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RELATIVE FREQUENCIES IN MULTITYPE
BRANCHING PROCESSES*

BY ANDREI Y. YAKOVLEV1 AND NIKOLAY M. YANEV1,2

University of Rochester and Bulgarian Academy of Sciences

This paper considers the relative frequencies of distinct types of indi-
viduals in multitype branching processes. We prove that the frequencies are
asymptotically multivariate normal when the initial number of ancestors is
large and the time of observation is fixed. The result is valid for any branching
process with a finite number of types; the only assumption required is that of
independent individual evolutions. The problem under consideration is mo-
tivated by applications in the area of cell biology. Specifically, the reported
limiting results are of advantage in cell kinetics studies where the relative
frequencies but not the absolute cell counts are accessible to measurement.
Relevant statistical applications are discussed in the context of asymptotic
maximum likelihood inference for multitype branching processes.

1. Introduction. The paper deals with multitype branching processes with
discrete or continuous time assuming only the usual independence of the individual
evolutions. Such processes are considered from a new perspective: modeling of
the relative frequencies (proportions, fractions) of different types of individuals
(instead of their absolute numbers) as functions of time. Notwithstanding other
possible applications, we will use the term “cell” instead of referring to an abstract
individual or particle throughout this paper to emphasize its special relevance to
cell biology.

It is well known (see, e.g., Athreya and Ney [1] and Mode [19]) that in the
positively regular and supercritical case the multitype population vector Z(t) is
asymptotically proportional (on the nonextinction set) to the left-eigenvector v =
(v1, v2, . . . , vd) corresponding to the Perron–Frobenius root of the mean matrix.
Then the frequency of the kth type converges a.s. to vk/

∑d
j=1 vj (see Mode [19],

Theorem 8.3, Chapter 1). Jagers [15] was probably the first to consider relative
frequencies in the context of biological applications. He studied asymptotic prop-
erties (as t → ∞) of a reducible age-dependent branching process with two types
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of cells and proved convergence of their relative frequencies to nonrandom lim-
its in mean square and almost surely on the nonextinction set. The usefulness of
such frequencies in cell cycle analysis was further demonstrated by Mode [19, 20]
who considered a four-type irreducible age-dependent branching process. Some of
these results are discussed in Section 6. The relative frequencies of distinct cell
types play an important role in the analysis of biological studies of proliferation
and differentiation of cells. As discussed in Section 2, the need for such character-
istics of cell kinetics arises in experimental situations where absolute cell counts
are not accessible to measurement.

To formulate the problem in more technical terms, consider a multitype branch-
ing stochastic process Z(t) = (Z1(t),Z2(t), . . . ,Zd(t)), where Zk(t) denotes the
number of cells of type Tk (k = 1,2, . . . , d) at time t . The time may be discrete
(t ∈ N0 = {0,1,2, . . .}) or continuous (t ∈ R+ = [0,∞)), and the evolution of cells
may be arbitrarily complex as long as it can be described by a (decomposable or
nondecomposable) branching process. The main focus in the theory of branching
process is on probabilistic characteristics of the process Z(t) and their asymptotic
behavior when t → ∞. In practical applications, however, the investigator is more
interested in such characteristics at fixed time points (transient process) that pro-
vide typically much more information on model parameters than their asymptotic
counterparts. It is still reasonable and useful to study another asymptotic aspect
of the problem, namely, the behavior of Z(t) when the initial number of cells is
large, which situation is of frequent occurrence in cell kinetics studies. This aspect
becomes especially important when considering relative frequencies of cell types
rather than the process Z(t) itself.

We define relative frequencies of cell types as �k(t) = Zk(t)/U(t), k =
1,2, . . . , d, for U(t) > 0, where U(t) = ∑d

k=1 Zk(t) is the total number of cells
present in the population at time t. In what follows, we assume that there is at
least one type (say, type T1) giving rise to all other types, regardless of whether
the process is decomposable or nondecomposable. We assume in addition that the
process begins with Z1(0) = N cells and study asymptotic properties of the above-
defined fractions �k(t;N) as N → ∞.

