

))2 = 0,

where γ (x) = 1 − σt (x) + ξt (x) indicates the holes.
Call γt the positions of the holes at time t : γt (x) = 1 − σt (x) + ξt (x). Since

holes cannot pass from the left to the right of X(t),

I (t) = −F
γ
t,X(t),(4.5)

the negative flux of holes through the line (0,0)–(t,X(t)). We divide this quantity
in two parts:

−F
γ
t,X(t) = −F

γ
t,vt +

X(t)∑
x=vt

γt (x).(4.6)
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Apply (4.2) to the hole-process γt for r = v and ρ̄ = 1 − ρ (the density of γ

particles). Noticing that the holes do exclusion with drift to the left producing a
change of sign, we get

−F
γ
t,vt ∼ N

γ
0,(ρ−λ)t + (1 − ρ)2t(4.7)

in the sense of (4.2). On the other hand, by the law of large numbers for the measure
as seen from the second-class particle [7], in the same sense,

X(t)∑
x=vt

γt (x) ∼ (
X(t) − vt

)
(1 − ρ).(4.8)

Substituting (4.7), (4.8) and (4.4) in (4.6),

−F
γ
t,X(t) ∼ N

γ
0,(ρ−λ)t + (1 − ρ)2t

+
(N

γ
0,(ρ−λ)t − Nσ−(ρ−λ)t,0

ρ − λ
− vt

)
(1 − ρ)(4.9)

= (1 − λ)N
γ
0,(ρ−λ)t − (1 − ρ)Nσ−(ρ−λ)t,0

ρ − λ
+ λ(1 − ρ)t.

Noticing that N
γ
0,(ρ−λ)t = N

1−η
0,(ρ−λ)t and Nσ−(ρ−λ)t,0 = N

η
−(ρ−λ)t,0 and using (4.5)

we get (2.27).
By the same reasons, J η(t) = Fσ

t,X(t) which can be computed as before by

Fσ
t,X(t) ∼ Nσ−(ρ−λ)t,0 + λ2t −

(N
γ
0,(ρ−λ)t − Nσ−(ρ−λ)t,0

ρ − λ
− vt

)
λ

(4.10)

= −λN
γ
0,(ρ−λ)t + ρNσ−(ρ−λ)t,0

ρ − λ
+ (1 − ρ)λt

from where we get (2.28). �

4.2. Fluctuations in equilibrium. In this subsection we prove Theorem 5. We
consider the stationary exclusion process under the invariant measure νρ , the prod-
uct measure with density ρ. The generator of the process is given by

Lf (η) = ∑
x∈Z

η(x)
(
1 − η(x + 1)

)[f (η − δx + δx+1) − f (η)].(4.11)

The measure νρ is invariant for L: νρL = νρ . The reverse process with respect to
νρ has generator L∗ which is also a totally asymmetric simple exclusion process
with reversed jumps:

L∗f (η) = ∑
x∈Z

η(x)
(
1 − η(x − 1)

)[f (η − δx + δx−1) − f (η)].(4.12)
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A construction of the stationary process with time marginal distribution νρ can
be done by choosing a configuration η according to νρ and then running the process
with generator L forward in time and the process with generator L∗ backward in
time. Let η = (ηt , t ∈ R) be the stationary process so constructed. The reverse
process η∗ is given by η∗

t = η−t−.
The particle jumps of η induce a stationary point process S in Z × R. Let Sx be

the (discrete and random) set of times for which a particle of η jumps from x to
x + 1, and S = (Sx, x ∈ Z). The map η �→ S associates alternate point processes
to each trajectory (see Figure 6, here alternate means that between two successive
points in Sx there is exactly one point in Sx+1). Conversely, for each alternate point
configuration S there is a unique trajectory with jump times S: ηt (x) = 1 when the
most recent point before t in Sx−1 ∪ Sx belongs to Sx−1 and 0 otherwise. The
law of the process S is space and time translation invariant. Let S0 be the Palm
version of S, that is, the process with the law of S conditioned to have a point at
(x, t) = (0,0). In the corresponding process η0 there is a particle jumping from 0
to 1 at time zero. In the reverse process η∗0 there is a particle jumping from 1 to 0
at time 0.

A point map is a function π from the point configuration space where the
process S0 lives to Z × R such that π(S0) ∈ S0 with probability 1; see [27]. We
shall define a family of point maps. Label the times of S0 by means of a random
function G : Z × Z → R; in fact G = G(S0), but we drop the dependency of S0 in
the notation. Let G(0,0) = 0, interpret it as “particle labeled 0 jumps to hole la-
beled 0 at time 0.” This determines the label of all other times in S0 as follows: the

FIG. 6. Labeling of S0. The horizontal axis is Z; time runs upwards. The heights of the horizontal
segments between vertical lines x and x + 1 represent the times G(i, j) with i − j = x.
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time G(i, i) is the ith positive time in S0
0 for positive i’s and the (−i)th negative

time for negative i’s:

G(i, i) := inf
(
S0

0 ∩ (
G(i − 1, i − 1),∞))

(4.13)
= sup

(
S0

0 ∩ (−∞,G(i + 1, i + 1)
))

.

