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Abstract: Consider a random vector (X,Y ) and let m(x) = E(Y |X = x).
We are interested in testing H0 : m ∈ MΘ,G = {γ(·, θ, g) : θ ∈ Θ, g ∈ G}
for some known function γ, some compact set Θ ⊂ IRp and some function
set G of real valued functions. Specific examples of this general hypothe-
sis include testing for a parametric regression model, a generalized linear
model, a partial linear model, a single index model, but also the selection of
explanatory variables can be considered as a special case of this hypothesis.

To test this null hypothesis, we make use of the so-called marked em-
pirical process introduced by [4] and studied by [16] for the particular case
of parametric regression, in combination with the modern technique of em-
pirical likelihood theory in order to obtain a powerful testing procedure.
The asymptotic validity of the proposed test is established, and its finite
sample performance is compared with other existing tests by means of a
simulation study.
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1. Introduction

Assume that the data (Xi, Yi) (i = 1, . . . , n) are independent replications of a
random vector (X, Y ), where X is a d-variate vector and Y is one-dimensional.
Let m(x) = E(Y |X = x) for x ∈ IRd. We are interested in testing

H0 : m ∈ MΘ,G = {γ(·, θ, g) : θ ∈ Θ, g ∈ G} (1.1)

for some known function γ, some compact set Θ ⊂ IRp and some function set G of
real valued functions. Special cases of this general null hypothesis include testing
for a parametric model (in which case m(·) ≡ γ(·, θ)), a generalized linear model
(m(x) = γ(βtx, α) with θ = (α, β)), a partial linear model (m(x) = ztθ + g(w)
with x = (w, z)), but the test procedure can also be used for e.g. the selection of
explanatory variables. Other possibilities not included in the paper are testing
for the parametric form of the variance function, the comparison of regression
curves, etc.

The idea of the test procedure we develop in this paper is to make use of
the so-called marked empirical process introduced by [4] and studied by [16],
combined with the modern technique of empirical likelihood theory in order to
obtain a powerful testing procedure.

A lot of research on goodness-of-fit tests based on empirical process ideas has
been carried out in the last ten years. Starting with the already-mentioned pa-
per by [4] and [16], devoted to testing parametric regression models, the theory
was continued with the problem of checking generalized linear models (see [20]),
and the selection of variables (see [3]), etc. See also [25] for testing, using the
empirical process ideas, other models of interest: partial linear models, reduction
of the dimension, models with multidimensional response and heteroscedasticity
tests. For the calibration of the critical points associated to the test statistics,
two approximations were mainly used: one is based on the bootstrap (see [17])
and the other is based on martingale transformations (see [19]). For alternative
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testing procedures based on smoothing techniques, see [23], and for recent gen-
eralizations of the empirical regression process ideas to dependent data, see the
papers by [18], [6], [7] and [8].

The empirical likelihood (see for example the book by [14]) is a technique
designed to construct a nonparametric likelihood for parameters of interest in
a nonparametric or a semiparametric setting with nice properties typical for
the parametric likelihood, as for example the Wilks’ theorem and the Bartlett
correction recently proved by [1].

There has also been some recent interest in goodness-of-fit tests based on the
empirical likelihood in the regression context. [9] propose a sieve empirical likeli-
hood test for testing general varying-coefficient regression models. [11] study the
properties of the empirical likelihood in the presence of both finite and infinite
dimensional nuisance parameters as well as when the data dimension is high.
[2], [21], [12] and [5] propose different tests based on empirical likelihood with
conditional moment restrictions, including situations with dependent data.

In this paper we present a new procedure for testing different regression
models in a unified way, combining ideas of empirical regression processes and
empirical likelihood. See the paper by [10] for a different unified vision of the
theory for testing regression models.

The paper is organized as follows. In the next section, the unified testing
procedure is explained, and the asymptotic limit of the test is given, under a
set of primitive conditions. In Section 3 these primitive conditions are verified
for a number of particular regression models. Section 4 contains the results of a
small simulation study. The proofs are deferred to the Appendix.

2. General test procedure

To explain the idea of the proposed testing procedure, we first focus on the
simple case where we test for the parametric form of the regression function, i.e.
m(·) = γ(·, θ), and where X is assumed to be one-dimensional. Note that the
true value θ0 of θ satisfies in that case

E[I(X ≤ x)(Y − γ(X, θ0))] = 0 (2.1)

for all x ∈ IR. Let θ̂ be an estimator of θ0 under H0, obtained from e.g. least
squares minimization. The idea of [4] and [16] is to define the marked empirical
process based on residuals

n−1/2
n

∑

i=1

I(Xi ≤ x)[Yi − γ(Xi, θ̂)] (2.2)

and to test H0 by constructing Kolmogorov-Smirnov, Cramér-von Mises, smooth
and directional tests based on this process. [16] also obtained the limiting dis-
tribution of the proposed tests. In this paper we will extend the above process
to a general framework including a large number of common regression models,
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and we will make use of empirical likelihood theory in the construction of the
test statistic.

Let’s consider this now in more detail. For the general null hypothesis H0

defined in (1.1), an appropriate extension of the above marked empirical process
is given by

Rn(u) = n−1/2
n

∑

i=1

L(Xi, u, θ̂, ĝ)[Yi − γ(Xi, θ̂, ĝ)], (2.3)

for u belonging to a compact set U , for certain estimators θ̂ and ĝ depending
on the model under H0, and for a certain appropriate weight function L also
depending on the particular form of H0. In Section 3 we will consider the process
Rn(u) in detail for a number of particular models (parametric, generalized linear,
partial linear, etc.), which will give rise to particular forms for the function L
and the set U . In many of our examples, U will be equal to RX , the support of
X, which we also assume to be compact.

We will now introduce the empirical likelihood test based on the marked em-
pirical process Rn(u). For any bivariate distribution F defined on the support
of (X, Y ), define the likelihood L(F ) by (we restrict for simplicity to the defini-
tion for d = 1, the extension to general d being straightfoward, but notationally
more heavy)

L(F ) =

n
∏

i=1

[F (Xi, Yi) − F (Xi−, Yi) − F (Xi, Yi−) + F (Xi−, Yi−)].

Next, define the empirical likelihood ratio by (for any d ≥ 1)

EL(u, θ̂, ĝ)

=
sup{L(F ) : EF [L(X, u, θ̂, ĝ)(Y − γ(X, θ̂, ĝ))] = 0}

sup{L(F )}

=
sup

{

∏n

i=1
wi:wi≥0,

∑n

i=1
wi=1,

∑n

i=1
wiL(Xi,u,θ̂,ĝ)[Yi−γ(Xi,θ̂,ĝ)]=0

}

∏n

i=1
n−1

= sup

{

∏n

i=1
(nwi) :wi ≥ 0,

∑n

i=1
wi =1,

∑n

i=1
wiL(Xi, u, θ̂, ĝ)[Yi − γ(Xi, θ̂, ĝ)]=0

}

,

(2.4)

where the maximum over the empty set is defined to be zero, and let ℓ(u, θ̂, ĝ)

= −2 log EL(u, θ̂, ĝ). The proposed test statistics are now given by

Sn = sup
u∈U

ℓ(u, θ̂, ĝ), Tn =

∫

U

ℓ(u, θ̂, ĝ) dµn(u), (2.5)

for some measure µn such that

sup
u∈U

|µn(u) − µ(u)| = oP (1),
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where the measure µ does not depend on n. When U = RX , a natural choice
for µn is

dµn(·) = w(·)dF̂X(·),

where w(·) is an appropriate weight function and F̂X(·) is the empirical distri-
bution function of X. The measure µ(·) equals dµ(·) = w(·)dFX(·) in that case,
with FX(·) = P (X ≤ ·).

