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Abstract: Multivariate statistics are often available as well as necessary
in hypothesis tests. We study how to use such statistics to control not only
false discovery rate (FDR) but also positive FDR (pFDR) with good power.
We show that FDR can be controlled through nested regions of multivari-
ate p-values of test statistics. If the distributions of the test statistics are
known, then the regions can be constructed explicitly to achieve FDR con-
trol with maximum power among procedures satisfying certain conditions.
On the other hand, our focus is where the distributions are only partially
known. Under certain conditions, a type of nested regions are proposed and
shown to attain (p)FDR control with asymptotically maximum power as
the pFDR control level approaches its attainable limit. The procedurebased
on the nested regions is compared with those based on other nested regions
that are easier to construct as well as those based on more straightforward
combinations of the test statistics.
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1. Introduction

In multiple hypothesis tests, it is common to evaluate nulls with univariate
statistics. This especially has been the case for tests based on FDR control
[2, 12, 13, 16, 20, 22, 23]. On the other hand, for hypotheses on high dimensional
data, such as those in classification or recognition for complex signals, multi-
variate statistics in general are prerequisite for satisfactory results [1, 6, 24].
Such hypotheses each involves a sample of random vectors, from which a multi-
variate statistic is derived to capture critical features of the sample. Given the
conceptual appeal of FDR control, it is natural to ask how it can be achieved
using multivariate statistics.

The FDR of a multiple testing procedure is defined as E[V/(R ∨ 1)], where
R is the number of rejected nulls and V that of rejected true nulls [2]. In addi-
tion to FDR, power and pFDR [20] are two important measures to assess the
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performance of a procedure. Recall that

power = E

[

R− V

(n−N) ∨ 1

]

, pFDR = E[V/R |R > 0],

where n is the number of nulls, and N that of true nulls. The importance of
power is well appreciated in the FDR literature [2, 13, 14, 20, 22]. In contrast,
the issue of pFDR seems more subtle. Oftentimes, as follow-up actions can en-
sue only after some rejections are made, pFDR is more relevant than FDR.
However, unlike FDR, in general pFDR is not necessarily controllable at a de-
sirable level, say below 0.4. The reason is that in many cases, test statistics
cannot provide strong enough evidence to assess the nulls, especially when the
data distribution is only partially known and the number of observations for
each null is small. The controllability of pFDR can strongly affect power. For
the well-known Benjamini-Hochberg (BH) procedure [2], if its FDR control pa-
rameter is below the minimum attainable pFDR, then its power tends to 0 as
n → ∞ [7]. In light of this, power and pFDR should be considered together
when designing testing procedures.

A direct way to improve power and pFDR control is to collect more obser-
vations for each null. However, this may not be feasible due to constraints on
resources. On the other hand, if the observations can be viewed from differ-
ent aspects each containing some unique information, then the aspects may be
exploited together to yield more substantive evidence.

The approach of the paper is to first establish FDR control based on multi-
variate p-values, and then evaluate power and pFDR control. Among procedures
that attain the same pFDR, the one with the highest power is preferred. Sec-
tion 2 sets up notations and recalls known results. It then gives an example
to illustrate when multivariate p-values may be useful for pFDR control. Sec-
tion 3 presents a general FDR controlling procedure which uses an arbitrary
family of nested regions in the domain of p-values. Then, it shows that if the
data distribution under true nulls and that under false nulls are both known,
then the nested regions can be chosen in such a way that the procedure has the
maximum power among those with the same pFDR while satisfying certain con-
sistency conditions. However, since full knowledge about data distributions is
usually unavailable, the emphasis of the section is FDR control based on nested
regions that approximate the optimal regions. Under certain conditions, the ap-
proximating regions are ellipsoids under an Lε-norm, where ε > 0 in general is
a non-integer.

Section 4 analyzes the power of the procedure based on the approximating
regions. It shows that under certain conditions, the power is asymptotically
maximized as the pFDR tends to the minimum attainable level. The procedure
is compared with several others, including those that work “directly” on test
statistics instead of p-values, for example, procedures that rejects nulls with
large La-norms of the test statistics. It will be seen that only for a < 0, the
“direct” procedures may attain the same pFDR as the procedure based on the
approximating regions. The section also considers a procedure based on nested
rectangle regions in the domain of p-values and shows that it has the same level
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of pFDR control as the one based on the approximating regions. Although less
powerful, the procedure is simpler to compute.

Section 5 considers examples of t and F statistics. Section 6 reports a simula-
tion study on the procedures considered in previous sections. Section 7 concludes
with some remarks. Most of the technical details are collected in the Appendix.

2. Preliminaries

2.1. Notation

Denote byK the dimension of a multivariate p-value. Points in R
K will be taken

as column vectors. With a little abuse of notation, for f : A→ R with A ⊂ R
K ,

sup f will denote the essential supremum of f , i.e. inf{a: ℓ(f−1(a,∞)) = 0},
where ℓ(·) is the Lebesgue measure. If ξi1, . . . , ξiK are marginal or conditional
p-values under a null Hi, then ξi = (ξi1, . . . , ξiK)′ will be referred to as a mul-
tivariate p-value associated with Hi. The discussion is under a random effects
model as follows [10, 13]. Denoting by a ∈ (0, 1) the proportion of false nulls
and θi = 1 {Hi is false},

(θi, ξi) are i.i.d. such that θi ∼ Bernoulli(a) and
given θi = 0, ξi1, . . . , ξiK are i.i.d. ∼ Unif(0, 1),
given θi = 1, ξi ∼ G with density g.

(2.1)

The density of ξi is then 1 − a + ag. The assumption that ξi1, . . . , ξiK are
independent under true Hi should be checked carefully. Generally speaking, it
should be problem-dependent to design test statistics with independent p-values
[5]. One situation in which independence may arise is where multiple data sets
on the same nulls are collected independently following different protocols, e.g.,
with different experiment designs being used or different physical attributes be-
ing recorded. In this situation, observations in different data sets may not follow
the same distributions, and hence cannot be combined into larger i.i.d. samples.
Nevertheless, the p-values derived respectively from them can be combined into
multivariate p-values with independent coordinates.

Recall that, for univariate p-values ξ1, . . . , ξn, given FDR control parameter
α ∈ (0, 1), the BH procedure rejects Hi with

ξi ≤ τ = sup

{

t ∈ [0, 1] :
t

α
≤ R(t) ∨ 1

n

}

, R(t) = # {i : ξi ≤ t} .

Under the random effects model (2.1), the FDR actually realized by the BH
procedure is (1 − a)α [3, 11, 22], implying that the FDR can be arbitrarily
small. On the other hand, the “local FDR” associated with each Hi is [10]

P (θi = 0 | ξi) =
1 − a

1 − a+ ag(ξi)
≥ 1 − a

1 − a+ a sup g
.

It is not hard to see that the inequality applies to multivariate p-values as
well. Then, following [8], the next result can be established.
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Proposition 2.1. Under (2.1), for any multiple testing procedure,

pFDR ≥ (1 − a)α∗, where α∗ =
1

1 − a + a sup g
. (2.2)

Oftentimes, as sup g <∞, the pFDR is bounded from 0. In particular, if a is
small while sup g is only moderately large, the minimum attainable pFDR can
be undesirably large. This is the basis of the next example.

2.2. An example

To further illustrate the role multivariate statistics may have for pFDR control,
consider tests on Hi : µi = (µX,i, µY,i) = 0 for N(µi,Σi). Suppose for each
Hi, a sample of k i.i.d. (Xij , Yij) ∼ N(µi,Σi) is collected. If it is known that
Σi ≡ diag(1, 1) and under false Hi, µX,i = µY,i = 1, then by Neyman-Pearson
lemma, among procedures using fixed thresholding, the uniformly most powerful
one is to reject Hi if and only if X̄i + Ȳi is greater than a suitable threshold
value, where X̄i = (1/k)

∑

j Xij and likewise for Ȳi. That is to say, in this case
univariate statistics are the best choice.

However, in most cases in practice, complete knowledge on data distributions
is unavailable. If both Σi and µi under Hi are unknown, then X̄i + Ȳi cannot
be used as test statistics and t statistics are called for. Imagine a data analyst
has computed the t statistics of X̄ij and those of Ȳij for each Hi, denoted tX,i

and tY,i, respectively. While FDR control can be done with either tX,i or tY,i,
the issue here is pFDR control.

Suppose the number of nulls is large and due to constraints on resources,
k = 9 for each Hi. Suppose the data analyst knows that for each Hi, Σi is
diagonal and that for false Hi, µX,i > 0 and µY,i > 0. However, he does not
know that for false Hi, µX,i/σX,i = .5 and µY,i/σY,i = .4, where σ2

X,i and σ2
Y,i

are the diagonal entries of Σi. If the fraction of false nulls is 5%, then, by using
tX,i alone, the minimum attainable pFDR is ≈ .289 and, by using tY,i alone,
the bound is even higher (≈ .447). The lower bounds are a consequence of
Proposition 2.1. No procedure that only uses tX,i or tY,i can get a pFDR lower
than the bounds.

One way to attain lower pFDR is to increase k, which may require signif-
icantly more resources. When resources are limited, a sensible solution is to
exploit both tX,i and tY,i or, equivalently, their marginal p-values. This then
raises the question of pFDR control using multivariate p-values.

3. FDR control using nested regions of p-values

3.1. General description

Let {Dt, 0 ≤ t ≤ 1} be a family of Borel sets in [0, 1]K such that

D1 = [0, 1]K, ℓ(Dt) = t, Ds ⊂ Dt, 0 ≤ s < t ≤ 1

{Dt} is right-continuous, i.e., Dt = ∩s>tDs, t ∈ [0, 1).
(3.1)
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The most familar sets satifying (3.1) are perhaps Dt = [0, t]. Let ξ1, . . . , ξn be
the p-values associated with H1, . . . , Hn. Define

R(t) =

n
∑

i=1

1 {ξi ∈ Dt} , V (t) =

n
∑

i=1

(1 − θi)1 {ξi ∈ Dt} .

Description Given FDR control parameter α ∈ (0, 1),

reject Hi if and only if ξi ∈ Dτ , (3.2)

where τ = sup

{

t ∈ [0, 1] :
t

α
≤ R(t) ∨ 1

n

}

. �

Theorem 3.1. For procedure (3.2), FDR = (1 − a)α.

Proof. Since Dt is right-continuous, ξi ∈ Dt ⇐⇒ si ≤ t, where

si = inf{t ∈ [0, 1] : ξi ∈ Dt}. (3.3)

Therefore, procedure (3.2) rejects the same set of nulls as the BH procedure
applied to s1, . . . , sn does. By ℓ(Dt) = t, si ∼ Unif(0, 1) under true Hi and
hence si are univariate p-values. Theorem 3.1 then follows from [22].

