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INTEGRATED FUNCTIONALS OF NORMAL AND
FRACTIONAL PROCESSES1
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Consider Z
f
t (u) = ∫ tu

0 f (Ns) ds, t > 0, u ∈ [0,1], where N = (Nt )t∈R

is a normal process and f is a measurable real-valued function satisfying
Ef (N0)2 < ∞ and Ef (N0) = 0. If the dependence is sufficiently weak

Hariz [J. Multivariate Anal. 80 (2002) 191–216] showed that Z
f
t /t1/2 con-

verges in distribution to a multiple of standard Brownian motion as t → ∞.
If the dependence is sufficiently strong, then Zt/(EZt (1)2)1/2 converges
in distribution to a higher order Hermite process as t → ∞ by a result by
Taqqu [Wahrsch. Verw. Gebiete 50 (1979) 53–83]. When passing from weak
to strong dependence, a unique situation encompassed by neither results is en-
countered. In this paper, we investigate this situation in detail and show that
the limiting process is still a Brownian motion, but a nonstandard norming is
required. We apply our result to some functionals of fractional Brownian mo-
tion which arise in time series. For all Hurst indices H ∈ (0,1), we give their
limiting distributions. In this context, we show that the known results are only
applicable to H < 3/4 and H > 3/4, respectively, whereas our result covers
H = 3/4.

1. Introduction. With the increase popularity of using self-similar processes
to model econometric time series (see Ballie [2]) and network traffic (see Will-
inger, Taqqu, Sherman and Wilson [27]), understanding the limiting behavior of
integrated functionals of normal processes becomes a challenging and important
task. Functional limit theorems of this nature have found applications in various
disciplines (see, e.g., Bhattachary, Gupta and Waymire [4] for an interesting appli-
cation in hydrology). One of the early results of this nature is given in the seminal
paper by Taqqu [25], where it was shown that the limit of such processes are in the
domain of attraction of higher order Hermite processes when the underlying nor-
mal process exhibits strong dependence. This problem was subsequently studied in
Hariz [15] when the underlying normal process is weakly dependent. The problem
becomes more intriguing when transitions from weak to strong dependence take
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place. Among others, we establish the limiting distribution of integrated function-
als of fractional Brownian motions for all Hurst exponents in (0,1) in this paper.

Let (�,F ,P ) be a probability space carrying a standard Brownian motion W =
(Wt)t∈R and let a be a Borel function with

∫
a2(s) ds = 1. We consider a normal

process N defined by

Nt =
∫

R

a(t − s) dWs, t ∈ R,(1.1)

and also its covariance function r : R → R, where we set

r(t) = E(NtN0), t ≥ 0.

For k ∈ N0, let Hk denote the kth Hermite polynomial with leading coefficient one
defined by

Hk(x) = (−1)k exp
(

x2

2

)
dk

dxk
exp
(
−x2

2

)
.(1.2)

In the sequel, let f be a measurable real-valued function such that f satisfies
Ef (N0) = 0 and Ef 2(N0) < ∞. Then f can be expanded into an orthogonal se-
ries as

f (x) =
∞∑

k=1

ck

k!Hk(x),(1.3)

where the coefficients are given by

ck = EHk(N0)f (N0), k ∈ N.(1.4)

The series in (1.3) converges in L2(ν) where ν denotes the standard normal law
on the Borel sets of R. In this case, the constant

q = q(f ) = inf{k : ck �= 0}
is called the Hermite rank of f by Taqqu in his pioneering paper [24].

The Hermite rank plays a crucial role in the asymptotic behavior of sample
means of nonlinear functionals for both Gaussian processes and fields indexed
by continuous and discrete parameters (cf. Breuer and Major [7], Chambers and
Slud [11], Dobrushin and Major [13], Hariz [15] and Taqqu [24] and [25] and
references therein).

In particular, Hariz [15] showed that, if∫ ∞
0

|r(s)|q ds < ∞,(1.5)

then a central limit theorem (CLT) holds, that is, the finite dimensional distribu-
tions of Z

f
t (·)/t1/2 = ∫ t·

0 f (Nu)du/t1/2 converges to σW , as t → ∞, where

σ 2 =
∞∑

k=q

c2
k

k!
∫

rk(u) du.(1.6)
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The integral in (1.5) is finite if the covariance function of N tends to zero suf-
ficiently fast, that is, the dependence of the underlying process N is sufficiently
weak. When the underlying process is strongly dependent, a noncentral limit the-
orem (NCLT) holds: Under some technical conditions on the kernel a, Zf is in
the domain of attraction of a Hermite process of order q . This was shown by
Taqqu [25]. However, there are situations where the quantity in (1.5) is infinite,
but the dependence is still too weak to satisfy a NCLT. This situation typically oc-
curs when one wants to explore the domain of attraction of integrated functionals
of fractional Ornstein–Uhlenbeck processes for all Hurst indices H ∈ (0,1). As
a standard rule, the CLT covers H ∈ (0,1 − 1/(2q)) whereas the NCLT is applica-
ble to H ∈ (1 − 1/(2q),1) [q ≥ 2]. In this paper, we are interested in the boundary
corresponding to H = 1 − 1/(2q).

The paper is organized as follows. In Section 2, we state a general theorem
dealing with the boundary case. Also, we give an application of our result to frac-
tional Ornstein–Uhlenbeck processes. An important application of results of this
nature arises from the study of strongly dependent times series (cf. Buchmann and
Chan [8]). In Section 3, we review and extend the asymptotic theory of the so-
called unit-root problem as an application of Section 2. In this context, the CLT
and the NCLT are only applicable to H ∈ (0,3/4) and H ∈ (3/4,1), respectively,
whereas our theorem covers H = 3/4. All proofs are found in Section 4.

2. Main result. Throughout let C(R+
0 ) be the space of continuous functions

on R
+
0 = [0,∞) endowed with the convergence of locally uniform convergence.

The proof of the following theorem is found in Section 4.1.

