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Abstract: Multivariate statistics are often available as well as necessary
in hypothesis tests. We study how to use such statistics to control not only
false discovery rate (FDR) but also positive FDR (pFDR) with good power.
We show that FDR can be controlled through nested regions of multivari-
ate p-values of test statistics. If the distributions of the test statistics are
known, then the regions can be constructed explicitly to achieve FDR con-
trol with maximum power among procedures satisfying certain conditions.
On the other hand, our focus is where the distributions are only partially
known. Under certain conditions, a type of nested regions are proposed and
shown to attain (p)FDR control with asymptotically maximum power as
the pFDR control level approachesits attainable limit. The procedure based
on the nested regions is compared with those based on other nested regions
that are easier to construct as well as those based on more straightforward
combinations of the test statistics.
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1. Introduction

In multiple hypothesis tests, it is common to evaluate nulls with univariate
statistics. This especially has been the case for tests based on FDR control
[2, 12, 13, 16, 20, 22, 23]. On the other hand, for hypotheses on high dimensional
data, such as those in classification or recognition for complex signals, multi-
variate statistics in general are prerequisite for satisfactory results [1, 6, 24].
Such hypotheses each involves a sample of random vectors, from which a multi-
variate statistic is derived to capture critical features of the sample. Given the
conceptual appeal of FDR control, it is natural to ask how it can be achieved
using multivariate statistics.

The FDR of a multiple testing procedure is defined as E[V/(RV 1)], where
R is the number of rejected nulls and V' that of rejected true nulls [2]. In addi-
tion to FDR, power and pFDR [20] are two important measures to assess the
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performance of a procedure. Recall that
R-V

:E B
power [(n “A) V1

] , pFDR = E[V/R|R > 0],

where n is the number of nulls, and N that of true nulls. The importance of
power is well appreciated in the FDR literature [2, 13, 14, 20, 22]. In contrast,
the issue of pFDR seems more subtle. Oftentimes, as follow-up actions can en-
sue only after some rejections are made, pFDR is more relevant than FDR.
However, unlike FDR, in general pFDR is not necessarily controllable at a de-
sirable level, say below 0.4. The reason is that in many cases, test statistics
cannot provide strong enough evidence to assess the nulls, especially when the
data distribution is only partially known and the number of observations for
each null is small. The controllability of pFDR can strongly affect power. For
the well-known Benjamini-Hochberg (BH) procedure [2], if its FDR control pa-
rameter is below the minimum attainable pFDR, then its power tends to 0 as
n — oo [7]. In light of this, power and pFDR should be considered together
when designing testing procedures.

A direct way to improve power and pFDR control is to collect more obser-
vations for each null. However, this may not be feasible due to constraints on
resources. On the other hand, if the observations can be viewed from differ-
ent aspects each containing some unique information, then the aspects may be
exploited together to yield more substantive evidence.

The approach of the paper is to first establish FDR control based on multi-
variate p-values, and then evaluate power and pFDR control. Among procedures
that attain the same pFDR, the one with the highest power is preferred. Sec-
tion 2 sets up notations and recalls known results. It then gives an example
to illustrate when multivariate p-values may be useful for pFDR control. Sec-
tion 3 presents a general FDR controlling procedure which uses an arbitrary
family of nested regions in the domain of p-values. Then, it shows that if the
data distribution under true nulls and that under false nulls are both known,
then the nested regions can be chosen in such a way that the procedure has the
maximum power among those with the same pFDR while satisfying certain con-
sistency conditions. However, since full knowledge about data distributions is
usually unavailable, the emphasis of the section is FDR control based on nested
regions that approximate the optimal regions. Under certain conditions, the ap-
proximating regions are ellipsoids under an L®-norm, where € > 0 in general is
a non-integer.

Section 4 analyzes the power of the procedure based on the approximating
regions. It shows that under certain conditions, the power is asymptotically
maximized as the pFDR tends to the minimum attainable level. The procedure
is compared with several others, including those that work “directly” on test
statistics instead of p-values, for example, procedures that rejects nulls with
large L“-norms of the test statistics. It will be seen that only for a < 0, the
“direct” procedures may attain the same pFDR, as the procedure based on the
approximating regions. The section also considers a procedure based on nested
rectangle regions in the domain of p-values and shows that it has the same level
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of pFDR control as the one based on the approximating regions. Although less
powerful, the procedure is simpler to compute.

Section 5 considers examples of ¢t and F’ statistics. Section 6 reports a simula-
tion study on the procedures considered in previous sections. Section 7 concludes
with some remarks. Most of the technical details are collected in the Appendix.

2. Preliminaries
2.1. Notation

Denote by K the dimension of a multivariate p-value. Points in R will be taken
as column vectors. With a little abuse of notation, for f: A — R with A ¢ R,
sup f will denote the essential supremum of f, i.e. inf{a: ¢(f~!(a,00)) = 0},
where £(-) is the Lebesgue measure. If &1, ..., &k are marginal or conditional
p-values under a null H;, then &, = (&1, ...,& k)" will be referred to as a mul-
tivariate p-value associated with H;. The discussion is under a random effects
model as follows [10, 13]. Denoting by a € (0,1) the proportion of false nulls
and 0; = 1 {H; is false},

(0;,&;) are i.i.d. such that 6; ~ Bernoulli(a) and
given 0; = 0, &1, ..., & are Lid. ~ Unif(0,1), (2.1)
given 0; =1, &, ~ G with density g.

The density of &, is then 1 — a + ag. The assumption that &1, ..., &k are
independent under true H; should be checked carefully. Generally speaking, it
should be problem-dependent to design test statistics with independent p-values
[5]. One situation in which independence may arise is where multiple data sets
on the same nulls are collected independently following different protocols, e.g.,
with different experiment designs being used or different physical attributes be-
ing recorded. In this situation, observations in different data sets may not follow
the same distributions, and hence cannot be combined into larger i.i.d. samples.
Nevertheless, the p-values derived respectively from them can be combined into
multivariate p-values with independent coordinates.

Recall that, for univariate p-values &1, ..., &,, given FDR control parameter
a € (0,1), the BH procedure rejects H; with

ESR@\”
« n

& <r=s{re o bR =#ia<n.

Under the random effects model (2.1), the FDR actually realized by the BH

procedure is (1 — a)a [3, 11, 22], implying that the FDR can be arbitrarily
small. On the other hand, the “local FDR” associated with each H; is [10]
l1—a l1—a
P0; =0]&) =

l-—a+ag(&) T 1—a+asupg’

It is not hard to see that the inequality applies to multivariate p-values as
well. Then, following [8], the next result can be established.
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Proposition 2.1. Under (2.1), for any multiple testing procedure,

1
pFDR > (1 — a)a., where a = ————. (2.2)
l—a+asupg
Oftentimes, as sup g < oo, the pFDR is bounded from 0. In particular, if a is
small while sup g is only moderately large, the minimum attainable pFDR can

be undesirably large. This is the basis of the next example.

2.2. An example

To further illustrate the role multivariate statistics may have for pFDR, control,
consider tests on H; : p;, = (ux,, piy,i) = 0 for N(p;, ¥;). Suppose for each
H;, a sample of k 1.i.d. (X;;,Y;;) ~ N(pu;,%;) is collected. If it is known that
¥, = diag(1, 1) and under false H;, px; = py,; = 1, then by Neyman-Pearson
lemma, among procedures using fixed thresholding, the uniformly most powerful
one is to reject H; if and only if X; +Y; is greater than a suitable threshold
value, where X; = (1/k) . ; Xij and likewise for Y;. That is to say, in this case
univariate statistics are the best choice.

However, in most cases in practice, complete knowledge on data distributions
is unavailable. If both ¥; and p; under H; are unknown, then X; + Y; cannot
be used as test statistics and ¢ statistics are called for. Imagine a data analyst
has computed the ¢ statistics of )_(ij and those of }_Q-j for each H;, denoted tx ;
and ty,;, respectively. While FDR control can be done with either tx ; or ty,
the issue here is pFDR control.

Suppose the number of nulls is large and due to constraints on resources,
k = 9 for each H;. Suppose the data analyst knows that for each H;, ¥; is
diagonal and that for false H;, ux,; > 0 and py,; > 0. However, he does not
know that for false H;, pux,i/ox,; = .5 and py,;/oy,; = .4, where aXl and Uyl
are the diagonal entries of X;. If the fraction of false nulls is 5%, then by using
tx; alone, the minimum attainable pFDR is ~ .289 and, by using ty,; alone,
the bound is even higher (=~ .447). The lower bounds are a consequence of
Proposition 2.1. No procedure that only uses tx; or ty; can get a pFDR lower
than the bounds.

One way to attain lower pFDR is to increase k, which may require signif-
icantly more resources. When resources are limited, a sensible solution is to
exploit both tx; and ty,; or, equivalently, their marginal p-values. This then
raises the question of pFDR control using multivariate p-values.

3. FDR control using nested regions of p-values
3.1. General description

Let {D;, 0 <t <1} be a family of Borel sets in [0, 1]¥ such that

=0, 1%, ¢Dy)=t, D,CD;, 0<s<t<l1

3.1
{D;} is right-continuous, i.e., D; = Ny Dy, t € [0,1). (3-1)
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The most familar sets satifying (3.1) are perhaps D, = [0,¢]. Let &,,...,&,, be
the p-values associated with Hy, ..., H,. Define

n

Rt) =Y 1{& € Doy, V(1) =3 (1-0)1{& € D}

=1

Description Given FDR control parameter « € (0, 1),

reject H; if and only if §; € D, (3.2)
t t)v1
where T—Sup{te[o,l]:—SM}. O
a n

Theorem 3.1. For procedure (3.2), FDR = (1 — a)a.

Proof. Since D, is right-continuous, §; € Dy <= s; < t, where
s; =inf{t € [0,1] : §&; € Dy }. (3.3)

Therefore, procedure (3.2) rejects the same set of nulls as the BH procedure
applied to si,...,s, does. By ¢(D;) = t, s; ~ Unif(0,1) under true H; and
hence s; are univariate p-values. Theorem 3.1 then follows from [22]. O

In general, a nested family of Borel sets in [0, 1] can often be parameterized
so that procedure (3.2) is applicable to them.

Proposition 3.1. Let {T',,u € I} be a family of Borel sets in [0,1]%, where I
is an interval in R, such that T, C T, for u < v and {T,} is right-continuous.
Suppose h(u) := €(Ty,) is continuous and strictly increasing with inf h = 0 and
suph = 1. For t € (0,1), define Dy = I'p-1y). Also define Dy = NIy and
Dy = [0,1)%. Then procedure (3.2) based on D, attains FDR = (1 — a)a.

As ¢(Dy;) = t, Dy will be referred to as the regularization of T',,. Since nested
regions naturally occur as decision regions in hypothesis tests, as seen below,
by regularization, a test can turn into a FDR controlling procedure.

Example 3.1. (a) Suppose a test rejects a null if and only if miné, < wu,
where & = (&1,...,&k)’ is the associated p-value and u a threshold value. The
corresponding rejection region is T, = {x € [0, 1]% : minx), < u}. Then {T'y,u €
[0,1]} is an increasing family of sets. Since h(u) = 1 — (1 — u)¥, procedure
(3.2) applies to Dy = Tj,-1(;) with 71(t) = 1 — (1 — t)"/¥. Note that, in the
Sidék procedure, when K hypotheses are tested simultaneously, h='(t) is the
significance level for each hypothesis in order to attain familywise significance
level t.

(b) Suppose a test rejects a null if and only if [ < w, where u > 0 is
a threshold value. The corresponding rejection region is I', = {x € [0,1]¥ :
[Tzr < u}. For K =2, h(u) = u(l +Inu~t). In general, h(u) = P([JUx < u),
with Uy ii.d. ~ Unif(0,1). Since —InUy has density e *1{x >0}, h(u) =
1— Fg(—Inwu), where Fg is the Gamma distribution with K degrees of freedom
and scale parameter 1. O
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For {D;, 0 <t < 1} having a regular representation, procedure (3.2) has an
equivalent description more amenable to numerical evaluation. Suppose there is
a function 0 < J < 1, such that D, = {x € [0,1]X : J(z) < t}. It is easy to see
Dy = [0,1]¥ and Dy is right-continuous for ¢ € [0,1). Since s; = inf{t € [0,1] :
J(&;) <t} = J(&,;), the next description obtains.