In general, a nested family of Borel sets in [0, 1]K can often be parameterized
so that procedure (3.2) is applicable to them.

Proposition 3.1. Let {Γu, u ∈ I} be a family of Borel sets in [0, 1]K, where I
is an interval in R, such that Γu ⊂ Γv for u < v and {Γu} is right-continuous.
Suppose h(u) := ℓ(Γu) is continuous and strictly increasing with inf h = 0 and
sup h = 1. For t ∈ (0, 1), define Dt = Γh−1(t). Also define D0 = ∩Γu and

D1 = [0, 1]K. Then procedure (3.2) based on Dt attains FDR = (1 − a)α.

As ℓ(Dt) ≡ t, Dt will be referred to as the regularization of Γu. Since nested
regions naturally occur as decision regions in hypothesis tests, as seen below,
by regularization, a test can turn into a FDR controlling procedure.

Example 3.1. (a) Suppose a test rejects a null if and only if min ξk ≤ u,
where ξ = (ξ1, . . . , ξK)′ is the associated p-value and u a threshold value. The
corresponding rejection region is Γu = {x ∈ [0, 1]K : minxk ≤ u}. Then {Γu, u ∈
[0, 1]} is an increasing family of sets. Since h(u) = 1 − (1 − u)K , procedure
(3.2) applies to Dt = Γh−1(t) with h−1(t) = 1 − (1 − t)1/K. Note that, in the

Šidák procedure, when K hypotheses are tested simultaneously, h−1(t) is the
significance level for each hypothesis in order to attain familywise significance
level t.
(b) Suppose a test rejects a null if and only if

∏

ξk ≤ u, where u > 0 is
a threshold value. The corresponding rejection region is Γu = {x ∈ [0, 1]K :
∏

xk ≤ u}. For K = 2, h(u) = u(1 + lnu−1). In general, h(u) = P (
∏

Uk ≤ u),
with Uk i.i.d. ∼ Unif(0, 1). Since − lnUk has density e−x1 {x > 0}, h(u) =
1−FK(− lnu), where FK is the Gamma distribution with K degrees of freedom
and scale parameter 1.
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For {Dt, 0 ≤ t ≤ 1} having a regular representation, procedure (3.2) has an
equivalent description more amenable to numerical evaluation. Suppose there is
a function 0 ≤ J ≤ 1, such that Dt = {x ∈ [0, 1]K : J(x) ≤ t}. It is easy to see
D1 = [0, 1]K and Dt is right-continuous for t ∈ [0, 1). Since si = inf{t ∈ [0, 1] :
J(ξi) ≤ t} = J(ξi), the next description obtains.

Equivalent Description Given FDR control level parameter α ∈ (0, 1),

apply the BH procedure to si = J(ξi). (3.4)

That is, sort s1, . . . , sn into s(1) ≤ s(2) ≤ · · · ≤ s(n). Define s(0) = 0 and set
l = max{k ≥ 0 : s(k)/α ≤ k/n}. Then reject Hi if si ≤ s(l) .

Example 3.1 (continued)

(a) Since h(u) = 1 − (1 − u)K is strictly increasing, h−1 and Dt = {x ∈
[0, 1]K : minxk ≤ h−1(t)} = {x ∈ [0, 1]K : h(minxk) ≤ t}. Therefore J(x) =
1 − (1 − minxk)K .
(b) In this case Dt = {x ∈ [0, 1]K : h (

∏

xk) ≤ t}, where h(u) = 1−FK(− lnu).
Then J(x) = 1 − FK(−∑ lnxk). For K = 2, since h(u) = u(1 + lnu−1),
J(x, y) = xy[1 − lnx− lny].

3.2. Regions with maximum power under consistency condition

If the distribution under true nulls and that under false nulls are known, then,
in light of Neyman-Pearson lemma, it is natural to ask if FDR can be controlled
with maximum possible power using the likelihood ratios of the test statistics.
Some works have been done on this idea [18, 21]. We next show that the idea
is correct under certain conditions and can be realized by procedure (3.2) with
an appropriate nested family {Dt, t ∈ [0, 1]} ⊂ [0, 1]K.

Let X = (X1, . . . , XK)′ ∈ R
K be a test statistic. Suppose that under true

nulls, X ∼ Q0 with density q0 and under false nulls, X ∼ Q1 with density q1.
Our construction of Dt is based on a familiar transformation of X into multi-
variate p-values. Denote by fk(x1, . . . , xk) the marginal density of X1, . . . , Xk

under Q0. Clearly q0 = fK .

Lemma 3.1. Let φ(x) = (φ1(x), . . . , φK(x))′, x ∈ R
K , such that

φ1(x) = Q0(X1 ≤ x1), φk(x) = Q0(Xk ≤ xk |Xs = xs, s < k), k > 1.

Let ξ = φ(X), i.e., ξ1 is the p-value of X1 and for k > 1, ξk is the conditional
p-value of Xk. Suppose i) sppt(q1) ⊂ sppt(q0), where sppt(q) := {x : q(x) > 0},
ii) all fk are continuous and iii) q1 is continuous on sppt(q0). Then 1) φ :
sppt(q0) → [0, 1]K is continuous and 1-to-1; 2) under true nulls, ξ1, . . . , ξK are
i.i.d. ∼ Unif(0, 1); and 3) under false nulls, ξ has a continuous density g(x) :=
q1(φ

−1(x))/q0(φ
−1(x)) on E := φ(sppt(q0)), which is open with ℓ([0, 1]\E) = 1.
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Condition i) is not restrictive because hypothesis testing is trivial when X =
x ∈ sppt(q1) \ sppt(q0) (cf. [18]). Conditions ii) and iii) are used to make sure
all the transformations involved on X are still well-defined random variables.
Under these conditions, any rule based on the likelihood ratio of X has an
equivalent based on g(ξ). In the rest of the section, we will only consider tests
on p-values.

A multiple testing procedure can be regarded as a deterministic or ran-
dom function δ that maps each data point to an n-tuple (δ1 , . . . , δn) with
δi = 1 {Hi is rejected}. In our setup, the data point is an n-tuple (ξ1, . . . , ξn)
jointly distributed with θ = (θ1, . . . , θn). We need two conditions on δ.

(A) For n ≥ 1, δ and θ are independent conditional on ξ1, . . . , ξn, i.e.,

P (δ = a | ξ1, . . . , ξn, θ = b) = P (δ = a | ξ1, . . . , ξn), a, b ∈ {0, 1}n
.

Most multiple testing procedures are deterministic functions of test statistics
and therefore satisfy condition (A). The condition means that the observed
test statistics contain all the available information on θ; if there is any prior
knowledge on θ, it has already been fully incorporated into ξ and hence any
randomness introduced into δ is a “pure guess”.

The second condition imposes some consistency on δ. For an n-tuple S =
(x1, . . . ,xn) with xi ∈ [0, 1]K, denote R(S; δ) =

∑n
i=1 δi(S) and F̂ (x;S) the

empirical distribution function

F̂ (x;S) = # {i : xik ≤ xk, k = 1, . . . , K} /n.

(B) For any sequence of nk-tuples Sk with nk → ∞, if F̂ (x;Sk) converges in
the sense that supx |F̂ (x;Sk) − F (x)| → 0 for a distribution function F , then
R(Sk; δ)/nk converges in probability.

Basically, the condition requires that, when δ is applied to samples with
similar empirical distributions, it should reject similar fractions of nulls from
them. Loosely speaking, that means as far as the fraction of rejected nulls is
concerned, δ has to “stick to” a single way of testing, rather than alternate
between different ways for different data sets.

For 0 ≤ u <∞, define

Γu = {x ∈ [0, 1]K : g(x) ≥ u}. (3.5)

Although {Γu} is decreasing instead of increasing, its regularization can be made
increasing. Let h(u) = ℓ(Γu). Then h is decreasing, h(0) = 1 and h(u) → 0 as
u → ∞. Define h∗(t) = inf {u ≥ 0 : h(u) ≤ t}.
Proposition 3.2. Suppose conditions i)–iii) in Lemma 3.1 are satisfied and h
is continuous. Then Dt = Γh∗(t) satisfies (3.1). Let α ∈ (0, 1). Then, among
procedures that satisfy conditions (A) and (B) and attain FDR ≤ (1 − a)α,
procedure (3.2) with Dt belongs to those which asymptotically have the maximum
power as n→ ∞. Furthermore, the following statements on the procedure hold:
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1) it always rejects the same set of nulls as the BH procedure does when applied
to pi = h(g(ξi)), i = 1, . . . , n; 2) for α > α∗, the power is asymptotically positive
and pFDR → FDR = (1 − a)α; and 3) for α < α∗, the power is asymptotically
0 and pFDR → (1 − a)α∗.

Example 3.2. To illustrate that in general condition (B) is needed in Proposi-
tion 3.2, let K = 1. First consider the case where the p-values ξ1, . . . , ξn are i.i.d.
∼ F (t) = (1 − a)t + aG(t) ∈ C(1)([0, 1]) such that t/F (t) is strictly increasing
and G(t) is linear on [t1, t2], where 0 < t1 < t2 < 1. It is easy to see that t/F (t)
is strictly concave on [t1, t2]. Given c ∈ (0, 1), consider the following randomized
procedure. Draw U ∼ Unif(0, 1). If U > c, reject and only reject nulls with
ξi ∈ [0, t1]; otherwise, reject and only reject nulls with ξi ∈ [0, t2]. As n → ∞,
the empirical distribution of ξi converges to F . However, conditional on U > c,
Rn/n → F (t1), while conditional on U < c, Rn/n→ F (t2). Therefore, the pro-
cedure satisfies condition (A) but not (B). It can be seen that pFDR → (1−a)α
with α = (1−c)t1/F (t1)+ct2/F (t2) and power → (1−c)G(t1)+cG(t2) = G(tc),
with tc = (1 − c)t1 + ct2.

Consider the BH procedure when it is applied to ξ1, . . . , ξn with control pa-
rameter α. Since 1/F ′(0) < α < 1, by [12], the procedure asymptotically has
power G(t∗), where t∗ ∈ (0, 1) such that t∗/F (t∗) = α. Since t/F (t) is strictly
increasing, t1 < t∗ < t2. On the other hand, since t/F (t) is strictly concave on
[t1, t2], tc/F (tc) > α. As a result, tc > t∗. Therefore, asymptotically, although
the BH procedure has the same pFDR level as the randomized procedure, it is
strictly less powerful.

Finally, given c ∈ (0, 1), by small variation to G on [t1, t2], one can construct
G which is smooth and strictly concave, such that the above conclusions still
hold. By Proposition 3.2, the most powerful procedure (3.2) satisfying condition
(B) in this case is the BH procedure and hence is strictly less powerful than the
randomized procedure at the same pFDR level.