THEOREM 2.1. Suppose that (1.1) is satisfied. Let L and L|·| be slowly vary-
ing at infinity with limt→∞ L(t) = ∞ and

lim sup
t→∞

L|·|(t)
L(t)

< ∞,(2.1)

where

L(t) =
∫ t

0
rq(u) du, L|·|(t) =

∫ t

0
|r(u)|q du, t > 0.(2.2)

Let f ∈ L2(ν) with Ef (N0) = 0 and Hermite rank q = q(f ) ≥ 1. Then the follow-
ing assertions hold:

(i) In the sense of the finite dimensional distributions,

(2tL(t))−1/2
∫ t·

0
f (Nu)du

d→ cq

(q!)1/2 W, t → ∞.(2.3)

(ii) In addition, if there exists R > 1 such that
∑∞

k=q
|ck |√

k!R
k is finite then (2.3)

holds in C(R+
0 ).
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REMARK 1. (i) It follows from Karamata’s theorem, Fubini’s theorem and the
diagram formula (A.2) that

E

[∫ t

0
Hq(Ns) ds

]2

= 2q!
∫ t

0

∫ v

0
rq(u) dudv ∼ 2q!tL(t), t → ∞,

and thus L is eventually positive at infinity.
(ii) To set up weak convergence to a Brownian motion as in (2.3), it is well

known that a possible norming function has to be regularly varying with index 1/2
(cf. Lamperti [17] and the discussion in Taqqu [24]). Consequently, the assump-
tion that L is itself slowly varying is rather weak. Hariz [15] gives a functional
version of his result under similar conditions on the Hermite expansion of f and
N . The existence of a representation of form (1.1) is equivalent to the absolute
continuity of the spectral measure of N with respect to Lebesgue measure (cf.
Ibragimov and Linnik [16], Theorem 16.7.2). This covers a lot of important cases
and, in particular, Ornstein–Uhenbeck processes driven by the fractional Brown-
ian motion. Our proof of Theorem 1 relies on elegant results obtained by Peccati
and Tudor [20] and formulated in terms of functionals on a Gaussian space. There-
fore, we need this space controlled by a diffuse measure, which is taken to be the
Lebesgue measure in the proof. It would be interesting to investigate whether the
arguments by Peccati and Tudor [20] extend to other measures than the Lebesgue
measure. However, this is beyond the scope of this paper.

(iii) For normal processes with a bounded spectral density, Chambers and
Slud [11] have shown central limit theorems for more general functionals, includ-
ing those depending on infinitely many coordinates. For the long-range depen-
dence situation considered in our paper, the spectral density is usually unbounded,
however. The result presented in this paper only covers functionals depending on
one coordinate. A general theory has yet to be developed for general functionals
of long-range dependent processes.

To prepare our analysis in the next section, we conclude this section with an
application to fractional Ornstein–Uhlenbeck processes. Let H ∈ (0,1). A frac-
tional Brownian motion (FBM) BH = (BH

t )t∈R with Hurst index H is a centered
Gaussian process with almost surely locally Hölder continuous paths of any order
strictly smaller than H and covariance function

EBH
t BH

s = 1
2(|t |2H + |s|2H − |t − s|2H), s, t ∈ R.(2.4)

A choice H = 1/2 relates to a standard Brownian motion W (cf. Bhattacharya and
Waymire [3] for interpretations of Hurst index and Samorodnitsky and Taqqu [23]
for further properties of FBM).

In particular, FBM is self-similar, that is, for all c ∈ R, in the sense of finite
dimensional distributions,

(BH
ct )

d= |c|H (BH
t ).(2.5)
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Also, let BH
γ = (BH

γ,t )t≥0 be the fractional Ornstein–Uhlenbeck process (FOUP),
defined by

BH
γ,t =

∫ t

0
e−γ (t−s) dBH

s , t ≥ 0, γ ∈ R,(2.6)

where the integral in (2.6) converges pathwisely in the usual Riemann–Stieltjes
sense (cf. Buchmann and Klüppelberg [9] and Cheridito, Kawaguchi and Mae-
jima [12] for further properties of FOUP).

For γ > 0, the process BH
γ is asymptotically stationary. In the next corollary,

we apply our result to the case when the Hermite rank q = 2. Up to some tech-
nicalities (cf. Section 4.2), it follows from the CLT by Hariz [15] and the NCLT
by Taqqu [25] for H ∈ (0,3/4) and H ∈ (3/4,1), respectively. Theorem 2.1 deals
with the remaining case H = 3/4. We conclude this section with a remark where
we summarize the corresponding results for the general case and allow for arbitrary
Hermite ranks q . We refer to Taqqu [25] and references therein for the definition
and properties of Rosenblatt processes with Hurst index H . Throughout � denotes
Euler’s Gamma function.

COROLLARY 2.1. For all H ∈ (0,1) and γ > 0, it holds in C(R+
0 )

gH (t)

∫ t·

0

[
(BH

γ,s)
2 − �(2H + 1)

2γ 2H

]
ds

d→ hH (γ )σHXH , t → ∞,(2.7)

where, for H ∈ (0,3/4], XH is a Brownian motion and for H ∈ (3/4,1), XH is a
Rosenblatt process with E(XH

1 )2 = 1 and Hurst index H .
The quantities gH , σH and hH (γ ) are given by the following formulas:

gH (t) =
⎧⎨
⎩

t−1/2, H ∈ (0,3/4),
(t log t)−1/2, H = 3/4,
t1−2H , H ∈ (3/4,1),

t > 1,(2.8)

hH (γ ) =
{

γ −1/2−2H , H ∈ (0,3/4),
γ −2, H ∈ [3/4,1),

(2.9)

σH =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2/π)1/2�(2H + 1)

× sin(πH)

(∫ ∞
0

ξ2−4H

(1 + ξ2)2 dξ

)1/2

, H ∈ (0,3/4),

3/4, H = 3/4,
H [(4H − 2)/(4H − 3)]1/2, H ∈ (3/4,1).

(2.10)

REMARK 2. Let q ∈ N, H ∈ (0,1) and γ > 0. In Corollary 2.1, we only deal
with Hermite rank q = 2, which is sufficient for Section 3. It is natural to ask
whether Corollary 2.1 can be extended to other Hermite polynomials. The answer
is affirmative and as the arguments are very similar to the proof of Corollary 2.1,
we only state the main results here without proof. To this end, let

μH = 2

�(2H + 1)
, H ∈ (0,1)(2.11)
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and observe that E(BH
γ,t )

2 → γ −2Hμ−1
H (cf. Buchmann and Klüppelberg [9]).

In view of Lemma 4.1(iii) below, it follows from Taqqu [25] that, for q ≥ 1 and
H > 1 − 1

2q
, as t → ∞, in C(R+

0 ),

tq(1−H)−1
∫ t·

0
Hq(γ Hμ

1/2
H BH

γ,s) ds

d→ (2q!)1/2[(2H − 2)q + 1][(2H − 2)q + 2]−1/2

×
[

2H − 1

�(2H)

]q/2

γ q(H−1)Bq,H ,

where Bq,H is the Hermite process of order q with Hurst index H and unit variance
E(B

q,H
1 )2 = 1 (cf. [25] for the definition of higher order Hermite processes). Note

that B1,H = BH for q = 1 and H ∈ (1/2,1) whereas, for q = 2 and H ∈ (3/4,1),
B2,H = XH is the Rosenblatt process in Corollary 2.1.