Equivalent Description Given FDR control level parameter « € (0, 1),

apply the BH procedure to s; = J(§,). (3.4)
That is, sort s1,...,5, into sy < sy < -+ < 8¢y). Define sy = 0 and set
I =max{k > 0:s@4)/a < k/n}. Then reject H; if s; < 5. O

EXAMPLE 3.1 (continued)

(a) Since h(u) = 1 — (1 — u)¥ is strictly increasing, h=! and D; = {z €
[0,1]% : minx, < h7(t)} = {x € [0,1]% : h(minzg) < t}. Therefore J(x) =
1 — (1 —minazg)¥.

(b) In this case D; = {x € [0,1]X : h ([Jxx) < t}, where h(u) = 1— Fx(—Inu).
Then J(z) = 1 — Fg(—>_Inxy). For K = 2, since h(u) = u(l + Inu™?),
J(x,y) = zy[l —Inz — Iny].

3.2. Regions with maximum power under consistency condition

If the distribution under true nulls and that under false nulls are known, then,
in light of Neyman-Pearson lemma, it is natural to ask if FDR can be controlled
with maximum possible power using the likelihood ratios of the test statistics.
Some works have been done on this idea [18, 21]. We next show that the idea
is correct under certain conditions and can be realized by procedure (3.2) with
an appropriate nested family {Dy,t € [0, 1]} C [0, 1]X.

Let X = (X1,...,Xg)" € RE be a test statistic. Suppose that under true
nulls, X ~ Qo with density gy and under false nulls, X ~ @, with density ¢;.
Our construction of Dy is based on a familiar transformation of X into multi-
variate p-values. Denote by fi(x1,...,x;) the marginal density of Xi,..., Xj
under Q. Clearly qo = fxk-

Lemma 3.1. Let ¢(x) = (¢1(x),...,¢x(x)), x € R, such that
$1(x) = Qo(X1 < 1), dr(@) = Qo(Xp Sz | Xs =ws, s<k), k> 1.

Let &€ = ¢(X), i.e., & is the p-value of X1 and for k > 1, & is the conditional
p-value of Xi. Suppose i) sppt(q1) C sppt(qo), where sppt(q) := {x : g(x) > 0},
i) all fr are continuous and iii) q1 is continuous on sppt(qo). Then 1) ¢ :
sppt(qo) — [0, 1]% is continuous and 1-to-1; 2) under true nulls, &y, ..., Ex are
i.i.d. ~ Unif(0,1); and 3) under false nulls, & has a continuous density g(x) =

a1 (o7 (x))/qo(d~ () on E := ¢(sppt(qo)), which is open with £([0,1]\ E) = 1.
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Condition i) is not restrictive because hypothesis testing is trivial when X =
x € sppt(q1) \ sppt(qo) (cf. [18]). Conditions ii) and iii) are used to make sure
all the transformations involved on X are still well-defined random variables.
Under these conditions, any rule based on the likelihood ratio of X has an
equivalent based on g(&). In the rest of the section, we will only consider tests
on p-values.

A multiple testing procedure can be regarded as a deterministic or ran-
dom function § that maps each data point to an n-tuple (d1,...,d,) with
d; = 1{H, is rejected }. In our setup, the data point is an n-tuple (&,,...,&,,)
jointly distributed with @ = (64, ..., 6,). We need two conditions on 4.

(A) Forn>1,6 and 0 are independent conditional on &,...,&,,, i.e.,
P(6:a|€la"'a€na Ozb):P(6:a|€laa€n)a a, be {0,1}"

Most multiple testing procedures are deterministic functions of test statistics
and therefore satisfy condition (A). The condition means that the observed
test statistics contain all the available information on 0; if there is any prior
knowledge on 0, it has already been fully incorporated into £ and hence any
randomness introduced into § is a “pure guess”.

The second condition imposes some consistency on §. For an n-tuple S =
(x1,...,2,) with ; € [0,1)X, denote R(S;d) = S, 6;(S) and F(x;S) the

i=1
empirical distribution function
Fa;S)=#{i:xg <ap, k=1,...,K} /n.

(B) For any sequence of ng-tuples Sy with ng — oo, if F(cc, Sk) converges in
the sense that sup,, |F(x; Sp) — F(z)| — 0 for a distribution function F, then
R(Sy; d)/ny, converges in probability.

Basically, the condition requires that, when § is applied to samples with
similar empirical distributions, it should reject similar fractions of nulls from
them. Loosely speaking, that means as far as the fraction of rejected nulls is
concerned, § has to “stick to” a single way of testing, rather than alternate
between different ways for different data sets.

For 0 < u < o0, define

Iy ={xel0,1]¥: g(x) > u}. (3.5)

Although {T",} is decreasing instead of increasing, its regularization can be made
increasing. Let h(u) = ¢(T',). Then h is decreasing, h(0) = 1 and h(u) — 0 as
u — 00. Define h*(t) = inf {u > 0: h(u) < t}.

Proposition 3.2. Suppose conditions i)—iii) in Lemma 3.1 are satisfied and h
is continuous. Then Dy = 'y« satisfies (3.1). Let o € (0,1). Then, among
procedures that satisfy conditions (A) and (B) and attain FDR < (1 — a)a,
procedure (3.2) with Dy belongs to those which asymptotically have the maximum
power as n — co. Furthermore, the following statements on the procedure hold:
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1) it always rejects the same set of nulls as the BH procedure does when applied
top; = h(g(&,)),i=1,...,n; 2) for a > «, the power is asymptotically positive
and pFDR — FDR = (1 — a)a; and 3) for a < v, the power is asymptotically
0 and pFDR — (1 — a)a.

Example 3.2. To illustrate that in general condition (B) is needed in Proposi-
tion 3.2, let K = 1. First consider the case where the p-values &4, ..., &, arei.i.d.
~ F(t) = (1 — a)t + aG(t) € C1([0,1]) such that t/F(t) is strictly increasing
and G(t) is linear on [t1, t2], where 0 < t; <ty < 1. It is easy to see that ¢/F(t)
is strictly concave on [t1, t2]. Given ¢ € (0, 1), consider the following randomized
procedure. Draw U ~ Unif(0,1). If U > ¢, reject and only reject nulls with
& € [0,t1]; otherwise, reject and only reject nulls with &; € [0, t2]. As n — oo,
the empirical distribution of &; converges to F'. However, conditional on U > c,
R, /n — F(t1), while conditional on U < ¢, R, /n — F(t2). Therefore, the pro-
cedure satisfies condition (A) but not (B). It can be seen that pFDR — (1 —a)a
with o = (1—¢)t1/F(t1)+ct2/F(t2) and power — (1—c¢)G(t1)+cG(t2) = G(tc),
with t. = (1 — ¢)t1 + cta.

Consider the BH procedure when it is applied to &1, ..., &, with control pa-
rameter a. Since 1/F'(0) < a < 1, by [12], the procedure asymptotically has
power G(t*), where t* € (0,1) such that t*/F(t*) = «. Since t/F(t) is strictly
increasing, ¢ < t* < t3. On the other hand, since ¢/F(t) is strictly concave on
[t1,t2], te/F(t:) > . As a result, t. > t*. Therefore, asymptotically, although
the BH procedure has the same pFDR level as the randomized procedure, it is
strictly less powerful.

Finally, given ¢ € (0, 1), by small variation to G on [t1, t2], one can construct
G which is smooth and strictly concave, such that the above conclusions still
hold. By Proposition 3.2, the most powerful procedure (3.2) satisfying condition
(B) in this case is the BH procedure and hence is strictly less powerful than the
randomized procedure at the same pFDR level. O

As noted in a discussion in [4], by either accepting all nulls with probability
1 —a or rejecting all of them with probability «, it is guaranteed that FDR < «;
however, the FDR attained in this way is useless, because it cannot say how
well one can learn from the data being analyzed. Without some coherence of a
procedure, one can hardly make a sensible evaluation of its performance in a
particular instance based on a measure defined as a long term average, as the
measure incorporates not only the way of testing chosen for the data at hand,
but also others that are potentially very different. The same comments apply to
pFDR as well. Condition (B) aims to impose some coherence, which is possible
if the data follows the law of large numbers. This is similar to the ergodicity
assumption, whereby long term average can be approximated by an average over
a single large sample.

The construction in this section requires full knowledge of the density g,
which is often unavailable. However, if g is known to possess some regularities,
then it is possible to apply procedure (3.2) to regular shaped D, with reasonable
power. This possibility is explored next.
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3.3. Nonconstant approximation of lowest order

In many cases, the following is true for the distribution G of p-values under false
nulls:

G has density g € C([0,1]%) with g(x) < g(0) < oo for all a # 0. (3.6)

Under (3.6), smaller p-values are stronger evidence against nulls, nevertheless
the strength is bounded. By Proposition 2.1, the minimum attainable pFDR is
(1—a)au., where a, is now equal to 1/[1—a+ag(0)]. Following Taylor’s expansion,
suppose for some v, > 0 and € > 0,

g(x) = g(0)(1 —~'z® +r(x)) with r(x) = o(|z|%) as |z| — 0, (3.7)

where ° denotes (z5,...,25%)’. It is perhaps desirable and expected to be true
that € is a positive integer. However, under regular conditions, this usually is not
the case. As will be seen in Section 5, for the upper-tail p-values associated with
t or F statistics, ¢ usually is a fraction of 1. More generally, g(x) = ¢(0)(1 —
Yovkat) o] k) with e > 0 possibly different. However, for simplicity, this
case will not be discussed.

Rewrite the region in (3.5) as {z € [0,1]% : g(z) > g(0)(1 — u)}. For 0 <
u < 1, the region is approximately {x € [0,1]% : 4’2 < u}, suggesting that
the latter may be used in procedure (3.4) with reasonable power. In general, for
v=(v,...,vg) with vy >0 and > vy > 0, define ', as

Tu(v) ={zc[0,1]5: vz <u}. (3.8)
Then by procedure (3.4), the following procedure obtains.
Control based on regions (3.8) Given FDR control parameter o € (0, 1),

apply the BH procedure to s; = h(v'€5;v), where (3.9)

h(w;v) = (D (v)) = /01. . ./01 1 {Z Rt < u} da. O

Procedure (3.9) is “scale invariant” in v, i.e., the set of nulls rejected by using
Ty (ev) is the same for ¢ > 0. If K = 1, then the procedure is simply the BH
procedure and the parameter v = 11 has no effect on its performance. However,
when K > 1, the power of procedure (3.9) depends on v. To analyze the power,

denote
1 1
Vsz/---/ 1{Zx;§1} d.
0 0

The next lemma will be used.
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Lemma 3.2. Givenv = (v1,...,vk) with vy > 0, let 7 be the geometric mean
of v, i.e., 7= (vy - vi)YE. Then for 0 < u < minyy,

u\ K/e
nuv)=V. (5) (3.10)
V. v osuN K/e+1
¢ dx = = — (= k=1,...,K. A1
w/Fu(u) Tk 4T K+€I/k (17) ’ ’ ’ (3 )

Furthermore, as u | 0,

~/Fu(u) g=g(0)Vz (1 — Klj_ = Z Z_:) (g)K/s n O(UK/erl)' (3.12)

3.4. Special cases

In most cases, h(u; V) is complicated to evaluate. There are two cases that allow
tractable numerical evaluation of h(u;v). The first case is K = 2. Suppose
vy > 11 > 0. For uw > vy + s, it is clear h(u;v) = 1. For 0 < u < vq + 1o,

h(u; v) = [(”;”) v 0] 1/5+ % (g)% (3.13)

L1 1 11
x[F(”—;—,H—)—F(1—”—;—,1+—>]
u € g u € g

where v, = min(v1, v2), v* = max(v1, v2) and F(z;a,b) is the Beta distribution
with parameters a and b. See Appendix A.1 for a proof of (3.13).

The second case is v; = -+ = vk and € = 1, where h(u;v) can be evaluated
by recursion. Due to scale invariance, let v, = 1. Then

hi(u) :—h(u;l,...,l)—/01~~~/011{ZxkSu} dx

is piecewise polynomial, such that hy (u) = hg |, ({u}), where [u] is the largest
integer no greater than u, {u} = u — |u], and

K
hica(t) == hi(t+i) =Y Ag(i,k)t*, te0,1). (3.14)
k=0

Since hx (t) =1, hxo(t) = t%/K! and, for i =1,..., K — 1,

=

t

1
hici(t) = | hx-1(t — ) d:c+/ hi 1 (t — ) da
t

t

1
hix—1,:(t —x)dz+ / hr-1,i-1(1+t—2z)dx
t

t

Il
o— . >—

1
hK,M(x) dx + / hKfl,ifl(x)-
t
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It follows that fori=1,...,. K —land k=1,..., K,

0,0)=---=Ag(0,K—-1)=0, Ax(0,K)=1/K!

i,0) = kgol Ag_1(i—1,k)/(k+1),

ik) = [Ax1(i,k —1) = Axg 1 (i — 1,k = 1)]/k,
0)=1, Ag(K,k)=0.