The paper is organized as follows. Section 2 provides a biological motivation
for the mathematical problem under consideration. The basic notions and prelim-
inaries are introduced in Section 3. Section 4 includes Theorem 1 stating multi-
variate asymptotic normality of the fractions (�1(t;N),�2(t;N), . . . ,�d(t;N))

at a fixed time moment t > 0. In Section 5, some statistical issues having the most
direct bearing on biological applications are discussed. Finally, some concluding
remarks and suggestions are given in Section 6.

2. Biological background and motivation. The theory of branching sto-
chastic processes has enjoyed a long history of biological applications (see, e.g.,
Jagers [16], Yakovlev and Yanev [22], Kimmel and Axelrod [17], Haccou, Jagers
and Vatutin [10], Yanev et al. [27], Yakovlev and Yanev [25]). This theory has been
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proven especially useful in cell kinetics studies, many of which call for a model
with multiple types of cells. A typical example is provided by the process of oligo-
dendrocyte generation in cell culture. Oligodendrocyte type-2 astrocyte progenitor
cells, henceforth referred to as O-2A progenitor cells, are known to be precur-
sors of oligodendrocytes in the developing central nervous system. When plated in
vitro and stimulated to divide by purified cortical astrocytes or by platelet-derived
growth factor, these cells grow in clones giving rise to oligodendrocytes. An O-2A
progenitor cell is partially committed to differentiation into an oligodendrocyte but
it retains the ability to proliferate. Oligodendrocytes are terminally differentiated
(mature) cells and they do not divide under normal conditions. At different time
points over a period of several days after plating, the composition of each clone
is examined microscopically to count the numbers of O-2A progenitor cells and
oligodendrocytes per clone. A certain number N of cell clones, each originating
from a single initiator cell, are followed-up with the observation process being ei-
ther longitudinal or serial sacrifice, depending on the experimental design. Then
branching process modeling is needed to estimate all the important but unobserv-
able parameters, such as the mean mitotic cycle time, probabilities of cell division
and differentiation, the mean life-span of oligodedrocytes, and so forth, from the
observed counts of O-2A progenitor cells and oligodendrocytes as functions of
time.

The first stochastic model of oligodendrocyte development in cell culture was
proposed by Yakovlev, Mayer-Proschel and Noble [23]. The model structure was
defined following a set of assumptions that specified it as a special case of the
Bellman–Harris branching process with two types of cells similar to that studied
by Jagers [15]. Further studies [12, 13, 23, 24] proved this model to be overly
simplistic, suggesting a number of refinements that have made it much more diffi-
cult to handle analytically and numerically. In parallel, estimation techniques have
been developed to fit improved versions of the model to various experimental data.
Because of complexity of the underlying model, these techniques have been built
on simulation counterparts of either maximum likelihood or maximum pseudo-
likelihood methods. All specific applications of the proposed model have invari-
ably been limited to statistical inference from counts of both types of cells as func-
tions of the time elapsed after plating.

The above-described approach may not be feasible in many other experimen-
tal settings. For example, it is technically impossible to count the total number of
cells of a given type in the blood or bone marrow in animal experiments. A similar
obstacle may arise when studying suspension cell cultures consisting of those cell
types for which no specific antibodies are available, thereby limiting the utility of
flow cytometry in counting cell numbers. However, this difficulty can be overcome
by analyzing the proportions of different types of cells as long as they are morpho-
logically distinguishable. While the latter expedient is routinely practiced in exper-
imental and clinical laboratories, mathematical models of cell population kinetics
are traditionally formulated in terms of cell counts. This call for making multi-
type branching stochastic models suitable for statistical inference from relative
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frequencies, rather than absolute cell counts, motivated the present work. A useful
asymptotic result reported in this paper is a first step toward pertinent inferen-
tial procedures. The reported result holds for any branching process with a finite
number of cell types given that the basic postulates for the evolution of each type
are all met—the multitype Bienaymé–Galton–Watson, Markov, Bellman–Harris,
Sevastyanov and Crump–Mode–Jagers processes representing typical examples.

