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1. Introduction

Although parametric models are prone to misspecification, they still be attrac-
tive because they describe concisely the link between the past observations and
the predicted variable. Various parametric models have been proposed these
last decades. For a review, see Brockwell and Davis (1991), Brockwell and Davis
(1996), Shumway and Stoffer (2001), and Tong (1990). Parameter estimation for
linear models has been widely studied, while for nonlinear models, because of
their complexity, the study is done in general for tractable cases. There is an
increasing interest in estimating the parameters of ARCH and GARCH models
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introduced respectively by Engle (1982) and Bollerslev (1986). Most of the ex-
isting literature assume a Gaussian error distribution and study the consistency
and asymptotic normality of the conditional Gaussian likelihood estimators.
Some relevant papers are Engle (1982), Weiss (1986) for ARCH models, and
for ARCH(∞) and/or GARCH models, Bollerslev (1986), Lumsdaine (1996),
Hyndman and Yao (2002), Francq and Zaköıan (2004), Robinson and Zaffroni
(2006), Straumann and Mikosch (2006), and Francq and Zaköıan (2007). Other
papers dealing with parameter estimation in heteroscedastic models include the
works of Giraitis and Robinson (2001) who propose a Wittle estimation for a
class of parametric ARCH(∞), Chatterjee and Das (2003) who study estimators
obtained by minimizing certain functionals for ARCH models, Peng and Yao
(2003) who propose least absolute deviations estimators for ARCH and GARCH
models, and Berkes and Horváth (2004) who study likelihood estimators for
GARCH models.

In the present paper, we study parameter estimation for more general het-
eroscedastic models. Precisely, we consider the class of identifiable parametric
stochastic models

Xi = m (ρ;Zi−1) + σ(θ;Zi−1)εi, i ∈ Z, (1.1)

where (Xi)i∈Z is stationary and ergodic; (Zi = (Xi, . . . , Xi−q+1, Xi−q))i∈Z is a
sequence of q-dimensional vector with q being a nonnegative possibly infinite
integer; (εi)i∈Z is a sequence of iid centered random variables with unit variance
such that εi is independent of σ(Zj , j < i); the parameter column vector ψ =

(ρ′, θ′)′ belongs to Ψ = Θ × Θ̃ ⊂ R
I × R

J , for some positive integers I and
J , and the functions m (ρ; z) and σ(θ; z) have known forms. We aim to prove
the existence of asymptotical normal estimators for the true parameter vector
ψ0 = (ρ′0, θ

′
0)

′, and uniformly consistent estimators for the noise’s density and
its derivatives, when this function exists.

The class of models (1.1) contains models such as ARMA, EXPAR, ARCH,
GARCH, SETAR-ARCH, β-ARCH and many others. As far as the probabilist
properties of these models are concerned, their invertibility is readily obtained
for example for |σ(θ; z)| > 0. For some of them (see, e.g., Ngatchou-Wandji
(2005)), a sufficient condition for strict stationarity can be obtained e.g., by
checking the conditions (S1)-(S4) of p. 86 in Taniguchi and Kakizawa (2000).
The case of GARCH models which generalizes ARCH models has been stud-
ied by Chen and An (1998). Next, a sufficient condition for geometry ergodicity
can be obtained by applying a result of Tjøstheim (1990), while for a particu-
lar class of ARCH models nested in (1.1), this property has been investigated
by An, Chen and Huang (1997). Finally, it is possible that from the theory of
Markov chains, other interesting conditions for stationarity and ergodicity be
obtained for many models within (1.1).

Under mild conditions, a conditional least-squares estimator of ρ0 is defined
in McKeague and Zhang (1994). Its consistency and asymptotic normality is
established. The same is done for θ0 in Ngatchou-Wandji (2002). Such results
have also been established for multivariate nonlinear AR models by Tjøstheim



Joseph Ngatchou-Wandji/Estimation in heteroscedastic models 42

(1986). Our main contribution is the study of the estimation of the couple
of parameters ψ0 = (ρ′0, θ

′
0)

′ in model (1.1) by conditional least-squares and
conditional maximum likelihood methods, when the conditional distribution is
non necessarily normal and q possibly infinite. Our results generalize most of
those based on least-squares and pseudo or quasi-likelihood estimation.

After the assumptions given in Section 2, we prove in Section 3 the existence
of a sequence of asymptotical normal conditional least-squares estimators for ψ0.
Section 4 deals with the existence of conditional likelihood estimators for this
parameter. In Section 5, we give some common examples comprised in (1.1). In
Section 6, the estimation of the noise’s density and its derivatives is investigated.
A simulation study done in Section 7 ends our work.

2. General assumptions

In the whole text, the transpose of a vector or a matrix function H(x) is denoted
by H′(x). Let r be either I or J . For given real functions F(α; z) defined on
a non-empty subset of R

r × R
q and K(ψ; z) defined on a non-empty subset of

R
I × R

J × R
q, we denote

∂F(α; z) =
(∂F(α; z)

∂α1
, . . . ,

∂F(α; z)

∂αr

)′

, ∂2F(α; z) =
(∂2F(α; z)

∂αi∂αj
: 1 ≤ i, j ≤ r

)

,

∂ρK(ψ; z) =
(∂K(ψ; z)

∂ρ1
, . . . ,

∂K(ψ; z)

∂ρI

)′

, ∂θK(ψ; z) =
(∂K(ψ; z)

∂θ1
, . . . ,

∂K(ψ; z)

∂θJ

)′

,

∂2
ρθK(ψ; z) =

(∂2K(ψ; z)

∂ρi∂θj
: 1 ≤ i ≤ I, 1 ≤ j ≤ J

)

,

∂2
θρK(ψ; z) =

(∂2K(ψ; z)

∂θj∂ρi
: 1 ≤ j ≤ J, 1 ≤ i ≤ I

)

,

∂2
ρ2K(ψ; z) =

(∂2K(ψ; z)

∂ρi∂ρj
: 1 ≤ i, j ≤ I

)

,

∂2
θ2K(ψ; z) =

(∂2K(ψ; z)

∂θi∂θj
: 1 ≤ i, j ≤ J

)

.

For a vector or matrix function H(x), we denote by ∂′H(x) the transpose of
∂H(x). With this, we define ∂K(ψ; z) = (∂′ρK(ψ; z); ∂′θK(ψ; z))′. We also define

∂2K(ψ; z) =

(

∂2
ρ2K(ψ; z) ∂2

ρθK(ψ; z)

∂2
θρK(ψ; z) ∂2

θ2K(ψ; z)

)

.

For a real-valued function h, h(p) denotes its pth order derivative, with h(0) = h.
We denote by ||V||E the Euclidean norm of the vector V and by ||M||M =
maxi,j |Mij | the norm of the square matrix M=(Mij).