If q ≥ 2 and H = 1 − 1/(2q), then it follows from Theorem 2.1 and
Lemma 4.1(iii) that, as t → ∞, in C(R+

0 ),

(t log t)−1/2
∫ t·

0
Hq(γ

Hμ
1/2
H BH

γ,s) ds
d→ (2q!)1/2

[
2H − 1

�(2H)

]q/2

γ q(H−1)W.

If either, both q = 1 and H ≤ 1/2, or, q ≥ 2 and H < 1 − 1/(2q), then we get
from Hariz [15] and Lemma 4.1(iii) that, as t → ∞, in C(R+

0 ),

t−1/2
∫ t·

0
Hq(γ

Hμ
1/2
H BH

γ,s) ds
d→ (2q!)1/2

[2�(2H + 1)]q/2

(
Iq,H

γ

)1/2

W,(2.12)

where

Iq,H =
∫ ∞

0

[
�(2H + 1)e−t

+ 2H

[
et
∫ ∞
t

e−ss2H−1 ds − e−t
∫ t

0
ess2H−1 ds

]]q
dt.

Here, the integral converges absolutely, provided either q = 1 and 0 < H ≤ 1/2, or
q ≥ 2 and 0 < H < 1 − 1/(2q). Observe that Iq,1/2 = 2q/q for all q ∈ N. A more
refined analysis shows that Iq,H > 0 for all q ≥ 2 and 0 < H < 1 − 1/(2q).

However, note that I1,H = 0 for all 0 < H < 1/2 such that the limit in (2.12) is
trivial in this case. To find a nontrivial limit, consider a function ψ : [0,∞) → R

with ψ(0) = 0, that is, locally Hölder of order β > 0. For all T > 0 there, thus
exists CT ∈ R such that |ψ(u) − ψ(v)| ≤ CT |u − v|β for all 0 ≤ u, v ≤ T . In this
case,

sup
0≤v≤T

∣∣∣∣t
∫ v

0
eγ t (s−v)ψ(s) ds − 1

γ
ψ(v)

∣∣∣∣≤ t−β CT

γ 1+β

[
�(β + 1) + sup

0≤s<∞
sβe−s

]
,



FUNCTIONALS OF FRACTIONAL NORMAL PROCESSES 55

for all γ, t, T > 0, and thus for all γ > 0, locally uniformly in v ≥ 0,

t

∫ v

0
eγ t (s−v)ψ(s) ds → 1

γ
ψ(v), t → ∞.(2.13)

Let H ∈ (0,1), in view of (2.5), we get from simple substitutions and partial inte-
grations that, for all t > 0,

t−H
∫ t·

0
BH

γ,s ds = t1−H
∫ ·

0
eγ t (s−·)BH

ts ds
d= t

∫ ·

0
eγ t (s−·)BH

s ds,(2.14)

where the last identity holds in the sense of finite dimensional distributions.
Clearly, we have BH

0 = 0 with probability one. Further, sample paths of BH are
locally Hölder of any order strictly smaller than H , almost surely. Hence, the right-
hand side in (2.14) converges to BH/γ locally uniformly, almost surely, as t → ∞,
by means of (2.13), and thus in C(R+

0 ), as t → ∞,

t−H
∫ t·

0
BH

γ,s ds
d→ γ −1BH .

3. The unit root problem. We apply Corollary 2.1 to some functionals of
FBM that occur in the unit-root problem in times series analysis. To illustrate this
problem, let ε = (εn)n∈N be a sequence of independent and identically distrib-
uted random variables with variance one and consider the first order autoregressive
model,

Xn = βXn−1 + εn, n ∈ N, X0 = 0.

The parameter β is unknown and has to be estimated from the observations
X1, . . . ,Xn. The least squares estimator for β is given by the formula

b̂n = b̂n(X0, . . . ,Xn) =
∑n−1

t=0 Xt+1Xt∑n−1
t=0 X2

t

.

For |β| < 1 (stationary regime), Mann and Wald [18] showed that

τ̂n =
(

n−1∑
t=0

X2
t

)1/2

(b̂n − β)
d→ W1, n → ∞.(3.1)

For the explosive case |β| > 1, (3.1) holds whenever ε is a sequence of independent
standard normal random variables (Anderson [1]).

On the other hand, (3.1) fails to hold for β = 1 even when ε forms a sequence of
independent standard normal random variables. White [26] and Rao [22] showed
that it is a functional of Brownian motion W = (Wt)0≤t≤1, that is,

τ̂n
d→ τ̄ (0) = 1

2 [W 2
1 − 1]

[∫ 1

0
W 2

s ds

]−1/2

, n → ∞.(3.2)
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This contrast between (3.1) and (3.2) is a typical example of a critical phenom-
enon. The parameter value β = 1 comprises a singularity and there is a lack of
smooth transition of the limiting distribution of τ̂n when β is close to one. For fi-
nite sample analysis or tests under local alternatives, a key question becomes that
if β is close to one, what kind of approximation should be used for τ̂n? An answer
to this question is given in Chan and Wei [10], where the following class of models
is proposed:

X
(n)
t = βnX

(n)
t−1 + εt , n ∈ N, X

(n)
0 = 0.(3.3)

Suppose that there exists γ ∈ R such that βn = 1 − γ /n. Then it is shown by Chan
and Wei [10] that

τ̂n
d→ τ̄ (γ ) =

∫ 1
0 Wγ,s dWs√∫ 1

0 W 2
γ,s ds

, n → ∞,(3.4)

where Wγ = B
1/2
γ is the Ornstein–Uhlenbeck process driven by Brownian motion

and the integral on the right-hand side is defined in the Itô’s sense.
In [8], a generalized asymptotic theory of ordinary least squares estimators for

a large class of possibly strongly dependent noise sequences was given. The result
covers certain stationary and ergodic sequences ε = (εn)n∈N with mean zero and
finite variance σ 2 = Eε2

2, where the associated partial sum process is in the domain
of attraction of BH for some H ∈ (0,1). In this case, there exist matrices Dn =
Dn(H) ∈ R

2×2, n ∈ N, H ∈ (0,1), such that, as n → ∞,

Dn

(
τ̂n

b̂n − βn

)
d→ 1H≥1/2

(
τH,3(γ )

τH,4(γ )

)
− 1H≤1/2

σ 2

2

(
τH,1(γ )

τH,2(γ )

)
,(3.5)

where 1A denotes the indicator function of some set A. Further, τH,i(γ ) denotes
the ith component of the vector τH (γ ) ∈ R

4 defined by

τH (γ ) =
(

H(γ )′,

((BH
γ,1)

2

2
+ γ

∫ 1

0
(BH

γ,s)
2 ds

)

H(γ )′

)′
,(3.6)


H(γ ) =

⎛
⎜⎜⎝
(∫ 1

0
(BH

γ,s)
2 ds

)−1/2

(∫ 1

0
(BH

γ,s)
2 ds

)−1

⎞
⎟⎟⎠ ,(3.7)

where x′ denotes the transpose of a vector x ∈ R
n.