3. Basic notions and preliminary results. Consider the process Z(t) intro-
duced in Section 1 and its probability generating function (p.g.f.) given by

F(t; s) = E
{
sZ(t) | Z1(0) = 1

} = E
{
s
Z1(t)
1 s

Z2(t)
2 · · · sZd(t)

d | Z1(0) = 1
}
,(1)

where s = (s1, s2, . . . , sd) and |sk| ≤ 1, k = 1,2, . . . , d.

By the branching property and the usual assumption of independent individual
cell evolutions, one has

FN(t; s) = E
{
sZ(t) | Z1(0) = N

} = FN(t; s).(2)

It is well known that all characteristics of the process can be obtained from the
p.g.f. (1). In the sequel, the following notation will be used:

mk(t) = E{Zk(t) | Z1(0) = 1} = ∂

∂sk
F (t; s)|s=1, k = 1,2, . . . , d,(3)

bij (t) = ∂2

∂si ∂sj
F (t; s)|s=1, i, j = 1,2, . . . , d,(4)

where 1 = (1,1, . . . ,1). Using (3) and (4), one can obtain the following moments:

σ 2
k (t) = Var{Zk(t)} = bkk(t) + mk(t) − m2

k(t), k = 1,2, . . . , d,(5)

Cij (t) = Cov{Zi(t),Zj (t)} = bij (t) − mi(t)mj (t), i �= j = 1,2, . . . , d.(6)

We assume that the covariance matrix C(d)(t) = ‖Cij (t)‖ is finite and denote
its diagonal elements by Cii(t) ≡ σ 2

i (t), i = 1,2, . . . , d. To avoid trivially un-
reasonable cases, we assume that σ 2

i (t) > 0, i = 1,2, . . . , d. Then the correla-
tion matrix R(d)(t) = ‖rij (t)‖ is well defined, where rij (t) = Cij (t)/σi(t)σj (t) =
Cor(Zi(t),Zj (t)) and obviously rii(t) ≡ 1, i = 1,2, . . . , d.

Introduce the total number of cells at the moment t as

U(t) =
d∑

k=1

Zk(t),(7)

so that the relative frequencies (fractions, proportions) of types �k(t) can be de-
fined on the nonextinction set {U(t) > 0} as follows:

�k(t) = Zk(t)/U(t), k = 1,2, . . . , d,(8)
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with the obvious condition
d∑

k=1

�k(t) = 1.(9)

In what follows, we will also need the following proportions:

pi(t) = mi(t)/M(t), i = 1,2, . . . , d,(10)

where

M(t) = E{U(t)} =
d∑

j=1

mj(t).(11)

To emphasize the dependence of the process Z(t) on the initial number of initia-
tor cells Z1(0) = N , we will use the notation Z(t;N) = (Z1(t;N),Z2(t;N), . . . ,

Zd(t;N)). By the property of independence of cell evolutions, one has

Zi(t;N) =
N∑

k=1

Z
(k)
i (t), i = 1,2, . . . , d,(12)

where {Z(k)
i (t)}Nk=1 are i.i.d. copies of the branching process Zi(t), i = 1,2, . . . , d .

Our focus is on the asymptotic (as N → ∞) behavior of the fractions

�i(t;N) = Zi(t;N)/U(t;N), i = 1,2, . . . , d,(13)

where

U(t;N) =
d∑

i=1

Zi(t;N) =
N∑

k=1

U(k)(t) > 0(14)

and U(k)(t) = ∑d
i=1 Z

(k)
i (t).