As noted in a discussion in [4], by either accepting all nulls with probability
1−α or rejecting all of them with probability α, it is guaranteed that FDR ≤ α;
however, the FDR attained in this way is useless, because it cannot say how
well one can learn from the data being analyzed. Without some coherence of a
procedure, one can hardly make a sensible evaluation of its performance in a
particular instance based on a measure defined as a long term average, as the
measure incorporates not only the way of testing chosen for the data at hand,
but also others that are potentially very different. The same comments apply to
pFDR as well. Condition (B) aims to impose some coherence, which is possible
if the data follows the law of large numbers. This is similar to the ergodicity
assumption, whereby long term average can be approximated by an average over
a single large sample.

The construction in this section requires full knowledge of the density g,
which is often unavailable. However, if g is known to possess some regularities,
then it is possible to apply procedure (3.2) to regular shaped Dt with reasonable
power. This possibility is explored next.
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3.3. Nonconstant approximation of lowest order

In many cases, the following is true for the distribution G of p-values under false
nulls:

G has density g ∈ C([0, 1]K) with g(x) < g(0) <∞ for all x 6= 0. (3.6)

Under (3.6), smaller p-values are stronger evidence against nulls, nevertheless
the strength is bounded. By Proposition 2.1, the minimum attainable pFDR is
(1−a)α∗, where α∗ is now equal to 1/[1−a+ag(0)]. FollowingTaylor’s expansion,
suppose for some γk > 0 and ε > 0,

g(x) = g(0)(1 − γ ′xε + r(x)) with r(x) = o(|x|ε) as |x| → 0, (3.7)

where xε denotes (xε
1, . . . , x

ε
K)′. It is perhaps desirable and expected to be true

that ε is a positive integer. However, under regular conditions, this usually is not
the case. As will be seen in Section 5, for the upper-tail p-values associated with
t or F statistics, ε usually is a fraction of 1. More generally, g(x) = g(0)(1 −
∑

γkx
εk

k )+o(
∑

xεk

k ) with εk > 0 possibly different. However, for simplicity, this
case will not be discussed.

Rewrite the region in (3.5) as {x ∈ [0, 1]K : g(x) ≥ g(0)(1 − u)}. For 0 <
u ≪ 1, the region is approximately {x ∈ [0, 1]K : γ′xε ≤ u}, suggesting that
the latter may be used in procedure (3.4) with reasonable power. In general, for
ν = (ν1, . . . , νK)′ with νk ≥ 0 and

∑

νk > 0, define Γu as

Γu(ν) = {x ∈ [0, 1]K : ν ′xε ≤ u}. (3.8)

Then by procedure (3.4), the following procedure obtains.

Control based on regions (3.8) Given FDR control parameter α ∈ (0, 1),

apply the BH procedure to si = h(ν ′ξε
i ; ν), where (3.9)

h(u; ν) = ℓ(Γu(ν)) =

∫ 1

0

· · ·
∫ 1

0

1
{

∑

νkx
ε
k ≤ u

}

dx. �

Procedure (3.9) is “scale invariant” in ν, i.e., the set of nulls rejected by using
Γu(cν) is the same for c > 0. If K = 1, then the procedure is simply the BH
procedure and the parameter ν = ν1 has no effect on its performance. However,
when K > 1, the power of procedure (3.9) depends on ν. To analyze the power,
denote

Vε =

∫ 1

0

· · ·
∫ 1

0

1
{

∑

xε
k ≤ 1

}

dx.

The next lemma will be used.



Z. Chi/FDR with multivariate p-values 377

Lemma 3.2. Given ν = (ν1, . . . , νK)′ with νk > 0, let ν̄ be the geometric mean
of νk, i.e., ν̄ = (ν1 · · · νK)1/K . Then for 0 < u ≤ minνk,

h(u; ν) = Vε

(u

ν̄

)K/ε

, (3.10)
∫

Γu(ν)

xε
k dx =

Vε

K + ε

ν̄

νk

(u

ν̄

)K/ε+1

, k = 1, . . . , K. (3.11)

Furthermore, as u ↓ 0,
∫

Γu(ν)

g = g(0)Vε

(

1 − u

K + ε

∑ γk

νk

)

(u

ν̄

)K/ε

+ o(uK/ε+1). (3.12)

3.4. Special cases

In most cases, h(u; ν) is complicated to evaluate. There are two cases that allow
tractable numerical evaluation of h(u; ν). The first case is K = 2. Suppose
ν2 ≥ ν1 > 0. For u ≥ ν1 + ν2, it is clear h(u; ν) = 1. For 0 < u < ν1 + ν2,

h(u; ν) =

[(

u− ν∗

ν∗

)

∨ 0

]1/ε

+
Γ(1/ε)2

2εΓ(2/ε)

(u

ν̄

)2/ε

(3.13)

×
[

F

(

ν∗
u

;
1

ε
, 1 +

1

ε

)

− F

(

1 − ν∗

u
;
1

ε
, 1 +

1

ε

)]

where ν∗ = min(ν1, ν2), ν
∗ = max(ν1, ν2) and F (x; a, b) is the Beta distribution

with parameters a and b. See Appendix A.1 for a proof of (3.13).
The second case is ν1 = · · · = νK and ε = 1, where h(u; ν) can be evaluated

by recursion. Due to scale invariance, let νk = 1. Then

hK(u) := h(u; 1, . . . , 1) =

∫ 1

0

· · ·
∫ 1

0

1
{

∑

xk ≤ u
}

dx

is piecewise polynomial, such that hK(u) = hK,⌊u⌋({u}), where ⌊u⌋ is the largest
integer no greater than u, {u} = u− ⌊u⌋, and

hK,i(t) := hK(t + i) =

K
∑

k=0

AK(i, k)tk, t ∈ [0, 1). (3.14)

Since hK,K(t) ≡ 1, hK,0(t) = tK/K! and, for i = 1, . . . , K − 1,

hK,i(t) =

∫ t

0

hK−1(t− x) dx+

∫ 1

t

hK−1(t− x) dx

=

∫ t

0

hK−1,i(t − x) dx+

∫ 1

t

hK−1,i−1(1 + t− x) dx

=

∫ t

0

hK−1,i(x) dx+

∫ 1

t

hK−1,i−1(x).
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It follows that for i = 1, . . . , K − 1 and k = 1, . . . , K,


















AK(0, 0) = · · · = AK(0, K − 1) = 0, AK (0, K) = 1/K!

AK(i, 0) =
∑K−1

k=0 AK−1(i− 1, k)/(k+ 1),

AK(i, k) = [AK−1(i, k − 1) −AK−1(i− 1, k− 1)]/k,

AK(K, 0) = 1, AK(K, k) = 0.

(3.15)

By h1(u) = u, the initial conditions are A1(0, 0) = 0, A1(0, 1) = 1. These
relations together with (3.14) can be used to compute hK(u).

4. Analysis of power

Recall that power = E[ R−V
(n−N)∨1

], with n the number of nulls and N that of true

nulls. As our focus is the case n≫ 1, we shall consider the limit Pow(α) of power
at pFDR level (1− a)α as n → ∞. In general, closed form formulas for Pow(α)
are not available. To get a handle on Pow(α), our approach is to look at how
fast it drops to 0 as α ↓ α∗, by approximating Pow(α) as a linear combination
of (α−α∗)a, a ∈ [0,∞), or for that matter, G(Dt) as a linear combination of ta,
with Dt a family of nested regions used by procedure (3.2). Thus, the analysis
is essentially a type of Taylor’s expansion, which can provide useful qualitative
information for comparing powers of different procedures.

Our analysis will only yield approximations of low orders. It remains to be
seen how high order approximations can be obtained. In order to apply the
results in section 3, we shall assume

g satisfies (3.6) and (3.7) such that ℓ(Γu) is continuous

where Γu is defined in (3.5).

4.1. Dependence on parameter values

For α close to α∗, the dependency of the power of procedure (3.9) on ν can be
characterized as follows.

Proposition 4.1. Fix νk > 0. Then for procedure (3.9), the minimum attain-
able pFDR is (1 − a)α∗ and

Pow(α) ∼ g(0)Vε

(

K + ε

aα2
∗g(0)

/

∑ ν̄γk

νk

)K/ε

(α− α∗)
K/ε as α ↓ α∗. (4.1)

Due to the scale invariance of procedure (3.9), let ν1 · · · νK = γ1 · · ·γK . Let
λk = γk/νk. Then

∑

ν̄γk/νk = γ̄
∑

λk, which is minimized under the con-
straint λ1 · · ·λK = 1 if and only if λk ≡ 1. It follows that as α ↓ α∗, Pow(α)
asymptotically is maximized if ν = γ and

sup
ν

Pow(α) ∼ g(0)Vε

[

1 + ε/K

aα2
∗g(0)γ̄

]K/ε

(α− α∗)
K/ε.



Z. Chi/FDR with multivariate p-values 379

Recall that procedure (3.2) based on the regions in (3.5) has the maximum
power for α > α∗ among procedures satisfying conditions (A) and (B). The next
result says that, at ν = γ, procedure (3.9) and this procedure are asymptotically
equivalent, i.e., as α ↓ α∗, they not only have about the same power, but also
reject about the same sets of nulls.

Proposition 4.2. For α > α∗, let Powo(α) be the limit of power of procedure
(3.2) based on (3.5), and Pow(α) that of procedure (3.9) with ν = γ. Then
Powo(α)/Pow(α) → 1, as α ↓ α∗.

Moreover, let Vo and Do be the sets of true nulls and false nulls, respectively,
that are rejected by the first procedure and V and D those by the second one.
Let rD(α) be the in-probability limit of |Do△D|/|Do ∩ D| and rV (α) that of
|Vo△V|/|Vo ∩ V| as n→ ∞. Then rD(α) → 0 and rV (α) → 0 as α ↓ α∗.

4.2. Other types of nested regions

In order to compare the power of procedure (3.9) and that of procedure (3.2)
based on other types of nested regions, the following comparison lemma will be
used, which says that if a nested family of regions can “round up” more false
nulls, then procedure (3.2) based on the regions has more power.

Lemma 4.1. Let {Dit}, i = 1, 2, be two families of Borel sets satisfying (3.1).
Suppose G(Dit) are continuous in t and there is T ∈ (0, 1), such that for 0 <
t ≤ T , G(D1t) < G(D2t). Given α ∈ (α∗, 1), for the procedure based on Dit,

let τi be defined as in (3.2). Assume that as n → ∞, τi
P→ t∗i ∈ (0, T ). Then

Pow1(α) < Pow2(α).