We next assume that the true parameter vector ψ0 = (ρ′0, θ
′
0)

′ of (1.1) is such
that ρ0 ∈ int(Θ) and θ0 ∈ int(Θ̃), where int(Θ) and int(Θ̃) denote respectively
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the nonempty interior of Θ and Θ̃. We also suppose that all the random variables
in this paper are defined on the same probability space (Ω,W, P ), where Ω is
a set, W a σ-field of Ω and P a probability measure on W. The following
assumptions are needed:

(A1) The common fourth order moment of the εi’s is finite.
(A2) The functionsm(ρ; z) and σ(θ; z) are each twice continuously differentiable

with respect to ρ ∈ int(Θ) and θ ∈ int(Θ̃) respectively, and there exists a
positive function α(z) such that E[α4(Z0)] <∞ and

max{sup
ρ∈Θ

|m(ρ; z)|, sup
ρ∈Θ

||∂m(ρ; z)||E , sup
ρ∈Θ

||∂2m(ρ; z)||M,

sup
θ∈Θ̃

|σ(θ; z)|, sup
θ∈Θ̃

||∂σ(θ; z)||E , sup
θ∈Θ̃

||∂2σ(θ; z)||M} ≤ α(z),

(A3) There exists a positive function β(z) such that E[β4(Z0)] <∞ and for all
ρ1, ρ2 ∈ Θ and θ1, θ2 ∈ Θ̃,

max{|m(ρ1; z) −m(ρ2; z)|, ||∂m(ρ1; z) − ∂m(ρ2; z)||E ,
||∂2m(ρ1; z) − ∂2m(ρ2; z)||M, |σ(θ1; z) − σ(θ2; z)|,
||∂σ(θ1; z) − ∂σ(θ2; z)||E , ||∂2σ(θ1; z) − ∂2σ(θ2; z)||M}
≤ β(z) min{||ρ1 − ρ2||E , ||θ1 − θ2||E}.

Assumption (A1) is at least satisfied by Gaussian and Student εi’s. One can
find in the literature, numbers of models with the functions m(ρ; z) and σ(θ; z)
satisfying (A2) and (A3) (see, e.g., Ngatchou-Wandji (2005)).

3. Conditional least-squares estimation

The purpose of this section is the study of the existence of estimators for ψ0 =
(ρ′0, θ

′
0)

′ by a conditional least-squares method. Recall that the conditional mean
and the conditional variance functions of (1.1) are almost surely defined for
all z ∈ R

q by E(X1 | Z0 = z) = m(ρ; z) and E{[X1 − m(ρ;Z0)]
2 | Z0 =

z} = σ2(θ; z). From these equalities, for any bounded measurable functions
γ(z) and λ(z), we have E[(X1−m(ρ;Z0))λ(Z0)] = 0 and E[{(X1−m(ρ;Z0))

2−
σ2(θ;Z0)}γ(Z0)] = 0. For estimating ψ0, our idea is to search for the zeros
of the gradients of the sample variances of the sequences of centered random
variables (Xi−m(ρ;Zi−1)), i = 1, . . . , n and ([Xi−m(ρ;Zi−1)]

2 −σ2(θ;Zi−1)),
i = 1, . . . , n.

Given X−q, . . . , X−1, X0, X1, . . . , Xn, denote Xn = (Xn, . . . , X1, X0, X−1,
. . . , X−q) and define the sequences of random functions

Un(ρ;Xn) =
n
∑

i=1

[Xi −m(ρ;Zi−1)]
2 λ2(Zi−1) (3.1)

Sn(ψ;Xn) =

n
∑

i=1

{

[Xi −m(ρ;Zi−1)]
2 − σ2(θ;Zi−1)

}2

γ2(Zi−1) (3.2)
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and the matrices

Φ11 = 2E[λ2(Z0)σ(θ0;Z0)∂m(ρ0;Z0)∂
′m(ρ0;Z0)]

Φ22 = 8E[γ2(Z0)σ
2(θ0;Z0)∂σ(θ0;Z0)∂

′σ(θ0;Z0)],

assumed to be positive definite. Define also the matrices

∆11 = 4E[λ4(Z0)σ
2(θ0;Z0)(Φ

−1
11 )′∂m(ρ0;Z0)∂

′m(ρ0;Z0)Φ
−1
11 ]

∆12 = ∆′
21

= 8E[λ2(Z0)γ
2(Z0)σ

4(θ0;Z0)(Φ
−1
11 )′∂m(ρ0;Z0)∂

′σ(θ0;Z0)Φ
−1
22 ]E[ε0(ε

2
0 − 1)]

∆22 = 16E[γ4(Z0)σ
6(θ0;Z0)(Φ

−1
22 )′∂σ(θ0;Z0)∂

′σ(θ0;Z0)Φ
−1
22 ]E[(ε20 − 1)2],

and

∆ =

(

∆11 ∆12

∆21 ∆22

)

.

Theorem 3.1. Assume that the assumptions (A1)-(A3) hold and ∆ is positive
definite. Then,

(i) there exists a sequence of estimators ψ̃n = (ρ̃′n, θ̃
′
n)′ such that ψ̃n

a.s.−→ ψ0,
and for any ǫ > 0, there exists an event S1 with P (S1) > 1 − ǫ, and a
nonnegative integer n1 such that on S1, for n > n1,
• ∂Un(ρ̃n;Xn) = 0 and Un(ρ;Xn) attains a relative minimum at ρ = ρ̃n
• • assuming ρ̃n fixed, ∂θSn((ρ̃n, θ̃n);Xn) = 0 and Sn((ρ̃n, θ);Xn) attains
a relative minimum at θ = θ̃n.

(ii) n1/2(ψ̃n − ψ0)
D−→ N (0,∆).

Proof. It suffices to check the hypotheses of Theorem 3.2.23 of Taniguchi and
Kakizawa (2000), established by Klimko and Nelson (1978) by using Egorov
Theorem (see, e.g., Taniguchi and Kakizawa (2000), p. 97). From simple com-
putations one obtains:

∂Un(ρ;Xn) = −2

n
∑

i=1

λ2(Zi−1)∂m(ρ;Zi−1) [Xi −m(ρ;Zi−1)]

and

∂2Un(ρ;Xn)

= 2

n
∑

i=1

λ2(Zi−1)
(

∂m(ρ;Zi−1)∂
′m(ρ;Zi−1) − ∂2m(ρ;Zi−1) [Xi −m(ρ;Zi−1)]

)

.

By ergodicity, it is immediate that, as n tends to infinity,

1

n
∂Un(ρ0;Xn)

a.s.−→ 0 and
1

n
∂2Un(ρ0;Xn)

a.s.−→ Φ11.

For any vector ρ∗ ∈ int(Θ) define the sequence of random matrix functions

Vn(ρ∗;Xn) = ∂2Un(ρ∗;Xn) − ∂2Un(ρ0;Xn),
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and denote by Vn(ρ∗;Xn)ℓk its (ℓ, k)th entry. Then,

Vn(ρ∗;Xn)ℓk

= 2
n
∑

i=1

λ2(Zi−1)
{(∂m(ρ∗;Zi−1)

∂ρℓ

∂m(ρ∗;Zi−1)

∂ρk
− ∂m(ρ0;Zi−1)

∂ρℓ

∂m(ρ0;Zi−1)

∂ρk

)

−
(

∂2m(ρ∗;Zi−1) [Xi−m(ρ∗;Zi−1)] − ∂2m(ρ0;Zi−1) [Xi−m(ρ0;Zi−1)]
)}

.