PROPOSITION 1. Let mi(t) < ∞, i = 1,2, . . . , d . Then for N → ∞
q(t;N) = Pr{U(t;N) = 0} → 0,(15)

�i(t;N) → pi(t) a.s. E{�i(t;N)} → pi(t),(16)

Var{�i(t;N)} → 0.(17)

PROOF. Note that by (1)–(2) and (12)–(14) one has q(t;N) = Pr{U(t;N) =
0} = qN(t) → 0 as N → ∞, where q(t) = Pr{U(t) = 0} = F(t;0) is the extinc-
tion probability, 0 = (0,0, . . . ,0) is a zero-vector, and q(t) < 1 for every fixed t .

From (12)–(14) and the law of large numbers (LLN), one obtains

�i(t;N) =
[

1

N

N∑
k=1

Z
(k)
i (t)

]/[
1

N

N∑
k=1

U(k)(t)

]
→ pi(t) a.s. N → ∞.(18)
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Put another way, the fractions �i(t;N), i = 1, . . . , d , are strongly consistent
estimators for pi(t) when considered as functions of the initial number of ances-
tors N . Note that for each i the quantity pi(t) may be interpreted as the probability
for a randomly chosen cell at time t to be of the type Ti.

By virtue of the fact that 0 ≤ �i(t;N) ≤ 1 and the dominated convergence
theorem (DCT), it follows from (18) that E{�i(t;N)} converges to pi(t) as
N → ∞, implying that �i(t;N) is an asymptotically unbiased estimator for
pi(t), i = 1,2, . . . , d. Similarly, by (18), one has that �2

i (t;N) → p2
i (t) a.s. and,

therefore, E{�2
i (t;N)} → p2

i (t) by the DCT. Hence, the result (17) follows im-
mediately from (16). This concludes the proof of Proposition 1. �

4. Asymptotic multivariate normality of the relative frequencies. In the
general case with Z1(0) = N , the following asymptotic results hold.

THEOREM 1. Assume σ 2
i (t) < ∞, i = 1,2, . . . , d, and define A(d)(t) =

‖aij (t)‖, where

aii(t) = σi(t)
(
1 − pi(t)

)
, aij (t) = −σi(t)pj (t)(19)

for i �= j ; i, j = 1,2, . . . , d.

Then for the r.v.

Wi(t;N) = M(t)
√

N [�i(t;N) − pi(t)], i = 1,2, . . . , d,(20)

the following statements are valid as N → ∞:

(i) For every i = 1,2, . . . , d ,

Wi(t;N)
d→ Yi(t),(21)

where Yi(t) is a normally distributed r.v. with E{Yi(t)} = 0 and

S2
i (t) = Var{Yi(t)} =

d∑
k,l=1

rkl(t)aki(t)ali(t).(22)

(ii) For every k = 2,3, . . . , d − 1 and every subset (α1, α2, . . . , αk) with non-
recurring elements from the set {1,2, . . . , d},

(Wα1(t;N), . . . ,Wαk
(t;N))

d→ (Yα1(t), . . . , Yαk
(t)),(23)

where (Yα1(t), . . . , Yαk
(t)) have a joint normal distribution.

(iii) The covariance matrix of the vector Y (k)(t) = (Y1(t), Y2(t), . . . , Yk(t)) is
given by

D(k)(t) = ‖Cov{Yi(t), Yj (t)}‖ = [Ad×k(t)]T R(d)(t)Ad×k(t),(24)

where Ad×k(t) = ‖aij (t)‖, i = 1,2, . . . , d; j = 1,2, . . . , k, is a [d × k]-submatrix
of A(d)(t) and [Ad×k(t)]T = ‖aji(t)‖, j = 1,2, . . . , k; i = 1,2, . . . , d, is the cor-
responding transposed matrix of [k ×d] dimensions. The covariance matrix of any
subvector (Yα1(t), . . . , Yαk

(t)) can be obtained in a form similar to (24).
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PROOF. From (12)–(14), it follows that for every i = 1,2, . . . , d

�i(t;N) − pi(t)
(25)

=
√

N

U(t;N)

{
σi(t)[1 − pi(t)]Vi(t;N) − pi(t)

d∑
j �=i

σj (t)Vj (t;N)

}
,

where Vi(t;N) = ∑N
k=1[Z(k)

i (t) − mi(t)]/[σi(t)
√

N ], i = 1,2, . . . , d.