It follows from Itô’s formula that

τ̄ (γ ) = τ1/2,3(γ ) − 1
2τ1/2,1(γ ),(3.8)

and thus the limit in (3.4) can be derived from (3.5) and (3.8), provided σ 2 = 1
(cf. [8] for details).
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It was shown in [10], that τ̄ (γ ) forms a continuous family indexed by γ ∈
[−∞,∞], in particular, we have with (3.1) in view,

τ̄ (γ )
d→ W1, |γ | → ∞.(3.9)

Next we want to extend (3.9) to all H ∈ (0,1). Therefore, we consider the vec-
tor τH (γ ) and its asymptotic properties for |γ | → ∞. In Remark 5 below, we
show how the limit in (3.9) is derived from the general theory.

There are two cases, that is, γ → ∞ or γ → −∞. Both cases exhibit quite
different qualitative behavior. With (3.9) in mind, this seems to be puzzling at the
first glance. However, the underlying dynamics are rather different as formally tak-
ing γ to +∞ or −∞ in (3.3) corresponds to an infinitesimal return to the stationary
regime or the explosive one.

We first tackle γ → ∞. The corresponding theorem is implied by Corollary 2.1
as it follows from the self-similarity of FBM that we may rewrite τH (γ ) into a
functional of integrated squares of BH

1 . In view of Corollary 2.1 for Hermite rank
q = 2, we thus expect two types of limit distributions depending on H ≤ 3/4 or
H > 3/4 with an additional logarithm in the norming functions for H = 3/4 (cf.
Section 4.3 for a proof).

THEOREM 3.1. Let (Z,Y ) a standard normal random vector. For H ∈
(3/4,1), let RH = RH(1) be a Rosenblatt distributed random variable with
ER2

H = 1, independent of Y .

(i) For H ∈ (0,3/4] and γ > 1, there exist �H ∈ R
4×2, bH (γ ) ∈ R

4 and
DH(γ ) ∈ R

4×4 such that

DH(γ )
(
τH (γ ) − bH (γ )

) d→ �H

(
Z

Y 2

)
, γ → ∞.

(ii) For H ∈ (3/4,1) and γ > 1 there exist �H ∈ R
4×2, bH (γ ) ∈ R

4 and
DH(γ ) ∈ R

4×4 such that

DH(γ )
(
τH (γ ) − bH (γ )

) d→ �H

(
RH

Y 2

)
, γ → ∞.

REMARK 3. For γ > 1 and H ∈ (0,1), the scaling matrices DH(γ ) have the
following forms:

DH(γ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

diag(γ 1/2−H ,γ 1/2−2H ,γ H−1/2,1), H ∈ (0,3/4),
diag

(
γ −1/4(logγ )−1/2, γ −1(logγ )−1/2,

γ 1/4(logγ )−1/2,1
)
, H = 3/4,

diag(γ 2−3H ,γ 2−4H ,γ 1−H ,1), H ∈ (3/4,1).
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For γ > 0 and H ∈ (0,1), the matrices �H and centering vectors ξH (γ ) are given
by the following formulas

�H =

⎛
⎜⎜⎝

−κHμH 0
−2κHμ

3/2
H 0

κH 0
0 1/2

⎞
⎟⎟⎠ , bH (γ ) =

⎛
⎜⎜⎝

μ
1/2
H γ H

μHγ 2H

μ
−1/2
H γ 1−H

γ

⎞
⎟⎟⎠ ,

where μH is defined in (2.11) and we set

κH =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π−1/2 sin(πH)�(2H + 1)1/2
(∫ ∞

0

ξ2−4H

(1 + ξ2)2 dξ

)1/2

, H ∈ (0,3/4),

(3/8)1/2π−1/4, H = 3/4,

2−1/2
(

H

4H − 3

)1/2

�(2H − 1)−1/2, H ∈ (3/4,1).

We conclude this section with a corresponding result dealing with the other
case, namely γ → −∞, together with some remarks (cf. Section 4.4 for its proof).

THEOREM 3.2. Let H ∈ (0,1). Then for γ → −∞,

diag
(|γ |−(2H+1)/2e|γ |, |γ |−2H−1e2|γ |, |γ |(2H−1)/2, |γ |−1e|γ |)τH (γ )

d→ diag
(

2

�(2H + 1)1/2 ,
4

�(2H + 1)
,�(2H + 1)1/2,2

)

× (|Z|−1,Z−2, Y sign(Z),Y/Z
)′
,

where (Y,Z) is standard normal and

sign(x) = 1, x ≥ 0, sign(x) = −1, x < 0.

REMARK 4. In Theorem 3.2, observe that Y/Z is a Cauchy random variable.
A similar result was obtained by Anderson [1] for the ordinary least squares esti-
mator b̂n for nonstationary AR(1) models, that is, |β| > 1, with independent stan-
dard Gaussian innovations.

REMARK 5. As indicated, we aim for recovering the limit in (3.9) by Theo-
rems 3.1–3.2. An easy computation yields μ1/2 = 2 and κ1/2 = 1/2, by virtue of
the identity

∫∞
0 dξ/(1 + ξ2)2 = π/4. By Theorem 3.1,((
τ1/2,1(γ )

τ1/2,3(γ )

)
− γ 1/2

(
21/2

2−1/2

))
d→ Z

(−1
1/2

)
, γ → ∞

and thus by (3.8),

τ̄ (γ ) = (τ1/2,3(γ ) − 2−1/2γ 1/2)− 1
2(τ1/2,1 − 21/2γ 1/2)

d→ Z, γ → ∞.
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On the other hand, Theorem 3.2 yields( |γ |−1e|γ |τ1/2,1(γ )

τ1/2,3(γ )

)
d→
(

2|Z|−1

Y sign(Z)

)
, γ → −∞.

By means of (3.8), we get, for γ → −∞,

τ̄ (γ ) = τ1/2,3(γ ) − 1
2 |γ |e−|γ |(|γ |−1e|γ |τ1/2,1(γ )

) d→ Y sign(Z)
d= Z.

4. Proofs.

4.1. Proof of Theorem 2.1. (i) First, we wish to establish (i) for the special
choice f = Hq , q ∈ N. We make use of a CLT for vector-valued multiple stochas-
tic integrals by Peccatti and Tudor [20] (cf. [19], Section 1.1, for the necessary
background). Secondly, we extend the result by a reduction, this being similar as
in [24].

To this end, fix q ∈ N and let

Aq,t (v1, v2) = (2tL(t))−1/2
∫ v2t

v1t
Hq(Nu)du, v2 ≥ v1 ≥ 0.