Thus, in view of (A1)-(A3), it is easy to see that there exists a positive real-
valued function νℓk(z) with E[ν4

ℓk(Z0)] <∞ such that

|Vn(ρ∗;Xn)ℓk| ≤ ||ρ∗ − ρ0||E
n
∑

i=1

νℓk(Zi).

Now for δ > 0 such that ||ρ − ρ0||E < δ, and for ρ∗ lying between ρ and ρ0, we
have by the above inequality that:

1

nδ
|Vn(ρ∗;Xn)ℓk| ≤

1

nδ
||ρ∗ − ρ0||E

n
∑

i=1

νℓk(Zi−1) ≤
1

n

n
∑

i=1

νℓk(Zi−1).

Next, by ergodicity, the right-hand side of the last inequality converges a.s. to
E[νℓk(Z0)] <∞ as n tends to infinity. It is then clear that for any (ℓ, k),

lim
n→∞

sup
δ→0

1

nδ
|Vn(ρ∗;Xn)ℓk| <∞. (3.3)

From Theorem 3.2.23 of Taniguchi and Kakizawa (2000), it follows that there
exists a sequence of estimators ρ̃n such that ρ̃n −→ ρ0 almost surely, as n→ ∞
and for ǫ > 0, one can find an event E1 with P (E1) > 1 − ǫ and a nonnegative
integer ñ such that on E1, for n > ñ, ∂Un(ρ̃n;Xn) = 0 and Un(ρ;Xn) attains
a relative minimum at ρ = ρ̃n. The first part of (i) is then handled. For the
second part, for fixed ρ̃n, we have from simple computations:

∂θSn((ρ̃n, θ0);Xn)

= − 4

n
∑

i=1

γ2(Zi−1)σ(θ0;Zi−1)∂σ(θ0;Zi−1)

×
{

[Xi −m(ρ̃n;Zi−1)]
2 − σ2(θ0;Zi)

}

= − 4
n
∑

i=1

γ2(Zi−1)σ(θ0;Zi−1)∂σ(θ0;Zi−1)

×
{

σ2(θ0;Zi−1)(ε
2
i − 1) + 2σ(θ0;Zi−1)εi[m(ρ0;Zi−1) −m(ρ̃n;Zi−1)]

+ [m(ρ0;Zi) −m(ρ̃n;Zi−1)]
2
}

(3.4)
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and

∂2
θ2Sn((ρ̃n, θ0);Xn)

= 8

n
∑

i=1

γ2(Zi−1)σ
2(θ0;Zi−1)∂σ(θ0;Zi−1)∂

′σ(θ0;Zi−1)

− 4
n
∑

i=1

γ2(Zi−1)
{(

∂σ(θ0;Zi−1)∂
′σ(θ0;Zi−1) + σ(θ0;Zi−1)∂

2σ(θ0;Zi−1)
)

×
(

[Xi −m(ρ̃n;Zi−1)]
2 − σ2(θ0;Zi−1)

)}

= 8

n
∑

i=1

γ2(Zi−1)σ(θ0;Zi−1)∂σ(θ0;Zi−1)∂
′σ(θ0;Zi−1)

− 4
n
∑

i=1

γ2(Zi−1)
(

∂σ(θ0;Zi−1)∂
′σ(θ0;Zi−1) + σ(θ0;Zi−1)∂

2σ(θ0;Zi−1)
)

×
{

σ2(θ0;Zi−1)(ε
2
i − 1) + 2σ(θ0;Zi−1)εi[m(ρ0;Zi−1) −m(ρ̃n;Zi−1)]

+[m(ρ0;Zi−1) −m(ρ̃n;Zi−1)]
2
}

. (3.5)

In view of (A1)-(A3), applying the mean value theorem to (3.4) and (3.5), it is
clear by ergodicity that as n tends to infinity,

1

n
∂θSn((ρ̃n, θ0);Xn)

a.s.−→ 0 and
1

n
∂2
θ2Sn((ρ̃n, θ0);Xn)

a.s.−→ Φ22.

For any vector θ∗ ∈ int(Θ̃) define the sequence of random functions

Tn(θ∗;Xn) = ∂2
θ2Sn(θ∗;Xn) − ∂2

θ2Sn(θ0;Xn),

and denote by Tn(θ∗;Xn)ℓk its (ℓ, k)th entry.

Tn(θ∗;Xn)ℓk

= 8
n
∑

i=1

γ2(Zi−1)
{

σ(θ∗;Zi−1)
∂σ(θ∗;Zi−1)

∂θℓ

∂σ(θ∗;Zi−1)

∂θk

− σ(θ0;Zi−1)
∂σ(θ0;Zi−1)

∂θℓ

∂σ(θ0;Zi−1)

∂θk

}

− 4

n
∑

i=1

γ2(Zi−1)
{[(∂σ(θ∗;Zi−1)

∂θℓ

∂σ(θ∗;Zi−1)

∂θk
+ σ(θ∗;Zi−1)

∂2σ(θ∗;Zi−1)

∂θℓ∂θk

)

×
(

[Xi −m(ρ̃n;Zi−1)]
2 − σ2(θ∗;Zi−1)

)

−
(∂σ(θ0;Zi−1)

∂θℓ

∂σ(θ0;Zi−1)

∂θk
+ σ(θ0;Zi−1)

∂2σ(θ0;Zi−1)

∂θℓ∂θk

)

×
(

[Xi −m(ρ̃n;Zi−1)]
2 − σ2(θ0;Zi−1)

)]}

.
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In view of (A1)-(A3), it is easy to see that there exists a positive real-valued
function ̺ℓk(z) with E[̺4

ℓk(Z0)] <∞ such that

|Tn(θ∗;Xn)ℓk| ≤ ||θ∗ − θ0||E
n
∑

i=1

̺ℓk(Zi−1).

Again, for δ > 0 such that ||θ− θ0||E < δ, and for θ∗ lying between θ and θ0, we
have from above that:

1

nδ
|Tn(θ∗;Xn)ℓk| ≤

1

nδ
||θ∗ − θ0||E

n
∑

i=1

̺ℓk(Zi−1) ≤
1

n

n
∑

i=1

̺ℓk(Zi−1).