Note that E{Vi(t;N)} = 0,Var{Vi(t;N)} = 1 and

Cor{Vi(t;N),Vj (t;N)} = Cor{Zi(t),Zj (t)} = rij (t) = Cij (t)/σi(t)σj (t).

Then by the CLT for i.i.d. vectors (see, e.g., [2]), one has

(V1(t;N), . . . , Vd(t;N))
d→ (X1(t), . . . ,Xd(t)), N → ∞,(26)

where the r.v.s. X(d)(t) = (X1(t), . . . ,Xd(t)) have a joint normal distribution with

E{Xi(t)} = 0, Var{Xi(t)} = 1,

Cov{Xi(t),Xj (t)} = rij (t) = Cij (t)/σi(t)σj (t).

One can now infer from (20), (25) and (26) that the following convergence in
distribution holds:

Wi(t;N)
d→ Yi(t) = σi(t)[1 − pi(t)]Xi(t) − pi(t)

d∑
k �=i

σk(t)Xk(t),(27)

N → ∞,

observing the fact that U(t;N)/N → M(t) a.s. in accordance with the LLN.
From (27) and (19), it follows that for every i = 1,2, . . . , d

Yi(t) =
d∑

k=1

aki(t)Xk(t)(28)

is a linear combination of multivariate normal r.v.s. so that Yi(t) is normally dis-
tributed (see, e.g., [8], Chapter 3). Then from (28), one has

Var{Yi(t)} =
d∑

k=1

d∑
l=1

E{Xk(t)Xl(t)}aki(t)ali(t).

Using (19) one arrives at (22). Formula (24) follows directly from (26) and (27).
On the other hand, one can use (28) to write

Y(k)(t) = X(d)(t)Ad×k(t), k = 1,2, . . . , d.(29)

Formula (24) follows from (29) since the vector Y(k)(t) is a linear transforma-
tion of the multivariate normal vector X(d)(t) with covariance matrix R(d)(t) =
‖rij (t)‖ . �
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COROLLARY 1. By (19) and (22), it is not difficult to derive

dii(t) ≡ S2
i (t)

(30)
= (

1 − pi(t)
)2

σ 2
i (t) + p2

i (t)
∑
k,l �=i

Ckl(t) − 2pi(t)
(
1 − pi(t)

)∑
k �=i

Cik(t).

To prove this, one only has to check that

rkl(t)aki(t)ali(t) =
⎧⎪⎨
⎪⎩

σ 2
i (t)

(
1 − pi(t)

)2
, k = l = i,

−pi(t)
(
1 − pi(t)

)
Cik(t), k �= i, l = i,

−pi(t)
(
1 − pi(t)

)
Cil(t), k = i, l �= i.

While condition (9) implies that the fractions �i(t;N), i = 1,2, . . . , d, are lin-
early dependent, there exist d − 1 joint normal distributions of lower dimensions
that are asymptotically nondegenerate. For example, consider the vector

�(d−1)(t;N) = (�1(t;N),�2(t;N), . . . ,�d−1(t;N)).

This vector has a limiting (d − 1)-dimensional joint normal distribution with
mean-vector E{�(d−1)(t;N)} = (p1(t),p2(t), . . . , pd−1(t)) and covariance ma-
trix D(d−1)(t)/NM2(t), where the matrix D(d−1)(t) = ‖dij (t)‖ is defined by (24)
with k = d − 1.

COROLLARY 2. If i �= j, then

dij (t) = Cij (t)+pi(t)pj (t)
∑
k,l

Ckl(t)−pi(t)
∑
k

Ckj (t)−pj (t)
∑

l

Cil(t).(31)

This result follows immediately from (19) and (24). Indeed, from (24), one has

dij (t) =
d∑

k,l=1

rkl(t)aki(t)alj (t),

and using (19) one obtains

rkl(t)aki(t)alj (t) =

⎧⎪⎪⎨
⎪⎪⎩

pi(t)pj (t)Ckl(t), k �= i, l �= j ,
−pi(t)

(
1 − pj (t)

)
Ckj (t), k �= i, l = j ,

−(
1 − pi(t)

)
pj (t)Cil(t), k = i, l �= j ,(

1 − pi(t)
)(

1 − pj (t)
)
Cij (t), k = i, l = j .