Ak (
Ak (i
Al (3.15)
Ar(K

By hi(u) = wu, the initial conditions are A;(0,0) = 0, A;1(0,1) = 1. These
relations together with (3.14) can be used to compute hy (u).

4. Analysis of power

Recall that power = £ [(anw] with n the number of nulls and N that of true
nulls. As our focus is the case n > 1, we shall consider the limit Pow(«) of power
at pFDR level (1 — a)a as n — oo. In general, closed form formulas for Pow(«)
are not available. To get a handle on Pow(«), our approach is to look at how
fast it drops to 0 as « | au, by approximating Pow(«) as a linear combination
of (e —ax)?, a € [0, 00), or for that matter, G(D;) as a linear combination of ¢,
with D; a family of nested regions used by procedure (3.2). Thus, the analysis
is essentially a type of Taylor’s expansion, which can provide useful qualitative
information for comparing powers of different procedures.

Our analysis will only yield approximations of low orders. It remains to be
seen how high order approximations can be obtained. In order to apply the
results in section 3, we shall assume

g satisfies (3.6) and (3.7) such that ¢(T',,) is continuous
where T',, is defined in (3.5).

4.1. Dependence on parameter values

For « close to a., the dependency of the power of procedure (3.9) on v can be
characterized as follows.

Proposition 4.1. Fiz vy > 0. Then for procedure (3.9), the minimum attain-
able pFDR is (1 — a)o, and

K
Pow(a) ~ g(0)Vz (aa*;_ - /Z VVk) (0 — ) asala,. (4.1)

Due to the scale invariance of procedure (3.9), let v1 -+ vg = v - vi. Let
A = Yi/vk. Then > 0y, /v = 7> Ak, which is minimized under the con-
straint A1 ---Ag = 1 if and only if A\ = 1. It follows that as « | «., Pow(«)
asymptotically is maximized if v =~ and

K/e
M] (o — a, ) K/e.
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Recall that procedure (3.2) based on the regions in (3.5) has the maximum
power for & > v, among procedures satisfying conditions (A) and (B). The next
result says that, at v = ~, procedure (3.9) and this procedure are asymptotically
equivalent, i.e., as a | au, they not only have about the same power, but also
reject about the same sets of nulls.

Proposition 4.2. For a > «, let Pow,(a) be the limit of power of procedure
(3.2) based on (3.5), and Pow(«) that of procedure (3.9) with v = ~. Then
Pow,(a)/Pow(a) — 1, as a | cvs.

Moreover, let V, and D, be the sets of true nulls and false nulls, respectively,
that are rejected by the first procedure and V and D those by the second one.
Let rp(a) be the in-probability limit of |D,AD|/|D, N D| and rv(a) that of
Vo AV|/Vo N V| as n — oo. Then rp(a) — 0 and ry(a) — 0 as o | .

4.2. Other types of nested regions

In order to compare the power of procedure (3.9) and that of procedure (3.2)
based on other types of nested regions, the following comparison lemma will be
used, which says that if a nested family of regions can “round up” more false
nulls; then procedure (3.2) based on the regions has more power.

Lemma 4.1. Let {Dy}, i = 1,2, be two families of Borel sets satisfying (3.1).
Suppose G(D;i) are continuous in t and there is T € (0,1), such that for 0 <
t < T, G(D) < G(Day). Given « € (auy, 1), for the procedure based on Dy,

let ; be defined as in (3.2). Assume that as n — oo, T; L tf € (0,T). Then
Pow(a) < Pows(a).

To start with, for I', (v) in (3.8), by (3.10), the regularization is D; = I'y ;) (v)
with u(t) = o(t/V.)*/®¥ if 0 < t < 1. Then by (3.12),

G(Dy) = 9(0) [1 - % > Z—:] t+o(t/ K, ast—0.  (4.2)

Example 4.1. A common rule is to reject a null if and only if z = [] & is small.
The rejection regions are I/, = {x € [0,1]% : [[xx < u}. We next show that
for a & av, procedure (3.2) based on I/, has strictly less power than procedure
(3.9) for any v with vq - - -vi > 0. Roughly, the reason is that, for v < 1, most
of T is spread around the boundary surfaces xp = 0 where the density of false
nulls is lower than that around 0.

First consider K = 2. By Example 3.1(b), the regularization of T, is Dy; =
{(z,y) € [0,1)? : zy < h™1(¢)} with h(u) = u(l + Inu~?t). Denote the reg-
ularization for T'y(v) by D2t As a | ay, tf — 0. Thus, by Lemma 4.1, in
order to compare the powers for o & v, it is enough to compare G(D;;) and
G(Dyy) for t < 1. Recall [}, dwdy = t. Fix a; € (0,7) and 1 > 0 such that
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g9(z,y) < g(0)(1 — a12® — agy®) for ,y € [0,7]. By G(Dw) = [5,. 9,

G(Dy¢) < g(0) /

_ € €
- dx dy ‘Ayghfl(t)(alx + agy®) dx dy

0<z,y<n
=g(0)[t — (a1 + a2)n°h 1 (t)/e] + O(R~ () F¢) ast — 0.

By (4.2), G(Do;) = g(0)[t — Ct'*/2] 4 o(t'+%/2) with C > 0 a constant.
Since h™1(t)/t*/>T1 — oo as t — 0, G(D1;) < G(Da) for t < 1. Thus by
Lemma 4.1, Pow;(a) < Powsg(a) for @ &~ «,. Furthermore, the next result
implies Pow;(a)) = o(Powz(«)) as a | .

Proposition 4.3. Under the setup in Lemma 4.1, let Doy be the regularization
of the regions T, (v) in (3.8). If t7 — 0 as a — o, and

9(0)t = G(D11)

Pr LAk and 6 =G (Da)

— M el,o0] ast—0,

then Powy(a)/Powsa(a) — (1/M)K/ as a | a.
The case K > 2 can be treated likewise; see Appendix A.2. O

Example 4.2. Normal quantile transformations of p-values have been used as a
convenient representation of data in multiple testing [9]. Denote ®(z) = P(Z >
x) with Z ~ N(0,1). Let wy > 0, k=1,..., K. Consider the rule that rejects a
null if any only if Q(&) = >, we® (&) is large. The corresponding rejection
regions are I, = {x € [0,1]% : Q(x) > u}. As ®(¢) ~ N(0,1) for & ~ Unif(0, 1),

K
(r,)=r (Z we® (&) > u) & iid. ~ Unif(0,1)
k=1

K
=P (Z wp Zy > u> = ®(u/w) Z; iid. ~ N(0,1),

k=1

where w = />, w?. Then the regularization of I, is Dy, = {@ € [0,1]% :
Q(x) > wd1(t)}. In Appendix A.2, it is shown that

—In[g(0)t — G(D1y)] e 1
1 <b=|1- ——— . 4.
10 Int - (1+e)K (43)
On the other hand, with Ds; as in Example 4.1,
li 29O = CDa0)] e
10 Int

For K >1,b<1+4¢/K. As aresult, % — oo ast | 0. It then follows

from Proposition 4.3 that Pow;(a) = o(Powz(a)) as « | . O
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Example 4.3 (Nested rectangle regions). An easy way to get nested regions
is as follows. Let 0 < f(¢) < 1 be nondecreasing continuous functions on [0, 1],
such that [] fx(t) =t and fi(t) — 0 as t — 0. Let

Dy =0, fi(t)] x -+ x [0, fx ()] = {z € [0, 1]% : fi(zx) < t, all k},  (4.4)

where f(x) = sup{u : fi(u) < x}. Now procedure (3.4) is the BH procedure
applied to s; = J(&;) := maxy, f; (&ix). By Appendix A.2,

601) =900 (1~ = S i) ) +0 (P Ae)) astio. (@9

Among all fi, with [] fx(t) = t, (7/)*t'/% minimize 3" v fx (). Thus the
maximum of G(Dy,) is g(0)[1 — 7K t=/K /(1 4 )]t + o(t' /).

Let Dy be the regularization for T, (v). For K = 1, Dy; = Doy. For K > 1,
by (4.2), G(Ds;) is asymptotically maximized with value g(0)[1 — K Lt*/ K]t
if v = ~, where L = (1/V.)*/% /(K + ¢). By Appendix A.3, L < 1/(1 + ¢) for
K > 2. Thus, for a & v, the maximum power of procedure (3.2) based on Dy,
is strictly less than the one based on Ds;. By Proposition 4.3,

Pow; (@) 1 (1+4¢
A oV
Pows(a) Vo \K +¢

Therefore, the power by using the rectangles is of the same order as that by
using T, (v), albeit lower.

K/e
) €(0,1), asal .

Procedure (3.2) based on rectangles has some advantages, even though the
power is not maximum. First, rectangles are much easier to construct than the
regularization of ', (v). Second, for g satisfying (3.7), there is no need to know
e. Indeed, it suffices to try fi(t) = cxt'/® with [[ex = 1. By (3.4), the next
procedure obtains.

Control based on rectangles Given FDR control parameter o € (0, 1),

K
apply the BH procedure to s; = [mkax &—k] , (4.6)
Ck
where ¢ > 0 satisfy ¢; ---cx = 1. O
By Appendix A.2, for procedure (4.6),

Pow(a) ~9(0) (a5 / Sou ) a-a) wala. (4)

ac?g(0

In particular, if ¢z = (3/7:)'/¢, the power is asymptotically maximized.

Now suppose &, are upper-tail probabilities of test statistics X, and fi(t) =
t'/5 Then procedure (4.6) rejects H; if and only if p;, < 7V/% for all k, where 7
is random. If 7 is small, then procedure (4.6) may be viewed as one that rejects
H; with large ming X5, which makes it seem unnatural as maxy X;; is more
often used in testing. However, it will be seen in Example 4.4 that procedures
based on maxy, X;; in general cannot attain the same level of pFDR control as
procedure (4.6).
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4.3. Direct combination of test statistics

Procedure (3.9) requires p-values of test statistics. Oftentimes, procedures that
only use simple combinations of test statistics seem more desirable because
they do not have to evaluate p-values. However, as seen next, in many cases
such procedures cannot attain pFDR, control levels as low as procedure (3.9),
and hence have strictly less power at low pFDR control levels.

We only consider test statistics X; = (Xj1, ..., X;x) with X being inde-
pendent under false H; as well as under true H;. Let X;; follow Fy; under
true H; and Fj under false H; and suppose Fpr and Fj have continuous den-
sities for and fi respectively, such that (0, 00) C sppt(fx) C sppt(fox). Denote
ri(z) = fr(x)/ for(x) with 0/0 set to 0, and suppose

ri(x) is strictly increasing on sppt(fx) but pi := lim 7 (x) < oo, (4.8)

i.e., for each X, larger values are stronger evidence against H;, however,
the strength is bounded. Notice that, under (4.8), pr > [ri(z)for(z)dx =
J fe(z)de =1. -

Let & be the upper-tail p-value of X;. Then & = For(Xik) = 1— For(Xir).
Under false Hy, & ~ Gi(u) = 1 — Fi(Fy;' (1 — u)) with density

gk (u) = M, where ¢y (u) = Fy,' (1 — u). (4.9)

 Jor(or(u))
Then &, ~ G(x) = [[ Gi(xr) with density g(x) = [ gr(zx). By (4.8) and (4.9),
gr. are strictly decreasing and g (0) = pi € (1,00). Then g(0) = [[pr = supyg
and (3.6) is satisfied. If

gk (u) = gr(0)[1 —yu® +o(u)], asu | 0, k=1,..., K, (4.10)

then g(x) satisfies (3.7) and so by Propositions 4.1, the minimum attainable
pFDR level for procedure (3.9) is (1 —a)aw., with o, = 1/(1 —a+ag(0)). In the
following examples, we shall assume (4.10) holds.

Example 4.4. One common combination of X;; is M; = maxy X;;r. Under
true H;, M; ~ ] For and, under false H;, M; ~ [[ Fj. By only using M;, the
minimum attainable pFDR is (1 — a)/(1 — a + aL), where

— su >k fr(@) Hj;ék Fj(z)
2 S Jou@) L, 1 Fos (@)

In Appendix A.2, it is shown that L < g(0). Thus (1—a)/(1—a+alL) > (1—a)av..