It is easy to see that by the ergodic theorem, the right-hand side of the last
inequality converges almost surely to E[̺ℓk(Z0)] < ∞ as n tends to infinity. It
is then clear that for any (ℓ, k), (3.3) holds with Tn(θ∗;Xn)ℓk. Whence, applying
Theorem 3.2.23 of Taniguchi and Kakizawa (2000), one can find a sequence of
estimators θ̃n such that θ̃n −→ θ0 almost surely, as n → ∞ and for ǫ > 0, one
can find an event E2 with P (E2) > 1 − ǫ and a nonnegative integer n̂ such
that on E1 ∩ E2, for n > n̂, ∂θSn(ψ̃n;Xn) = 0 and Sn((ρ̃n, θ);Xn) attains a
relative minimum at θ = θ̃n. It is an easy matter to see that for all ǫ > 0,
P (E1 ∩ E2) > 1 − ǫ. Thus taking S1 = E1 ∩ E2 and n1 = max(ñ, n̂) yields the
first part of Theorem 3.1. To handle the second point we observe that

1√
n
∂Un(ρ0;Xn) = − 2√

n

n
∑

i=1

λ2(Zi−1)∂m(ρ0;Zi−1)σ(θ0;Zi−1)εi,

and by a Taylor expansion of order one of the function ∂Un(ρ;Xn) around ρ0,
for larger values of n, one can write

√
n(ρ̃n − ρ0) =

2√
n

n
∑

i=1

λ2(Zi−1)σ(θ0;Zi)εi∂
′m(ρ0;Zi−1)Φ

−1
11 + oP (1).

One can also observe that

1√
n
∂θSn((ρ̃n, θ0);Xn) = − 4√

n

n
∑

i=1

γ2(Zi−1)σ
3(θ0;Zi−1)∂σ(θ0;Zi−1)(ε

2
i−1)+oP (1)

and write for larger values of n,

√
n(θ̃n − θ0) =

4√
n

n
∑

i=1

γ2(Zi−1)σ
3(θ0;Zi−1)(ε

2
i − 1)∂′σ(θ0;Zi−1)Φ

−1
22 + oP (1).

Then putting in Theorem 1 of Ngatchou-Wandji (2005): ωi = εi, Yi = Zi−1,
Γ1(x) = x, Γ2(x) = x2−1, Π1(z) = 2λ2(z)σ(θ0; z) ∂

′m(ρ0; z)Φ
−1
11 , and Π2(z) =

4γ2(z)σ3(θ0; z) ∂
′σ(θ0; z)Φ

−1
22 , it results that

√
n(ψ̃n − ψ0)

D−→ N (0,∆).
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Corollary 3.1. Assume that the assumptions of Theorem 3.1 hold and that
E[ε0(ε

2
0 − 1)] = 0. Then ρ̃n and θ̃n are asymptotically uncorreleted.

Remark 3.1. The condition E[ε0(ε
2
0 − 1)] = E(ε30) = 0 in the above corollary

holds for symmetric densities. If it does not hold, ρ̃n and θ̃n will not be indepen-
dent in general. This fact is ignored when the estimation is done for example
with Gaussian or Student εi’s.

Remark 3.2. One could also prove the existence of consistent conditional
type estimators for ψ0 by using directly the random function Sn(ψ;Xn). It is
clear that this would have provided a one step estimator. However, one may
not retrieve the classical least-squares estimators. For example, in the very
simple case of m(ρ, z) = ρz and σ(θ; z) = 1, it is very difficult to have a
simple expression for ρ̃n by minimizing Sn((ρ, 1);Xn), whereas, the preceding
two-steps method yields the traditional least-squares estimator of ρ0. Another
approach (see, e.g., Heyde (1997)) consists in minimizing the sum of square
∑n
i=1{[Xi−m(ρ;Zi−1)]/σ(θ;Zi−1)}2. Yet, for the special case of σ(θ; z) = θ 6= 0

and ρ ∈ R, it is not clear how to estimate θ0 when ρ0 6= θ0.

Remark 3.3. The choice of the functions γ(z) and λ(z) is an open problem
and we will not try to tackle it here. In the simulation, they are taken constant.
Although this choice may be sub-optimal, it matches with what is done in the
literature.

4. Conditional likelihood estimation

For models such as (1.1), the density function of the noise can be useful for
writing the likelihood and/or conditional likelihood functions. In practice, for
choosing this density function, (1.1) can first be fitted by least-squares methods.
Next, various tests can be applied to the residuals from the fitted model to help
postulating an adequate density function f (not necessarily Gaussian) for the
noise. However, because it facilitates parameters estimation, pseudo-likelihood
estimation method is very popular in practice. This probably explains the huge
literature on the subject (see references given in Section 1).

In this section, we study the conditional likelihood estimation of the param-
eters when the noise has a non necessarily Gaussian density function f . This
work has been done by Berkes and Horváth (2004) in the case of GARCH mod-
els. For simplicity, we restrict our study to models (1.1) for which the function
σ(θ; z) satisfies:

(B0) For all (θ, z) ∈ R
J × R

q, σ(θ; z) ≥ κ, for some constant κ > 0.

Under (B0), the log-likelihood of a given sample Xn = (Xn, . . . , X1, X0,
X−1, . . . , X−q) conditional to Z0 is

Ln(ψ;Xn) =

n
∑

i=1

{− log[σ(θ;Zi−1)] + log [f (εi(ψ))]} , (4.1)



Joseph Ngatchou-Wandji/Estimation in heteroscedastic models 49

where we recall that ψ = (ρ′, θ′)′ ∈ Ψ and for all i ∈ Z, εi(ψ) = [Xi −
m(ρ;Zi−1)]/σ(θ;Zi−1). For the derivation of the results of this section, we make
the following assumptions on the density function f :

(B1) f(x) > 0 for all x ∈ R, and f is twice differentiable.
(B2) φf = −f (1)/f is differentiable with continuous derivative.

Next, for all i ∈ Z, we define on R
I × R

J , the following random functions:

ξi(ψ) = φf (εi(ψ))

ξ̇i(ψ) = φ
(1)
f (εi(ψ))

ζi(ψ) = εi(ψ)φf (εi(ψ))

ζ̇i(ψ) = εi(ψ)φ
(1)
f (εi(ψ))

ζ̈i(ψ) = ζi(ψ) + εi(ψ)ζ̇i(ψ).

We also need the following additional requirements:

(B3) There exist a positive function υ(z) such that E[υ4(Z0)] < ∞ and for all
i ∈ Z and ψ1, ψ2 ∈ Ψ, a.s.,

max{|ξi(ψ1) − ξi(ψ2)|, |ξ̇i(ψ1) − ξ̇i(ψ2)|, |ζi(ψ1) − ζi(ψ2)|
|ζ̇i(ψ1) − ζ̇i(ψ2)|, |ζ̈i(ψ1) − ζ̈i(ψ2)|} ≤ υ(Zi)||ψ1 − ψ2||E .

(B4) There exists a positive function τ(z), such that E[τ4(Z0)] <∞ and for all
i ∈ Z, a.s.

max{sup
ψ∈Ψ

|ξi(ψ)|, sup
ψ∈Ψ

|ξ̇i(ψ)|, sup
ψ∈Ψ

|ζi(ψ)|, sup
ψ∈Ψ

|ζ̇i(ψ)|, sup
ψ∈Ψ

|ζ̈i(ψ)|} ≤ τ(Zi).