5. Statistical applications in relation to cell proliferation. As was pointed
out in the Introduction and in Section 2, there are experimental situations where
analyzing the relative frequencies, �i(t;N), of cell types rather than the total
cell counts Zi(t;N), i = 1,2, . . . , d may be quite advantageous. Should this be
the case, the property of asymptotic normality could be useful in developing the
needed statistical inference of model parameters from experimental data. In partic-
ular, the following observation process is directly relevant to quantitative studies
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of proliferation, differentiation and death of cells. Suppose that the process un-
der study begins with N = ∑n

k=1 Nk cells of type T1 and the values of Nk are all
large, that is, N0 = min{N1,N2, . . . ,Nn} → ∞. The descendants of the first N1
ancestors are examined only once at time t1 to determine empirical counterparts
of �i(t1;N1), i = 1,2, . . . , d , whereupon the observation process is discontinued
(i.e., the cells under examination are destroyed). At the next moment t2 ≥ t1, the
fractions �i(t2;N2), i = 1,2, . . . , d, related to the descendants of the second N2
ancestors are observed, and so on. This procedure results in n independent obser-
vations of the form:

ζ k = �(tk;Nk) = (�1(tk;Nk),�2(tk;Nk), . . . ,�d(tk;Nk)),

t1 ≤ t2 ≤ · · · ≤ tn, k = 1,2, . . . , n,

with each vector ζ k being asymptotically normal in accordance with Theorem 1.
Denoting the corresponding contribution to the asymptotic log-likelihood function
by Lk(ζ k; tk,Nk), the overall asymptotic log-likelihood is given by

�n(ζ 1, ζ 2, . . . , ζ n) =
n∑

k=1

Lk(ζ k; tk,Nk).(32)

The asymptotic log-likelihood (32) depends solely on parameters of individual
multitype processes arising from a single initiator cell of type T1. It is the latter pa-
rameters that are of primary interest in cell kinetics studies; they can be estimated
from the data on relative frequencies by maximizing the log-likelihood (32). It
should be emphasized that the only rationale for resorting to the asymptotic likeli-
hood is that the ordinary likelihood is not readily available for partially observed
branching processes of such complexity. Two more specific examples are given
below.

EXAMPLE 1. Let d = 2 and assume that Z(t;N) = (Z1(t;N),Z2(t;N)), t =
0,1,2, . . . , is a Bienaymé–Galton–Watson (BGW) branching process. This model
represents a powerful tool in the analysis of time-lapse data generated via video-
recording of individual cell evolutions. It is well known that the BGW process is
entirely determined by the offspring p.g.f.

hi(s1, s2) = E
{
s
Z1(1)
1 s

Z2(1)
2 | Zi(0) = 1

}
, i = 1,2.(33)

The first and second moments of the offspring distribution are derived from (32)
in the usual way, that is,

mij = ∂

∂sj
hi(s1, s2)|s1=s2=1, i, j = 1,2,(34)

bi
jk = ∂2

∂sj ∂sk
hi(s1, s2)|s1=s2=1, i, j, k = 1,2.(35)
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Using (36) and (37), let us derive the moments defined in (3)–(6) for every
generation t = 1,2, . . . . First of all, note that M(t) = ‖mij (t)‖ = Mt , where
mij (t) = E{Zj(t) | Zi(0) = 1} and M = ‖mij‖. Let bi

jk(t) = E{Zj(t)(Zk(t) −
δjk) | Zi(0) = 1}, where δjk = 1, j = k and δjk = 0, j �= k. Note also that
mij (1) = mij and bi

jk(1) = bi
jk .