Assuming G(i, j) and G(i + 1, j + 1) are given, define

G(i + 1, j) = S0
i+1−j ∩ (

G(i, j),G(i + 1, j + 1)
)

(4.14)

(which almost surely is a unique point) and

G(i, j + 1) = S0
i−j−1 ∩ (

G(i, j),G(i + 1, j + 1)
)

(4.15)

(which is also a unique point almost surely).
To interpret G in function of the particle motion, label the particles of η0

0 in
decreasing order, giving the label 0 to the particle at site 1. Call Pj (0) the position
of the j th particle at time zero; we have P0(0) = 1 and Pj+1(0) < Pj (0), j ∈ Z.
Label the holes of η0

0 in increasing order, giving the label 0 to the hole at site 0:
H0(0) = 0 and Hi+1(0) > Hi(0) for all i. The position of the j th particle and the
ith hole at time t are, respectively, Pj (t) and Hi(t). The order is preserved at later
and earlier times: Pj (t) > Pj+1(t) and Hi(t) < Hi+1(t), for all t ∈ R, i, j ∈ Z. At
time G(i, j) the ith hole and the j th particle of η0 interchange positions; in partic-
ular G(0,0) = 0. Let G = (G(z), z ∈ Z2). Since G is a deterministic function of
η0 we write when necessary G(η0).

The random function G induces a family of point maps πi,j given by

πi,j (S
0) = (

i − j,G(i, j)
)
.(4.16)

The space–time shift by (z, t) ∈ Z × R of the point process S is defined by S −
(z, t) = {(z′ − z, t ′ − t), (z′, t ′) ∈ S}. Each map πi,j is bijective in the sense that

(z, t) �→ πi,j

(
S0 − (z, t)

) + (z, t)(4.17)

is a bijection in S0. Or, said in other words, each point of S0 is mapped to another
unique point in S0 by means of π ; distinct points are mapped to distinct points.

LEMMA 4.1. The law of

S0 − (
ī − j̄ ,G(ī, j̄ )

)
(4.18)

does not depend on z̄ = (ī, j̄ ) ∈ Z2. Consequently, the law of

[G(z − z̄) − G(z̄), z ∈ Z2](4.19)

does not depend on z̄.
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PROOF. The second statement is an immediate consequence of the first one.
Let �i,j be the map from the alternate point-configuration space onto itself

defined by

�i,j (S
0) = S0 − πi,j (S

0).(4.20)

�i,j maps the point-configuration S0 to the same configuration shifted by (or
“as seen from”) πi,j (S

0) = (i − j,G(i, j)). This map is invertible, its inverse is
�−i,−j . Then Theorem 3.1 of Heveling and Last [14] implies S0 and S0 − (i −
j,G(i, j)) are identically distributed for each (i, j). �

Define the families X = (X(i, j), i, j ∈ Z) and Y = (Y (i, j), i, j ∈ Z) by

X(i, j) = G(i, j) − max
(
G(i, j − 1),G(i − 1, j)

)
,(4.21)

Y(i, j) = min
(
G(i, j + 1),G(i + 1, j)

) − G(i, j).(4.22)

The particle interpretation of G(i, j) says that X(i, j) is the time the particle j

waits to jump over hole i starting at the time they become neighbors (i.e., the
maximum of the time particle j − 1 jumped over hole i and the time particle j

jumped over hole i − 1). Since −G(i, j) are the jumping times of particles for the
reverse process, which has the same law as the direct process but with reversed
jumps, Y(i, j) has the same interpretation as X(i, j) for the reverse process and
hence the same law.

LEMMA 4.2. The variables (X(i, j), i, j ∈ Z) are independent and identi-
cally distributed with exponential law of mean 1. The same is true for (Y (i, j),

i, j ∈ Z).

PROOF. First take the set of labels (i, j) such that j > 1 and i > 1. The pairs
(i, j) in this set satisfy G(i − 1, j) > 0 and G(i, j − 1) > 0 with probability 1.
The conditioning event {G(0,0) = 0} is measurable for the sigma field generated
by (ηs, s ≤ 0). Then the Markov property implies that the waiting times X(i, j)

with (i, j) in the above set are independent and exponentially distributed of para-
meter 1.

To extend the result to all (i, j), consider a finite set of indexes I ⊂ Z2. It
suffices to show that (X(z), z ∈ I ) are i.i.d. exponential of parameter 1. Take
z̄ = (ī, j̄ ) such that j − 1 > j̄ and i − 1 > ī for all (i, j) ∈ I . Then, with prob-
ability 1 G(z̄) < min{G(i − 1, j),G(i, j − 1)} for all (i, j) ∈ I . Apply the same
reasoning as above for the family (G(z − z̄) − G(z̄), z ∈ Z2) which has the same
law as G by Lemma 4.1. �

For each z ∈ Z2 let

zNE(z,G) := arg min
{
G

(
z + (0,1)

)
,G

(
z + (1,0)

)}
(4.23)
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be the point in {z + (0,1), z + (1,0)} that realizes the minimum between G(z +
(0,1)) and G(z + (1,0)) [recall (2.12)]. A path (zn, n ≥ 0) such that zn+1 =
zNE(zn,G) is called a North-East Minimizing Sequence (NEMS) for G.