Such assumptions have been done in Ngatchou-Wandji (2005). They are at least
satisfied by linear autoregressive models, EXPAR and TAR models, ARCH and
more generally β-ARCH models, with Gaussian f .

Define the matrices

Σ11 = E[σ−2(θ0;Z0)∂m(ρ0;Z0)∂
′m(ρ0;Z0)]

∫

φ
(1)
f (x)f(x)dx

Σ12 = Σ′
21 = E[σ−2(θ0;Z0)∂m(ρ0;Z0)∂

′σ(θ0;Z0)]

∫

xφ2
f (x)f(x)dx

Σ22 = E[σ−2(θ0;Z0)∂σ(ρ0;Z0)∂
′σ(θ0;Z0)]

∫

x(φf(x) + xφ
(1)
f (x))f(x)dx

Λ11 = E[σ−2(θ0;Z0)∂m(ρ0;Z0)∂
′m(ρ0;Z0)]

∫

φ2
f (x)f(x)dx

Λ12 = Λ′
21 = E[σ−2(θ0;Z0)∂σ(θ0;Z0)∂

′m(ρ0;Z0)]

∫

φf (x)(xφf(x) − 1)f(x)dx

Λ22 = E[σ−2(θ0;Z0)∂σ(ρ0;Z0)∂
′σ(θ0;Z0)]

∫

(xφf (x)− 1)2f(x)dx,



Joseph Ngatchou-Wandji/Estimation in heteroscedastic models 50

Σ =

(

Σ11 Σ12

Σ21 Σ22

)

and Λ =

(

Λ11 Λ12

Λ21 Λ22

)

.

Theorem 4.1. Assume that (A1)-(A3) and (B0)-(B4) hold, and that the matrix
Σ is negative definite. If

∫

φf (x)f(x)dx = 0 and
∫

xφf (x)f(x)dx = 1, then

(i) there exists a sequence of estimators ψ̂n = (ρ̂′n, θ̂
′
n)′ such that ψ̂n

a.s.−→ ψ0,
and for any ǫ > 0, there exists an event S2 with P (S2) > 1 − ǫ, and a

nonnegative integer n2 such that on S2, for n > n2, ∂Ln(ψ̂n;Xn) = 0 and

Ln(ψ;Xn) attains a relative maximum at ψ = ψ̂n.

(ii) n1/2(ψ̂n − ψ0)
D−→ N (0,Σ−1ΛΣ−1).

Proof. The tools for the proof are exactly the same as those of the proof of
Theorem 3.1. Define Qn(ψ;Xn) = −Ln(ψ;Xn). Then

∂Qn(ψ0;Xn)

= −
n
∑

i=1

σ−1(θ0;Zi−1)
(

∂′m(ρ0;Zi)ξi(ψ0), ∂′σ(θ0;Zi−1)(ζi(ψ0) − 1)
)′

,

∂2
ρ2Qn(ψ;Xn) = −

n
∑

i=1

σ−1(θ0;Zi−1)
(

∂2m(ρ0;Zi−1)ξi(ψ0)

−σ−1(θ0;Zi−1)∂m(ρ0;Zi−1)∂
′m(ρ0;Zi−1)ξ̇i(ψ0)

)

,

∂2
θ0ρQn(ψ0;Xn) =

n
∑

i=1

σ−2(θ0;Zi−1){ξi(ψ0) + ζ̇i(ψ0)}∂m(ρ0;Zi−1)∂
′σ(θ0;Zi−1)

∂2
ρθQn(ψ0;Xn) =

n
∑

i=1

σ−2(θ0;Zi−1){ξi(ψ0) + ζ̇i(ψ0)}∂σ(θ0;Zi−1)∂
′m(ρ0;Zi−1),

∂2
θ2Qn(ψ0;Xn)

=
n
∑

i=1

[

σ−1(θ0;Zi−1)
{

σ−1(θ0;Zi−1)∂σ(θ0;Zi−1)∂
′σ(θ0;Zi−1)

− ∂2σ(θ0;Zi−1

}

(ζi(ψ0)− 1) +σ−2(θ0;Zi−1)∂σ(θ0;Zi−1)∂
′σ(θ0;Zi−1)ζ̈i(ψ0)

]

.

It is easy to see that, as n tends to infinity,

1

n
∂Qn(ψ0;Xn)

a.s.−→ 0 and
1

n
∂2Qn(ψ0;Xn)

a.s.−→ −Σ = Σ̃.

It is clear that the matrix Σ̃ is positive definite. For any vector ψ∗ ∈ int(Ψ),
define the sequence of random functions

Tn(ψ∗;Xn) = ∂2Qn(ψ∗;Xn) − ∂2Qn(ψ0;Xn),



Joseph Ngatchou-Wandji/Estimation in heteroscedastic models 51

and denote by Tn(ψ∗;Xn)ℓk its (ℓ, k)th entry. Any entry of ∂2Qn(ψ0;Xn) is
either a constant times the sum over i = 1, . . . , n of the product of the com-
ponents or entries of ∂m(ρ0;Zi−1), ∂

2m(ρ0;Zi−1), ∂σ(θ0;Zi−1), ∂
2σ(θ0;Zi−1)

and the random functions σ(θ0;Zi−1), εi(ψ0), ξi(ψ0), ξ̇i(ψ0), ζi(ψ0), ζ̇i(ψ0) and
ζ̈i(ψ0), or sums or differences of such terms. We have for example:

∂2Qn(ψ0;Xn)12 = −
n
∑

i=1

σ−1(θ0;Zi−1)
(∂2m(ρ0;Zi−1)

∂ρ1∂ρ2
ξi(ψ0)

−σ−1(θ0;Zi−1)
∂m(ρ0;Zi−1)

∂ρ1

∂m(ρ0;Zi−1)

∂ρ2
ξ̇i(ψ0)

)

.

In view of the assumptions (A1)-(A3) and (B0)-(B4), we can deduce from the
above example that for each (ℓ, k), there exists a positive real-valued function
µℓk with E[µ4

ℓk(Z0)] <∞ such that

|Tn(ψ∗;Xn)ℓk| ≤ ||ψ∗ − ψ0||E
n
∑

i=1

µℓk(Zi−1).