In order to show (2.3) for the finite dimensional distributions for f = Hq , it suf-
fices to show that, as t → ∞,

(Aq,t (v2j−1, v2j ))1≤j≤d
d→ (q!)1/2(Wv2j

− Wv2j−1)1≤j≤d,(4.1)

for all d ∈ N and v2d > v2d−1 ≥ v2d > · · · ≥ v2 > v1 ≥ 0.
Fix d ∈ N and v2d > v2d−1 ≥ v2d > · · · ≥ v2 > v1 ≥ 0. By Proposition 1.1.4

in [19] and a stochastic version of the stochastic Fubini’s theorem, it follows
from (2.2) that, almost surely for 1 ≤ j ≤ d ,

Aq,t (v2j−1, v2j )
(4.2)

= (2tL(t))−1/2
∫

Rq

∫ v2j t

v2j−1t

q∏
i=1

a(t − ui) dW⊗q(u1, . . . , ud),

where the right-hand side is understood in terms of multiple Wiener integrals (note
that the Hermite polynomials in (1.2) have a different leading coefficient than the
ones in [19]).

Suppose that we can show that, for all v4 > v3 ≥ v2 > v1 ≥ 0, as t → ∞,

EA2
q,t (v1, v2) → q!E(Wv2 − Wv1)

2,(4.3)

E[Aq,t (v1, v2)Aq,t (v3, v4)] → 0(4.4)

and

EA4
q,t (v1, v2) → q!E(Wv2 − Wv1)

4.(4.5)
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Then (4.1) is immediate in view of (4.2) and Theorem 1 in [20]. To show (4.3),
we make use of the diagram formula, which together with some necessary graph-
theoretical concepts, are stated in the Appendix.

Fix v2 > v1 ≥ 0. As r is symmetric and L is slowly varying, we get from Fu-
bini’s theorem and Karamata’s theorem that, as t → ∞,∫ tv2

tv1

∫ tv2

tv1

rq(u1 −u2) du1 du2 = 2
∫ t (v2−v1)

0
L(u)du ∼ 2(v2 −v1)tL(t),(4.6)

and thus by (A.2), as t → ∞,

EA2
q,t (v1, v2) = 2q!(2tL(t))−1

∫ tv2

tv1

∫ tw

tu
rq(u1 − u2) du1 du2 → q!(v2 − v1).

This completes the proof of (4.3).
Next pick v4 > v3 ≥ v2 > v1 ≥ 0. By simple substitutions, observe that∫ tv4

tv3

∫ tv2

tv1

rq(u1 − u2) du1 du2

=
[∫ t (v4−v1)

0
+
∫ t (v3−v2)

0
−
∫ t (v4−v2)

0
−
∫ t (v3−v1)

0

]
L(u)du,

for t > 0, and thus by means of Karamata’s theorem, as t → ∞,∫ tv4

tv3

∫ tv2

tv1

rq(u1 − u2) du1 du2 = o(tL(t)), t → ∞.(4.7)

Now (4.4) is implied by (A.2) and (4.7) since, as t → ∞,

E[Aq,t (v1, v2)Aq,t (v3, v4)]

= (2q!)(2tL(t))−1
∫ tv4

tv3

∫ tv2

tv1

rq(u1 − u2) du1 du2 → 0.

To show (4.5) let ε > 0 and recall (2.2). It follows from (2.1) and limt→∞ L(t) =
∞ that I := ∫∞

0 |r(u)|q du is infinite. By assumption, L|·| is also slowly varying.
Consequently, by Hölder’s inequality and Karamata’s theorem, for all v > ε > 0,∫ tv

0
|r(u)|m du ≤ (εt)1−m/qL

m/q
|·| (εt) + [(v − ε)t]1−m/q[L|·|(vt) − L|·|(εt)

]m/q

∼ (εt)1−m/qL
m/q
|·| (t), t → ∞, 1 ≤ m < q,

and thus by (2.1),∫ tv

0
|r(u)|m du = o(t1−m/qL(t)m/q), t → ∞, 1 ≤ m < q, v > 0.(4.8)

On the other hand, it follows from the inequality between geometric and arithmetic
mean and simple substitutions that for all m ∈ N, v > 0 and 0 ≤ w1, . . . ,wm ≤ vt ,∫ vt

0

m∏
i=1

|r(u − wi)|du ≤ 2
∫ vt

0
|r(u)|m du, t > 0.(4.9)
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We return to the proof of (4.5). Fix v2 > v1 ≥ 0. Using the notation of the Ap-
pendix, let D(4, q) be the set of all diagrams with 4 levels and rows of length q .
Let Dr

q be the subset of all D ∈ D(4, q) such that the following implication holds
for all e, f ∈ V(D):

m(e) = m(f ) ⇒ M(e) = M(f ).

If D ∈ D(4, q) \ Dr
q then, for 1 ≤ i ≤ 3 and i < j ≤ 4, there exist integers 0 ≤

mi,j ≤ q , additionally satisfying m1,1 + m1,2 + m1,3 + m1,4 = q and 1 ≤ m2,3 +
m2,4 < q , such that∣∣∣∣∣

∫ tv2

tv1

∫ tv2

tv1

∫ tv2

tv1

∫ tv2

tv1

∏
e∈E(D)

r
(
um(e) − uM(e)

)
du1 du2 du3 du4

∣∣∣∣∣
≤
∫ tv2

0

∫ tv2

0

∫ tv2

0

∫ tv2

0

3∏
i=1

4∏
j=i+1

|r(ui − uj )|mi,j du1 du2 du3 du4.

Thus, by (4.8)–(4.9) and (2.1), as t → ∞, we have∣∣∣∣∣
∫ tv2

tv1

∫ tv2

tv1

∫ tv2

tv1

∫ tv2

tv1

∏
e∈E(D)

r
(
um(e) − uM(e)

)
du1 du2 du3 du4

∣∣∣∣∣
≤ 8u2tL|·|(v2t)

∫ tv2

0
|r(u)|m3,4 du1

∫ tv2

0
|r(u)|m2,3+m2,4 du1

= o(t2L2(t)), t → ∞.

Consequently, we get from (A.2) and Fubini’s theorem that, as t → ∞,

EA4
q,t (v1, v2) = 3(q!)2

(∫ tv2

tv1

∫ tv2

tv1

rq(u1 − u2) du1 du2

)2

+ o(t2L2(t)).