In order to obtain the limiting behavior of the process ℓ(u, θ̂, ĝ) (u ∈ U),
use will be made of the results in [11]. In that paper the authors give primitive
conditions under which the empirical likelihood statistic converges (for a fixed
u). Their result can be easily generalized to the current situation of a process
in u. We will show this below. For this purpose, let ℓ∞(U) be the space of all
bounded functions from U to IR equiped with the supremum metric.

Let θ0 be the true value of θ ∈ Θ, and g0 be the true function in G. The
result gives the asymptotic behavior of the test statistics Sn and Tn both under
H0 and under the fixed alternative hypothesis HA : m /∈ MΘ,G .

Theorem 2.1. (a) Assume that under H0,

(C0) P (EL(u, θ̂, ĝ) = 0 for some u ∈ U) → 0 as n → ∞.

(C1) The process Rn(u) can be written as
Rn(u) = n−1/2

∑n
i=1 Q(Xi, Yi, u, θ0, g0)+oP (1), uniformly in u ∈ U ,

for some function Q defined on RX × IR × U × Θ × G that satisfies
E[Q(X, Y, u, θ0, g0)] = 0 for all u, and Rn(u) converges weakly to a
zero-mean Gaussian process V (u) (u ∈ U).

(C2) supu∈U |n−1
∑n

i=1 L2(Xi, u, θ̂, ĝ)(Yi − γ(Xi, θ̂, ĝ))2 − T (u)| →P 0 for
some function T (u) (u ∈ U), such that infu∈U T (u) > 0 and
supu∈U T (u) < ∞.

(C3) supu∈U max1≤i≤n |L(Xi, u, θ̂, ĝ)(Yi − γ(Xi, θ̂, ĝ))| = oP (n1/2).

Then, under H0, the process ℓ(u, θ̂, ĝ) (u ∈ U) converges weakly in ℓ∞(U)
to W 2(u), where W (u) = V (u)/

√

T (u), and hence

Sn →d sup
u∈U

W 2(u), Tn →d

∫

U

W 2(u) dµ(u).

(b) Assume that under HA, condition (C2) holds, and in addition

(C1’) n1/2
(

infu∈U0
|Rn(u)|

)−1

= OP (1) , for a subset U0 of U of positive
µ-measure.

(C3’) supu∈U max1≤i≤n |L(Xi, u, θ̂, ĝ)2(Yi − γ(Xi , θ̂, ĝ))
2| = oP (n1/2).

Then, under HA, for any c > 0,

P (Sn > c) → 1, P (Tn > c) → 1,

as n tends to infinity.
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Note that condition (C1’) is basically saying that for some values of u, Rn(u)
is biased. Indeed, if Rn(u) is unbiased for all u, then |Rn(u)| = OP (1) for all
u ∈ U and condition (C1’) does not hold in that case. Also note that condition
(C3’) is stronger than (C3). Consider the common case where L(X, u, θ, g) is a
bounded function, and write

Y − γ(X, θ̂, ĝ) = [Y − γ(X, θ, g)] + [γ(X, θ, g) − γ(X, θ̂, ĝ)].

Then, the second term can be taken care of using standard arguments, and
hence it follows from Lemma 11.2 in [14] that (C3’) holds true if the fourth
moment of Y − γ(X, θ, g) is finite, whereas (C3) only requires the finiteness of
the second moment.

Since the limiting distribution of Sn and Tn are rather complicated, we pro-
pose to work with the following bootstrap approximation. From Theorem 2.1(a)

it follows that the log-likelihood function ℓ(u, θ̂, ĝ) can be approximated by
Rn(u)2/T (u) and that Rn(u) can be written as

Rn(u) = n−1/2
n

∑

i=1

Q(Xi, Yi, u, θ0, g0) + oP (1),

uniformly in u ∈ U . Define random variables V1, . . . , Vn that are independent
of the data (Xi, Yi) (i = 1, . . . , n), and that are independent and identically
distributed such that E(Vi) = 0, Var(Vi) = 1 and |Vi| ≤ c < ∞ for some finite
c. Then, let

R̃∗
n(u) = n−1/2

n
∑

i=1

Q(Xi, Yi, u, θ0, g0)Vi.

From the multiplier central limit theorem (see e.g. [22], p. 179), it follows that
R̃∗

n(u) converges to the same process as the original process Rn(u). Since the
process R̃∗

n(u) contains unknown quantities (θ0, g0 and possibly also the function
Q itself), we cannot use it in our bootstrap procedure, and we therefore define

R∗
n(u) = n−1/2

n
∑

i=1

Q̂(Xi, Yi, u, θ̂, ĝ)Vi,

where Q̂ is a suitable estimator of the function Q, whose definition depends on
the particular model at hand. We will give the precise definition of this estimator
for each of the models we will consider in Section 3. Now, suppose the following
assumption holds true :

(C4) supu∈U |R∗
n(u) − R̃∗

n(u)| = oP (1).

Then, R∗
n(u) also converges to the same process as the original process Rn(u).

This way of approximating the process Rn(u) by means of the bootstrap has
been used in a number of other papers, see e.g. [3], [25], among others.

It remains now to define an estimator of the variance T (u). Let

T̂ (u) = n−1
n

∑

i=1

L(Xi, u, θ̂, ĝ)(Yi − γ(Xi , θ̂, ĝ))
2.
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Since condition (C2) assures that supu |T̂ (u) − T (u)| = oP (1), we have the
following result concerning the bootstrap approximation of the process W 2(u),
u ∈ U :

Theorem 2.2. Assume (C0)–(C4). Then, under H0 and conditionally on the
data (Xi, Yi) (1 ≤ i ≤ n), the process R∗

n(u)2/T̂ (u) converges weakly in ℓ∞(U)
to W 2(u).

As a consequence, the critical values of the test statistics Sn and Tn can be
approximated by the (1 − α)-th quantiles of the distributions of

S∗
n = sup

u∈U

R∗
n(u)2

T̂ (u)

and

T ∗
n =

∫

U

R∗
n(u)2

T̂ (u)
dµn(u),

respectively, given the data (Xi, Yi) (1 ≤ i ≤ n).

3. Application of general test to specific models

In this section we consider a number of particular models and apply the test
procedure developed in Section 2 to each of these models.