Then, for δ > 0 such that ||ψ − ψ0||E < δ, (nδ)−1|Tn(ψ∗;Xn)ℓk| is bounded
from the right by n−1

∑n
i=1 µℓk(Zi) which, by the ergodic theorem, converges

almost surely to E[µℓk(Z0)] <∞ as n tends to infinity. One can thus conclude
that for all (ℓ, k), (3.3) holds with Tn(ψ∗;Xn)ℓk. Here also, as in the proof of

Theorem 3.1, there exists a sequence of estimators ψ̂n = (ρ̂′n, θ̂
′
n)′ such that, a.s.,

ψ̂n −→ ψ0, and for any ǫ > 0, there exists an event S2 with P (S2) > 1− ǫ, and

an integer n2 such that on S2, for n > n2, ∂Qn(ψ̂n;Xn) = 0 and Qn(ψ;Xn)

attains a relative minimum at ψ = ψ̂n. Since a relative minimum for Qn(ψ;Xn)
is a relative maximum for Ln(ψ;Xn), the first part of our result is established.
For the second part, it remains to prove that n−1/2∂Qn(ψ0;Xn) converges in
distribution to a Gaussian random vector with mean 0 and covariance matrix Λ.
This result is handled if one puts in Theorem 1 of Ngatchou-Wandji (2005) : ωi =
εi(ψ), Yi = Zi−1, Π1(z) = σ−1(θ0; z)∂m(ρ0; z); Π2(z) = σ−2(θ0; z)∂σ(θ0; z);
Γ1(x) = φf (x); Γ2(x) = xφf(x) − 1. Finally, applying again the second part of
Theorem 3.2.23 of Taniguchi and Kakizawa (2000) one has that

√
n(ψ̂n − ψ0)

D−→ N (0,Σ−1ΛΣ−1).

Corollary 4.1. Assume that the assumptions of Theorem 4.1 hold, and that the

equalities
∫

φ
(1)
f (x)f(x)dx=

∫

φ2
f (x)f(x)dx,

∫

xφ2
f(x)f(x)dx=

∫

φf (x)(xφf(x) −
1)f(x)dx and

∫

x(φf (x) + xφ
(1)
f (x))f(x)dx =

∫

(xφf(x)− 1)2f(x)dx hold. Then

√
n(ψ̂n − ψ0)

D−→ N (0,Σ−1), n→ ∞.
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The conditions on the integrals in the above Theorem 4.1 and Corollary 4.1 are
verified at least by Gaussian density functions f . When those in Corollary 4.1 are
satisfied, the Fisher information matrix converges to Σ. Hence, the Cramer-Rao
bound is asymptotically achieved and ψ̂n is asymptotically efficient.

5. Some examples

Here we list some common examples that are comprised in (1.1). It is not difficult
to see that the AR(q) models of finite order q, either linear or nonlinear are
within (1.1) for σ(θ; z) = Cst. The usual ones are for example AR, SETAR,
TARCH, EXPAR (see Tong (1990)). Takingm(ρ; z) = 0 in (1.1) yields ARCH(q)
models. For finite q, the most popular one is the ARCH (q) model obtained with

σ(θ;Zi−1) =
√

θ0 + θ1X2
i−1 + . . .+ θqX2

i−q, θ0 > 0, θi ≥ 0, i = 1, . . . , q. (5.1)

For q = ∞, many other common models are within (1.1). It is the case for
invertible ARMA models. In the particular case of MA(1) model defined by

Xi = εi + θεi−1, |θ| < 1,

one has εi =
∑

j≥0(−θ)jXi−j from which it results that

Xi =
∑

j≥0

(−θ)jXi−j−1 + εi.

As can be seen for instance in Peng and Yao (2003), GARCH(p, q) models
are also within (1.1). In the particular case of GARCH(1,1) model defined by

Xi = hiεi, h2
i = c+ aX2

i−1 + bh2
i−1, (5.2)

it is proved that for a+ b < 1, h2
i =

c

1 − a
+ b

∑

j≥1

aj−1X2
i−j , and consequently,

Xi =





c

1 − a
+ b

∑

j≥1

aj−1X2
i−j





1

2

εi.

The class of models (1.1) for q = ∞ also contains invertible bilinear models,
such as the subdiagonal bilinear model defined by

Xi = bXi−2εi−1 + εi.

For this model, it follows from page 103 of Taniguchi and Kakizawa (2000) that
if b2 < 1, then

εi = Xi +
∑

j≥1

(−b)jXi−j

j
∏

k=1

Xi−k−1,
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which in turn yields

Xi = bXi−2



Xi−1 +
∑

j≥1

(−b)jXi−j−1

j
∏

k=1

Xi−k−2



+ εi.

Remark 5.1. Although conditional least-squares and conditional maximum like-
lihood estimators for ψ0 exists, their computation may need numerical methods,
even for Gaussian density functions f . For example, for pure ARCH(1) models
defined by (5.1) with q = 1 and Gaussian f , the conditional maximum likelihood
estimators will be obtained by solving in ψ = (θ′0, θ

′
1)

′ the equations







∑n
i=1

(

1
θ0+θ1X2

i−1

− X2

i

(θ0+θ1X2

i−1
)2

)

= 0
∑n
i=1

(

X2

i−1

θ0+θ1X2

i−1

− X2

i
X2

i−1

(θ0+θ1X2

i−1
)2

)

= 0,

with the restrictions θ0 > 0 and 0 ≤ θ1 < 1. This will generally need a numerical
method. A similar remark can be done for the GARCH(1,1) and bilinear models
defined above when estimating by either the least-squares or likelihood methods.

6. Kernel estimator for the noise’s density and its derivatives

In time series analysis, the conditional distribution can be very useful for the
study of nonlinear phenomena such as the symmetry and the multimodality
structure of a time series. In the setting of models (1.1), the conditional dis-
tribution is the distribution of the noise. Nonparametric estimation of condi-
tional distribution has been studied among others by Hyndman and Yao (2002)
who use a kernel method, Fan, Yao and Tong (1996) who use the local polyno-
mials approach, Fan and Yim (2004) who use a cross-validation method, and
Hyndman and Yao (2002) who use a kernel method and derive a test for con-
ditional symmetry from their estimator. Bai and Ng (2001) also derive a test
for conditional symmetry which rest on the kernel estimators of the conditional
density and its derivatives.

In this section, we assume that the εi’s have an unknown uniformly con-
tinuous density function f , and we define its kernel estimator and those of its
derivatives. We show the uniform consistency of these estimators. The results
of this section can lead to the derivation of adaptative estimators for ψ0, or to
the construction of some goodness-of-fit tests for the function f . However, we
will not study these problems here.

For all i ∈ Z and ψ = (ρ′, θ′)′ ∈ Ψ, we define the random function

εi(ψ) =
Xi −m(ρ;Zi−1)

σ(θ;Zi−1)
. (6.1)

Let ψn = (ρ′n, θ
′
n)′ be any consistent estimator of ψ0 such that n1/2(ψn−ψ0)

converges in distribution to a Gaussian distribution with mean 0 and variance
matrix Γ. Take for example the least-squares estimator of Section 3, or the
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pseudo-maximum likelihood estimator which can be obtained from Section 4
with Gaussian f . Let p be a nonnegative integer and K be a kernel function
differentiable up to order p + 1, with modulus of continuity ωK . Let (hn) be
a sequence of real numbers such that hn −→ 0, as n tends to infinity. For
n = 1, 2, . . . , and for all x ∈ R, define the random functions

f (p)
n (ψ;x) =

1

nhp+1
n

n
∑

i=1

K(p)

(

x− εi(ψ)

hn

)

. (6.2)

For observable εi(ψ)’s, the convergence of the above Bhattacharya’s estimators
for f (p)(x) is studied in Silverman (1978). Here, the εi(ψ)’s are not observable

and it is natural to estimate f (p)(x) by f
(p)
n (ψn;x). Following Singh (1979), or

the more recent paper of Horová, Vieu and Zelinka (2002), other estimators of
f (p)(x) could be defined. The results of this section are established under the
following assumptions of Silverman (1978):

(H1) K is uniformly continuous with bounded variation

(H2)

∫

|K(x)|dx <∞ and K(x) −→ 0 as |x| → ∞

(H3)

∫

K(x)dx = 1

(H4)

∫

|x log(|x|)|1/2dK(x) <∞

(H5)

∫ 1

0

[log(1/u)]1/2dτ(u) <∞, where τ(u) = [ωK(u)]1/2

(H6) For j = 0, . . . , p+ 1, K(j)(x) −→ 0 as |x| → ∞ and

∫

|K(j)(x)|dx <∞
(H7) The Fourier transform of K is not identically one in any neighborhood of

0.