This completes the proof of (4.5) in view of (4.6).
To summarize, the assertions (4.3)–(4.5) are all in place, and thus (4.1) is im-

plied by (4.2) and Theorem 1 in [20]. Further, this completes the proof of (i) for the
choice f = Hq . To extend (2.3) to all f ∈ L2(ν), recall that limt→∞ L(t) = ∞,

and thus limt→∞ L|·|(t) = ∞ by (2.1). Further, it follows from (2.2) that a spec-
tral density exists (cf. Ibragimov and Linnik [16], Theorem 16.7.2). In particular,
r must be continuous and we have limt→∞ r(t) = 0 by means of the Riemann–
Lebesgue lemma. If

∫∞
0 |r(u)|q+1 du is infinite, then we get from l’Hôspital’s rule

that, for all v > 0,

lim
t→∞

∫ vt

0
|r(u)|q+1 du/L|·|(t) = lim

t→∞|r(t)| = 0.(4.10)

Otherwise, if
∫∞

0 |r(u)|q+1 du is finite, (4.10) is trivial.
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On the other hand, it follows from stationarity and Cauchy–Schwarz inequality
that |r(t)| ≤ t for all t ∈ R, and thus for all v, t > 0 and m ≥ q + 1,∫ vt

0

∫ vt

0
|r(u1 − u2)|m du1 du2 ≤ 2tv

∫ vt

0
|r(u)|q+1 du.

Hence, we get from (2.1) and (4.10) that, for all v > 0, as t → ∞,

Mt(v) := sup
m>q

∫ vt

0

∫ vt

0
|r(u1 − u2)|m du1 du2 = o(tL(t)), t → ∞.(4.11)

Now pick f ∈ L2(ν) with Ef (N0) = 0 and Hermite rank q(f ) = q; by (A.2), for
all t > 0, d ∈ N, θ1, . . . , θd ∈ R and vd > vd−1 > · · · > v1 > v0 = 0,

E

(
d∑

k=1

θi

∫ vkt

vk−1t
f (Nu) − cq

q!Hq(Nu)du

)2

≤ ∑
1≤i1,i2≤d

|θi1θi2 |
∞∑

k=q+1

c2
k

k!
∫ vd t

0

∫ vd t

0
|r(u1 − u2)|m du1 du2

≤ Mt(vd)
∑

1≤i1,i2≤d

|θi1θi2 |
∞∑

k=q+1

c2
k

k! ,

where ck are the quantity defined in (1.4). Note that the sum on the right-hand side
is finite since f ∈ L2(ν). We have already shown that (i) holds for the particular
choice f = Hq . In view of (4.11) and the chain of inequalities in the last display,
the proof of assertion (i) is completed by the Cramér–Wold device.

(ii) Let f ∈ L2(ν) with Ef (Nu) = 0 and Hermite rank q(f ) = q such that there
exists R > 1 with

∞∑
k=q

|ck|√
k!R

k < ∞.(4.12)

In view of (i), it remains to show that (2tL(t))−1/2 ∫ t·
0 f (Nu) is tight in C(R+

0 ), as
t → ∞. In view of Billingsley’s tightness condition ([6], Theorem 13.14) and the
Cauchy–Schwarz inequality, for x0 > 0 it suffices to find θ > 0, t0 > 0 and C such
that, for all 0 ≤ x ≤ x0 and t > t0,

E

(
(2tL(t))−1/2

∫ xt

0
f (Nu)du

)2(1+θ)

≤ Cx1+θ .(4.13)

Therefore, recall the following inequality as shown by Hariz [15] (cf. proof of
Theorem 1(ii) in [15]): for all 0 < θ ≤ 1, t > 0,

E

(∫ t

0
f (Nu)du

)2(1+θ)

≤
[√

2t

∞∑
m=q

3mθ/(1+θ)|cm|√
m!

(∫ t

0
|r(u)|m du

)1/2
]2(1+θ)

.
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Consequently, for all 0 < θ ≤ 1 and t > 0, we have by stationarity and Cauchy–
Schwarz inequality,

E

(∫ t

0
f (Nu)du

)2(1+θ)

≤
(√

2tL|·|(t)
∞∑

m=q

3mθ/(1+θ)|cm|√
m!

)2(1+θ)

.

Thus, it follows from (4.12) that there exist θ ∈ (0,1] and a constant C′ such that,
for all t > 0,

E

(∫ t

0
f (Nu)du

)2(1+θ)

≤ C′(2tL|·|(t)
)1+θ

.

Consequently, for all x0 > 0 and 0 ≤ x ≤ x0, we have

E

(
(2tL(t))−1/2

∫ xt

0
f (Nu)du

)2(1+θ)

≤ C′
(

L|·|(x0t)

L(t)

)1+θ

x1+θ .

As L|·| is slowly varying, it follows from (2.1) that there is indeed a constant C ∈
R

+ and t0 > 0 such that (4.13) holds for all t > 0 and 0 ≤ x ≤ x0, giving (ii).

4.2. Proof of Corollary 2.1. For H ∈ (0,1), we set μH = 2/�(2H + 1)

[cf. (2.11)]. With the help of μH, we define a normal process NH
γ = (NH

γ,t )t∈R

by

NH
γ,t = γ Hμ

1/2
H

∫ t

−∞
e−γ (t−s) dBH

s , t ∈ R, H ∈ (0,1), γ > 0,(4.14)

and set rH,γ (t) = ENH
γ,tN

H
γ,0, t ∈ R. Then we have the following lemma:

LEMMA 4.1. Let γ > 0, H ∈ (0,1) and q ∈ N.
(i) If H �= 1/2, then

rH,γ (t) = γ 2H−2 2H − 1

�(2H)
t2H−2 + O(t2H−4), t → ∞,

whereas ρ1/2,γ (t) = e−γ |t | for all t ∈ R.
(ii) ∫

R

r2
H,γ (t) dt = γ −1 sin2(πH)

4

π

∫ ∞
0

ξ2−4H

(1 + ξ2)2 dξ.

(iii) ∫ ∞
0

|Hq(γ
Hμ

1/2
H BH

γ,s) − Hq(N
H
γ,s)|ds < ∞ a.s.(4.15)

PROOF. (i) For H = 1/2, this is a well-known property of the classical
Ornstein–Uhlenbeck process driven by the Wiener process. For H �= 1/2, asser-
tion (i) is found in Theorem 2.3 in [12].



64 B. BUCHMANN AND N. H. CHAN

(ii) The spectral density fH of NH
γ , that is, rH,γ (t) = ∫

R
eitξ fH,γ (ξ) dξ , has the

following form ([12], (2.2)):

fH,γ (ξ) = γ 2Hπ−1 sin(πH)
|ξ |1−2H

γ 2 + ξ2 , ξ ∈ R, H ∈ (0,1).(4.16)

In particular,
∫
R

f 2
H,γ (ξ) dξ is finite if and only if H ∈ (0,3/4). In this case, the

identity in (ii) follows from Plancherel’s theorem and simple substitutions.
(iii) Fix q ∈ N and H ∈ (0,1). Then we find a constant Cq ∈ (0,∞) such that

|Hq(x) − Hq(y)| ≤ Cq |x − y|(1 + |x|q + |y|q) for all x, y ∈ R, where Hq is
defined in (1.2). Note that almost surely,

γ HμHBH
γ,t = NH

γ,t − e−γ tNH
γ,0, t ≥ 0,(4.17)

which completes the proof of (iii) as almost surely,∫ ∞
0

|Hq(γ HμHBH
γ,s)

2 − Hq(N
H
γ,s)|ds

≤ Cq |NH
γ,0|
∫ ∞

0
e−γ u(1 + 2q+1|NH

γ,s |q + 2q |NH
γ,0|q) ds < ∞.