To start with, for Γu(ν) in (3.8), by (3.10), the regularization isDt = Γu(t)(ν)

with u(t) = ν̄(t/Vε)
ε/K if 0 < t ≪ 1. Then by (3.12),

G(Dt) = g(0)

[

1 − (t/Vε)
ε/K ν̄

K + ε

∑ γk

νk

]

t+ o(tε/K+1), as t→ 0. (4.2)

Example 4.1. A common rule is to reject a null if and only if z =
∏

ξk is small.
The rejection regions are Γ′

u = {x ∈ [0, 1]K :
∏

xk ≤ u}. We next show that
for α ≈ α∗, procedure (3.2) based on Γ′

u has strictly less power than procedure
(3.9) for any ν with ν1 · · ·νK > 0. Roughly, the reason is that, for u ≪ 1, most
of Γ′

u is spread around the boundary surfaces xk = 0 where the density of false
nulls is lower than that around 0.

First consider K = 2. By Example 3.1(b), the regularization of Γ′
u is D1t =

{(x, y) ∈ [0, 1]2 : xy ≤ h−1(t)} with h(u) = u(1 + lnu−1). Denote the reg-
ularization for Γu(ν) by D2t. As α ↓ α∗, t∗i → 0. Thus, by Lemma 4.1, in
order to compare the powers for α ≈ α∗, it is enough to compare G(D1t) and
G(D2t) for t ≪ 1. Recall

∫

Dit
dx dy = t. Fix ai ∈ (0, γi) and η > 0 such that
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g(x, y) < g(0)(1 − a1x
ε − a2y

ε) for x, y ∈ [0, η]. By G(D1t) =
∫

D1t
g,

G(D1t) ≤ g(0)





∫

D1t

dx dy−
∫

xy≤h−1(t)
0<x,y<η

(a1x
ε + a2y

ε) dx dy





= g(0)[t− (a1 + a2)η
εh−1(t)/ε] +O(h−1(t)1+ε) as t → 0.

By (4.2), G(D2t) = g(0)[t − Ct1+ε/2] + o(t1+ε/2) with C > 0 a constant.
Since h−1(t)/tε/2+1 → ∞ as t → 0, G(D1t) < G(D2t) for t ≪ 1. Thus by
Lemma 4.1, Pow1(α) < Pow2(α) for α ≈ α∗. Furthermore, the next result
implies Pow1(α) = o(Pow2(α)) as α ↓ α∗.

Proposition 4.3. Under the setup in Lemma 4.1, let D2t be the regularization
of the regions Γu(ν) in (3.8). If t∗1 → 0 as α→ α∗ and

D1t ↓ {0} and
g(0)t−G(D1t)

g(0)t−G(D2t)
→M ∈ [1,∞] as t→ 0,

then Pow1(α)/Pow2(α) → (1/M)K/ε as α ↓ α∗.

The case K > 2 can be treated likewise; see Appendix A.2.

Example 4.2. Normal quantile transformations of p-values have been used as a
convenient representation of data in multiple testing [9]. Denote Φ̄(x) = P (Z ≥
x) with Z ∼ N(0, 1). Let wk > 0, k = 1, . . . , K. Consider the rule that rejects a
null if any only if Q(ξ) =

∑

k wkΦ̄−1(ξk) is large. The corresponding rejection
regions are Γ′

u = {x ∈ [0, 1]K : Q(x) ≥ u}. As Φ̄(ξ) ∼ N(0, 1) for ξ ∼ Unif(0, 1),

ℓ(Γ′
u) = P

(

K
∑

k=1

wkΦ̄−1(ξk) ≥ u

)

ξi i.i.d. ∼ Unif(0, 1)

= P

(

K
∑

k=1

wkZk ≥ u

)

= Φ̄(u/w) Zi i.i.d. ∼ N(0, 1),

where w =
√
∑

k w
2
k. Then the regularization of Γ′

u is D1t = {x ∈ [0, 1]K :
Q(x) ≥ wΦ̄−1(t)}. In Appendix A.2, it is shown that

lim
t↓0

ln[g(0)t−G(D1t)]

ln t
≤ b :=

[

1 − ε

(1 + ε)K

]−1

. (4.3)

On the other hand, with D2t as in Example 4.1,

lim
t↓0

ln[g(0)t −G(D2t)]

ln t
= 1 + ε/K.

For K > 1, b < 1 + ε/K. As a result, g(0)t−G(D1t)
g(0)t−G(D2t)

→ ∞ as t ↓ 0. It then follows

from Proposition 4.3 that Pow1(α) = o(Pow2(α)) as α ↓ α∗.
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Example 4.3 (Nested rectangle regions). An easy way to get nested regions
is as follows. Let 0 ≤ fk(t) ≤ 1 be nondecreasing continuous functions on [0, 1],
such that

∏

fk(t) = t and fk(t) → 0 as t → 0. Let

D1t = [0, f1(t)] × · · · × [0, fK(t)] = {x ∈ [0, 1]K : f∗k (xk) ≤ t, all k}, (4.4)

where f∗k (x) = sup{u : fk(u) < x}. Now procedure (3.4) is the BH procedure
applied to si = J(ξi) := maxk f

∗
k (ξik). By Appendix A.2,

G(D1t) = g(0)

(

1 − 1

1 + ε

∑

γkfk(t)ε

)

t+ o
(

t
∑

fk(t)ε
)

as t ↓ 0. (4.5)

Among all fk with
∏

fk(t) ≡ t, (γ̄/γk)1/εt1/K minimize
∑

γkfk(t)ε. Thus the
maximum of G(D1t) is g(0)[1− γ̄Ktε/K/(1 + ε)]t+ o(t1+ε/K).

Let D2t be the regularization for Γu(ν). For K = 1, D1t = D2t. For K > 1,
by (4.2), G(D2t) is asymptotically maximized with value g(0)[1 − γ̄KLtε/K ]t
if ν = γ , where L = (1/Vε)

ε/K/(K + ε). By Appendix A.3, L < 1/(1 + ε) for
K ≥ 2. Thus, for α ≈ α∗, the maximum power of procedure (3.2) based on D1t

is strictly less than the one based on D2t. By Proposition 4.3,

Pow1(α)

Pow2(α)
→ 1

Vε

(

1 + ε

K + ε

)K/ε

∈ (0, 1), as α ↓ α∗.

Therefore, the power by using the rectangles is of the same order as that by
using Γu(ν), albeit lower.

Procedure (3.2) based on rectangles has some advantages, even though the
power is not maximum. First, rectangles are much easier to construct than the
regularization of Γu(ν). Second, for g satisfying (3.7), there is no need to know
ε. Indeed, it suffices to try fk(t) = ckt

1/K with
∏

ck = 1. By (3.4), the next
procedure obtains.

Control based on rectangles Given FDR control parameter α ∈ (0, 1),

apply the BH procedure to si =

[

max
k

ξik
ck

]K

, (4.6)

where ck > 0 satisfy c1 · · · cK = 1.
By Appendix A.2, for procedure (4.6),

Pow(α) ∼ g(0)

(

1 + ε

aα2
∗g(0)

/

∑

γkc
ε
k

)K/ε

(α− α∗)
K/ε as α ↓ α∗. (4.7)

In particular, if ck = (γ̄/γk)1/ε, the power is asymptotically maximized.
Now suppose ξik are upper-tail probabilities of test statistics Xik and fk(t) =

t1/K . Then procedure (4.6) rejects Hi if and only if pik ≤ τ1/K for all k, where τ
is random. If τ is small, then procedure (4.6) may be viewed as one that rejects
Hi with large mink Xik, which makes it seem unnatural as maxk Xik is more
often used in testing. However, it will be seen in Example 4.4 that procedures
based on maxk Xik in general cannot attain the same level of pFDR control as
procedure (4.6).
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4.3. Direct combination of test statistics

Procedure (3.9) requires p-values of test statistics. Oftentimes, procedures that
only use simple combinations of test statistics seem more desirable because
they do not have to evaluate p-values. However, as seen next, in many cases
such procedures cannot attain pFDR control levels as low as procedure (3.9),
and hence have strictly less power at low pFDR control levels.

We only consider test statistics Xi = (Xi1, . . . , XiK) with Xik being inde-
pendent under false Hi as well as under true Hi. Let Xik follow F0k under
true Hi and Fk under false Hi and suppose F0k and Fk have continuous den-
sities f0k and fk respectively, such that (0,∞) ⊂ sppt(fk) ⊂ sppt(f0k). Denote
rk(x) = fk(x)/f0k(x) with 0/0 set to 0, and suppose

rk(x) is strictly increasing on sppt(fk) but ρk := lim
x→∞

rk(x) <∞, (4.8)

i.e., for each Xik, larger values are stronger evidence against Hi, however,
the strength is bounded. Notice that, under (4.8), ρk >

∫

rk(x)f0k(x) dx =
∫

fk(x) dx = 1.
Let ξik be the upper-tail p-value of Xik. Then ξik = F 0k(Xik) = 1−F0k(Xik).

Under false Hi, ξik ∼ Gk(u) = 1 − Fk(F−1
0k (1 − u)) with density

gk(u) =
fk(φk(u))

f0k(φk(u))
, where φk(u) = F−1

0k (1 − u). (4.9)

Then ξi ∼ G(x) =
∏

Gk(xk) with density g(x) =
∏

gk(xk). By (4.8) and (4.9),
gk are strictly decreasing and gk(0) = ρk ∈ (1,∞). Then g(0) =

∏

ρk = sup g
and (3.6) is satisfied. If

gk(u) = gk(0)[1 − γku
ε + o(uε)], as u ↓ 0, k = 1, . . . , K, (4.10)

then g(x) satisfies (3.7) and so by Propositions 4.1, the minimum attainable
pFDR level for procedure (3.9) is (1−a)α∗, with α∗ = 1/(1−a+ag(0)). In the
following examples, we shall assume (4.10) holds.

Example 4.4. One common combination of Xik is Mi = maxk Xik. Under
true Hi, Mi ∼

∏

F0k and, under false Hi, Mi ∼
∏

Fk. By only using Mi, the
minimum attainable pFDR is (1 − a)/(1 − a+ aL), where

L = sup
x

∑

k fk(x)
∏

j 6=k Fj(x)
∑

k f0k(x)
∏

j 6=k F0j(x)
.

In Appendix A.2, it is shown that L < g(0). Thus (1−a)/(1−a+aL) > (1−a)α∗.
For procedures that reject Hi if and only if Mi is large enough, say, Mi ≥ T ,

where T ≫ 1 is a fixed threshold value, the minimum attainable pFDR can be
even higher. Indeed, now pFDR ≥ (1 − a)/(1 − a+ aL′), where

L′ = sup
x≥T

1 −∏k Fk(x)

1−∏k F0k(x)
= (1 + ηT ) sup

x≥T

∑

k F k(x)
∑

k F 0k(x)

≤ (1 + ηT )max
k
ρk, with ηT → 0 as T → ∞.
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Since maxk ρk can be much smaller than g(0) =
∏

k ρk, the minimum pFDR
can be significantly higher than (1 − a)α∗.