3.1. Parametric models

Consider the null hypothesis HP
0 : m(·) ≡ γ(·, θ) for some θ ∈ Θ, where X is

supposed to be one-dimensional (d = 1). As we have seen in Section 2, [4] and
[16] introduced the marked empirical process defined in (2.2). We focus here on
the following slight variation of (2.2) :

RP
n (x) = n−1/2

n
∑

i=1

I(Xi ∈ Jx)[Yi − γ(Xi, θ̂)],

where x ∈ RX , and

Jx =

{

{t : t ≥ x} x ≤ a
{t : t ≤ x} x > a,

(3.1)

for some a in the interior of RX (e.g. a is the median of X). Note that RP
n (x)

equals Rn(x) with L(X, x, θ, g) = I(X ∈ Jx) and with γ(x, θ, g) being a function
of θ only.

The marked empirical process proposed by [16] accumulates data from left to
right (i.e. it is based on the indicator I(X ≤ x)), whereas we replaced I(X ≤ x)
by I(X ∈ Jx), in order to obtain more stable results for small values of x. Note
that when we take a = inf{x : x ∈ RX}, the left endpoint of the support of X,
we obtain the process studied by [16].
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To show the validity of conditions (C0)–(C3) we will use the results in [16].
Note that [2] also use an empirical likelihood approach to test the appropri-

ateness of a parametric regression model. In contrast to our method, they use a
local approach, based on comparing a kernel estimator of the regression function
m(x) with an estimator of m(x) under the null model. As a consequence their
results depend on the choice of a smoothing parameter.

Let T (x) = E[Var(Y |X)I(X ∈ Jx)]. The following conditions are needed for
the main result. Note that the choice a = inf{x : x ∈ RX} (i.e. the process of
[16]) is excluded by assumption (P 1).

(P1) E(Y 2) < ∞, infx∈RX
T (x) > 0 and supx∈RX

T (x) < ∞.

(P2) Under H0, θ̂ admits an expansion

θ̂ − θ0 = n−1
n

∑

i=1

h(Xi, Yi, θ0) + oP (n−1/2),

where E[h(X, Y, θ0)] = 0 and H(θ0) := E[h(X, Y, θ0)h
t(X, Y, θ0)] exists and is

positive definite.

(P3)(i) For each x ∈ RX , γ(x, θ) is continuously differentiable at each θ in
int(Θ), and supx∈RX

|γ(x, θ0)| < ∞.

(ii) The components of the vector ∂
∂θ

γ(x, θ) are bounded, uniformly in x ∈ RX

and θ ∈ Θ.

Condition (P 2) is satisfied for the least squares estimator and any of its
common robust modifications.

Also, define

G(x, θ) =

∫

Jx

∂

∂θ
γ(u, θ) dFX(u).

Theorem 3.1. Assume (P 1)–(P 3). Then, under HP
0 , conditions (C0)–(C3)

hold true for

Q(x̄, ȳ, x, θ) = I(x̄ ∈ Jx)[ȳ − γ(x̄, θ)] − Gt(x, θ)h(x̄, ȳ, θ)

and V (x) a zero-mean Gaussian process with covariance function

Cov(V (x1), V (x2)) = E[Var(Y |X)I(X ∈ Jx1
∩ Jx2

)] + Gt(x1, θ0)H(θ0)G(x2, θ0)

−Gt(x1, θ0)E[I(X ∈ Jx2
)(Y − γ(X, θ0))h(X, Y, θ0)]

−Gt(x2, θ0)E[I(X ∈ Jx1
)(Y − γ(X, θ0))h(X, Y, θ0)].

In order to apply the bootstrap procedure described in Section 2, let R̃P∗
n (x) =

n−1/2
∑n

i=1 Q(Xi, Yi, x, θ0)Vi and RP∗
n (x) = n−1/2

∑n
i=1 Q̂(Xi, Yi, x, θ̂)Vi, where

the random variables Vi are as in Section 2,

Q̂(x̄, ȳ, x, θ) = I(x̄ ∈ Jx)[ȳ − γ(x̄, θ)] − Ĝt(x, θ)ĥ(x̄, ȳ, θ),
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Ĝ(x, θ) = n−1
∑n

i=1 I(Xi ∈ Jx) ∂
∂θγ(Xi, θ), and ĥ is an appropriate estimator of

the function h satisfying

(P4) n−1/2
∑n

i=1[ĥ(Xi, Yi, θ̂) − h(Xi, Yi, θ0)]Vi = oP (1).

We also need to assume that

(P5) For each x ∈ RX , γ(x, θ) is twice continuously differentiable with respect
to the components of θ at each θ in int(Θ), and all the partial derivatives of
order two are bounded, uniformly in x ∈ RX and θ ∈ Θ.

Theorem 3.2. Assume (P 1)–(P 5). Then, under HP
0 , condition (C4) holds

true, and hence the process RP∗
n (x), x ∈ RX has the same limiting distribution

as the process RP
n (x).

Note that condition (P4) is satisfied when e.g. γ(x, θ) = θ0 +θ1x, and θ̂ is the
least squares estimator of θ, since in that case (we consider only θ1 and write
h(x, y, θ) = (h0(x, y, θ), h1(x, y, θ))t)

h1(x, y, θ) =
1

σ2
X

(x − µX)(y − µY ) −
σXY

σ4
X

(x − µX)2,

where µX = E(X), µY = E(Y ), σ2
X = Var(X) and σXY = Cov(X, Y ). Define

ĥ(x, y, θ) by replacing µX , µY , σ2
X and σXY by their sample versions. Then, the

left hand side of condition (P4) can be decomposed in a sum of i.i.d. terms, plus
a remainder term. Consider e.g. the following term (the other terms are similar
and lead to the same asymptotic order) :

{ 1

σ̂2
X

−
1

σ2
X

}

n−1/2
n

∑

i=1

(Xi − µX)(Yi − µY )Vi = OP (n−1/2),

since E[(Xi − µX)(Yi − µY )Vi] = E[(Xi − µX)(Yi − µY )]E(Vi) = 0, and since
σ̂2

X − σ2
X = OP (n−1/2).

Other bootstrap procedures can be used as well (see e.g. [17] for a wild
bootstrap procedure).

3.2. Generalized linear models

Under this model it is assumed that HGLM
0 : m(·) ≡ γ(βt·, α) for some θ =

(α, β) ∈ Θ ⊂ IRa+d, d being the dimension of X. [20] proposed the follow-

ing marked empirical process (except for the indicator I(β̂tXi ∈ Ju), which is

replaced by I(β̂tXi ≤ u) in their paper)

RGLM
n (u) = n−1/2

n
∑

i=1

I(β̂tXi ∈ Ju)[Yi − γ(β̂tXi, α̂)],

for some estimators α̂ and β̂, which is of the general form given by Rn(u) with
L(X, u, θ, g) corresponding to I(βtX ∈ Ju) and U = {βt

0x : x ∈ RX}. The
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set Ju is as in (3.1), with a belonging now to the interior of the set U . The
motivation for this process comes from the fact that under HGLM

0 , E{I(βt
0X ∈

Ju)[Y − γ(βt
0X, α0)]} = 0 for all u.

Let T (u) = E[Var(Y |βt
0X)I(βt

0X ∈ Ju)]. The following assumptions are
needed for showing the validity of (C0)–(C3).

(GLM1) E(Y 2) < ∞, infu∈U T (u) > 0 and supu∈U T (u) < ∞.