We return to the proof of Corollary 2.1: If H ∈ (0,3/4) then (2.7) follows from
the functional CLT by Hariz [15] and Lemma 4.1. By employing the machinery
developed by Pipiras and Taqqu ([21], Theorem 3.2), it is straightforward to show
that NH

γ satisfies the assumptions imposed by Taqqu in [25] for all H ∈ (1/2,1),

and thus (2.7) is in place for all H ∈ (3/4,1). Recall that the spectral measure
of NH

γ is absolutely continuous with respect to Lebesgue measure [cf. (4.16)],
and thus FOUP admits the representation in (2.2) (cf. Ibragimov and Linnik [16],
Theorem 16.7.2). For H = 3/4, (2.7) is thus implied by Theorem 2.1 and Lem-
ma 4.1(i). �

4.3. Proof of Theorem 3.1. In order to show Theorem 3.1, we need the follow-
ing modification of Corollary 2.1.

LEMMA 4.2. For H ∈ (0,3/4] let XH be standard normal random variable
and, for H ∈ (3/4,1), let XH be a Rosenblatt distributed random variable with
unit variance. Then, for all H ∈ (0,1), we have⎛

⎝gH (t)

∫ t

0
[(BH

1,s)
2 − μ−1

H ]ds

(BH
1,t )

2

⎞
⎠ d→

(
σHXH

μ−1
H Y 2

)
, t → ∞,(4.18)

where Y is a standard normal random variable, independent of XH , and the quan-
tities gH and σH and μH are defined in (2.8) and (2.10) and (2.11), respectively.
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PROOF. Let H ∈ (0,1) and recall (2.11). It is clear that (BH
1,t )

2 d→ μ−1
H Y 2, as

t → ∞. Hence, weak convergence of the marginals follows from Corollary 2.1
and Lemma 4.1(ii) and (iii). It remains to show that the marginals are asymptoti-
cally independent. This is implied by (4.17) and Lemma 4.1(iv), provided we can
show that the components of the vector in the following display are asymptotically
independent, as t → ∞: (

gH (t)
∫ t

0 H2(N
H
1,u) du

NH
1,t

)
,(4.19)

where NH
1,· is defined in (4.14). In view of the stationarity of NH

1 and Lem-
ma 4.1(iii), it suffices to show that, for all θ1, θ2 ∈ R,

lim
t→∞E

[
(e

iθ1N
H
1,0 − Ee

iθ1N
H
1,0) exp

(
iθ2gH (t)

∫ 0

−t
H2(N

H
1,u) du

)]
= 0.(4.20)

For n ∈ N, let Mn = E[eiθ2N
H
1,0 |Fn] where Fn is the σ -algebra generated by

(NH
1,s)s≤−n. Then (Mn,Fn)n∈N is a (bounded) backward martingale. By virtue

of the convergence theorem for backward martingales (cf. Hall and Heyde [14],
Theorem 2.6), note that limn→∞ Mn = E exp(iθ2N

H
1,0) almost surely.

For γ > 1 pick nt ∈ N, nt ≤ t such that nt → ∞ and gH (t)/gH (nt ) = 0 as
t → ∞. In view of the triangular inequality, conditioning on Fnt , this yields the
following inequality, for t > 1,∣∣∣∣E

[
(e

iθ1N
H
1,0 − Ee

iθ1N
H
1,0) exp

(
iθ2gH (t)

∫ 0

−t
H2(N

H
1,u) du

)]∣∣∣∣
≤ 2E

∣∣∣∣exp
(
iθ2gH (t)

∫ 0

−nt

H2(N
H
1,u) du

)
− 1
∣∣∣∣+ E|Mnt − E exp(iθ1N

H
1,0)|.

By the choice of nt , gH (γ )
∫ 0
nt

H2(N
H
u ) tends to zero in probability for t → ∞.

Hence, the right-hand side in the last display tends to zero as t → ∞, giv-
ing (4.20). �

We return to the proof of Theorem 3.1. Fix H ∈ (0,1), for γ > 0, it follows from
the self-similarity of BH [cf. (2.5)] that, for the finite dimensional distributions we
have

(BH
γ,t )t≥0 =

(
BH

γ t/γ −
∫ γ t

0
e−(γ t−s)BH

s/γ ds

)
t≥0

d= γ −H(BH
1,γ t )t≥0.(4.21)

Next, we represent the vector τH (γ ) in terms of the random quantities on the left-
hand side in the last display. For γ > 1, set sH (γ ) = γgH (γ ) and

V H
γ = γ 2H−1

(
1
2(BH

γ,1)
2 + γ

∫ 1

0
(BH

γ,s)
2 ds

)
, WH

γ = γ 2H
∫ 1

0
(BH

γ,s)
2 ds.
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In view of (2.11) and (4.21), we have

diag(sH (γ ), sH (γ ),1)
(
V H

γ − μ−1
H ,WH

γ − μ−1
H , τH,4(γ ) − γ

)′
d= gH (γ )

∫ γ

0
[(BH

1,s)
2 − μ−1

H ]ds

⎛
⎝1

1
0

⎞
⎠+ 1

2

(BH
1,γ )2

γ −1
∫ γ

0 (BH
1,s)

2 ds

⎛
⎝0

0
1

⎞
⎠(4.22)

+ 1

2
gH (γ )(BH

1,γ )2

⎛
⎝1

0
0

⎞
⎠ , γ > 1.

Note that gH (γ ) → 0 and γ −1 ∫ γ
0 (BH

1,u)
2 du

P→ μ−1
H , as γ → ∞, by Lemma 4.2.

Consequently, we get from Lemma 4.2 that, as γ → ∞, the left-hand side in (4.22)
converges jointly in distribution to the random vector

(σHXH ,σHXH ,Y 2/2)′.(4.23)

Applying the delta method to ψ(v,w) = (w−1/2,w−1, vw−1/2)′, as γ → ∞,

sH (γ )[diag(γ −H ,γ −2H ,γ H−1)(τH,1(γ ), τH,2(γ ), τH,3(γ ))′ − ψ(μ−1
H ,μ−1

H )]
= sH (γ )[ψ(V H

γ ,WH
γ ) − ψ(μ−1

H ,μ−1
H )] d→ σHXHψ ′(μ−1

H ,μ−1
H )

(
1
1

)
.