In Silverman (1978), the assumptions (H1)-(H5) are needed for the convergence
of fn(ψ0;x) to f(x), while (H1), (H2), (H4), (H5)-(H7) allow for the convergence

of f
(p)
n (ψ0;x) to f (p)(x), p ≥ 1. These assumptions hold at least for Gaussian

kernels.

We have the following theorem:

Theorem 6.1. Assume (B0) and (H6) hold, and the function K(p+1) is con-
tinuous. Let r be any integer such that 0 ≤ r ≤ p. Assume n1/2hr+2

n −→ ∞, as
n→ ∞. Then

sup
x∈R

|f (r)
n (ψ0;x)− f (r)

n (ψn;x)| = oP (1).

Proof. Let 0 ≤ r ≤ p, r integer. By a Taylor expansion of order one, we have,
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for some vector ψ∗ lying between ψ0 and ψn:

f (r)
n (ψ0;x) − f (r)

n (ψn;x)

=
1

nhr+1
n

n
∑

i=1

{

K(r)

(

x− εi(ψ0)

hn

)

−K(r)

(

x− εi(ψn)

hn

)}

=
1

nhr+2
n

n
∑

i=1

K(r+1)

(

x− εi(ψ∗)

hn

)

∂′εi(ψ∗)(ψ0 − ψn)

=

{

1

n3/2hr+2
n

n
∑

i=1

K(r+1)

(

x− εi(ψ∗)

hn

)

∂′εi(ψ∗)

}

√
n(ψ0 − ψn).

By the triangle inequality, it then follows that

sup
x∈R

|f (r)
n (ψ0;x) − f (r)

n (ψn;x)|

≤ sup
ψ∈Ψ

sup
x∈R

1

nhr+2
n

n
∑

i=1

∣

∣

∣

∣

K(r+1)

(

x− εi(ψ)

hn

)∣

∣

∣

∣

× sup
ψ∈Ψ

||∂′εi(ψ)||E ||ψ0 − ψn||E

≤ 1

n3/2hr+2
n

n
∑

i=1

[

sup
ψ∈Ψ

sup
x∈R

∣

∣

∣

∣

K(r+1)

(

x− εi(ψ)

hn

)∣

∣

∣

∣

]

× sup
ψ∈Ψ

||∂′εi(ψ)||E ||
√
n(ψ0 − ψn)||E .

Since the function K(r+1) is continuous, by (H6) it is bounded, and there exists
a constant C > 0 such that almost surely,

sup
ψ∈Ψ

sup
x∈R

∣

∣

∣

∣

K(r+1)

(

x− εi(ψ)

hn

)∣

∣

∣

∣

≤ C.

Also, under (B0) and (A1), one can find a positive function χ(z) with E[χ4(Z0)] <
∞ such that for all 1 ≤ i ≤ n,

sup
ψ=(ψ1,ψ2)∈Ψ

||∂′εi(ψ)||E ≤ χ(Zi−1).

From these two inequalities, we have

sup
x∈R

|f (r)
n (ψ0;x) − f (r)

n (ψn;x)| ≤ C

n3/2hr+2
n

(

n
∑

i=1

χ(Zi−1)

)

||√n(ψ0 − ψn)||E .

By our assumptions, we have that ||√n(ψ0 −ψn)||E converges in distribution to
||N (0,Γ)||E . By the ergodic theorem, almost surely,

1

n

n
∑

i=1

χ(Zi−1) −→ E[χ(Z0)].

The result then follows by the fact that n1/2hr+2
n −→ ∞, as n→ ∞.

An immediate consequence of both Theorem 4.1 and Theorems A and C of
Silverman (1978), is the following corollary.
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Corollary 6.1. Assume that (B0) holds and the function K(p+1) is continuous.

(i) Assume that (H1)-(H4) hold and that n1/2h2
n −→ ∞ and (nhn)

−1 log(n)
−→ 0 as n → ∞. Then uniformly, in probability, fn(ψn;x) converges to
f(x).

(ii) For p > 0, assume that the function K(p) satisfies (H1)-(H2), (H4)-(H7),
and n1/2hp+2

n −→ ∞, n−1h−2p−1
n log(1/hn) −→ 0 as n → ∞. Then uni-

formly, in probability, f
(p)
n (ψn;x) converges to f (p)(x).

Proof. By the triangle inequality, write, for r = 0 or r = p,

sup
x∈R

|f (r)(x) − f (r)
n (ψn;x)| ≤ sup

x∈R

|f (r)(x) − f (r)
n (ψ0;x)|

+ sup
x∈R

|f (r)
n (ψ0;x)− f (r)

n (ψn;x)|,

and apply Theorem 4.1 and Theorems A and C of Silverman (1978).

Remark 6.1. Take hn = Cst.n−1/9. Then, one has n1/2h2
n −→ ∞ and

(nhn)
−1 log(n) −→ 0 as n → ∞, which satisfies the hypotheses of the part

(i) of the above corollary. For 1 ≤ p ≤ 2, one has n1/2hp+2
n −→ ∞ and

n−1h−2p−1
n log(1/hn) −→ 0 as n → ∞ and the requirements of the part (ii)

is satisfied.

7. Simulation study

To illustrate some of our results, we conducted a simulation experiment that
we present and comment in this last section. We restricted to models for which
we could obtain explicit and simple expressions for the estimators. This avoided
the use of numerical methods. We consider the following models :

Xi = [ρ0 + ρ1 exp(−κX2
i−1)]Xi−1 +

√

θ0 + θ1X2
i−1εi, (7.1)

where the parameters ρ0, ρ1, κ > 0, θ0 > 0 and θ1 ≥ 0 eventually satisfy some
conditions insuring the existence, the invertibility, the stationarity and the er-
godicity of (Xi)i∈Z. For example, for model (ii) below, (7.1) admits a strictly
stationary and geometrically ergodic solution (Xi)i∈Z as soon as 0 ≤ θ1 < 1. The
noise densities f that we used were either Gaussian or Laplace. More precisely,
we studied the cases

(i) ρ0 = 0, 0 < ρ1 < 1, κ = 0.1 and θ1 = 0, with f either Gaussian or Laplace.
(ii) ρ0 = 0, ρ1 = 0, κ = 0 and 0 < θ1 < 1, with f Gaussian.