For procedures that reject H; if and only if M; is large enough, say, M; > T,
where T > 1 is a fixed threshold value, the minimum attainable pFDR can be
even higher. Indeed, now pFDR > (1 — a)/(1 — a + aL'), where

LT Ale) S F
w7 L =TI, For(z) (14 r) :;T) > For()

L

§(1+77T)mkaxpk, with np — 0 as T — oo.



Z. Chi/FDR with multivariate p-values 383

Since maxy pi can be much smaller than ¢g(0) = [], px, the minimum pFDR
can be significantly higher than (1 — a)a. O

Example 4.5. Another common combination of X, is M; = & CkXix, where
¢ > 0, such that H; is rejected if and only if M; is large enough. Without loss of
generality, let K = 2 and ¢, = 1. Suppose X, > 0, such that for(z) ~ 2% and
fe(x) ~ pgx™F as © — oo with s > 1. Then g(0) = p1p2. Under true H;, the
density of M; is [ fo1(t) foz(x—t) dt and, under false H;, itis [ fi(t) f2(z—t) dt.
Then the minimum attainable pFDR by only using M; is (1 —a)/(1 —a+al),
where

= sup r(x r(x) = foflthx_t)dt
L_:ZIY)’ ( >, ( ) fO f01 thQ(:E—t)dt

with 7" > 0 a threshold value. In Appendix A.2, it is shown that L < g(0). As
a result, the minimum attainable pFDR is strictly greater than (1 — a)av.

The same conclusion holds if M; is a weighted LY-norm of X; with ¢ > 0,
e, M; = (3, crX%)Y9 To see this, let ¢, = 1. Under true H;, X% ~
Gor(z) = Forp(x/7), and under false H;, X} ~ Gp(z) = Fi(z'/9). Then
Gyp(x) ~ (1/q)x~ " and G} (x) ~ (pr/q)z~ ", where t = (sp —1)/qg+1 > 1.
Then the argument for ), X;; can be applied to Goi and Gy,. O

Example 4.6. Under the same conditions as in Example 4.5, assume further
that fi(z)/for(7) = pr[l — Dra=% + o(z~%)], with Dy # 0 and d > 0. Note
that Dy > 0. It follows that as x1,...,xx — o0,

HfOk [ (I+o(1 ZDkxk "] XHpk.

Therefore, in order to attain pFDR = (1 —a)«a with « & ., a null H; should be
rejected if and only if v; := Y Dle.;d" is small. In particular, if d;, = d, then
v, Vs a weighted L~%norm of X; and hence H; is rejected if and only if the
norm is large.

Indeed, letting &;x be the upper p-value of X;i, by the derivations in next
section, v; = Z[l + Ok(fik)]l/kff]j; where v, = Dk(Sk — 1)5", Er = dk/(sk — 1)
and o (u) — 0 as u — 0. Consequently, if £ = ¢, then the above procedure can
be formulated as one based on &;, such that the associated rejection regions are
approximately T',(v) in (3.9) when contracting to 0. Provided the regulariza-
tions of the rejection regions are readily available, they can be used in procedure
(3.2) for FDR control as well, with approximately the same power as procedure
(3.9) as a | a.. O

5. Examples of special distributions

We next show ¢ and F' distributions satisfy (3.6) and (3.7). To this end, some
general formulas are needed. Suppose Xi,..., Xg are test statistics that are
independent not only under true nulls but also under false nulls. Let Fy, and
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for be the marginal distribution and density of X} under a true null, and Fj
and fj, those under a false null.
Suppose that, for some positive constants a, b, ci, dx and 1, 1 < k < K,

for(x) ~ acpz=" (5.1)

=rp—dgz "+ o(z7?), as x — oo. (5.2)

f()
for(z)

Then, as u | 0, ¥ (u) := Fy;'(1 —u) ~ (cx/u)'/% Let & be the upper-tail
p-value of X}, and gy (u) its density. By (4.9) and (5.2), as u | 0,

gk (u) = rg — dkd)k(u)fb + o(vy (u)f ) ="K —cp dkub/a + o(ub/a), (5.3)

implying gx(0) = r,. By independence, € has density g(u) = [] gr(ur) which
satisfies (3.6) and (3.7). Moreover, the parameters in (3.7) are

E‘:b/a, 9(0):7"1"'7"](, Yk :Clzsdk/Tk- (54)

Note that for For = N(0,0?) and Fy = N(u,0?), where g > 0 and o is
known, (5.3) does not hold, as sup g = sup fi/ for = 0o. For simplicity, we next
only consider K = 1 and omit the index k.

5.1. t distribution

Let F' = t, s, the noncentral ¢ distribution with p dfs and noncentrality param-
eter 6 > 0 and Fy = t, =t, 0. The density of ¢, s is

Ae—52/2 22 k/2
o) = (p + 22)Pt1)/2 ch (V20" (p+3:2> ’
PP ((p+ 1

A e () i)

By Cy = 1, ty(z) = ACo(p + %)~ PH1/2 ~ Az=P~! as  — oco. Let 2z =
1—x/\/p+22 Then z ~ (p/2)z~2 and

where A =

URICINSE fj Cr(V20)F(1 — 2)F
»(@) 5—0

= 0/2 i Cr(V28)% — % i Cr(V26)F
k=0 k=1

+ o(2).

Consequently, in (5.1) and (5.2), a =p, b=2,c= A/p,

,52/

chk (V26)F < oo, T:€762/2zck(\/§5)k<00.
k=0
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b2 1 [p/alp) S RS "
== 2 T3 [FGrm, 2 KOW(V20) /kz_oc’“(ﬁ‘”

Clearly, for p > 2, € is a fraction of 1.

5.2. F distribution

Let F' = F}, 45, the noncentral F' distribution with (p, ¢) dfs and noncentrality
parameter 6 > 0 and Fy = Fj, ; = F}, 40. Letting p = p/q and z = 1/(1 + px),
F), 4.5 has density

o—0/2

_ )k
fp.as(x) = (1— P/Q q/2zk'g/2 (1—2)

(p/2+k,q/2)’

x

where B(z,y) = I'(2)['(y)/T'(z +y). The density of F, 4 is fp.q(x) = fp.q.0(x).
As & — 00, z ~ (1/p)z~L. It follows that

Fral@) = o (1= 2220/ 0 e
’ B(p/2, Q/2) B(p/2,4/2)
.f;D q, 5 :E 76/2 p q k ( )k k
N 1—2
Foa@) Z (1-2)
— 7 9/2 pak (O L a, J
k=0 k=1
_ _BW®/2,4/2)
where Cpqr = Bo/2t ka/2)
Thus in (5.1) and (5.2),
2p7‘1/2 pfq/2

a=q/2, b=1,

" 4B(p/2,4/2) (p/2 q/2+1)
e 2SN Oy 5\ " —6/2 pq *
- it (5) <o rme Z (3) <

P k=1

(]

and by (5.4), e =b/a = 2/q,
P q 2/ G Cpog (6/2)F ) = Cryg,e(9/2)
=G (kk—l)! /Z T
k=1 k=0

Clearly, for ¢ > 2, € is a fraction of 1.
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6. Numerical study

We report a simulation study on the procedures described in previous sections.
The simulations are implemented in R language [17]. We focus on testing mean
vectors of multivariate normals with only partial knowledge about their vari-
ances. Model (2.1) is used to sample Hj,..., H,, such that H; is “u;, = 0
in N(p,;,%;)” and 1{H; is true} ~ Bernoulli(a) with a = .05 or .02, where
p; € RE. We mimic the situation where the only available information is 1)
under true H;, ¥; is diagonal and 2) under false H;, all the coordinates of p,
are positive. Since Y; are not necessarily the same for different H; and there is
no knowledge on their relations whatsoever, ¥; cannot be estimated by pooling
the observations. Since ¥; are unknown and the values of p; under false H; are
also unknown, the tests have to rely on ¢-statistics. In the simulations, for each
H;, an i.i.d. sample X1, ..., X, ary1 ~ N(p;, X;) is drawn and the test statistic
is computed as (Tj1, ..., Tix)’, where Ty, = /df + 1X;/Si, with Xy, and Si
the mean and standard deviation of the k-th coordinates of X;;. It follows that
for true H;, T;, ~ t, and for false H;, T;; ~ tdf,m;uk/ow where p; is the
k-th coordinate of p; and o, the k-th diagonal entry of 3;. The corresponding
p-value is €, = (&1, ..., &k)’, with & the marginal upper-tail p-values of Tjy,
under t,,.

6.1. Bivariate p-values

In this part, we compare procedures (3.9) and (4.6). Throughout, K = 2 and
FDR control parameter o = .15. For true H;, N(p;,%;) = N(0,Ix) and for
false H;, N(p;,%;) = N(p,2(r)), where the diagonal entries of X(r) are equal
to 1 and off-diagonal entries equal to 2r/(1+72). For r = 0, the coordinates of &,
are independent under false H;. To examine the effect of dependency between
the coordinates of &, under false H;, we also simulate with » = +1/5. Each
simulation makes 2000 runs, each run tests 5000 nulls. The (p)FDR and power
are computed as Monte Carlo averages of the runs.

We conduct 3 groups of simulations, corresponding to (u,n) = (.6,.2,8),
(.5,.5,8) and (2,2,2), respectively (Table 1). In each group, procedures (3.9)
and (4.6) are implemented for 6 pairs of a and X(r), with a = .05,.02 and
r = 0,£1/5. For the pairs with » = 0, a. = 1/[1 — a + ag(0)] is calculated using
(5.4) and the results in Section 5.1. The value of «, as well as those of € = 2/n,

TABLE 1
Parameters of the simulations in Section 6.1. The values of ax, v and € = 2/df are computed
for the case where the coordinates of p-value are independent

w, df Qx, A1, a2 (a = .05,.02) ~ €
1 (.6,.2),8 | 9.37x1073,.18,.47  2.31 x 10~2,.36,.69 (5.82, 3.51) 1/4
(.5,.5),8 | 9.05x1072,.30,.30  2.23x 1072,.52,.52 | (46.81, 46.81) 1/4
3 (2,2),2 2.88 x 1072, .44, .44 6.90 x 1072, .67, .67 (27.69, 27.69) 1
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~v1 and v are given in Table 1. As is seen, for all the pairs @ = .15 > au, so
pFDR = (1 — a)« is attainable by the procedures. On the other hand, if only
the ith (i = 1,2) coordinate of the p-value is used, pFDR = (1 — a)a is not
attainable because in this case the minimum attainable pFDR is (1 —a)au; with
Ay > .15.

For r = 0 and «@ & a, by Proposition 4.1 and (4.7), procedures (3.9) and (4.6)
approximately reach their respective maximum power at pFDR level (1 — a)«
if v, = v, in (3.9) and ¢, = c,(co) = (7/y)'/¢ in (4.6). To see how the powers
depend on v and ¢ for o = .15, the procedures are tested with

o (6.1)

v = (v1,v2) = (s°y1,72/5°) for procedure (3.9),
c=(c1,c2) = (s ,cgo)/s) for procedure (4.6),

where s > 0 is a tuning parameter. The reason why s° instead of s is used for v
will be seen later. For r = £1/5, the procedures are tested with the same sets
of values v and ¢ as well. For groups 1 and 2, (3.13) is used to calculate h(u; v)
for procedure (3.9). For group 3, as € = 1, (3.15) is used.

The plots of power and (p)FDR wvs log, s are shown in Figures 1-3 and labeled
with “e” and “r” for procedures (3.9) and (4.6), respectively. The label “e” refers
to “ellipsoid”, due to the similarity of the nested regions in procedure (3.9) to
FEuclidean ellipsoids. For most of the plots, a = .05. The results for a = .02 are
qualitatively the same, except that the power is lower and the pFDR is harder
to control. For illustration, Figure 1 includes the plots of power and (p)FDR for
(p,df) = (.6,.2,8), 7 =0 and a = .02.

The results show that for « significantly greater than «., the power may still
exhibit patterns similar to that for o ~ «.. First, by Proposition 4.1 and (4.7),
for @ & «., the maximum power of procedure (3.9) is strictly greater than that
of (4.7). The left panels of Figures 1-3 show that this remains to be the case
for @ = .15. Second, for v and ¢ as in (6.1), as @ & «., for both procedures,
the power is approximately proportional to (s¢ + 1/5°)~%/¢. As a result, the
power curves of the procedures should be approximately symmetric, decreasing
in |log, s| and parallel to each other. This holds quite well for o = .15, except for
the plots for procedure (4.6) in Figure 1, which exhibit moderate asymmetry that
may be attributable to the unequal marginal distributions of the coordinates of
the p-values.