Using the recurrence formula,

bi
jk(t + 1) =

2∑
l=1

2∑
r=1

bi
lrmlj (t)mrk(t) +

2∑
l=1

milb
l
jk(t), t = 1,2, . . . ,(36)

it follows from Theorem 1 and formula (32) that

�n(ζ1, ζ2, . . . , ζn) = −n

2
log 2π − 1

2

n∑
k=1

logS2(tk;Nk)

(37)

− 1

2

n∑
k=1

[ζk − p(tk)]2/S2(tk;Nk),

where ζk = �(tk;Nk),p(tk) = m11(tk)/M(t) and M(t) = [m11(tk) + m12(tk)].
Taking (30) into account, one obtains

S2(tk;Nk) = 1

NkM2(tk)
{σ 2

1 (tk)[1 − p(tk)]2

+ σ 2
2 (tk)p

2(tk) − 2C12(tk)p(tk)[1 − p(tk)]},
where, by virtue of (5) and (6), one has to set σ 2

i (tk) = b1
ii(tk) + mii(tk) −

m2
ii(tk), i = 1,2, and C12(t) = b1

12(t) − m11(t)m12(t).

The log-likelihood �n can now be constructed [proceeding from (37)] as
a function of the observations (ζ1, ζ2, . . . , ζn) and the moments {mij } and {bi

jk},
i, j, k = 1,2, to obtain asymptotic maximum-likelihood estimates of the model
parameters of interest.

EXAMPLE 2. Recalling the model of oligodendrocyte generation in cell cul-
ture discussed in Section 2, consider a two-type reducible Bellman–Harris process
(Z1(t;N),Z2(t;N)), t ≥ 0, with offspring p.g.f.

h1(s1, s2) = p0 + p1s
2
1 + p2s2, h(1,1) = p0 + p1 + p2 = 1.(38)

In this process, the life-span of every progenitor (type T1) has cumulative distribu-
tion function G1(t). At the end of its life (mitotic cycle), every progenitor cell ei-
ther dies with probability p0, or divides into two new T1 cells with probability p1,
or differentiates into a new cell type T2 (oligodendrocyte) with probability p2.

Every cell of type T2 has its life-span distributed in accordance with G2(t) and, at
the end of its life, it dies without giving rise to any progeny, that is, its offspring
p.g.f. is h2(s1, s2) ≡ 1.
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By conditioning on the evolution of the first progenitor cell and applying the
law of the total probability, one can establish that the p.g.f.s

F1(t; s1, s2) = E
{
s
Z1(t)
1 s

Z2(t)
2 | Z1(0) = 1

}
, F1(0; s1, s2) = s1,

F2(t; s2) = E
{
s
Z2(t)
2 | Z2(0) = 1

}
, F2(0; s2) = s2,

satisfy the following equations:

F1(t; s1, s2) =
∫ t

0
h1

(
F1(t − u; s1, s2),F2(t − u; s2)

)
dG1(u) + s1

(
1 − G1(t)

)
,

F2(t; s2) = s2
(
1 − G2(t)

) + G2(t).

The first and second moments of the process are readily derived from these
equations. Then Theorem 1 can be applied to obtain maximum likelihood estimates
of the parameters incorporated into the model.

The above line of reasoning applies to the so-called clonal analysis, that is,
the analysis of cell counts in mixed clones obtained at discrete moments of time.
However, in time-lapse experiments (see, e.g., [14]), it is also possible to observe
the fractions �i(tk) in the embedded discrete time branching structure determined
by the sizes of consecutive generations. In general, the embedded discrete time
process of a d-type Bellman–Harris branching process is a d-type BGW process
with the same offspring distributions. In this case, formulas (33)–(35) and (38)
yield

m11 = 2p1, m12 = p2, m21 = m22 = 0,

b1
11 = 2p1, bi

jk = 0 for all other indices j, k,

σ 2
1 = 4p1(1 − p1), σ 2

2 = 0, C12 = −2p1p2.