As we have joint convergence in (4.22) to the vector in (4.23), the proof of Theo-
rem 3.1 is completed by elementary calculus.

4.4. Proof of Theorem 3.2. Fix H ∈ (0,1). For all γ < 0, we set

TH,1(γ ) = 1
2

(
BH−1,|γ |

)2 −
∫ |γ |

0
(BH−1,u)

2 du,

(4.24)

TH,2(γ ) =
∫ |γ |

0
(BH−1,u)

2 du.

It follows from (2.5) that the following identity holds for the finite dimensional
distributions:

(BH−γ,t )t≥0
d= |γ |−H (BH−1,|γ |t

)
t≥0, γ < 0, H ∈ (0,1).

Consequently, for γ < 0,

diag
(|γ |−(2H+1)/2e|γ |, |γ |−2H−1e2|γ |, |γ |(2H−1)/2, |γ |−1e|γ |)τH (γ )

d= diag
(
e|γ |, e2|γ |,1, e|γ |)

×
(

1

TH,2(γ )1/2 ,
1

TH,2(γ )
,

TH,1(γ )

(TH,2(γ ))1/2 ,
TH,1(γ )

TH,2(γ )

)′
.
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Integrating by parts and summing and subtracting terms, for γ < 0, we have

eγ TH,1(γ ) =
(∫ ∞

0
e−sBH

s ds

)(∫ |γ |
0

eγ+s(BH|γ | − BH
s

)
ds

)
(4.25)

+ eγ T̃H,1(γ ),

where we set

T̃H,1(γ ) =
∫ |γ |

0
esBH

s

∫ ∞
s

e−tBH
t dt ds + 1

2

(
BH|γ |
)2 −

∫ |γ |
0

(BH
s )2 ds

− e|γ |BH|γ |
∫ ∞
|γ |

e−sBH
s ds + BH|γ |

∫ ∞
0

e−sBH
s ds, γ < 0.

As BH
t /t → 0 for t → ∞ and H ∈ (0,1), almost surely, we note that CH =

supt≥0
|BH (t)|

1+t
is finite, almost surely. Consequently, we have the following chain

of inequalities [γ < 0], almost surely,∣∣∣∣
∫ |γ |

0
esBH

s

∫ ∞
s

e−tBH
t dt ds

∣∣∣∣≤ C2
H

∫ |γ |
0

es(1 + s)

∫ ∞
s

e−t (1 + t) dt ds

= C2
H

∫ |γ |
0

(1 + s)

∫ ∞
0

e−t (1 + s + t) dt ds ≤ C′C2
H(1 + |γ |3),

where C′ > 0 is a finite deterministic constant not depending on γ .
Exploring similar bounds for the other terms in (4.26) yields, almost surely,

|T̃H,1(γ )| ≤ C′′ max(CH ,C2
H)(1 + |γ |3),

where C′′ is a finite and deterministic constant not depending on γ . Consequently,
almost surely,

eγ T̃H,2(γ ) → 0, γ → −∞.(4.26)

Similar,

1
2e2|γ |

(∫ ∞
0

e−sBH
s ds

)2

+ T̃H,3(γ ), γ < 0,(4.27)

where e2γ T̃H,3(γ ) → 0, for γ → −∞, almost surely.
Finally, for all H ∈ (0,1) and γ → −∞, note that⎛

⎜⎝
∫ |γ |

0
eγ+s(BH|γ | − BH

s ) ds∫ ∞
0

e−sBH
s ds

⎞
⎟⎠ d→

(
�(2H + 1)

2

)1/2 (
Y

Z

)
,(4.28)

where (Y,Z) is standard normal. Indeed, as all corresponding vectors are cen-
tered Gaussian, it suffices to investigate their covariance matrices. Clearly,
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∫∞
0 e−sBH

s ds is Gaussian with a mean zero and variance �(2H + 1)/2. Further-
more, ∫ |γ |

0
eγ+s(BH|γ | − BH

s

)
ds

d=
∫ |γ |

0
e−sBH

s ds, γ < 0.

The right-hand side tends to
∫∞

0 e−sBH
s ds, almost surely and in mean square as

γ → −∞.
For all γ ∈ R and H ∈ (0,1), we have the following identity,

E

(∫ ∞
0

e−tBH
t dt

)(∫ |γ |
0

eγ+s(BH|γ | − BH
s

)
ds

)

=
∫ ∞

0
e−t
∫ |γ |

0
e−sEBH

t

(
BH|γ | − BH|γ |−s

)
ds dt.

In view of (2.4), expanding the integrand into powers of s/|γ |, t/|γ | and (s +
t)/|γ | up to the second order, this shows that the integrand tends to zero for
γ → −∞ and s, t ∈ R. Note that |EBH

t (BH|γ | − BH|γ |−s)| ≤ |t |2H |s|2H by means
of the Cauchy–Schwarz inequality. Thus, the dominated convergence theorem is
applicable to the right-hand side in the last display giving (4.28) for all H ∈ (0,1)

and γ → −∞. In view of (4.25), (4.26) and (4.27), (i) now follows from (4.28).

APPENDIX: THE DIAGRAM FORMULA

We refer to Bollobás [5] for basic notation and facts of graph theory. The sets
of vertices and edges of an undirected graph D are denoted by V(D) and E(D),
respectively. Throughout, we identify E(D) with a subset of the set {{v,w} :v,w ∈
V(D), v �= w}. The degree of a vertex v ∈ V(D) is defined to be the cardinality of
the set {e ∈ E(D) :v ∈ e}.

In the sequel, let p,q ∈ N. A diagram D with p levels and rows of length q is
an undirected graph with vertex set V(D) = {1, . . . , p}× {1, . . . , q}, satisfying the
following properties:

(i) If {(l1, k1), (l2, k2)} ∈ E(D) then l1 �= l2.
(ii) Each vertex has degree one.

The (possibly empty) set of all diagrams with p levels and rows of length q is
denoted by D(p, q). For D ∈ D(p, q) and e = {(k,m), (l, n)} ∈ E(D), set

m(e) = mD(e) = min{k, l}, M(e) = MD(e) = max{k, l}.(A.1)

Now let Hq be the Hermite polynomial of order q in (1.2) and (X1, . . . ,Xp) be
a Gaussian vector with EXj = 0 and EX2

j = 1 (1 ≤ j ≤ p). It follows from the
diagram formula (cf. Breuer and Major [7]) that we have

E

p∏
j=1

Hq(Xj ) = ∑
D∈D(p,q)

∏
e∈E(D)

E
[
Xm(e)XM(e)

]
,(A.2)

with the conventions
∏

∅ = 1 and
∑

∅ = 0.
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