In (6.1), it is necessary to use s° to tune v in order to get a power curve
parallel to the one for procedure (4.6). For ¢ distributions with df > 2, ¢ <
1, suggesting that procedure (3.9) is more sensitive to the change in v than
procedure (4.6) is to the change in ¢. However, since ¢ is known, as the results
show, the sensitivity is easy to address. For df = 2, ¢ = 1 and hence the power
of procedure (3.9) is uniformly greater than that of procedure (4.6) (Figure 3).

The results also demonstrate the difference between pFDR and FDR. In the
simulations, the FDR remains constant. However, as power decreases, the pFDR
increases, sometimes quite rapidly. Unless power is high enough, the pFDR is
strictly greater than the FDR. Note that this observation is made when the
number of tested nulls is 5000. In theory, if power is positive, then pFDR — FDR
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Fic 1. Power and (p)FDR vs log s for procedures (3.9) and (4.6): group 1 (cf. Section 6.1).
Rows 1-3, a = .05, r =0,1/2,—1/2. Row 4, a = .02, r = 0.
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Fi1c 2. Power and (p)FDR vs log s for procedures (3.9) and (4.6): group 2 (cf. Section 6.1).
a=.05r=0,1/2,—1/2.

as the number of nulls tends to co. The observed discrepancy between the pFDR
and FDR is due to the fact that the number of nulls is not large enough for the
asymptotic to take effect.

Finally, as seen from Figures 1 and 2, statistical dependency between the
coordinates of the test statistics may have significant influence on power and
pFDR control. Nevertheless, the modality and symmetry of the power curves are
quite stable. Furthermore, the effects of correlations are not obvious in Figure
3, where ¢ = 1 and the joint distribution of the p-values is symmetric. This
apparent stability remains to be explained.
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Fic 3. Power and (p)FDR vs log s for procedures (3.9) and (4.6): group 3 (cf. Section 6.1).
a=.05r=0,1/2,—1/2.

6.2. Comparison with other procedures

In this part, we take K > 2 and compare procedures (3.9) and (4.6) with the
methods in Examples 4.1, 4.4 and 4.5. The first method rejects H; with small
[1x &k, the second one rejects H; with large maxy, T;, and the third one rejects
H; with large ), Tj,. We refer to the methods as “by-product”, “by-max” and
“by-sum”, respectively.

The basic setup in this part is as follows. For true H;, N(u;,%;) = N(0, Ix)
and for false H;, N(pu;,%;) = N(u, 3(r)), where X(r) = [1+ (K — 1)r?|"*M'M
with M, = 1{j = k}+1{j # k} r. The diagonal entries of X(r) are therefore 1.
As in Section 6.1, FDR control parameter o = .15, a = .05,.02 and r = 0, +1/5.



Z. Chi/FDR with multivariate p-values 391

TABLE 2
Parameters of the simulations in Section 6.2. The values of a«, v and € are computed for the
case where the coordinates of p-values are independent.

wu, df ax (a=.05,.02) ~ €
1 (.5,.65,.8),4 8.58 x 1073 2.12x 1072 (3.52,4.93,6.52) 1/2
2| (.6,.7,.8,.9,1),2 | 3.25x 1072 8.09x 1073 | (4.47,5.48,6.57,7.76,9.04) 1
3 (.8,.8,.8,.8),2 1.76 x 1072 4.29 x 1072 (6.57,6.57,6.57,6.57) 1
4 (.6,.6,.6,.6),3 9.57x 1073  2.36x 1072 (4.27,4.27,4.27,4.27) 2/3
5 (2,2),2 2.88x 1072 6.90 x 10~2 (27.69,27.69) 1
6 (1.5,1.5),3 9.73x 1073 2.40 x 1072 (16.16,16.16) 2/3
7 (2,3,2),10 9.4x10719  24x 10718 (39.91,82.27,39.91) 1/5

We conduct 7 groups of simulations with the values of (u,n) given in Table 2.
Each simulation makes 3000 runs, each run tests 6000 nulls. The (p)FDR and
power are computed as Monte Carlo averages of the runs.

For K > 2, unless € = 1, the evaluation of h(u; v) in procedure (3.9) is rather
difficult. To get around this problem, by (3.10), we approximate the procedure
by replacing h(u; v) with V.(u/2)%/¢ for all u € [0,1]. A more difficult issue is
how to compare the procedures and the methods. One idea is to compare their
powers at the same pFDR level (1 —a)a. However, by Examples 4.1, 4.4 and 4.5,
for the values of (u,df) in Table 2, except for the 7th one, no method attains
pFDR < « = .15. For this reason, we choose to examine the (p)FDR levels of
the methods when they have the same power as either procedure at pFDR level
(1 — a)a. The steps are as follows. Take the by-product method and procedure
(3.9) for example. Suppose the latter rejects D false nulls when applied to &;.
If D > 0, then sort [], & in increasing order, keep rejecting the sorted nulls,
starting from the first one, until D false nulls are rejected; if D = 0, then reject
no null. In this way, the number of rejected true nulls of the by-product method
is minimized while the number of rejected false nulls is the same as procedure
(3.9).

In each group, for each combination of a and ¥(r), procedures (3.9) and (4.6)
are simulated with v, = 7 and ¢, = (3/v%)'/¢, which are approximately the
parameter values yielding maximum power for o ~ a,. For each procedure,
the by-product, by-max and by-sum methods are compared to it in the way
described above. The results are reported in Tables 3-6. In groups 1-6, procedure
(3.9) has more power than (4.6), often with a large margin. In all the cases where
both procedures are able to control the pFDR around (1—a)c«, the methods have
substantially higher FDR and pFDR when their powers are matched to that of
procedure (3.9) or (4.6). The results show that the methods either cannot control
the pFDR at the level of (1 — a)a (which is indeed the case) or, alternatively,
they can only control the pFDR with much lower power than procedures (3.9)
and (4.6).

Unlike groups 1-6, in group 7, each coordinate of the vector of t-statistics
provides strong evidence to identify false nulls. By only using the 1st or 3rd
coordinate, the minimum attainable pFDR is 2.4 x 10~° for a = .05 and 6 x 10~
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TABLE 3

392

Simulation results for groups 1 and 2 described in Section 6.2. In each group, the results are
organized according to r = 0,1/5, —1/5. The numbers in the rows for the “by-product”
method are its FDR and pFDR as its power is pegged to procedure (3.9) or (4.6). The

numbers in the rows for the “by-sum” and “by-max” methods are likewise.

a=.05 a = .02
Group 1 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)
Power .223 155 7.70 x 10~2 5.49 x 10~2
FDR, pFDR .141, .141 142, .142 .150, .160 144, .162
By-product .250, .250 .204, .204 .250, .268 212, .241
By-sum .307, .307 283, .283 415, .444 .383, .435
By-max .654, .654 .633, .633 718, .768 .660, .749
Power .351 .316 210 181
FDR, pFDR 142, .142 142, .142 .148, .148 147, .148
By-product .297, .297 .264, .264 .327, .327 .289, .289
By-sum .333, .333 .310, .310 447, .447 427, .428
By-max 721, .721 .709, .709 .836, .836 .826, .827
Power 4.61 x 1072 3.12 x 1072 1.10 x 1072 9.28 x 1073
FDR, pFDR .143, .156 .148, .165 .141, .261 .150, .291
By-product 194, .213 174, 197 114, .230 114, .250
By-sum .296, .326 284, .321 217, .440 .204, .447
By-max 512, .564 485, .548 .327, .663 299, .654
Group 2 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)
Power .486 .329 .268 173
FDR, pFDR 142, .142 143, .143 147, .147 147, .148
By-product .337, .337 242, .242 .395, .396 313, .313
By-sum .538, .538 .520, .520 734, .734 737, .739
By-max .809, .809 792, .792 1902, .902 .892, .894
Power .580 .539 457 412
FDR, pFDR 142, .142 142, .142 .146, .146 147, .147
By-product 441, .441 .389, .389 .510, .510 447, .447
By-sum .588, .588 567, .567 744, 744 .731, .731
By-max .852, .852 .845, .845 1926, .926 1923, .923
Power .316 138 3.91 x 1072 2.78 x 1072
FDR, pFDR 143, .143 142, .143 .150, .198 .145, .201
By-product 1291, .291 221, .223 211, .287 189, .272
By-sum .546, .546 568, .572 558, .759 523, .752
By-max 785, .785 763, .767 .620, .845 578, .830
for a = .02, and by only using the 2nd coordinate, the value is even lower.

As Table 6 shows, procedures (3.9) and (4.6) identify all the false nulls. Since
almost all the p-values of false nulls are smaller than those of true nulls, due
to how the by-product method is implemented, it rejects very few true nulls
and hence has near-zero (p)FDR. The same is true for the other two methods.
The pFDR of procedure (3.9) is significantly lower than (1 — a)a, because the
approximation we use for h(u; v), i.e. Vo(u/v)%/¢ is strictly greater than h(u;v)
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TABLE 4
Simulation results for groups 3 and 4 described in Section 6.2.
a = .05 a=.02
Group 3 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)
Power 272 197 9.15 x 1072 6.76 x 1072
FDR, pFDR 142, .142 143, .143 .150, .158 .149, .162
By-product 328, .328 .279, .279 .344, .363 .303, .330
By-sum .570, .570 572, .572 733, .775 713, .776
By-max .789, .789 781, .781 .833, .880 .802, .873
Power 444 .409 291 257
FDR, pFDR 142, .142 142, .142 .149, .149 .150, .150
By-product 404, .404 .368, .368 455, .455 416, .416
By-sum .584, .584 573, .573 749, .749 745, .745
By-max .829, .829 .824, .824 913, .913 .910, .910
Power 4.89 x 1072 3.57 x 1072 1.22 x 1072 1.01 x 1072
FDR, pFDR 145, .158 .143, .160 151, .268 151, .284
By-product .234, .256 .215, .243 .158, .308 151, .321
By-sum 574, .628 .558, .629 .388, .757 .357, .759
By-max .680, .744 .651, .733 417, .813 .381, .809
Group 4 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)
Power 170 105 5.69 x 1072 3.75 x 1072
FDR, pFDR 142, .142 144, .144 145, .161 144, .170
By-product .285, .285 227, .228 .282, .316 .232, .279
By-sum 440, .441 433, .434 571, .639 .524, .629
By-max 761, .761 746, .747 763, .854 .693, .832
Power 357 322 .240 .207
FDR, pFDR 142, .142 143, .143 147, .147 147, .147
By-product .363, .363 .320, .320 411, 411 .358, .358
By-sum 456, .456 433, .433 612, .612 .594, .594
By-max .820, .820 .812, .812 .907, .907 .903, .903
Power 4.26 x 1073 4.02x 1073 2.36 x 1073 2.21x 1073
FDR, pFDR 145, .294 .149, .300 .149, .492 .160, .530
By-product .102, .231 .105, .239 5.58 x 1072, .278  6.30 x 10~2, .335
By-sum 217, .492 217, .496 119, .594 .119, .635
By-max 273, .618 272, .621 143, .712 139, .737

when u > minyy, and hence inflates s; in (3.9). This causes the BH procedure
to reject more nulls with s; not very close to 0. As these nulls are exclusively
true nulls, the resulting (p)FDR is lower.