Hence, one has

m11(t) = (2p1)
t , m12(t) = (2p1)

t−1p2, b1
11(t) = t (2p1)

t ,

σ 2
1 (t) = (2p1)

t (t + 1 − 2p1), σ 2
2 (t) ≡ 0, C12(t) = −p2(2p1)

2t−1

for t = 1,2, . . . .

Surprisingly, in this particular case

p(tk) = m11(tk)/[m11(tk) + m12(tk)] ≡ 2p1/(2p1 + p2)(39)

is a constant for every t.

Therefore, from (30) one obtains

S2(tk;Nk) = S2
1(tk)/NkM

2(tk)
(40)

= 1

Nk

(
2p1

2p1 + p2

)2{
tk + 1 − 2p1 +

(
p2

2p1 + p2

)2}
.

The required log-likelihood �n(p1,p2) = �n(ζ 1, ζ 2, . . . , ζ n | p1,p2) follows
immediately from (39), (40) and (37).
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REMARK. Quine [21] investigated the moment structure of the multitype
Galton–Watson process and derived useful linear recurrence relations.

6. Discussion and concluding remarks. Since the paper by Jagers [15], the
concept of relative frequencies (cell fractions) has attracted little attention of inves-
tigators in the field of branching stochastic processes. This is unfortunate in view
of the need for pertinent methods of stochastic modeling and statistical analy-
sis of the fractions of cells rather than their counts in the area of cell biology.
Published in 1971, a subsequent work by Mode [20] is evidence in favor of this
opinion. Mode built his cell cycle analysis on a model of multitype positively reg-
ular age-dependent branching process. In the supercritical case, he proved that
lim�k(t) = δk a.s. as t → ∞, providing the population does not become ex-
tinct. It should be noted that the constants δk, k = 1,2, . . . , d, depend only on the
offspring characteristics. In fact, δk = vk/

∑d
j=1 vj , where vk = ηk(1 − G∗

k(α)),
η = (η1, η2, . . . , ηd) is a left eigenvector of the matrix H(α) = ‖G∗

k(α)mij‖ with
the Malthusian parameter α, while G∗

k(λ) is the Laplace–Stieltjes transform of
the life-span distribution Gk(t) for the type Tk, k = 1,2, . . . , d. In his monograph,
Mode [19] also considered the utility of fractions and reported a similar result for
the BGW process.

Methods of statistical inference for branching processes with an increasing
number of ancestors were developed by Yanev [26] (see also [9]), Dion and Yanev
[4–6] and reviewed later by Yanev [28]. A diffusion approximation for the clas-
sical BGW process with a large number of ancestors in the near-critical case was
introduced by Feller [7] and developed further by Lamperti [18] and others. Some
of these results were summarized and discussed by Jagers [16]. The work of Lam-
perti [18] also reports some interesting limiting distributions.

However, the main focus has always been on the numbers of individuals (cells)
of different types and not on their relative frequencies. In the present paper, we
make another step in the same direction by considering the asymptotic behavior of
the fractions �k(t) as the initial number of ancestors tends to infinity but the time t

is fixed. The convergence results established for �k(t) may have far-reaching sta-
tistical implications.

The results obtained by Jagers and Mode suggest that it would be interesting to
investigate the asymptotic behavior of the fractions �k(t;N) when both parame-
ters N and t tend to infinity simultaneously. It is anticipated that such asymptotic
properties will depend on a specific branching model and its reducibility. They are
also expected to be different for supercritical, critical, and subcritical processes.

Yet another open problem has to do with correlations between times to divi-
sion for sister cells. As conjectured by Harris [11], the mean number of cells is
not affected by this type of correlation while the variance can only be larger than
that in the independent case. Crump and Mode [3] were the first to systematically
study an age-dependent branching model under which the life-spans of sister cells
are correlated as well as the numbers of offspring of sister cells, but otherwise
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the cells live and reproduce independently. A bifurcating autoregressive branching
process [10] represents another relevant example. Asymptotic properties of such
processes as N or/and t tend to infinity have yet to be explored.
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