(GLM2) Under H0, (α̂, β̂) admits an expansion

(α̂t, β̂t)t − (αt
0, β

t
0)

t = n−1
n

∑

i=1

k(Xi, Yi, α0, β0) + oP (n−1/2),

where E[k(X, Y, α0, β0)] = 0 and K(α0, β0) := E[k(X, Y, α0, β0)k
t(X, Y, α0, β0)]

exists and is positive definite.

(GLM3)(i) For each x ∈ RX , γ(βtx, α) is continuously differentiable at each
(α, β) in int(Θ), and supx∈RX

|γ(βt
0x, α0)| < ∞.

(ii) The components of the vector ∂
∂(α,β)γ(βtx, α) are bounded, uniformly in

x ∈ RX and (α, β) ∈ Θ.

(GLM4) The function E[Var(Y |X)I(βt
0X ∈ Ju)] is uniformly continuous in

u ∈ U .

Also, define

G(u, α, β) = E
[ ∂

∂(α, β)
γ(βtX, α)I(βtX ∈ Ju)

]

.

Theorem 3.3. Assume (GLM1)–(GLM4). Then, under HGLM
0 , conditions

(C0)–(C3) hold true for V (u) a zero-mean Gaussian process with covariance
function (θ0 = (α0, β0))

Cov(V (u1), V (u2)) = E[Var(Y |βt
0X)I(βt

0X∈Ju1
∩Ju2

)] + Gt(u1, θ0)K(θ0)G(u2, θ0)

−Gt(u1, θ0)E[I(βt
0X ∈ Ju2

){Y − γ(βt
0X, α0)}k(X, Y, θ0)]

−Gt(u2, θ0)E[I(βt
0X ∈ Ju1

){Y − γ(βt
0X, α0)}k(X, Y, θ0)].

For showing the validity of the bootstrap approximation, first note that
RGLM

n (u) = n−1/2
∑n

i=1 Q(Xi, Yi, u, θ0) + oP (1), uniformly in u ∈ U , where

Q(x, y, u, θ) = I(βtx ∈ Ju)[y − γ(βtx, α)]− Gt(u, α, β)k(x, y, α, β).

Define

Q̂(x, y, u, θ) = I(βtx ∈ Ju)[y − γ(βtx, α)]− Ĝt(u, α, β)k̂(x, y, α, β),

where Ĝ(u, α, β) is the sample version of G(u, α, β) and k̂(x, y, α, β) satisfies

(GLM5) n−1/2
∑n

i=1[k̂(Xi, Yi, α̂, β̂) − k(Xi, Yi, α0, β0)]Vi = oP (1).
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Also, assume that

(GLM6) For each x ∈ RX , γ(βtx, α) is twice continuously differentiable with
respect to the components of (α, β) at each (α, β) in int(Θ), and all the partial
derivatives of order two are bounded, uniformly in x ∈ RX and (α, β) ∈ Θ.

Theorem 3.4. Assume (GLM1)–(GLM6). Then, under HGLM
0 , condition (C4)

holds true, and hence the process RGLM∗
n (u) = n−1/2

∑n
i=1 Q̂(Xi, Yi, u, θ̂)Vi, has

the same limiting distribution as the process RGLM
n (u), u ∈ U .

3.3. Selection of variables

For the purpose of this subsection we write X = (X1, . . . , Xd) = (W, Z), where
W , respectively Z, is a random vector of dimension dw, respectively dz, and
d = dw + dz. Also, write RX = RW × RZ. Consider the null hypothesis HSV

0 :
E(Y |X) = g(W ), where g(w) = E(Y |W = w), i.e. the response depends only
on the covariate vector W and not on Z. [3] considered this testing problem
and used the fact that under HSV

0 , E{I(X ∈ Jx)fW (W )[Y − g(W )]} = 0 for
all x ∈ RX , where fW is the probability density of W , to propose the following
test statistic :

RSV
n (x) = n−1/2

n
∑

i=1

I(Xi ∈ Jx)f̂W (Wi)[Yi − ĝ(Wi)],

where Jx =
∏d

j=1 Jxj
, each Jxj

is as in (3.1) for some aj in the interior of the
support of Xj , I(Xi ∈ Jx) = I(Xi1 ∈ Jx1

, . . . , Xid ∈ Jxd
),

f̂W (w) = (nhdw )−1
n

∑

i=1

K
(Wi − w

h

)

, (3.2)

ĝ(w) = f̂W (w)−1(nhdw )−1
n

∑

i=1

K
(Wi − w

h

)

Yi, (3.3)

K(u) =
∏dw

j=1 k(uj), k is a univariate kernel and h a bandwidth. Note that
as before, we have replaced the indicator I(Xi ≤ x) by I(Xi ∈ Jx), but the
fundamental idea of [3] remains the same.

Define T (x) = E[Var(Y |X)f2
W (W )I(X ∈ Jx)] and q(z|w) = P (Z ∈ Jz |W =

w), and consider the following assumptions :

(SV 1) fW ∈ F∞
λ , g ∈ F2

τ and q(z|·) ∈ F∞
v for all z ∈ RZ and for some

λ, τ, v > 0.

(SV 2) k : IR → IR is an even function of uniformly bounded variation, sat-
isfying k(u) = O((1 + |u|α+1+ε)−1) for some ε > 0,

∫

uik(u) du = δi0, for
i = 0, . . . , α−1, where δij is Kronecker’s delta and α = ℓ+t−1, with ℓ−1 < λ ≤ ℓ
and t − 1 < τ ≤ t.
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(SV 3) (nhdw )−1 + nh2min(τ,λ+1) → 0 as n → ∞.

(SV 4) E{|Y − g(W )|2+δ} < ∞ for some δ > 0.

(SV 5) infx∈RX
T (x) > 0 and supx∈RX

T (x) < ∞.

Assumptions (SV 1)–(SV 4) are taken from [3], and ensure the validity of
condition (C1). The class Fα

β (for α, β > 0) defines a class of smooth functions,
satisfying certain moment conditions. We refer to [3], p. 1474, for its formal
definition.

Theorem 3.5. Assume (SV 1)–(SV 5). Then, under HSV
0 , conditions (C0)–

(C3) hold true for V (x) a zero-mean Gaussian process with covariance function
(where xj = (wj, zj), j = 1, 2)

Cov(V (x1), V (x2)) = E
{

(Y − g(W ))2f2
W (W )I(W ∈ Jw1

∩ Jw2
)

×[I(Z ∈ Jz1
) − q(z1|W )][I(Z ∈ Jz2

) − q(z2|W )]
}

.

For the bootstrap approximation, [3] showed that RSV
n (x) can be written as

RSV
n (x) = n−1/2

n
∑

i=1

{

I(Xi ∈ Jx)fW (Wi)(Yi − g(Wi)) −

− r(x, Wi)fW (Wi)(Yi − g(Wi))
}

+ oP (1),

where r(x, Wi) = I(Wi ∈ Jw)q(z|Wi), and they proposed to estimate r(x, Wi)
by

r̂(x, Wi) =
1

nhdw f̂W (Wi)

n
∑

j=1

K
(Wi − Wj

h

)

I(Xj ∈ Jx).