Finally, in order to see how procedures (3.9) and (4.6) perform when the
parameters v and ¢ are not set to their respective asymptotically optimal values,
we simulate groups 1 and 2 again, with v = ¢ = (1,1,...,1). As Table 7 shows,
across the simulations, for each procedure, the power is lower than in Table 3
but not dramatically while the (p)FDR is quite stable. The (p)FDR levels of
the other 3 methods tend to be lower than in Table 3. As in group 7, this can
be explained by how the methods are implemented.
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TABLE 5
Simulation results for groups 5 and 6 described in Section 6.2.
a=.05 a=.02

Group 5 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power 772 733 372 .342
FDR, pFDR .143, .143 .143, .143 .149, .149 .148, .148
By-product 267, .267 .246, .246 .280, .281 271, .271
By-sum .387, .387 373, .373 .529, .530 527, .528
By-max .585, .585 .570, .570 .697, .698 .691, .692

Power 773 755 432 411
FDR, pFDR 142, .142 .143, .143 .149, .149 .148, .148
By-product .283, .283 272, .272 .295, .295 .288, .288
By-sum .403, .403 .395, .395 .535, .536 .532, .533
By-max .607, .607 .599, .599 716, .717 712,712

Power 767 731 .369 .344
FDR, pFDR 142, .142 142, .142 147, .148 .148, .149
By-product .266, .266 247, .247 .281, .282 272, .273
By-sum .386, .386 374, .374 .529, .532 527, .529
By-max .584, .584 .570, .570 .697, .700 .691, .695
Group 6 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power 776 722 497 .447
FDR, pFDR .143, .143 .143, .143 .146, .146 147, .147
By-product .239, .239 .207, .207 .259, .259 237, .237
By-sum .295, .295 .269, .269 .391, .391 377, 377
By-max .540, .540 513, .513 .654, .654 .639, .639

Power 771 747 .538 .510
FDR, pFDR 142, .142 142, .142 .148, .148 .149, .149
By-product .258, .258 .240, .240 278, .278 .263, .263
By-sum .315, .315 .301, .301 .410, .410 .399, .399
By-max 571, .571 557, .557 .685, .685 .676, .676

Power 773 711 476 425
FDR, pFDR .143, .143 .143, .143 .148, .148 .148, .148
By-product .233, .233 .200, .200 257, .257 .235, .235
By-sum .288, .288 .262, .262 .388, .388 375, .375
By-max .530, .530 .501, .501 .646, .646 .631, .631

7. Discussion
7.1. Role of p-values

We have followed the tradition of using p-values for hypothesis testing. The
general procedure in the work, i.e., (3.2), utilizes the fact that the p-value of a
continuous multivariate statistic can be defined in such a way that its coordi-
nates are i.i.d. ~ Unif(0, 1). The interpretation of p-value as a measure on how
“rare” or “suspilcious” an observation looks is irrelevant, even though in many
cases smaller p-values are indeed more likely to be associated with false nulls.
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TABLE 6
Simulation results for group 7 described in Section 6.2. “~” means value equal to the
nonmissing value in the same row.
a=.05 a=.02
Group 7 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)
Power 1 1 1 1
FDR, pFDR .103, .103 142, .142 118, .118 .146, .146
By-product 0, — - = 0, - - =
By-sum 1.2x 1076, — - = 5.0 x 1076, — - =
By-max 3.1x1073, - - - 5.4 x 1073, — - =
Power 1 1
FDR, pFDR .103, .103 143, .143 118, .118 148, .148
By-product 1.2x 1076, - - = 0, — - =
By-sum 3.6 x 1076, — - = 1.3 x 1075, - - =
By-max 5.7 x 1073, — - = 9.6 x 1073, — - =
Power 1 1 1 1
FDR, pFDR .103, .103 143, .143 119, .119 148, .148
By-product 0, — - = 0, - - =
By-sum 0, - - - 2.7x 1076, — - =
By-max 2.9 x 1073, — - - 4.9 %1073, - - =

Thus, in this work, p-values serve as a mechanism to “flatten” the probability
landscape of true nulls and hence facilitates exploring subtle differences between
true and false nulls.

Since what essentially matters to procedure (3.2) is nested events with specific
probabilities, it can be easily modified to directly handle test statistics instead
of their p-values. Indeed, in (3.2), Dy € [0, 1]¥ can be replaced with nested E; in
the domain of the test statistics, such that P(E;) = ¢t under true nulls. Analysis
on the power of the modification might yield some useful insight. For example,
weighted L? norms are commonly used as criterion for acceptance/rejection.
However, as shown in Examples 4.5 and 4.6, in more challenging cases, one may
need to consider LP norms with p < 0. On the other hand, the modification does
not simplify the testing problem, as probabilities still have to be evaluated.
Nevertheless, as remarked next, the notion of using nested regions in spaces
other than [0, 1]¥ is useful.

7.2. Incorporating discrete components

Often times, test statistics have nontrivial discrete components. For example,
test statistics for different nulls may have different dimensions or degrees of
freedom. In this case, the discrete component may be expressed as a scalar.
However, if the test statistics are multivariate but only partially observed, then
the discrete component in general have to be set-valued accounting for observed
coordinates. Procedure (3.2) can be modified as follows. Suppose Z is the dis-
crete component of test statistic T' such that for any z, the conditional dis-
tribution of T given Z = z has a density and is K(z) dimensional. Then, in
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TABLE 7

396

Simulation results for groups 1 and 2. The setting is similar to that in Table 3, except that v

in (3.9) and ¢ in (4.6) are set equal to (1,1,..

., 1) instead of according to .

a = .05 a=.02
Group 1 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)
Power .206 138 6.94 x 102 4.88 x 1072
FDR, pFDR 143, .143 143, .143 146, .159 144, .163
By-product .240, .240 191, .191 .236, .257 203, .231
By-sum .302, .302 278, .278 1405, .441 378, .430
By-max .650, .650 .626, .627 .700, .762 .657, .746
Power .340 .293 199 .166
FDR, pFDR 143, .143 143, .143 147, .147 .146, .146
By-product .286, .286 242, .242 315, .315 271, .272
By-sum .326, .326 .296, .296 443, .443 1419, .420
By-max 17, 717 .701, .701 .835, .835 .823, .824
Power 3.78 x 1072 2.55 x 1072 1.06 x 1072 8.55x 1073
FDR, pFDR .140, .155 142, .166 146, .279 144, .289
By-product 175, .196 154, .182 107, .227 108, .247
By-sum 284, .318 .267, .316 .210, .446 .196, .448
By-max .495, .554 .453, .537 .313, .666 .286, .654
Group 2 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)
Power 458 .300 .248 155
FDR, pFDR 142, .142 142, .142 147, .147 148, .148
By-product 317, .317 .226, .226 .378, .378 .296, .297
By-sum .533, .533 .519, .519 734, .734 739, .741
By-max .806, .806 .788, .788 .901, .901 .889, .892
Power .562 .508 441 .388
FDR, pFDR 142, .142 142, .142 145, .145 145, .145
By-product 1420, .420 .353, .353 483, .483 412, 412
By-sum 581, .581 .554, .554 738, .738 723, .723
By-max .850, .850 .840, .840 .925, .925 .920, .920
Power 251 112 3.34 x 1072 2.35 x 10~2
FDR, pFDR 141, .141 141, .142 .149, .204 146, .212
By-product .266, .266 .207, .209 .200, .281 176, .264
By-sum .551, .552 .574, .580 .537, .755 .500, .754
By-max 778, .780 757, 765 .595, .838 .550, .829

(3.2), redefine D; as a nested subsets in the disjoint union of [0, 1]%(*) such
that >, £(D; N[0, 1]5)p, = ¢, where p, is the probability of Z = z under true
nulls. The analysis in previous sections still works and requires no substantial

extra changes.

An apparently simpler alternative is to conduct separate tests on statistics
with different values of the discrete components. This alternative fails to take
into account the distribution of the discrete components and hence may have

lower power.
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7.3. Power optimization

When the distribution under false nulls is only partially known, it can be a
difficult issue how to attain maximum power. To see this better, consider testing
the null “u = 07 for N(u, I) based on a single observation X. As the variance
is known to be I, the most powerful test statistic would be v/ X, provided that
the true value v of p under false nulls is known. However, when v is unknown,
unless there is strong evidence on its whereabouts, one has to search in a large
region of p to improve the power, which becomes more difficult as the dimension
of v gets higher.

One way to improve power is to restrict the search to parametric families
of nested regions. This is the approach taken in Section 3.3. If the parameter
involved is of high dimension, some type of stochastic optimization [19] may be
needed. On the other hand, regions that attain maximum power may consist of
several disconnected regions, which makes it difficult to use a single parametric
family of nested regions to approximate them. An alternative way therefore is
to try different families of nested regions at different locations in the domain of

7

p-values and combine the results appropriately [7].

Appendix

In this section, we shall denote I = [0, 1]%.

A.1. Theoretical details for Section 3

Proof of Proposition 3.1. Since Dy = () and D1 = I, it suffices to show that Dy,
t € (0,1) satisfy (3.1). Observe that h™! is continuous and strictly increasing
on (0, 1). Then, as T, is right-continuous, D; is right-continuous. It is clear that
D is increasing and £(Dy) = (T (p)) = h(h* (1)) = t. O

Proof of Lemma 3.1. 1) The following “sandwiched convergence” is needed: if
0 < ap(x) < by(x) such that an(z) — a(z), by(z) — b(z) a.e. and [by, — [b <
oo, then [a, — [ a. For each k, denote by g(z1,...,z)

Tk
/ fk('rla .- .,Ik,l,Z) dz = /fk(xla .- 'axkflaz)l{z < .Ik} dz.

The function in the second integral is dominated by fi(z1,...,2xx—1,2). If (21
ooy k) — (Y1, -+, Yk ), then, by the continuity of fr and fr_1,

Je(@y, . oxe1,2)1{z <ap} — felyr, - un—1,2)1{z <yr}, for 2 # yy

e(@y, . ze1,2) = fulyr, - uk—1, 2),

/fk(:cl,...,xk,l,z)dz:fk,l(:cl,...,xk,l)H/fk(yl,...,yk,l,z)dz.
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By the sandwiched convergence, g(x1,...,2r) — g(y1,...,yk). Thus, g is con-
tinuous. As ¢r(x) = g(x1,. .., 2%)/fe—1(x1, ..., 7K_1) for € sppt(qo), dr(x)
is continuous in sppt(qo). Therefore, ¢ € C(sppt(qo)).

Let @, y € sppt(qo). Suppose @ # y such that x; = y; for i < k and zj < yy.
Then ¢i(x) < ¢r(y). Assume equality holds. Then

0= [¢r(y (@) fe—1(21,. -, Th—-1)
Yk
/ // qo(x1, .oy Tp—1, 2, Ukt 1, - - - UK ) dz dUpy1 - - - dug.
Since qo is continuous, the above formula implies qo(z1, ..., Tp—1, 2, Uk+1, - - -,
ug) = 0for z € [xg, yr| and ug41, ..., ux € R, in particular, go(x) = qo(y) = 0.

The contradiction implies ¢ (x) < ¢ (y) and so ¢(x) # ¢(y).

2) Let X ~ Qo. Then P(X € sppt(qo)) = 1. Since ¢ € C(sppt(qo)), € =
¢(X) is a well-defined random variable. For @ € sppt(qp), by 1), conditional on
X; = x;, @ < k, Xi has a continuous distribution and hence &, ~ Unif(0, 1).
Since the conditional distribution of & is the same regardless of x1,...,x5_1,
&k is independent of Xy, ..., X;_1 and thus independent of &;,...,&x—1. This
gives & ~ Unif(]).

3) Let X ~ Q1. Asin 2), & = ¢(X) is a well-defined random variable. Denote
r = q1/qo. For t € RE,

E[e€] = Eq, [¢"7(X)| = Eq, [¢*¢r(671(€))] .

where the first equality holds since sppt(q1) C sppt(go) and r(X) is a well-
defined random variable due to r € C'(sppt(go)). Since ¢ is 1-to-1 and continuous
on sppt(qo), E := ¢(sppt(qo)) is open and ¢~ € C(E) [15]. As ((I\E) = Qo(& &

E) =0, r(qﬁ L(x)) is Borel measurable on I and by 2), the last expectation
equals f ¢ty (¢~ (u)) du. Thus, the characteristic function of & under Q; is
the same as that of a random variable with density 7(¢~'(u)), w € I. Since
r(¢~(u)) € C(E), this proves 3).

To show Proposition 3.2, we need a few preliminary results. Recall p; =

h(g(&:))-

Lemma A.1.1. Let h be continuous. Then 1) p; <t <= €, € D, and 2) under
the assumptions of Lemma 3.1,

t if H; is true

, tel0,1],
G(Dy) if H; is false 0.1]

P(piSt)—{

and G(Dy) is strictly concave.