Example 4.5. Another common combination of Xik is Mi =
∑

k ckXik, where
ck > 0, such that Hi is rejected if and only if Mi is large enough. Without loss of
generality, let K = 2 and ck = 1. Suppose Xik ≥ 0, such that f0k(x) ∼ x−sk and
fk(x) ∼ ρkx

−sk as x → ∞ with sk > 1. Then g(0) = ρ1ρ2. Under true Hi, the
density of Mi is

∫ x

0 f01(t)f02(x−t) dt and, under falseHi, it is
∫ x

0 f1(t)f2(x−t) dt.
Then the minimum attainable pFDR by only using Mi is (1− a)/(1− a+ aL),
where

L = sup
x≥T

r(x), r(x) :=

∫ x

0
f1(t)f2(x− t) dt

∫ x

0 f01(t)f02(x− t) dt
,

with T > 0 a threshold value. In Appendix A.2, it is shown that L < g(0). As
a result, the minimum attainable pFDR is strictly greater than (1 − a)α∗.

The same conclusion holds if Mi is a weighted Lq-norm of X i with q > 0,
i.e., Mi = (

∑

k ckX
q
ik)1/q. To see this, let ck = 1. Under true Hi, X

q
ik ∼

G0k(x) = F0k(x
1/q), and under false Hi, X

q
ik ∼ Gk(x) = Fk(x1/q). Then

G′
0k(x) ∼ (1/q)x−tk and G′

k(x) ∼ (ρk/q)x
−tk , where tk = (sk − 1)/q + 1 > 1.

Then the argument for
∑

k Xik can be applied to G0k and Gk.

Example 4.6. Under the same conditions as in Example 4.5, assume further
that fk(x)/f0k(x) = ρk[1 −Dkx

−dk + o(x−dk)], with Dk 6= 0 and dk > 0. Note
that Dk > 0. It follows that as x1, . . . , xK → ∞,

∏ fk(xk)

f0k(xk)
=
[

1 − (1 + o(1))
∑

Dkx
−dk

k

]

×
∏

ρk.

Therefore, in order to attain pFDR = (1−a)α with α ≈ α∗, a null Hi should be
rejected if and only if vi :=

∑

DkX
−dk

ik is small. In particular, if dk = d, then

v
−1/d
i is a weighted L−d-norm of Xi and hence Hi is rejected if and only if the

norm is large.
Indeed, letting ξik be the upper p-value of Xik, by the derivations in next

section, vi =
∑

[1 + ok(ξik)]νkξ
εk

ik , where νk = Dk(sk − 1)εk , εk = dk/(sk − 1)
and ok(u) → 0 as u→ 0. Consequently, if εk ≡ ε, then the above procedure can
be formulated as one based on ξi, such that the associated rejection regions are
approximately Γu(ν) in (3.9) when contracting to 0. Provided the regulariza-
tions of the rejection regions are readily available, they can be used in procedure
(3.2) for FDR control as well, with approximately the same power as procedure
(3.9) as α ↓ α∗.

5. Examples of special distributions

We next show t and F distributions satisfy (3.6) and (3.7). To this end, some
general formulas are needed. Suppose X1, . . . , XK are test statistics that are
independent not only under true nulls but also under false nulls. Let F0k and
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f0k be the marginal distribution and density of Xk under a true null, and Fk

and fk those under a false null.
Suppose that, for some positive constants a, b, ck, dk and rk, 1 ≤ k ≤ K,

f0k(x) ∼ ackx
−a−1 (5.1)

fk(x)

f0k(x)
= rk − dkx

−b + o(x−b), as x → ∞. (5.2)

Then, as u ↓ 0, ψk(u) := F−1
0k (1 − u) ∼ (ck/u)

1/a. Let ξk be the upper-tail
p-value of Xk and gk(u) its density. By (4.9) and (5.2), as u ↓ 0,

gk(u) = rk − dkψk(u)−b + o(ψk(u)−b) = rk − c
−b/a
k dku

b/a + o(ub/a), (5.3)

implying gk(0) = rk. By independence, ξ has density g(u) =
∏

gk(uk) which
satisfies (3.6) and (3.7). Moreover, the parameters in (3.7) are

ε = b/a, g(0) = r1 · · · rK, γk = c−ε
k dk/rk. (5.4)

Note that for F0k = N(0, σ2) and Fk = N(µ, σ2), where µ > 0 and σ is
known, (5.3) does not hold, as sup gk = sup fk/f0k = ∞. For simplicity, we next
only consider K = 1 and omit the index k.

5.1. t distribution

Let F = tp,δ, the noncentral t distribution with p dfs and noncentrality param-
eter δ ≥ 0 and F0 = tp = tp,0. The density of tp,δ is

tp,δ(x) =
Ae−δ2/2

(p + x2)(p+1)/2

∞
∑

k=0

Ck(
√

2δ)k

(

x2

p+ x2

)k/2

,

where A =
pp/2Γ((p+ 1)/2)√

πΓ(p/2)
, Ck =

1

k!
Γ

(

p + 1 + k

2

)/

Γ

(

p+ 1

2

)

.

By C0 = 1, tp(x) = AC0(p + x2)−(p+1)/2 ∼ Ax−p−1 as x → ∞. Let z =

1 − x/
√

p+ x2. Then z ∼ (p/2)x−2 and

tp,δ(x)

tp(x)
= e−δ2/2

∞
∑

k=0

Ck(
√

2δ)k(1 − z)k

= e−δ2/2

[ ∞
∑

k=0

Ck(
√

2δ)k − p

2x2

∞
∑

k=1

kCk(
√

2δ)k

]

+ o(z).

Consequently, in (5.1) and (5.2), a = p, b = 2, c = A/p,

d =
e−δ2/2p

2

∞
∑

k=1

kCk(
√

2δ)k <∞, r = e−δ2/2
∞
∑

k=0

Ck(
√

2δ)k <∞.
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Then by (5.4),

ε =
b

a
=

2

p
, γ =

1

2

[

p
√
π Γ(p/2)

Γ((p + 1)/2)

]2/p ∞
∑

k=1

kCk(
√

2δ)k

/ ∞
∑

k=0

Ck(
√

2δ)k.

Clearly, for p > 2, ε is a fraction of 1.

5.2. F distribution

Let F = Fp,q,δ, the noncentral F distribution with (p, q) dfs and noncentrality
parameter δ ≥ 0 and F0 = Fp,q = Fp,q,0. Letting ρ = p/q and z = 1/(1 + ρx),
Fp,q,δ has density

fp,q,δ(x) =
e−δ/2

x
(1 − z)

p/2
zq/2

∞
∑

k=0

(δ/2)k(1 − z)k

k!B(p/2 + k, q/2)
,

where B(x, y) = Γ(x)Γ(y)/Γ(x + y). The density of Fp,q is fp,q(x) = fp,q,0(x).
As x→ ∞, z ∼ (1/ρ)x−1. It follows that

fp,q(x) =
1

B(p/2, q/2)x
(1 − z)p/2zq/2 ∼ ρ−q/2

B(p/2, q/2)
x−q/2−1,

fp,q,δ(x)

fp,q(x)
= e−δ/2

∞
∑

k=0

Cp,q,k

k!

(

δ

2

)k

(1 − z)k

= e−δ/2

[ ∞
∑

k=0

Cp,q,k

k!

(

δ

2

)k

− 1

ρx

∞
∑

k=1

Cp,q,k

(k − 1)!

(

δ

2

)k
]

+ o(z),

where Cp,q,k =
B(p/2, q/2)

B(p/2 + k, q/2)
.

Thus in (5.1) and (5.2),

a = q/2, b = 1, c =
2ρ−q/2

qB(p/2, q/2)
=

ρ−q/2

B(p/2, q/2 + 1)

d =
e−δ/2

ρ

∞
∑

k=1

Cp,q,k

(k − 1)!

(

δ

2

)k

<∞, r = e−δ/2
∞
∑

k=0

Cp,q,k

k!

(

δ

2

)k

<∞

and by (5.4), ε = b/a = 2/q,

γ =
[

B
(p

2
,
q

2
+ 1
)]2/q

∞
∑

k=1

Cp,q,k(δ/2)k

(k − 1)!

/ ∞
∑

k=0

Cp,q,k(δ/2)k

k!
.

Clearly, for q > 2, ε is a fraction of 1.
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6. Numerical study

We report a simulation study on the procedures described in previous sections.
The simulations are implemented in R language [17]. We focus on testing mean
vectors of multivariate normals with only partial knowledge about their vari-
ances. Model (2.1) is used to sample H1, . . . , Hn, such that Hi is “µi = 0
in N(µi,Σi)” and 1{Hi is true} ∼ Bernoulli(a) with a = .05 or .02, where
µi ∈ R

K . We mimic the situation where the only available information is 1)
under true Hi, Σi is diagonal and 2) under false Hi, all the coordinates of µi

are positive. Since Σi are not necessarily the same for different Hi and there is
no knowledge on their relations whatsoever, Σi cannot be estimated by pooling
the observations. Since Σi are unknown and the values of µi under false Hi are
also unknown, the tests have to rely on t-statistics. In the simulations, for each
Hi, an i.i.d. sample Xi1, . . . ,Xi,df+1 ∼ N(µi,Σi) is drawn and the test statistic
is computed as (Ti1, . . . , TiK)′, where Tik =

√
df + 1X̄ik/Sik, with X̄ik and Sik

the mean and standard deviation of the k-th coordinates of Xij. It follows that
for true Hi, Tik ∼ tn and for false Hi, Tik ∼ tdf,

√
df+1µik/σik

, where µik is the
k-th coordinate of µi and σik the k-th diagonal entry of Σi. The corresponding
p-value is ξi = (ξi1, . . . , ξiK)′, with ξik the marginal upper-tail p-values of Tik

under tn.

6.1. Bivariate p-values

In this part, we compare procedures (3.9) and (4.6). Throughout, K = 2 and
FDR control parameter α = .15. For true Hi, N(µi,Σi) = N(0, IK) and for
false Hi, N(µi,Σi) = N(µ,Σ(r)), where the diagonal entries of Σ(r) are equal
to 1 and off-diagonal entries equal to 2r/(1+r2). For r = 0, the coordinates of ξi

are independent under false Hi. To examine the effect of dependency between
the coordinates of ξi under false Hi, we also simulate with r = ±1/5. Each
simulation makes 2000 runs, each run tests 5000 nulls. The (p)FDR and power
are computed as Monte Carlo averages of the runs.