The consistency of the bootstrap approximation obtained by multiplying each
term in the above representation by Vi, and by replacing the unknown functions
in this representation by their corresponding estimators, has been established
by the same authors. We refer to their paper for details about the proof and the
assumptions under which this approximation is valid.

3.4. Partial linear models

We continue to write X = (X1, . . . , Xd) = (W, Z) as in the previous subsection,
and consider now the following null hypothesis :

HPL
0 : E(Y |X) = θt

0Z + g(W ),

i.e. Y = θt
0Z + g(W ) + ε, where E(ε|W, Z) = 0, and where the function g is

completely unknown. This problem has been studied by [3] and [25]. Note that
under HPL

0 , E{Y −m(W )−θt
0[Z−mZ(W )]|X} = 0, where m(W ) = E(Y |W ) =
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θt
0E(Z|W )+g(W ) and mZ(W ) = E(Z|W ). This suggests to define the following

marked empirical process :

RPL
n (x) = n−1/2

n
∑

i=1

I(Xi ∈ Jx)w(Wi)
{

Yi − m̂(Wi) − θ̂t[Zi − m̂Z(Wi)]
}

,

x ∈ RX , where w(·) is an appropriate weight function (e.g. w(W ) = fW (W )),

m̂Z(w) = f̂W (w)−1(nhdw )−1
n

∑

i=1

K
(Wi − w

h

)

Zi,

K(u) =
∏dw

j=1 k(uj), k is a univariate kernel, h a bandwidth, and f̂W (·) and
m̂(·) are defined as in (3.2) and (3.3) respectively (except that we now use the

notation m̂(·) instead of ĝ(·)). Finally, the estimator θ̂ is defined by

θ̂ = Ŝ−1n−1
n

∑

i=1

w2(Wi)[Zi − m̂Z(Wi)][Yi − m̂(Wi)],

where

Ŝ = n−1
n

∑

i=1

w2(Wi)[Zi − m̂Z(Wi)][Zi − m̂Z (Wi)]
t.

Define T (x) = E[Var(Y |X)w2(W )I(X ∈ Jx)], and consider the following as-
sumptions :

(P L1) Conditions (1)–(6) given in [25], p. 72-73, are valid.

(P L2) infx∈RX
T (x) > 0 and supx∈RX

T (x) < ∞.

The conditions in [25] guarantee the weak convergence of the process RPL
n (x)

(x ∈ RX). They consist of certain smoothness conditions on m(w), mZ(w) and
q(z|w) = P (Z ∈ Jz|W = w), conditions on the bandwidth h and on the kernel
k, moment conditions on Y, Z and ε, and conditions on the weight function w.

Theorem 3.6. Assume (PL1)–(PL2). Then, under HPL
0 , conditions (C0)–

(C3) hold true for V (x) a zero-mean Gaussian process with covariance function

Cov(V (x1), V (x2)) = E{ε2w2(W )D(X, x1)D(X, x2)},

where

D(X, x) = I(X ∈ Jx) − q(z|W )I(W ∈ Jw)

−E
{

w(W )I(X ∈ Jx)[Z − mZ(W )]t
}

S−1[Z − mZ(W )],

and S = E{w2(W )[Z − mZ(W )][Z − mZ(W )]t}.

The proof of this result is very similar to the one of Theorem 3.5 and is
therefore omitted.

The consistency of the bootstrap procedure described in Section 2 is estab-
lished in Theorem 5.3.1 in [25]. We refer to this book for the assumptions under
which this approximation is valid.
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3.5. Other models

The procedure developed in this paper can also be applied to a number of other
situations : testing for homoscedasticity ([26]), the comparison of regression
curves ([13]), single index models ([24]), autoregressive models ([18]), testing
for conditional independence ([3]), among others. In each of these situations, a
suitable marked empirical process has been proposed and its asymptotic behav-
ior has been developed. In a similar way as we have done for the applications
worked out in Subsections 3.1–3.4, one can use these convergence results to show
the validity of the proposed empirical likelihood tests. We leave the details to
the reader.

4. Simulations

We present some simulations carried out to assess the behavior of the new test
for moderate sample sizes. We consider situations under the null, which allows to
assess the accuracy of the bootstrap approximation, and under the alternative,
to show the power. The new test is compared with the original test based on the
marked empirical process. The simulated examples were chosen for the problem
of testing a parametric regression model, and for a generalized linear model with
binomial response.

4.1. Parametric model

The data are taken from the following regression model

Yi = Xi + d (Xi) + σ (Xi) εi i ∈ {1, . . . , n},

where n is the sample size, Xi is a uniform random variable on the interval [0, 1],
εi is a standard normal random variable, the parametric model to be tested is

H0 : m(x) = θx

for some parameter θ to be estimated, d is a function which represents the
deviation from the null hypothesis and σ is the conditional standard deviation
of Yi given Xi. The simulations were carried out under the null hypothesis, d = 0,
and for different alternative functions d. Homoscedastic models were considered
by means of a constant function σ, and several heteroscedastic models were also
studied by means of different functions σ.

The following tables contain the percentage of rejections for ten thousand
samples, under the nominal level 5%. The results are given for different values of
the sample size, n, for different alternative functions d and for different standard
deviations of the error. The functions d are coded as 0. d(x) = 0, 1. d(x) =
x2, 2. d(x) = 0.3x exp(x), 3. d(x) = 0.3 sin(4πx) and 4. d(x) = 0.4xI(x ≤
0.5) − 0.4(1 − x)I(x > 0.5). The standard deviation is coded as 1. σ(x) =
0.25, 2. σ(x) = 0.5x and 3. σ(x) = 0.125(2 − x). The columns ”IRF-KS” and
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”IRF-CVM” contain the percentage of rejections for the test by [16], with the
Kolmogorov-Smirnov and Cramér-von Mises statistics, respectively. In order to
approximate the critical values for this test, wild bootstrap was used, as it is
explained in [17]. The columns ”EL-KS” and ”EL-CVM” contain the percentage
of rejections for the new test, with the Kolmogorov-Smirnov and Cramér-von
Mises statistics, respectively. The sets were constructed using the value a =
0.5. In order to approximate the critical values, the bootstrap proposed in this
paper was used. Five thousand bootstrap replicates were used for bootstrap
approximations.

Table 1

Percentage of rejections in homoscedastic models

σ d n IRF-KS IRF-CVM EL-KS EL-CVM
1 0 50 5.35 5.09 7.07 5.90
1 0 100 5.09 5.11 5.80 5.27
1 1 50 73.07 68.51 73.07 76.30
1 1 100 95.90 93.69 95.23 96.72
1 2 50 31.76 28.26 32.65 33.94
1 2 100 57.69 51.71 55.07 59.50
1 3 50 46.37 37.65 37.49 35.78
1 3 100 79.60 68.76 70.06 66.85
1 4 50 40.72 29.87 50.09 32.06
1 4 100 73.73 54.25 81.24 56.79

Under the null, the percentages of rejections are close to the nominal level 5%
in all cases, the main deviation coming from the empirical likelihood tests with
sample size n = 50, while for n = 100 the percentages are already close to 5%.
Under the alternative, the power of the empirical likelihood tests is generally
higher than the power of the original tests. This is the case for models 1, 2 and
4, while for model 3, a sinusoidal alternative, the power of the orignal test is
higher. The improvement obtained by means of the empirical likelihood idea is
larger under heteroscedastic models.