Proof. Tt can be seen that p; is a well-defined random variable and for ¢ € [0, 1],
h(h*(t)) = t. Then p; < t <= g(§;) > h*(t) < &, € D;. Under true Hj,

P(p; < t) = £(Dy) = t. Under false H;, P(p; < t) fD g = G(Dy). Given
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0 <ty <ty <ts <1,let up = h*(tg). By the continuity of h, tx, = h(uy) and
Uy > Uz > Uus. As Dtk = Fuk;

L G(Dtk+l) - G(Dtk) o 1 /
TR = = g(x)dx.
b1 — th h(ukir) = h(ur) Jr,,  \r.,
Since h(uy) = (T, ) and g(x) € (up41, ur] on Ty \Tuys upgr < 7 < up. As
a result, 7y > ro. Therefore, the distribution of p; is strictly concave. O
Lemma A.1.2. Let n,...,n, be independent Bernoulli random variables such

that p; = P(n; = 1) are decreasing. Let S =n1 + -+ -+ ny,. Then E[n;/(SV1)] is
decreasing.

Proof. Let @ < j. Then n;, n; and X = S — n; — n; are independent, giving

M }7 1 [ N }, 1
=pE|—— |, E =pE|—— .
[S\/l P [1+nj+X] Svil TP T x

Since p; > p;, (1+n;+X) ™! stochastically dominates (1+n;+X)~'. Therefore,
piB[(1+m; + X)71 = p; E[(1+n; + X)71]. O

Lemma A.1.3. Let s,,m1,...,0, € [0, 1] be jointly distributed, such that s, R
s €10,1] as n — oo and n; are i.i.d. ~ F. Let F,, be the empirical distribution

of m,....,nn. If F is continuous and strictly increasing on [0, 1], then F(s,) LA

Proof. Recall sup |F,, — F)| 20, Let z, = FX(sy,) and = F*(s). Since F is
continuous, s = F(z). Suppose z € (0,1). Given € € (0,z), by Fy(z, — €) < Sp,
{zy, > x+ 2¢} C {s, > Fp(x+ €)}. By s, 5s= F(x) and F,(z + ¢) 5
F(z+e¢€) > F(x), P{zn > x + 2¢}) — 0. On the other hand, {z, <z — €} C
{sn < F,(x —€)}. By F,(x —¢) 5 F(x —¢€) < F(x), P{xn, < x —€}) — 0.
Therefore, x, L, 0. The case where z =0 or 1 is similarly proved. O

Proof of Proposition 3.2. First, since h € C' is decreasing, Ns>¢Ds = Nyl (5) =
Nesdg@) > h(s)} = Nesidhlg(@) < s} = {hlgl@) < t} = {g(x) >
h*(t)} = D, proving the right-continuity of D;. By the continuity of h, £(D,) =
((Th-(¢y) = h(h*(t)) =t. The rest of (3.1) is easy to check.

Denote by N the number of true nulls, and for any given procedure, denote
by R and V the numbers of rejected nulls and rejected true nulls, respectively.
We shall show 1) procedure (3.2) with D, satisfies conditions (A) and (B) and
attains FDR = (1 —a)ay; ii) the search for procedures with maximum power can
be restricted to those that reject and only reject nulls with largest g(&;); and
iii) for such a procedure, R/n converges in probability to a nonrandom number.
From these results, the proof will follow without much difficulty.
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i) By Lemma A.1.11), procedure (3.2) with D; = I'j-4) is the same as the BH
procedure applied to p1, ..., p,. Therefore, statement 1) holds and FDR = (1 —
a)a [2, 22]. Since the set of rejected nulls is uniquely determined by &,,...,&,,
the procedure satisfies condition (A).

Recall a, = 1/(1—a+asupg). By Lemma A.1.1 2), F(t) = (1—a)t+aG(Dy)
is strictly concave. Then

1 1
ax = lim

u—supg 1 —q + QG(Fu)/é(Fu) - F/(O)

For o € (s, 1), t/ov = F(t) has a unique positive solution ¢, € (0,1). Since

p; are i.i.d. ~ F, by [12], for 7 in (3.2), 7 L+, as n — oo and procedure (3.2)
asymptotically has the same power as the one that rejects H; with p; < t.. By

the law of large numbers, R/n 5 F(t.). On the other hand, for o < av, by [7],
R/n L. 0. In cither case, condition (B) is satisfied.

ii) Given &4,...,&,, 01,...,0, are independent Bernoulli variables with

ag(&;)
1—a+ag(&)
Sort r; into T(1) 2 T@2) = ... = T(n). Let d be a procedure satisfying condi-
tion (A). Then R =", & and V = > I (1 — 6;)d;. By condition (A), 6; is
conditionally independent of (0;, R) given &, ..., &,. Then

T :P(91:1|€15a€n):

E[V|€la"'a€na R]:ZE[(1_91)51|€151€715R]
1=1

n R
=> (A=r)E[i|&,....&, B > > (1—r3),
1=1 i=1

where the last inequality is due to R = >_"" , §;. Then
R

1
v 2 Tw)
1=1

with equality being true if rejected nulls are exactly those with the R largest r;.
On the other hand, since N =" | 6;, by Lemma A.1.2,

_ZE[N\/l ‘61, ,gn:|E[51|£1;1£naR]

RvVv1

..,gn,R]
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where ;) corresponds to the null with the ith largest 7;. Then

R 0,
S E| g, 8
121 N\/l b ysn

Note that r; > r; <= g(§;) > g(§;) <= p:i < p;. Construct procedure 6’
which first applies § and then, provided § rejects R nulls, rejects nulls with the
R smallest p; instead. It follows that 1) if § has FDR < (1 — a)a, then so does
8’5 2) &' is at least as powerful as &; 3) if  satisfies condition (A), then, as the
second step of 8’ is uniquely determined by &,. .., &, , & satisfies condition (A)
as well; and 4) since § and &' reject the same number of nulls, if one satisfied
condition (B), the other does as well.

power < F

iii) Let & satisfy conditions (A), (B) and attain maximum power asymptot-
ically while having FDR < (1 — a)a. As n — o0, the empirical distribution
of &,...,&, converges to the distribution that has density 1 — a + ag(z). By
condition (B), R/n L some t, € [0,1]. Let F, be the empirical distribution
of p;. Then F, L F. Since F is strictly concave and continuous, F is strictly
increasing. By Lemma A.1.3, F*(R/n) 5 F*(s). Since 9 rejects and only rejects
nulls with p; < F(R/n), d is asymptotically equivalent to a procedure which
rejects and only rejects nulls with p; < t, = F*(s). If t, > 0, by the law of large
numbers and dominate convergence, as n — oo,

#{i:p; <ts, 0, =0} (1 —a)ts
#{ipi <t}pVvil ]—> F(t.) '
#{i:p; <t 0, =1}
#{i:0; <t }v1

FDR = (1 +0(1))E [

power = (1 + o(1))E [ ] — G(Dy.).

In order to attain maximum power while maintaining FDR < (1 — a)a, t, has
to be the largest value of ¢ satisfying ¢/F(¢t) < a. It is easy to see that for
a € (au, 1), t, is the unique positive solution of t/a = F(t). Combined with
part i) of the proof, this shows procedure (3.2) with D; = I'«(;) can be taken
as 0. Furthermore, in this case, power — G(D;,) > 0 and since P(R > 0) — 1,
pFDR = (1 + 0(1))FDR — (1 — a)a. Thus 2) is proved.
On the other hand, for o < v, no t > 0 satisfies t/F(t) < a. As aresult, ¢, =
0. Thus, the power of § is asymptotically 0 and procedure (3.2) with D; again
can be taken as 8. Furthermore, by [7], the procedure has pFDR — (1 — a)av..
This proves 3).
O

Proof of Lemma 3.2. By change of variable 2, = (u/vi)"/¢z, for 0 < u <
min v,

h(u;u):/ll{u’msgu} dm:‘/ll{ZzZ Sl}H(%)l/s dz,
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which yields (3.10). Likewise,

v u\ K/e+1
21{v'xf <u dm:—(j) /zsl{ P Sl} dz.
Jairwat <upar = Z (57 [a{3x

By symmetry,

/Iz; {Zz;§1} dz:%/l(ZzZ)l{Zzzgl} dz.

By Vi(u) :=0({z € RE : 2, > 0, 3 2§ < u}) = Vou /¢ and change of measure,
the right hand side equals (1/K) fol tdV.(t) = V. /(K +¢). It is then easy to get
(3.11). Finally, by (3.7),

/Fu(u)g =g(0) (h(U; V)= > ~/Fu(u) Ty, dw) +9(0) /mu) T

As u — 0, supp () || — 0, implying r(z)/[z[* — 0 uniformly on I',(v), and
by (3.11), [; W= o(u/#+1) which together with (3.10) yields (3.12). O

Proof of (3.13). Let v1 < vy without loss of generality. For 0 < u < vy + vo,
h(u; v) is equal to

! ! u — v xf 1/e
/ 1{via® <u—wo} d:c—i—/ 1{u—rvy <viz® <u} (7> da.
0 0

1]

The first integral on the right hand side equals [(u — v2)/v1]*/¢ if u > vy and 0
otherwise. By variable substitution z = v12° /u, the second integral equals

1 2 1/e vi/u
_(u_) / 1{1—2<z§l}zl/sfl(l—z)l/sdz
0

€ \V1l2 U
2 u2 1/e v vy
~ st (o) (PGt —r (1= 2) o).

where F is the Beta distribution function with parameters 1/e and 1/ + 1.
Since F(z A1) = F(x) and F(x VvV 0) = F(x), this yields the proof. O

A.2. Theoretical details for Section 4

Proof of Proposition 4.1. Denote h(u) = h(u;v) and D, the regularization of
I'y(v) defined in (3.8). Let Z; = v'€;. Under true H;, since &, ~ Unif(I),
P(Z; <wu) = h(u). Since h is continuous, h(Z;) ~ Unif(0, 1). On the other hand,
under false H;, P(h(Z;) < t) = P(V'§; < h*(t)) = G(Tp-py(v)) = G(Dy), so
by (4.2), the density of h(Z;) at 0 is g(0). Because procedure (3.9) is the BH
procedure applied to h(Z;), it follows that its minimum attainable pFDR is
(1 —a)a.
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To get (4.1), let F(t) = (1 — a)t + aG(D;) and t, the maximum solution to
F(t) =t/a. Then

1 1 1 1
G(Dy,) = (%—54-1) .= <%—a a+9(0)>t*

Replacing the left hand side by (4.2), it is seen that as « | a,

(t/ V) 5/ VZ% a — Q
K+e vy aa2g(0)

K+ e

€ Uy K/e
— ty ~ — (g .
(wg /Z ) e

Clearly, as « | au, t« — 0. If G(Dy) is strictly concave, then by [12], Pow(a) =
G(Dy¢,) ~ g(0)t,, which, combmed with the asymptotic of ¢., proves (4.1).
However, it is not clear whether G(D;) is strictly concave in general. To get
around the problem, we use the following argument. Let 7 = 7,, be defined as
n (3.2), where n is the total number of nulls. The goal is to show that, given
O<n<las 0 < a—a, K1,

P((1—=mte <mn <(l14+n)ty) —1, asn — oc. (A.1)

If this holds, then it is easy to see that G(D—y),) < Pow(a) < G(D14m)t.,)-
As G(Di4nye,) ~ (1 £1)g(0)t, and 7 is arbitrary, (4.1) then follows.
The remaining part of the proof is for (A.1). By (4.2),
F(t) aG(Dy) 1

=l-a+—Y = — —Ct:/K 1 ot/K), ast—o.
t t Qs

where C' > 0 is a constant. By this expansion, there is 0 < § < 1, such that

F F(t F F(t
inf ﬂ>£, sup ﬂ<ﬁ, for 0 <t <.
s<(l-m)t s t 7 (4ni<s<s S ¢

By g € C(I) and g(z) < ¢(0) for @ # 0, for t > 0, G(D;)/t < g(0), yielding
F(t)/t < 1/ay. Thus, for 0 < a — a. < 1, sup;>s F'(t)/t > 1/a. On the other
hand, t. € (0, ). Consequently,

inf ——= > = sup
s<(l-m)t. 8 O (14n)t.<s<1 S

<

SRS

Because the empirical distribution of h(Z;) converges to F' in probability, the
above inequalities imply (A.1). O

Corollary A.2.1. For procedure (3.4) using I',,(v), H; is rejected if and only
if V& < ¢, where ¢ = (, 15 a random variable such that given 0 < n < 1, for
0<a—a.<1, P(J¢ — v <nuy) — 1 as n — oo, where

v, ~ C(W) (o — ax), with C(v) = Kre /Z Z’; (A.2)

aazg(0
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Proof. Let ¢ = h*(7), where h(u) = h(u;v) and 7 is as in the proof of Proposi-
tion 4.1. Then H; is rejected <= h(V'&;) <17 <= V'€ < (. Let v, = h*(t.).
Since h*(t) = v(t/V.)*/® for 0 < t < 1, the result follows from the asymptotics
of 7 and t.. O