We conduct 3 groups of simulations, corresponding to (µ, n) = (.6, .2, 8),
(.5, .5, 8) and (2, 2, 2), respectively (Table 1). In each group, procedures (3.9)
and (4.6) are implemented for 6 pairs of a and Σ(r), with a = .05, .02 and
r = 0,±1/5. For the pairs with r = 0, α∗ = 1/[1− a+ ag(0)] is calculated using
(5.4) and the results in Section 5.1. The value of α∗ as well as those of ε = 2/n,

Table 1

Parameters of the simulations in Section 6.1. The values of α∗, γ and ε = 2/df are computed
for the case where the coordinates of p-value are independent

µ, df α∗, α∗1, α∗2 (a = .05, .02) γ ε

1 (.6, .2), 8 9.37 × 10−3, .18, .47 2.31× 10−2, .36, .69 (5.82, 3.51) 1/4

2 (.5, .5), 8 9.05 × 10−3, .30, .30 2.23× 10−2, .52, .52 (46.81, 46.81) 1/4

3 (2, 2), 2 2.88 × 10−2, .44, .44 6.90× 10−2, .67, .67 (27.69, 27.69) 1
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γ1 and γ2 are given in Table 1. As is seen, for all the pairs α = .15 > α∗, so
pFDR = (1 − a)α is attainable by the procedures. On the other hand, if only
the ith (i = 1, 2) coordinate of the p-value is used, pFDR = (1 − a)α is not
attainable because in this case the minimum attainable pFDR is (1−a)α∗i with
α∗i > .15.

For r = 0 and α ≈ α∗, by Proposition 4.1 and (4.7), procedures (3.9) and (4.6)
approximately reach their respective maximum power at pFDR level (1 − a)α

if νk = γk in (3.9) and ck = c
(0)
k := (γ̄/γk)1/ε in (4.6). To see how the powers

depend on νk and ck for α = .15, the procedures are tested with
{

ν = (ν1, ν2) = (sεγ1, γ2/s
ε) for procedure (3.9),

c = (c1, c2) = (sc
(0)
1 , c

(0)
2 /s) for procedure (4.6),

(6.1)

where s > 0 is a tuning parameter. The reason why sε instead of s is used for ν

will be seen later. For r = ±1/5, the procedures are tested with the same sets
of values ν and c as well. For groups 1 and 2, (3.13) is used to calculate h(u; ν)
for procedure (3.9). For group 3, as ε = 1, (3.15) is used.

The plots of power and (p)FDR vs log2 s are shown in Figures 1–3 and labeled
with “e” and “r” for procedures (3.9) and (4.6), respectively. The label “e” refers
to “ellipsoid”, due to the similarity of the nested regions in procedure (3.9) to
Euclidean ellipsoids. For most of the plots, a = .05. The results for a = .02 are
qualitatively the same, except that the power is lower and the pFDR is harder
to control. For illustration, Figure 1 includes the plots of power and (p)FDR for
(µ, df) = (.6, .2, 8), r = 0 and a = .02.

The results show that for α significantly greater than α∗, the power may still
exhibit patterns similar to that for α ≈ α∗. First, by Proposition 4.1 and (4.7),
for α ≈ α∗, the maximum power of procedure (3.9) is strictly greater than that
of (4.7). The left panels of Figures 1–3 show that this remains to be the case
for α = .15. Second, for ν and c as in (6.1), as α ≈ α∗, for both procedures,
the power is approximately proportional to (sε + 1/sε)−K/ε. As a result, the
power curves of the procedures should be approximately symmetric, decreasing
in | log2 s| and parallel to each other. This holds quite well for α = .15, except for
the plots for procedure (4.6) in Figure 1, which exhibit moderate asymmetry that
may be attributable to the unequal marginal distributions of the coordinates of
the p-values.

In (6.1), it is necessary to use sε to tune ν in order to get a power curve
parallel to the one for procedure (4.6). For t distributions with df > 2, ε <
1, suggesting that procedure (3.9) is more sensitive to the change in ν than
procedure (4.6) is to the change in c. However, since ε is known, as the results
show, the sensitivity is easy to address. For df = 2, ε = 1 and hence the power
of procedure (3.9) is uniformly greater than that of procedure (4.6) (Figure 3).

The results also demonstrate the difference between pFDR and FDR. In the
simulations, the FDR remains constant. However, as power decreases, the pFDR
increases, sometimes quite rapidly. Unless power is high enough, the pFDR is
strictly greater than the FDR. Note that this observation is made when the
number of tested nulls is 5000. In theory, if power is positive, then pFDR → FDR
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Fig 1. Power and (p)FDR vs log s for procedures (3.9) and (4.6): group 1 (cf. Section 6.1).
Rows 1-3, a = .05, r = 0,1/2,−1/2. Row 4, a = .02, r = 0.
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Fig 2. Power and (p)FDR vs log s for procedures (3.9) and (4.6): group 2 (cf. Section 6.1).
a = .05, r = 0,1/2,−1/2.

as the number of nulls tends to ∞. The observed discrepancy between the pFDR
and FDR is due to the fact that the number of nulls is not large enough for the
asymptotic to take effect.

Finally, as seen from Figures 1 and 2, statistical dependency between the
coordinates of the test statistics may have significant influence on power and
pFDR control. Nevertheless, the modality and symmetry of the power curves are
quite stable. Furthermore, the effects of correlations are not obvious in Figure
3, where ε = 1 and the joint distribution of the p-values is symmetric. This
apparent stability remains to be explained.
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Fig 3. Power and (p)FDR vs log s for procedures (3.9) and (4.6): group 3 (cf. Section 6.1).
a = .05, r = 0,1/2,−1/2.

6.2. Comparison with other procedures

In this part, we take K ≥ 2 and compare procedures (3.9) and (4.6) with the
methods in Examples 4.1, 4.4 and 4.5. The first method rejects Hi with small
∏

k ξik, the second one rejects Hi with large maxk Tik and the third one rejects
Hi with large

∑

k Tik. We refer to the methods as “by-product”, “by-max” and
“by-sum”, respectively.

The basic setup in this part is as follows. For true Hi, N(µi,Σi) = N(0, IK)
and for false Hi, N(µi,Σi) = N(µ,Σ(r)), where Σ(r) = [1+ (K − 1)r2]−1M ′M
with Mjk = 1 {j = k}+1 {j 6= k} r. The diagonal entries of Σ(r) are therefore 1.
As in Section 6.1, FDR control parameter α = .15, a = .05, .02 and r = 0,±1/5.
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Table 2

Parameters of the simulations in Section 6.2. The values of α∗, γ and ε are computed for the
case where the coordinates of p-values are independent.

µ, df α∗ (a = .05, .02) γ ε

1 (.5, .65, .8),4 8.58× 10−3 2.12× 10−2 (3.52,4.93,6.52) 1/2

2 (.6, .7, .8, .9,1),2 3.25× 10−3 8.09× 10−3 (4.47,5.48,6.57,7.76,9.04) 1

3 (.8, .8, .8, .8),2 1.76× 10−2 4.29× 10−2 (6.57,6.57,6.57,6.57) 1

4 (.6, .6, .6, .6),3 9.57× 10−3 2.36× 10−2 (4.27,4.27,4.27,4.27) 2/3

5 (2,2),2 2.88× 10−2 6.90× 10−2 (27.69,27.69) 1

6 (1.5,1.5),3 9.73× 10−3 2.40× 10−2 (16.16,16.16) 2/3

7 (2,3,2), 10 9.4 × 10−19 2.4 × 10−18 (39.91,82.27,39.91) 1/5

We conduct 7 groups of simulations with the values of (µ, n) given in Table 2.
Each simulation makes 3000 runs, each run tests 6000 nulls. The (p)FDR and
power are computed as Monte Carlo averages of the runs.

For K > 2, unless ε = 1, the evaluation of h(u; ν) in procedure (3.9) is rather
difficult. To get around this problem, by (3.10), we approximate the procedure
by replacing h(u; ν) with Vε(u/ν̄)

K/ε for all u ∈ [0, 1]. A more difficult issue is
how to compare the procedures and the methods. One idea is to compare their
powers at the same pFDR level (1−a)α. However, by Examples 4.1, 4.4 and 4.5,
for the values of (µ, df) in Table 2, except for the 7th one, no method attains
pFDR < α = .15. For this reason, we choose to examine the (p)FDR levels of
the methods when they have the same power as either procedure at pFDR level
(1 − a)α. The steps are as follows. Take the by-product method and procedure
(3.9) for example. Suppose the latter rejects D false nulls when applied to ξi.
If D > 0, then sort

∏

k ξik in increasing order, keep rejecting the sorted nulls,
starting from the first one, until D false nulls are rejected; if D = 0, then reject
no null. In this way, the number of rejected true nulls of the by-product method
is minimized while the number of rejected false nulls is the same as procedure
(3.9).

In each group, for each combination of a and Σ(r), procedures (3.9) and (4.6)
are simulated with νk = γk and ck = (γ̄/γk)1/ε, which are approximately the
parameter values yielding maximum power for α ≈ α∗. For each procedure,
the by-product, by-max and by-sum methods are compared to it in the way
described above. The results are reported in Tables 3–6. In groups 1–6, procedure
(3.9) has more power than (4.6), often with a large margin. In all the cases where
both procedures are able to control the pFDR around (1−a)α, the methods have
substantially higher FDR and pFDR when their powers are matched to that of
procedure (3.9) or (4.6). The results show that the methods either cannot control
the pFDR at the level of (1 − a)α (which is indeed the case) or, alternatively,
they can only control the pFDR with much lower power than procedures (3.9)
and (4.6).

Unlike groups 1–6, in group 7, each coordinate of the vector of t-statistics
provides strong evidence to identify false nulls. By only using the 1st or 3rd
coordinate, the minimum attainable pFDR is 2.4×10−5 for a = .05 and 6×10−5
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Table 3

Simulation results for groups 1 and 2 described in Section 6.2. In each group, the results are
organized according to r = 0,1/5,−1/5. The numbers in the rows for the “by-product”
method are its FDR and pFDR as its power is pegged to procedure (3.9) or (4.6). The

numbers in the rows for the “by-sum” and “by-max” methods are likewise.

a = .05 a = .02

Group 1 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .223 .155 7.70× 10−2 5.49× 10−2