LEMMA 4.3. Suppose G and Y satisfy (4.22). If a path (zn, n ≥ 0) is a NEMS
for G, then it is a geodesic for Y .

PROOF. First consider X related to G by (4.21). For each z ∈ Z2, let

zSW(z,G) := arg max
{
G

(
z − (0,1)

)
,G

(
z − (1,0)

)}
(4.24)

be the point in {z − (0,1), z − (1,0)} that realizes the maximum between
G(z − (0,1)) and G(z − (1,0)). Let z0, z1, . . . , zm be an up-right path. If zl =
zSW(zl+1,G) for all l = 0,1, . . . ,m−1, then it follows that the path z0, z1, . . . , zm

is the geodesic between z0 and zm, in terms of the variables X.
Now define for each i, j

G̃(i, j) = −G(−i,−j)

and

X̃(i, j) = G̃(i, j) − max{G̃(i, j − 1), G̃(i − 1, j)}.
Since (4.23) holds, it follows that −zl+1 = zSW(−zl, G̃) for any l, so that by the

previous paragraph, the path −zm,−zm−1, . . . ,−z0 is the geodesic between −zm

and −z0 in terms of the weights X̃.
Finally note that from (4.22) we get Y(i, j) = X̃(−i,−j) for all i, j . Thus

z0, . . . , zm−1, zm is the geodesic between z0 and zm in terms of the weights Y . Thus
by definition the path (zn, n ≥ 0) is a semi-infinite geodesic for the weights Y , as
desired. �

The following result is proved in [20]:

LEMMA 4.4. Let Y = (Y (i, j), i, j ∈ Z) be i.i.d. exponential with mean 1.
Then for any α ∈ [0, π/2], there is a.s. only one geodesic for the weights Y starting
at the origin with asymptotic direction α.

PROOF OF THEOREM 5. From (2.12), the competition interface is a NEMS
for G. Hence by Lemma 4.3, it is a geodesic for Y , and from Theorem 2 it has
direction α where tan(α) = ρ2/(1 − ρ)2. Hence the competition interface is a.s.
equal to the unique geodesic for Y in this direction given by Lemma 4.4, and so the
fluctuation exponent of the competition interface is the same as that of the geodesic
in direction α, so that χ = ξ1(α) as desired. �
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4.3. Fluctuations with a convex initial growth interface. From the competition
interface φ = (φn)n≥0, we can obtain two subsequences (φnA

l
)l>0 and (φnB

l
)l>0

such that the optimal path from �0 to φnA
l

comes from (Ak)k>0 and the optimal
path from �0 to φnB

l
comes from (Bm)m>0. Given z /∈ �0, we denote by A(z)

the point in (Ak)k>0 from which the optimal path from (Ak)k>0 comes. Analo-
gously, we denote by B(z) the point in (Bm)m>0 from which the optimal path
from (Bm)m>0 comes.

LEMMA 4.5. P-a.s., there exist two semi-infinite geodesics πA ⊆ �1∞ and
πB ⊆ �2∞ such that

lim
l→∞π(A(φnA

l
), φnA

l
) = πA and lim

l→∞π(B(φnB
l
), φnB

l
) = πB.(4.25)

Furthermore, both semi-infinite geodesics have the same asymptotic direction as
the competition interface.

PROOF. Since A(φnA
l+1

) is always to the northeast of A(φnA
l
), (A(φnA

l
))l≥1 is

a monotone sequence, and so it converges. By Proposition 3.1 the limit must be a
point zA, that is,

A(φnA
l
) = zA for all large l.(4.26)

Define the “rightmost” semi-infinite geodesic πA := (yk)k>0 by the following rule:
set y1 := zA; given yk , then if yk + (0,1) belongs to some geodesic connecting zA

to some point in φ and yk + (1,0) not, then set yk+1 := yk + (0,1), otherwise set
yk+1 := yk + (1,0). Notice that there is no semi-infinite geodesic caught between
(yk)k>0 and φ, and together with (4.26) and Proposition 7 of Ferrari and Pimentel
[11], this implies that π(A(φnA

l
), φnA

l
) must converge to πA and have the same

asymptotic direction eiθ of φ. The proof of the convergence for π(B(φnB
l
), φnB

l
)

follows the same argument. �

PROOF OF THEOREM 6. Denote by zA the starting point of the semi-infinite
geodesic πA and by zB the starting point of the semi-infinite geodesic πB . Since
the competition interface is caught in between πA and πB ,

|yφ0(θ, r) − reiθ | ≤ max{|yzA
(θ, r) − reiθ |, |yzB

(θ, r) − reiθ |},(4.27)

although

|yzA
(θ, r) − reiθ | ≤ |yzA

(θ, r) − (zA + reiθ )| + |zA|(4.28)

and

|yzB
(θ, r) − reiθ | ≤ |yzB

(θ, r) − (zB + reiθ )| + |zB |.(4.29)

Together with (4.27) this yields that χ ≤ ξ2. �
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