Table 2

Percentage of rejections in heteroscedastic models

σ d n IRF-KS IRF-CVM EL-KS EL-CVM
2 0 50 6.11 5.82 9.01 7.02
2 0 100 5.33 5.17 6.94 5.43
2 1 50 76.00 83.85 85.67 83.77
2 1 100 96.08 98.52 98.40 98.14
2 2 50 34.57 39.60 45.69 42.02
2 2 100 58.89 66.76 67.29 65.82
2 3 50 48.13 47.67 37.01 37.50
2 3 100 79.27 79.76 68.06 65.10
2 4 50 37.48 40.79 68.25 41.22
2 4 100 72.26 70.67 95.69 67.92
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Table 3

Percentage of rejections in heteroscedastic models.

σ d n IRF-KS IRF-CVM EL-KS EL-CVM
3 0 50 4.92 4.93 6.84 5.68
3 0 100 4.70 4.51 5.20 4.86
3 1 50 84.88 79.23 84.54 87.91
3 1 100 99.38 98.19 99.21 99.64
3 2 50 41.28 36.15 42.22 46.12
3 2 100 71.62 63.10 70.04 75.65
3 3 50 53.50 42.86 46.42 43.23
3 3 100 88.54 78.65 88.65 83.21
3 4 50 56.09 38.69 64.88 43.68
3 4 100 87.60 66.19 92.66 72.83

4.2. Generalized linear model

The simulated responses Yi are taken from the binomial distribution with 15
trials and the probability of success p(Xi) for i ∈ {1, . . . , n}, where n is the
sample size and Xi is a uniform random variable on the cube [−1, 1]× [−1, 1]×
[0, 2].

The generalized linear model to be tested is

H0 : p(x) = γ
(

βtx
)

where γ(x) = ex/(1+ex) is the logistic transformation and β is some parameter
to be estimated.

For the simulated model under the null, the parameter β was defined to be
β = (1, 2, 0.5)t. Two alternatives were considered: p(x) = Φ(βtx) where Φ is
the standard normal distribution function, and β = (1, 2, 0.5)t as before, and
p(x) = γ(x1 + 2x2 + 0.25(x2 + 1)2) with γ the logistic transformation. We call
them a probit model and a quadratic logistic model, respectively.

Table 4 contains the percentage of rejections for ten thousand samples, under
the nominal level 5%. The results are given for different values of the sample
size n, and for the three models. The five columns named ”M-IRF-CVM” con-
tain the percentages of rejections for the test by [20], which is a test based on a
martingale-transformed Cramér-von Mises statistic. The parameters were esti-
mated using the maximum likelihood method. For the transformation, smooth-
ing is necessary in order to estimate the function E(X|βtX = u). To this aim,
a Nadaraya-Watson estimator was used with Epanechnikov kernel on the in-
terval [−1, 1], and five possible values of the bandwidth: 1.0, 1.5, 2.0, 3.0 and
4.0. The five columns in Table 4 contain the results for these five bandwidths,
respectively.

The columns ”EL-KS” and ”EL-CVM” contain the percentage of rejections
for the test proposed in this paper, with the Kolmogorov-Smirnov and Cramér-
von Mises statistics, respectively. The sets were constructed using the value
a = 0.5. In order to approximate the critical values, the bootstrap based on
multipliers, as proposed in Section 2, was used. Five thousand bootstrap repli-
cates were used for bootstrap approximations.
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Table 4

Percentage of rejections in models with binomial response

M-IRF-CVM
Model n 1.0 1.5 2.0 3.0 4.0 EL-KS EL-CVM
Null 50 4.87 4.89 5.04 4.97 5.04 7.53 5.70
Null 100 4.19 4.08 4.15 4.13 4.03 7.01 5.31
Null 500 4.84 4.84 4.75 4.66 4.63 5.47 4.87

Probit 50 0.33 0.31 0.31 0.27 0.31 13.32 11.86
Probit 100 0.40 0.42 0.38 0.38 0.37 13.33 12.96
Probit 500 7.51 7.50 7.44 8.02 8.73 21.10 36.85

Quadratic 50 8.36 8.06 8.23 7.93 8.03 12.79 12.34
Quadratic 100 13.44 13.18 12.71 12.25 12.20 16.44 19.84
Quadratic 500 68.05 66.60 64.44 62.31 62.34 49.53 75.69

These results show a good approximation to the level under the null. The
biggest deviations come from the Kolmogorov-Smirnov statistic of the empiri-
cal likelihood process with small sample size, although the result for n = 500
shows the consistency of the bootstrap. The power is much larger for the em-
pirical likelihood test, especially with the Cramér-von Mises statistic. Note that
the martingale-transformed statistic is based on a Cramér-von Mises statistic.
The difficulty to detect the probit alternative should also be emphasized, with
percentages of rejections even smaller than the nominal level for the martingale-
transformed statistic. By other way, the bandwidth has not much influence on
the results for the martingale-transformed statistic.

Appendix: Proofs

In this Appendix we prove the main result (Theorem 2.1) that states the generic
conditions (C0)–(C3) under which the convergence of the test statistics is guar-
anteed, and we also verify these conditions for the models considered in Sec-
tion 3.

Proof of Theorem 2.1.
(a) The result is an easy extension of Theorem 2.1 in [11], with an = 1 and
h = (θ, g). The extension lies in the fact that their result is limited to the

convergence of ℓ(u, θ̂, ĝ) for a fixed value of u, whereas we consider a process
in u. It is however a straightforward exercise to show that under conditions
(C0)–(C3), the process ℓ(u, θ̂, ĝ) (u ∈ U) converges to W (u) in ℓ∞(U). The
convergence of the test statistics Sn and Tn now follows immediately.

(b) We will show that P (Sn > c) → 1 as n tends to infinity. The proof for
Tn is similar. Write P (Sn > c) = P (c < Sn < ∞) + P (Sn = ∞). We will
show that P (c < Sn < ∞) − P (Sn < ∞) → 0, from which it then follows that
P (Sn > c) → 1. If Sn < ∞, then for each u ∈ U , the supremum in (2.4) is a
supremum over a non-empty set, and hence it is easy to show that

ℓ(u, θ̂, ĝ) = 2

n
∑

i=1

log
(

1 + λn(u)Ai(u)
)

,
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where the Lagrange multiplier λn(u) satisfies

n
∑

i=1

Ai(u)

1 + λn(u)Ai(u)
= 0, (A.1)

and Ai(u) = L(Xi, u, θ̂, ĝ)[Yi − γ(Xi, θ̂, ĝ)] (i = 1, . . . , n). First, we will show
that under HA, and provided Sn < ∞,

n−1/2
(

inf
u∈U0

|λn(u)|
)−1

= oP (1),

i.e. for all η > 0,

P
(

n1/2 inf
u∈U0

|λn(u)| > η
∣

∣

∣
Sn < ∞

)

→ 1, (A.2)

where U0 is the subset of U defined in condition (C1’). Note that it follows from
(A.1) that