FDR, pFDR .141, .141 .142, .142 .150, .160 .144, .162

By-product .250, .250 .204, .204 .250, .268 .212, .241

By-sum .307, .307 .283, .283 .415, .444 .383, .435

By-max .654, .654 .633, .633 .718, .768 .660, .749

Power .351 .316 .210 .181

FDR, pFDR .142, .142 .142, .142 .148, .148 .147, .148

By-product .297, .297 .264, .264 .327, .327 .289, .289

By-sum .333, .333 .310, .310 .447, .447 .427, .428

By-max .721, .721 .709, .709 .836, .836 .826, .827

Power 4.61 × 10−2 3.12× 10−2 1.10× 10−2 9.28× 10−3

FDR, pFDR .143, .156 .148, .165 .141, .261 .150, .291

By-product .194, .213 .174, .197 .114, .230 .114, .250

By-sum .296, .326 .284, .321 .217, .440 .204, .447

By-max .512, .564 .485, .548 .327, .663 .299, .654

Group 2 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .486 .329 .268 .173

FDR, pFDR .142, .142 .143, .143 .147, .147 .147, .148

By-product .337, .337 .242, .242 .395, .396 .313, .313

By-sum .538, .538 .520, .520 .734, .734 .737, .739

By-max .809, .809 .792, .792 .902, .902 .892, .894

Power .580 .539 .457 .412

FDR, pFDR .142, .142 .142, .142 .146, .146 .147, .147

By-product .441, .441 .389, .389 .510, .510 .447, .447

By-sum .588, .588 .567, .567 .744, .744 .731, .731

By-max .852, .852 .845, .845 .926, .926 .923, .923

Power .316 .138 3.91× 10−2 2.78× 10−2

FDR, pFDR .143, .143 .142, .143 .150, .198 .145, .201

By-product .291, .291 .221, .223 .211, .287 .189, .272

By-sum .546, .546 .568, .572 .558, .759 .523, .752

By-max .785, .785 .763, .767 .620, .845 .578, .830

for a = .02, and by only using the 2nd coordinate, the value is even lower.
As Table 6 shows, procedures (3.9) and (4.6) identify all the false nulls. Since
almost all the p-values of false nulls are smaller than those of true nulls, due
to how the by-product method is implemented, it rejects very few true nulls
and hence has near-zero (p)FDR. The same is true for the other two methods.
The pFDR of procedure (3.9) is significantly lower than (1 − a)α, because the
approximation we use for h(u; ν), i.e. Vε(u/ν̄)

K/ε, is strictly greater than h(u; ν)
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Table 4

Simulation results for groups 3 and 4 described in Section 6.2.

a = .05 a = .02

Group 3 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .272 .197 9.15 × 10−2 6.76× 10−2

FDR, pFDR .142, .142 .143, .143 .150, .158 .149, .162

By-product .328, .328 .279, .279 .344, .363 .303, .330

By-sum .570, .570 .572, .572 .733, .775 .713, .776

By-max .789, .789 .781, .781 .833, .880 .802, .873

Power .444 .409 .291 .257

FDR, pFDR .142, .142 .142, .142 .149, .149 .150, .150

By-product .404, .404 .368, .368 .455, .455 .416, .416

By-sum .584, .584 .573, .573 .749, .749 .745, .745

By-max .829, .829 .824, .824 .913, .913 .910, .910

Power 4.89 × 10−2 3.57 × 10−2 1.22 × 10−2 1.01× 10−2

FDR, pFDR .145, .158 .143, .160 .151, .268 .151, .284

By-product .234, .256 .215, .243 .158, .308 .151, .321

By-sum .574, .628 .558, .629 .388, .757 .357, .759

By-max .680, .744 .651, .733 .417, .813 .381, .809

Group 4 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .170 .105 5.69 × 10−2 3.75× 10−2

FDR, pFDR .142, .142 .144, .144 .145, .161 .144, .170

By-product .285, .285 .227, .228 .282, .316 .232, .279

By-sum .440, .441 .433, .434 .571, .639 .524, .629

By-max .761, .761 .746, .747 .763, .854 .693, .832

Power .357 .322 .240 .207

FDR, pFDR .142, .142 .143, .143 .147, .147 .147, .147

By-product .363, .363 .320, .320 .411, .411 .358, .358

By-sum .456, .456 .433, .433 .612, .612 .594, .594

By-max .820, .820 .812, .812 .907, .907 .903, .903

Power 4.26 × 10−3 4.02 × 10−3 2.36 × 10−3 2.21× 10−3

FDR, pFDR .145, .294 .149, .300 .149, .492 .160, .530

By-product .102, .231 .105, .239 5.58 × 10−2, .278 6.30× 10−2, .335

By-sum .217, .492 .217, .496 .119, .594 .119, .635

By-max .273, .618 .272, .621 .143, .712 .139, .737

when u > minνk and hence inflates si in (3.9). This causes the BH procedure
to reject more nulls with si not very close to 0. As these nulls are exclusively
true nulls, the resulting (p)FDR is lower.

Finally, in order to see how procedures (3.9) and (4.6) perform when the
parameters ν and c are not set to their respective asymptotically optimal values,
we simulate groups 1 and 2 again, with ν = c = (1, 1, . . . , 1). As Table 7 shows,
across the simulations, for each procedure, the power is lower than in Table 3
but not dramatically while the (p)FDR is quite stable. The (p)FDR levels of
the other 3 methods tend to be lower than in Table 3. As in group 7, this can
be explained by how the methods are implemented.
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Table 5

Simulation results for groups 5 and 6 described in Section 6.2.

a = .05 a = .02

Group 5 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .772 .733 .372 .342

FDR, pFDR .143, .143 .143, .143 .149, .149 .148, .148

By-product .267, .267 .246, .246 .280, .281 .271, .271

By-sum .387, .387 .373, .373 .529, .530 .527, .528

By-max .585, .585 .570, .570 .697, .698 .691, .692

Power .773 .755 .432 .411

FDR, pFDR .142, .142 .143, .143 .149, .149 .148, .148

By-product .283, .283 .272, .272 .295, .295 .288, .288

By-sum .403, .403 .395, .395 .535, .536 .532, .533

By-max .607, .607 .599, .599 .716, .717 .712, .712

Power .767 .731 .369 .344

FDR, pFDR .142, .142 .142, .142 .147, .148 .148, .149

By-product .266, .266 .247, .247 .281, .282 .272, .273

By-sum .386, .386 .374, .374 .529, .532 .527, .529

By-max .584, .584 .570, .570 .697, .700 .691, .695

Group 6 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .776 .722 .497 .447

FDR, pFDR .143, .143 .143, .143 .146, .146 .147, .147

By-product .239, .239 .207, .207 .259, .259 .237, .237

By-sum .295, .295 .269, .269 .391, .391 .377, .377

By-max .540, .540 .513, .513 .654, .654 .639, .639

Power .771 .747 .538 .510

FDR, pFDR .142, .142 .142, .142 .148, .148 .149, .149

By-product .258, .258 .240, .240 .278, .278 .263, .263

By-sum .315, .315 .301, .301 .410, .410 .399, .399

By-max .571, .571 .557, .557 .685, .685 .676, .676

Power .773 .711 .476 .425

FDR, pFDR .143, .143 .143, .143 .148, .148 .148, .148

By-product .233, .233 .200, .200 .257, .257 .235, .235

By-sum .288, .288 .262, .262 .388, .388 .375, .375

By-max .530, .530 .501, .501 .646, .646 .631, .631

7. Discussion

7.1. Role of p-values

We have followed the tradition of using p-values for hypothesis testing. The
general procedure in the work, i.e., (3.2), utilizes the fact that the p-value of a
continuous multivariate statistic can be defined in such a way that its coordi-
nates are i.i.d. ∼ Unif(0, 1). The interpretation of p-value as a measure on how
“rare” or “suspi0cious” an observation looks is irrelevant, even though in many
cases smaller p-values are indeed more likely to be associated with false nulls.
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Table 6

Simulation results for group 7 described in Section 6.2. “–” means value equal to the
nonmissing value in the same row.

a = .05 a = .02

Group 7 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power 1 1 1 1

FDR, pFDR .103, .103 .142, .142 .118, .118 .146, .146

By-product 0, – –, – 0, – –, –

By-sum 1.2 × 10−6, – –, – 5.0 × 10−6, – –, –

By-max 3.1 × 10−3, – –, – 5.4 × 10−3, – –, –

Power 1 1

FDR, pFDR .103, .103 .143, .143 .118, .118 .148, .148

By-product 1.2 × 10−6, – –, – 0, – –, –

By-sum 3.6 × 10−6, – –, – 1.3 × 10−5, – –, –

By-max 5.7 × 10−3, – –, – 9.6 × 10−3, – –, –

Power 1 1 1 1

FDR, pFDR .103, .103 .143, .143 .119, .119 .148, .148

By-product 0, – –, – 0, – –, –

By-sum 0, – –, – 2.7 × 10−6, – –, –

By-max 2.9 × 10−3, – –, – 4.9 × 10−3, – –, –

Thus, in this work, p-values serve as a mechanism to “flatten” the probability
landscape of true nulls and hence facilitates exploring subtle differences between
true and false nulls.

Since what essentially matters to procedure (3.2) is nested events with specific
probabilities, it can be easily modified to directly handle test statistics instead
of their p-values. Indeed, in (3.2), Dt ∈ [0, 1]K can be replaced with nested Et in
the domain of the test statistics, such that P (Et) = t under true nulls. Analysis
on the power of the modification might yield some useful insight. For example,
weighted L2 norms are commonly used as criterion for acceptance/rejection.
However, as shown in Examples 4.5 and 4.6, in more challenging cases, one may
need to consider Lp norms with p < 0. On the other hand, the modification does
not simplify the testing problem, as probabilities still have to be evaluated.
Nevertheless, as remarked next, the notion of using nested regions in spaces
other than [0, 1]K is useful.

7.2. Incorporating discrete components

Often times, test statistics have nontrivial discrete components. For example,
test statistics for different nulls may have different dimensions or degrees of
freedom. In this case, the discrete component may be expressed as a scalar.
However, if the test statistics are multivariate but only partially observed, then
the discrete component in general have to be set-valued accounting for observed
coordinates. Procedure (3.2) can be modified as follows. Suppose Z is the dis-
crete component of test statistic T such that for any z, the conditional dis-
tribution of T given Z = z has a density and is K(z) dimensional. Then, in
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Table 7

Simulation results for groups 1 and 2. The setting is similar to that in Table 3, except that ν

in (3.9) and c in (4.6) are set equal to (1,1, . . . , 1) instead of according to γ.

a = .05 a = .02

Group 1 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .206 .138 6.94× 10−2 4.88× 10−2

FDR, pFDR .143, .143 .143, .143 .146, .159 .144, .163

By-product .240, .240 .191, .191 .236, .257 .203, .231

By-sum .302, .302 .278, .278 .405, .441 .378, .430

By-max .650, .650 .626, .627 .700, .762 .657, .746

Power .340 .293 .199 .166

FDR, pFDR .143, .143 .143, .143 .147, .147 .146, .146

By-product .286, .286 .242, .242 .315, .315 .271, .272

By-sum .326, .326 .296, .296 .443, .443 .419, .420

By-max .717, .717 .701, .701 .835, .835 .823, .824

Power 3.78 × 10−2 2.55× 10−2 1.06× 10−2 8.55× 10−3

FDR, pFDR .140, .155 .142, .166 .146, .279 .144, .289

By-product .175, .196 .154, .182 .107, .227 .108, .247

By-sum .284, .318 .267, .316 .210, .446 .196, .448

By-max .495, .554 .453, .537 .313, .666 .286, .654

Group 2 Proc. (3.9) Proc. (4.6) Proc. (3.9) Proc. (4.6)

Power .458 .300 .248 .155

FDR, pFDR .142, .142 .142, .142 .147, .147 .148, .148

By-product .317, .317 .226, .226 .378, .378 .296, .297

By-sum .533, .533 .519, .519 .734, .734 .739, .741

By-max .806, .806 .788, .788 .901, .901 .889, .892

Power .562 .508 .441 .388

FDR, pFDR .142, .142 .142, .142 .145, .145 .145, .145

By-product .420, .420 .353, .353 .483, .483 .412, .412

By-sum .581, .581 .554, .554 .738, .738 .723, .723

By-max .850, .850 .840, .840 .925, .925 .920, .920

Power .251 .112 3.34× 10−2 2.35× 10−2

FDR, pFDR .141, .141 .141, .142 .149, .204 .146, .212

By-product .266, .266 .207, .209 .200, .281 .176, .264

By-sum .551, .552 .574, .580 .537, .755 .500, .754

By-max .778, .780 .757, .765 .595, .838 .550, .829

(3.2), redefine Dt as a nested subsets in the disjoint union of [0, 1]K(z), such
that

∑

z ℓ(Dt ∩ [0, 1]K(z))pz = t, where pz is the probability of Z = z under true
nulls. The analysis in previous sections still works and requires no substantial
extra changes.