(iii) ρ1 = 0, κ = 0 and 0 < θ1 < 1, with f Gaussian.

Except model (i) with Gaussian f and model (ii), there is no guaranty that
(Xi)i∈Z be stationary and / or ergodic for the other models.

For the computation of least-squares estimators, the weight functions were
λ(z) = γ(z) ≡ 1, which yield the classical least-squares estimators. In each case,
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Table 1

Conditional least-squares estimator for the parameters of model (i) with Gaussian noises
(middle two columns) and Laplace noises (last two columns) and sample size n = 50

ρ1 θ0 ρ̃1 θ̃0 ρ̃1 θ̃0

-0.80 0.10 -0.77 0.098 -0.778 0.097
-0.50 0.50 -0.47 0.493 -0.482 0.486
0.20 0.10 0.191 0.098 0.197 0.098
0.80 0.80 0.763 0.795 0.782 0.779
0.90 1.00 0.864 0.998 0.886 0.976

Table 2

Conditional least-squares estimator for the parameters of ARCH(1) model (ii)
(ρ0 = ρ1 = 0) and Gaussian noises, for sample sizes n = 100, n = 200 and n = 400

n= 100 200 400

θ0 θ1 θ̃0 θ̃1 θ̃0 θ̃1 θ̃0 θ̃1

0.40 0.30 0.433 0.210 0.428 0.243 0.418 0.264
0.50 0.20 0.525 0.146 0.515 0.169 0.510 0.180
0.30 0.10 0.304 0.075 0.304 0.089 0.300 0.095
0.40 0.40 0.472 0.271 0.451 0.306 0.442 0.329
0.60 0.05 0.610 0.031 0.608 0.036 0.603 0.044

our estimates were computed on the basis of 1,000 samples of length n. For model
(i), from simple computations, it is easy to see that the least-squares estimator
coincides with the maximum likelihood estimator for Gaussian f . The results
concerning this model are listed in Table 1. They show that, for samples of size
n = 50, and for either density considered, the least-squares estimators are close
to the true value of the parameters. Rapid calculus show that these estimators
are unbiased. The trials for this model were also done for n ≥ 100. From the
results that we do not present here, the estimates obtained were more accurate.
Concerning the models (ii), the results were in general better for the maximum
likelihood estimators than least-squares, for all the sample sizes n = 100, 200, 400
(see Tables 2 and 3). Both estimators moved to the true parameter as n grew.
For the models (iii), only least-squares estimators were computed. This was
done for n = 100, 200, 400. We observed in these cases that the estimates of
ρ0 were good while θ0 was always overestimated and θ1 was underestimated
(see Table 4). The least-squares estimates for the models (ii) also behaved this
way. This likely comes from the fact that the least-squares estimators for these
models are highly biased. It seems from our simulation experiment that their
bias converge slowly to 0, as n grows.

Table 3

Conditional maximum likelihood estimator for the parameters of ARCH(1) model (ii)
(ρ0 = ρ1 = 0) and Gaussian noises, for sample sizes n = 100, n = 200 and n = 400

n= 100 200 400

θ0 θ1 θ̂0 θ̂1 θ̂0 θ̂1 θ̂0 θ̂1

0.40 0.30 0.413 0.268 0.407 0.284 0.401 0.297
0.50 0.20 0.508 0.175 0.505 0.188 0.503 0.191
0.30 0.10 0.294 0.105 0.300 0.100 0.299 0.100
0.40 0.40 0.415 0.364 0.406 0.381 0.402 0.393
0.60 0.05 0.583 0.067 0.593 0.055 0.596 0.051
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Table 4

Conditional least-squares estimator for the parameters of model (iii) with ρ1 = 0 and
Gaussian noises, for sample sizes n = 100, n = 200 and n = 400

n= 100 200

ρ0 θ0 θ1 ρ̃0 θ̃0 θ̃1 ρ̃0 θ̃0 θ̃1

0.20 0.40 0.30 0.189 0.447 0.184 0.196 0.435 0.219
0.30 0.50 0.20 0.292 0.534 0.131 0.292 0.524 0.155
0.50 0.30 0.10 0.491 0.313 0.060 0.494 0.307 0.075
0.60 0.40 0.05 0.582 0.411 0.025 0.591 0.408 0.033
0.40 0.40 0.10 0.390 0.415 0.062 0.389 0.410 0.077

n= 400

ρ0 θ0 θ1 ρ̃0 θ̃0 θ̃1

0.20 0.40 0.30 0.198 0.424 0.253
0.30 0.50 0.20 0.295 0.517 0.173
0.50 0.30 0.10 0.494 0.303 0.085
0.60 0.40 0.05 0.594 0.405 0.040
0.40 0.40 0.10 0.399 0.405 0.086
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Fig 1. Estimation of the density of the noise in models (i), (ii) and (iii) for n =
100, 200, 400, 600.
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Fig 2. Estimation of the first derivative of the density of the noise in models (i), (ii) and
(iii) for n = 100, 200, 400, 600

For the kernel density estimation, we restricted our trials to models (i)-(iii)
with Gaussian density. The residuals were computed from least-squares fit with
γ(z) = λ(z) ≡ 1. We took ψn = ψ̃n (see Sections 3 and 5), a Gaussian kernel
with hn = cnn

−1/9, where, denoting by σn the empirical standard deviation and
Xn, 1

4

and Xn, 3
4

the first and third empirical quartiles of (X1, . . . , Xn),

cn =
0.9 min{σn, (Xn, 3

4

−Xn, 1
4

)}
1.34

.

This sequence (cn) given in the software R seemed to give better results than
cn = σn. It is easy to check that the Gaussian kernel and the sequences (hn)
clearly satisfy the assumptions of Theorem 6.1. We took ρ1 = −0.5, θ1 = 1 for
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(i), θ0 = 0.4, θ1 = 0.1 for (ii) and ρ0 = 0.6, θ0 = 0.4, θ1 = 0.05 for (iii). The
different plots of f̃n and f are gathered on the same graph. The same is done

for f̃
(1)
n and f (1). The trials were done for n = 100, 200, 400, 600. The estimates

obtained for the density were good (see Figure 1). Those of the derivative of
the density were not good for n = 100, 200, especially in the vicinity of the
maxima. They were better for n = 400, 600 (see Figure 2). For the density and
its first derivative, one can see that the estimates from the models (ii) and (iii)
were not very close to the true functions. This is probably due to the sampling
fluctuations or to the bias of the least-squares estimators of the parameters of
these models. The good behavior of the estimates obtained from (i) may come
from the fact that the conditional likelihood and the conditional least-squares
estimators of the parameter ψ0 are the same in this case as we earlier pointed
out.
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