Proof of Proposition 4.2. For ease of notation, integration over & will be implic-
itly restricted in 1. First consider Pow,(c) of procedure (3.2) using Dy = T'j« (1),
where T, = {w € I : g(x) > u} and h(u) = {(T',). By Lemma A.1.1, G(Dy) is
strictly concave. Then by [12], Pow,(«a) = G(Ty,), where u, = h(t,), with ¢,
the unique positive solution to (1 — a)t + aG(D;) = t/a. Therefore,

(1 =a)f(lu,) + aG(Ty,) = £(Ty,)/a. (A.3)
Using (A.3) followed by a.. = 1/(1 — a + ag(0)),

ag(0) [v'x° —r(z)]de = [1 —a+ag(0) —1/a] / dx (A4)
Tu, Lo,
—— / da. (A.5)
O r

U

Fix n > 0. For a > a, denote
v=ov(a)=1-u./g(0), \=a— . (A.6)

Then T, ={x €l :~vx° —r(x) <viandv | 0as a | a. By 7 > 0 and
r(x) =o(|x]?), for 0 < @ — . < 1, ¥ < (1+n)v and |r(x)| < ny'x® onTy,.
Together with (A.4) and (A.5), this gives

(1+n)ag(0) / ¥z de > A / dz,
~'®e<(1+n)v AQx Jyme<(1-n)v

(1- n)ag(O)/ ¥ de < A / dx
vze<(1—n)v Qs Jyr@e<(14n)v

By Lemma 3.2, the inequalities imply

a(l 4 n)K/=2Ky < M1 =n)E/e a1l —n)K/H2 Ky - A1 +n)K/e
K+e ~ a.ag(0) K+e ()

Since 7 is arbitrary, it follows that
(K +¢)A
vy Y,
Kaazg(0)
Comparing with (A.2), v ~ C(y)A.
Applying (A.3) followed by (3.10),

Pow, (a) = L—1—1-1 / dx
ac a ~' xf —r(x)<v

1 (K +e)) 1%/
~ 4(0) / dz ~ g(0)V. [fi( ) ] -
vy xs<C(y)A I/KCLO[*g(O)

as a | a.
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On the other hand, by Proposition 4.1, Pow(«) has the same asymptotic.
Then Pow,(«)/Pow(a) — 1.

Let ¥ = C(7v)(a — a). The above argument shows that, for procedure (3.2)
based on T'y, if 0 < a — ae < 1, then H; is rejected if only if /&5 — r(&;) < (o,
where ¢, = (,, is a random variable satisfying P(|(, —9| < nd) — 1 as n — oc.
On the other hand, by Corollary A.2.1, for procedure (3.9) based on T, (7), H;
is rejected if and only if 4'¢; < ¢, where ( satisfies P(|¢ — 9| < nd}) — 1 as
n — oo.

Recall V, = {true H; : ¥'&; —r(&;) < (o} and V = {true H; : v'& < (}.
Since r(x) = o(y'x®), by the asymptotics of {, and ¢, given 0 < n < 1, as
0<a—a, <1,

P({true H; : v'& < (1—n)W} CcV,NV) — 1
PV, AV C {true H; : (1 —n)9 <~'& < (1+n)9}) — 1.

It follows that

K/e
1
rv(a)g/ d:c// d:c—l—(ﬂ) .
(1—m)9<y'@<(1+n)9 v <(1-n)Y L=
As n is arbitrary, this gives rv(a) — 0 as a | a... Likewise, rp(a) — 0. O
Proof of Lemma /.1. By the assumptions of the lemma and [12],
Pow;(ar) = G(Dit:), (A7)

where t7 =sup{t: (1 —a)t +aG(Dy) > t/a}

and furthermore, tf < T. Since G(Dy1t) < G(Dg) for t < T and both are
continuous, it is seen that t] < t5. On the other hand,

1 1
Dy)=|——=+1)tf ~g(0)t; . A.
6Di) = (- +1) i ~al0, w5 aman (A8
As a result, Pow;(a) < Powa (). O

Proof of Proposition 4.3. By (A.8),

ti _ G(Duy) _ Powi(e) . ti _ 9(0)t] = G(Dyy)
t5  G(Dyy)  Pows(a) ts  g(0)t5 — G(Day)

Suppose M < co. Then by the last equality and (4.2), as « | «x,

* * % K+1
t_i ~ M x g(O)ti — G(th’{) M (%)5/ |
[} g(O)t2 - G(D2t;) 3

giving t§/t5 ~ (1/M)%/¢ and the proof. The case M = oo is likewise. O



Z. Chi/FDR with multivariate p-values 406

Proof for Example 4.1 (Case K > 2). Define Dy; and Do as in the case K = 2.
Fix 7 > 0 and ax, € (0,7x), so that g(z) < g(0)(1 — > ar5) on [0,7]%. Then

G0 <o) [t- Yo [, aida
all z;€(0,n)

where s = exp(—F'(1 —t)), with Fx the Gamma distribution function with
K degrees of freedom and scale parameter 1. We need to evaluate

3 _ K+e 3 _ K+e €
oy <s Tk dr =n oy <r Tk de =n E[U1{UV <r}],
all z;€(0,n) all z;€(0,1)

where 7 = 5/7%, U ~ Unif(0, 1) and V are independent, and V is the product of
Ui, ...,Uxg_11i.d. ~ Unif(0, 1). By transformation X = —InU and Z = —In 'V,
the expectation equals

—Inr 0o
A(r) ;:/ e*(1+€)(*1nT*r)[1 — Fr_1(z)] d$+/ e~ (1) g
0 —Inr

Recall that for n > 1, as © — oo,
1 - Fy(x) ~2" e /(n —1)! (A.9)
Ast— 0, s — 0 and hence r — 0, yielding

1+e

—Inr —1\K—-2
1
A(T) ~ r >' / xK7265x dCC—l-TlJrE ~ T( nr )
*Jo

(K -2 (K —2)l

So for t < 1, G(Dy;) < g(0)[t — Cs(lns~1)E~2], where C' > 0 is a constant. On
the other hand, by (4.2), G(Da;) > g(0)[t — C't' /K] where C’ > 0 is another
constant. By (A.9), for some constants ¢1,co > 0,

s(Ins~1)K—2 s(Ins~1)K—2 1
= ~ — 0.
tlt+e/K (1 — Fg(—1Ins))tte/E — ge/K(—]ns)e
As a result, for t < 1, G(D1;) < G(D2t). O

Proof for Ezample J.2. Recall ®~1(s) ~ /2log(1/s) as s | 0. Let s = wy/w.
Given ¢ > 1 and ay € (0,7), there is 0 < 1 < 1, such that 1) g(x) < g(0)(1 —
a'z) for z € (0,17)X and 2) letting

B, = {m € (0,m)": Y si/log(1/ar) cwoga/w} ,

k

for 0 <t <1, B; C (0,7)% N Dy;. Then

G(D1t) < ¢(0) [/Dlt dx — /Bt a’ccd:c] =g(0) lt— kK a /Bt x5, dm] :
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Let z; = t¥* and §; = Inn/Int. For each j =1,..., K,
/B vy dw = |1nt|K/yke<st,oo> elutruscteuint gy,
! Do, SEVIRSC
Ast ] 0,Int — —oco and &; | 0. So by > s =1,

—1

L / < d R RS S P

—1In z5de — in Y1+ -+ yx +eyi| =c —

Int B 7 stk\/y—kzc J 1+¢
and hence

—[g(0)t — G(D1)] _ e
ltlfél Iy < tLO Eln (Z ak/ xy, dm)

1 —1
= minlim — In / wdx ) = |1— —°  min sl
k tl0 Int B, 1+e &
Since ¢ > 1 is arbitrary and miny s7 < 1/K, (4.3) then follows. O
Proof of Equations (4.5) and (4.7). By (4.4), as t | 0,

G(Dy,) = 9(0) / e e e

=0 (- DS e [ A0

itk

Since [] fx(t) = t, (4.5) then follows.
Let fi(t) = it/ K. By (A7), (A.8) and (4.5), Pow(a) ~ g(0)t* as o — a,
where t* > 0 is the solution to

1—a+ag(0 )(1——Z~y cEtE/K> =1/a.

Since 1/, =1 — a + ag(0),

e i (22) /(i ) o

It is then easy to see (4.7) holds. O
Proof for Example 4.4. We need to show L < ¢g(0) =[], px, where
I — >k fr(@) Hj;ék Fj() < maxsup fr(2) Hj;ék Fj(z)

N S For@) [ Foy (@) — 2 For(@) T, 0 Fos(@)
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Let ¢ = Fi/For. By Fi(z) = [ re(t) for(t) dt and the assumption (4.8) on
rx, for any finite ¢, sup, <. ¥r(z) < pg. Since Yy () is continuous and tends to
1 as  — oo, it follows that sup, ¢ (z) < p. Then for each k,

fk(x)Hj#ij( x) up r _
P o T Pl 5P Jl;lk% ) <] pe=900)

Thus L < g(0). O

Proof for Example 4.5. We need to show L := sup,~r7(z) < g(0) = p1p2 for
T > 0, where

Jo Ji(t) f2(@ —t) dt
fO fOl t fOQ(.I — t) dt
As fr(z) < pefox(x) for any x > 0 with fi(z) > 0, it is seen r(x) < ¢(0)

for any x > 0. It remains to be shown r(c0) < ¢g(0). Once this is done, by the
continuity of r(x) on (0,00), L < ¢g(0). Given ¢, A € (0,1),

r(x):=

I :/mf()l(t)fog(x—t)dt:h —|—IQ
0

where I is the integral over [0, cx] and I over [cx,z]. As x > 1, for t € [0, cx],
Ar 752 < foo(x —t) < A7H(1 — ¢)7*227%2. Then

A:c*”/ for@)dt < I < 11— c)*”x*”/ foi(t) dt
0 0

Similarly, by using fo1(z) ~ x =5,

Ax*SI/ for(x —t)dt < I < A*lcfﬁlx*ﬁ/ foo(x —t)dt

As x — o0, fo for — 1 and fcx foa(x —t)dt = (1 C)mf 02 — 1. Therefore, if

81 > So, then I> = o(I1) and hence I ~ I;. Since ¢ and A are arbitrary, [ ~ x~%2.
Likewise

7= /om Hi@) f2(z — t) dt ~ poz™™2,

and hence r(x) — po. Similarly, if s; < s9, then r(x) — p;. If s7 = s, write
I = I, +1,+1I3, where the integrals I; are over [0, cz], [cx, (1—c)z] and [(1—c)z, x]
respectively, with 0 < ¢ < 1. Following argument similar to the above, I} ~
I3 ~ 275 while I = O(x72°1). Then I ~ 2z~ %', Likewise, J ~ (p1 + p2)z~%'.
Thus r(x) — (p1 + p2)/2. In any case, r(c0) < ¢(0). O
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A.3. Some facts about V_

Let Voxc(u) = [y [y 1{X 25 < u} de and Vo, x = Vi, x(1). It is not hard to
see that Vi x (u) = u®/¢V_ k for u € [0,1]. Tt can be shown that

(1/e)~'r/e)"

Vek = TR TR )

K=12,.... (A.10)
This is clear for K = 1. For K > 1, by first integrating =1, ...,k _1,
1 1
Vex = / Ve x—1(1 — 2% )drk = Vs,Kfl/ (1 —af) =D/ dy
0 0

1 1
=Vek_1X g/ e (1 — ) B0/ e gy
0

(K - DI'(1/e)I(K —1)/e)
eKT'(K/e) '

— Ve, K—1

Then (A.10) follows by induction.
t (1/VE,K)E/K

Finally, in Example 4.3, it is claimed tha — < g for K > 1. To
show this, write ¢ = 1/e and H(t) = In[tI'(¢)/(1 + t)!], Then by (A.10), the
above inequality is equivalent to K H(t) > H(Kt), K > 1. It is not hard to get
limy 04 H(t) = 0. Therefore, if one can show H(t) is concave for ¢ > 0, then
the desired inequality is obtained. Now

H'(t) = (InT({#) — = — —— — ——

It is known that (InT'(¢))” = >p2 o (k+¢)~2, ¢ > 0. Since 1/(k+t)* < 1/(k —
1+t)—1/(k+t) for k > 2, then it is seen that H”(t) < 0 for t > 0 and hence
H(t) is strictly concave.
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