0 =

n
∑

i=1

Ai(u) − λn(u)

n
∑

i=1

A2
i (u)

1 + λn(u)Ai(u)
,

and hence

n1/2 inf
u∈U0

|λn(u)| = n1/2 inf
u∈U0

∣

∣

∣

n−1
∑n

i=1 Ai(u)

n−1
∑n

i=1[A
2
i (u)][1 + λn(u)Ai(u)]−1

∣

∣

∣

≥
infu∈U0

|n−1
∑n

i=1 Ai(u)|

n−1/2 supu,i |Ai(u)|2
,

since n−1
∑n

i=1[1+λn(u)Ai(u)]−1 = 1, and this goes to infinity, using (C1’) and
(C3’). Hence, (A.2) holds true. Next write

ℓ(u, θ̂, ĝ) = 2λn(u)

n
∑

i=1

Ai(u)

1 + λn(u)Ai(u)
+ λ2

n(u)

n
∑

i=1

A2
i (u)

(1 + ξi(u))2
,

for some |ξi(u)| ≤ |λn(u)||Ai(u)|. Note that the first term on the right hand side
equals 0. Hence,

sup
u∈U0

ℓ(u, θ̂, ĝ) ≥
supu∈U0

n−1
∑n

i=1 A2
i (u)

2 supu∈U0
(|n1/2λn(u)|−2) + 2 supu,i |n

−1/2Ai(u)|2
.

It now follows that

P (c < Sn < ∞) ≥ P ( sup
u∈U0

ℓ(u, θ̂, ĝ) > c|Sn < ∞)P (Sn < ∞)

≥ P
(

sup
u

|T (u)| − Rn1 > 2c sup
u∈U0

(|n1/2λn(u)|−2) + 2cRn2,

Rn1 ≤ ε1, Rn2 ≤ ε2

∣

∣ Sn < ∞
)

P (Sn < ∞), (A.3)
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for some ε1, ε2 > 0 to be chosen later, where Rn1 = supu |n−1
∑n

i=1 A2
i (u)−T (u)|

and Rn2 = supu,i |n
−1/2Ai(u)|2. Next, (A.3) is bounded below by

P

(

infu∈U0
|n1/2λn(u)| > (2c)1/2

[

supu∈U |T (u)| − ε1 − 2cε2

]−1/2

,

Rn1 ≤ ε1,Rn2 ≤ ε2

∣

∣

∣
Sn < ∞

)

P (Sn < ∞)

≥ P

(

infu∈U0
|n1/2λn(u)| > (2c)1/2

[

supu∈U |T (u)| − ε1 − 2cε2

]−1/2
∣

∣

∣
Sn < ∞

)

P (Sn < ∞)

+P (Rn1 ≤ ε1) + P (Rn2 ≤ ε2) − 2

= P (Sn < ∞) + o(1),

for ε1, ε2 > 0 small enough, using (C2), (C3’) and (A.2). This finishes the proof.

Proof of Theorem 3.1.
For condition (C0), note that

P (EL(x, θ̂) = 0 for some x ∈ RX)

= P (for some x ∈ RX , Yi − γ(Xi, θ̂) > 0 for all Xi ∈ Jx

or Yi − γ(Xi, θ̂) < 0 for all Xi ∈ Jx)

≤ P (εi > −δ for all Xi ≤ a or for all Xi ≥ a)

+P (εi < δ for all Xi ≤ a or for all Xi ≥ a)

+P ( sup
x∈RX

|γ(x, θ̂) − γ(x, θ0)| > δ)

≤ pln
1 + pln

2 + pkn

1 + pkn

2 + o(1)

= o(1),

where δ > 0, p1 = P (ε > −δ), p2 = P (ε < δ), ln =
∑n

i=1 I(Xi ≤ a) and
kn = n − ln. The latter equality follows from the fact that p1 < 1 and p2 < 1
for δ > 0 small enough, and the fact that kn, ln → ∞ since a belongs to the
interior of RX . Condition (C1) follows from Corollary 1.3 in [16] (it is easily
seen how I(Xi ≤ x) can be replaced by I(Xi ∈ Jx) in the proof of that corollary
(i = 1, . . . , n)). For (C2), consider

n−1
n

∑

i=1

I(Xi ∈ Jx)[Yi − γ(Xi, θ̂)]2

= n−1
n

∑

i=1

I(Xi ∈ Jx)[Yi − γ(Xi, θ0)]
2

+n−1
n

∑

i=1

I(Xi ∈ Jx)
(∂γ(Xi , θ̂1)

∂θ

)2

(θ̂ − θ0)
2

−2n−1
n

∑

i=1

I(Xi ∈ Jx)[Yi − γ(Xi , θ0)]
∂γ(Xi, θ̂1)

∂θ
(θ̂ − θ0)

= n−1
n

∑

i=1

I(Xi ∈ Jx)[Yi − γ(Xi, θ0)]
2 + oP (1), (A.4)
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uniformly in x ∈ RX , provided conditions (P1)–(P3) hold, and where θ̂1 is

between θ0 and θ̂. To show that (A.4) converges to T (x) uniformly in x, it
suffices to show that the class of functions

F = {(t, y) → I(t ∈ Jx)[y − γ(t, θ0)]
2 : x ∈ RX}

is Glivenko-Cantelli. This is obvious, since the class of functions t → I(t ∈ Jx)
is contained in the class of monotone and bounded functions into [0, 1], which is
Glivenko-Cantelli (see [22], p. 149), and since the function (t, y) → [y−γ(t, θ0)]

2

is independent of x. The fact that infx∈RX
T (x) > 0 and that supx∈RX

T (x) < ∞
follows from condition (P1). We finally prove (C3). Note that the left hand side
of the statement in condition (C3) is bounded by

max
1≤i≤n

|Yi − γ(Xi, θ0)| + max
1≤i≤n

|γ(Xi, θ̂) − γ(Xi, θ0)|.

The first expression above is oP (n1/2) (see Lemma 11.2 in [14]), whereas the

second term is oP (1) by the uniform boundedness of ∂γ(x,θ)
∂θ over x and θ and

since θ̂ − θ0 = oP (1).

Proof of Theorem 3.2.
We only need to show the validity of condition (C4). Write

RP∗
n (x) − R̃P∗

n (x) = −n−1/2
n

∑

i=1

I(Xi ∈ Jx)[γ(Xi, θ̂) − γ(Xi, θ0)]Vi

−Gt(x, θ0)n
−1/2

n
∑

i=1

[ĥ(Xi, Yi, θ̂) − h(Xi, Yi, θ0)]Vi

−[Ĝt(x, θ̂) − Gt(x, θ0)]n
−1/2

n
∑

i=1

h(Xi, Yi, θ0)Vi + oP (1).

The second term above is oP (1) by condition (P 4). The convergence to zero of
the first term follows from the fact that by assumption (P 5),

n−1/2
n

∑

i=1

I(Xi ∈ Jx)[γ(Xi, θ̂) − γ(Xi, θ0)]Vi

= (θ̂ − θ0)
tn−1/2

n
∑

i=1

I(Xi ∈ Jx)
∂

∂θ
γ(Xi, θ0)Vi + oP (1) = oP (1),

since E[I(Xi ∈ Jx) ∂
∂θ γ(Xi, θ0)Vi] = 0. Finally, for the third term above note

that n−1/2
∑n

i=1 h(Xi, Yi, θ0)Vi

= OP (1) and that Ĝ(x, θ̂)−G(x, θ0) = Ĝ(x, θ0)−G(x, θ0) + oP (1). In a similar
way as in the proof of Theorem 3.1 one can show that the class

{

t → I(t ∈ Jx)
∂

∂θ
γ(t, θ0) : x ∈ RX

}

is Glivenko-Cantelli. Hence, the third term is also oP (1).
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Proof of Theorem 3.3.
Condition (C0) can be shown in a similar way as in the proof of Theorem 3.1.
Condition (C1) is an immediate consequence of Theorem 1 in [20]. For (C2),
note that

n−1
n

∑

i=1

I(β̂tXi ≤ x)[Yi − γ(β̂tXi, α̂)]2

= n−1
n

∑

i=1

I(βt
0Xi ≤ x)[Yi − γ(βt

0Xi, α0)]
2

+n−1
n

∑

i=1

I(βt
0Xi ≤ x)

[∂γ(βt
0Xi, α̂1)

∂α

]2

(α̂ − α0)
2

−2n−1
n

∑

i=1

I(βt
0Xi ≤ x)[Yi − γ(βt

0Xi, α0)]
∂γ(βt

0Xi, α̂1)

∂α
(α̂ − α0)

+n−1
n

∑

i=1

[I(β̂tXi ≤ x) − I(βt
0Xi ≤ x)][Yi − γ(β̂tXi, α̂)]2

+n−1
n

∑

i=1

I(βt
0Xi ≤ x){[Yi − γ(β̂tXi, α̂)]2 − [Yi − γ(βt

0Xi, α̂)]2},

where α̂1 is between α0 and α̂. The first three terms above can be dealt with in
a similar way as in the proof of Theorem 3.1. For the fourth term above, note
that, since β̂ − β0 = OP (n−1/2) (by condition (GLM2)), the number of i-values

for which I(β̂tXi ≤ x)− I(βt
0Xi ≤ x) 6= 0 is of the order O((n log log n)1/2) a.s.

(by the law of iterated logarithm, see e.g. [15], p. 35). Hence, the fourth term is
O((n−1 log log n)1/2) a.s. The fifth term is OP (n−1/2), by conditions (GLM1),
(GLM2) and (GLM3)(ii). Finally, to check (C3), a similar derivation as in the
proof of Theorem 3.1 can be followed.

Proof of Theorem 3.4.
The proof can be established in a somewhat analogous way as for the paramet-
ric model. We therefore restrict attention to the main points of difference. In a
similar way as in the proof of Theorem 1 in [20], it can be easily shown that

when one replaces the indicator I(β̂tXi ∈ Jx) by I(βt
0Xi ∈ Jx) in the formula of

RGLM∗
n (u) (i.e. in the formulas of Q̂(Xi, Yi, u, θ̂) and Ĝ(u, θ̂)), the asymptotic

distribution does not change. This so-obtained process can now be analyzed in
a very similar way as the process RP∗

n (x) in the proof of Theorem 3.2, which
then shows the equivalence of RGLM∗

n (u) and R̃GLM∗
n (u), uniformly in u.

Proof of Theorem 3.5.
For condition (C0), a derivation similar to the one in the proof of Theorem 3.1
can be given, using the fact that supw |ĝ(w) − g(w)| = oP (1). Condition (C1)
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follows from Theorem 1 in [3]. For condition (C2), write

n−1
n

∑

i=1

I(Xi ∈ Jx)f̂2
W (Wi)(Yi − ĝ(Wi))

2

= n−1
n

∑

i=1

I(Xi ∈ Jx)f2
W (Wi)(Yi − g(Wi))

2

+n−1
n

∑

i=1

I(Xi ∈ Jx)[f̂2
W (Wi) − f2

W (Wi)](Yi − g(Wi))
2

+n−1
n

∑

i=1

I(Xi ∈ Jx)f̂2
W (Wi)[(Yi − ĝ(Wi))

2 − (Yi − g(Wi))
2].

The first term above can be treated as in the proof of Theorem 3.1. The sec-
ond one is oP (1) by using assumption (SV 4) and the fact that supw |f̂W (w) −
fW (w)| = oP (1), while the negligeability of the third term follows again from
condition (SV 4) and from the uniform consistency of ĝ(w) for all w ∈ RW .
Finally, for (C3), note that

sup
x

max
i

|I(Xi ∈ Jx)f̂W (Wi)(Yi − ĝ(Wi))|

≤ max
i

|fW (Wi)(Yi − g(Wi))| + max
i

|[f̂W (Wi) − fW (Wi)](Yi − ĝ(Wi))|

+max
i

|fW (Wi)[ĝ(Wi) − g(Wi)]|

= oP (1),

by using again the same development as in the proof of Theorem 3.1 for the first
term, and the uniform consistency of ĝ and f̂W for the second and third term.
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[23] Van Keilegom, I., González Manteiga, W. and Sánchez Sellero,

C. (2007). Goodness-of-fit tests in parametric regression based on the esti-
mation of the error distribution. TEST (in press).

[24] Xia, Y., Li, W.K., Tong, H. and Zhang, D. (2004). A goodness-of-fit
test for single-index models. Statist. Sinica, 14, 1–39. MR2036761

[25] Zhu, L. (2005). Nonparametric Monte Carlo tests and their applications.
Lecture Notes in Statistics, Springer-Verlag, New York. MR2162748

http://www.ams.org/mathscinet-getitem?mr=2256173
http://www.ams.org/mathscinet-getitem?mr=2352505
http://www.ams.org/mathscinet-getitem?mr=2307501
http://www.ams.org/mathscinet-getitem?mr=2102496
http://www.ams.org/mathscinet-getitem?mr=2156334
http://www.ams.org/mathscinet-getitem?mr=2095529
http://www.ams.org/mathscinet-getitem?mr=1994734
http://www.ams.org/mathscinet-getitem?mr=0595165
http://www.ams.org/mathscinet-getitem?mr=1439316
http://www.ams.org/mathscinet-getitem?mr=1614600
http://www.ams.org/mathscinet-getitem?mr=2269649
http://www.ams.org/mathscinet-getitem?mr=1673284
http://www.ams.org/mathscinet-getitem?mr=1925573
http://www.ams.org/mathscinet-getitem?mr=2036400
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2036761
http://www.ams.org/mathscinet-getitem?mr=2162748


I. Van Keilegom et al./Empirical likelihood based testing for regression 604

[26] Zhu, L., Fujikoshi, Y. and Naito, K. (2001). Heteroscedasticity
checks for regression models. Science in China (Series A), 44, 1236–1252.
MR1867400

http://www.ams.org/mathscinet-getitem?mr=1867400

	Introduction
	General test procedure
	Application of general test to specific models
	Parametric models
	Generalized linear models
	Selection of variables
	Partial linear models
	Other models

	Simulations
	Parametric model
	Generalized linear model

	Appendix: Proofs
	References