An apparently simpler alternative is to conduct separate tests on statistics
with different values of the discrete components. This alternative fails to take
into account the distribution of the discrete components and hence may have
lower power.
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7.3. Power optimization

When the distribution under false nulls is only partially known, it can be a
difficult issue how to attain maximum power. To see this better, consider testing
the null “µ = 0” for N(µ, I) based on a single observation X . As the variance
is known to be I, the most powerful test statistic would be ν ′X, provided that
the true value ν of µ under false nulls is known. However, when ν is unknown,
unless there is strong evidence on its whereabouts, one has to search in a large
region of µ to improve the power, which becomes more difficult as the dimension
of ν gets higher.

One way to improve power is to restrict the search to parametric families
of nested regions. This is the approach taken in Section 3.3. If the parameter
involved is of high dimension, some type of stochastic optimization [19] may be
needed. On the other hand, regions that attain maximum power may consist of
several disconnected regions, which makes it difficult to use a single parametric
family of nested regions to approximate them. An alternative way therefore is
to try different families of nested regions at different locations in the domain of
p-values and combine the results appropriately [7].

Appendix

In this section, we shall denote I = [0, 1]K.

A.1. Theoretical details for Section 3

Proof of Proposition 3.1. Since D0 = ∅ and D1 = I, it suffices to show that Dt,
t ∈ (0, 1) satisfy (3.1). Observe that h−1 is continuous and strictly increasing
on (0, 1). Then, as Γu is right-continuous, Dt is right-continuous. It is clear that
Dt is increasing and ℓ(Dt) = ℓ(Γh∗(t)) = h(h∗(t)) = t.

Proof of Lemma 3.1. 1) The following “sandwiched convergence” is needed: if
0 ≤ an(x) ≤ bn(x) such that an(x) → a(x), bn(x) → b(x) a.e. and

∫

bn →
∫

b <
∞, then

∫

an →
∫

a. For each k, denote by g(x1, . . . , xk)

∫ xk

−∞
fk(x1, . . . , xk−1, z) dz =

∫

fk(x1, . . . , xk−1, z)1 {z ≤ xk} dz.

The function in the second integral is dominated by fk(x1, . . . , xk−1, z). If (x1

,. . . , xk) → (y1, . . . , yk), then, by the continuity of fk and fk−1,

fk(x1, . . . , xk−1, z)1 {z ≤ xk} → fk(y1, . . . , yk−1, z)1 {z ≤ yk} , for z 6= yk

fk(x1, . . . , xk−1, z) → fk(y1, . . . , yk−1, z),
∫

fk(x1, . . . , xk−1, z) dz = fk−1(x1, . . . , xk−1) →
∫

fk(y1, . . . , yk−1, z) dz.
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By the sandwiched convergence, g(x1, . . . , xk) → g(y1 , . . . , yk). Thus, g is con-
tinuous. As φk(x) = g(x1, . . . , xk)/fk−1(x1, . . . , xk−1) for x ∈ sppt(q0), φk(x)
is continuous in sppt(q0). Therefore, φ ∈ C(sppt(q0)).

Let x, y ∈ sppt(q0). Suppose x 6= y such that xi = yi for i < k and xk < yk.
Then φk(x) ≤ φk(y). Assume equality holds. Then

0 = [φk(y) − φk(x)]fk−1(x1, . . . , xk−1)

=

∫

· · ·
∫ ∫ yk

xk

q0(x1, . . . , xk−1, z, uk+1, . . . , uK) dz duk+1 · · ·duK .

Since q0 is continuous, the above formula implies q0(x1, . . . , xk−1, z, uk+1, . . . ,
uK) = 0 for z ∈ [xk, yk] and uk+1, . . . , uK ∈ R, in particular, q0(x) = q0(y) = 0.
The contradiction implies φk(x) < φk(y) and so φ(x) 6= φ(y).

2) Let X ∼ Q0. Then P (X ∈ sppt(q0)) = 1. Since φ ∈ C(sppt(q0)), ξ =
φ(X) is a well-defined random variable. For x ∈ sppt(q0), by 1), conditional on
Xi = xi, i < k, Xk has a continuous distribution and hence ξk ∼ Unif(0, 1).
Since the conditional distribution of ξk is the same regardless of x1, . . . , xk−1,
ξk is independent of X1, . . . , Xk−1 and thus independent of ξ1, . . . , ξk−1. This
gives ξ ∼ Unif(I).

3) Let X ∼ Q1. As in 2), ξ = φ(X) is a well-defined random variable. Denote
r = q1/q0. For t ∈ R

K ,

E[eit′ξ] = EQ0

[

eit′ξ r(X)
]

= EQ0

[

eit′ξ r(φ−1(ξ))
]

,

where the first equality holds since sppt(q1) ⊂ sppt(q0) and r(X) is a well-
defined random variable due to r ∈ C(sppt(q0)). Since φ is 1-to-1 and continuous
on sppt(q0), E := φ(sppt(q0)) is open and φ−1 ∈ C(E) [15]. As ℓ(I\E) = Q0(ξ 6∈
E) = 0, r(φ−1(x)) is Borel measurable on I and by 2), the last expectation
equals

∫

I e
it′ur(φ−1(u)) du. Thus, the characteristic function of ξ under Q1 is

the same as that of a random variable with density r(φ−1(u)), u ∈ I. Since
r(φ−1(u)) ∈ C(E), this proves 3).

To show Proposition 3.2, we need a few preliminary results. Recall pi =
h(g(ξi)).

Lemma A.1.1. Let h be continuous. Then 1) pi ≤ t ⇐⇒ ξi ∈ Dt and 2) under
the assumptions of Lemma 3.1,

P (pi ≤ t) =

{

t if Hi is true

G(Dt) if Hi is false
, t ∈ [0, 1],

and G(Dt) is strictly concave.

Proof. It can be seen that pi is a well-defined random variable and for t ∈ [0, 1],
h(h∗(t)) = t. Then pi ≤ t ⇐⇒ g(ξi) ≥ h∗(t) ⇐⇒ ξi ∈ Dt. Under true Hi,
P (pi ≤ t) = ℓ(Dt) = t. Under false Hi, P (pi ≤ t) =

∫

Dt
g = G(Dt). Given
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0 ≤ t1 < t2 < t3 ≤ 1, let uk = h∗(tk). By the continuity of h, tk = h(uk) and
u1 > u2 > u3. As Dtk = Γuk ,

rk :=
G(Dtk+1

) −G(Dtk)

tk+1 − tk
=

1

h(uk+1) − h(uk)

∫

Γuk+1
\Γuk

g(x) dx.

Since h(uk) = ℓ(Γuk) and g(x) ∈ (uk+1, uk] on Γuk+1
\Γuk , uk+1 < rk ≤ uk. As

a result, r1 > r2. Therefore, the distribution of pi is strictly concave.

Lemma A.1.2. Let η1, . . . , ηn be independent Bernoulli random variables such
that pi = P (ηi = 1) are decreasing. Let S = η1 + · · ·+ ηn. Then E[ηi/(S ∨ 1)] is
decreasing.

Proof. Let i < j. Then ηi, ηj and X = S − ηi − ηj are independent, giving

E
[ ηi

S ∨ 1

]

= piE

[

1

1 + ηj +X

]

, E
[ ηj

S ∨ 1

]

= pjE

[

1

1 + ηi +X

]

.

Since pi ≥ pj , (1+ηj +X)−1 stochastically dominates (1+ηi+X)−1 . Therefore,
piE[(1 + ηj +X)−1] ≥ pjE[(1 + ηi +X)−1].

Lemma A.1.3. Let sn, η1, . . . , ηn ∈ [0, 1] be jointly distributed, such that sn
P→

s ∈ [0, 1] as n → ∞ and ηi are i.i.d. ∼ F . Let Fn be the empirical distribution

of η1, . . . , ηn. If F is continuous and strictly increasing on [0, 1], then F ∗
n(sn)

P→
F ∗(s).

Proof. Recall sup |Fn − F | P→ 0. Let xn = F ∗
n(sn) and x = F ∗(s). Since F is

continuous, s = F (x). Suppose x ∈ (0, 1). Given ǫ ∈ (0, x), by Fn(xn − ǫ) < sn,

{xn > x + 2ǫ} ⊂ {sn > Fn(x + ǫ)}. By sn
P→ s = F (x) and Fn(x + ǫ)

P→
F (x + ǫ) > F (x), P ({xn > x+ 2ǫ}) → 0. On the other hand, {xn < x− ǫ} ⊂
{sn ≤ Fn(x − ǫ)}. By Fn(x − ǫ)

P→ F (x − ǫ) < F (x), P ({xn < x − ǫ}) → 0.

Therefore, xn
P→ 0. The case where x = 0 or 1 is similarly proved.

Proof of Proposition 3.2. First, since h ∈ C is decreasing, ∩s>tDs = ∩s>tΓh∗(s) =
∩s>t{g(x) ≥ h∗(s)} = ∩s>t{h(g(x)) ≤ s} = {h(g(x)) ≤ t} = {g(x) ≥
h∗(t)} = Dt, proving the right-continuity of Dt. By the continuity of h, ℓ(Dt) =
ℓ(Γh∗(t)) = h(h∗(t)) = t. The rest of (3.1) is easy to check.

Denote by N the number of true nulls, and for any given procedure, denote
by R and V the numbers of rejected nulls and rejected true nulls, respectively.
We shall show i) procedure (3.2) with Dt satisfies conditions (A) and (B) and
attains FDR = (1−a)α; ii) the search for procedures with maximum power can
be restricted to those that reject and only reject nulls with largest g(ξi); and
iii) for such a procedure, R/n converges in probability to a nonrandom number.
From these results, the proof will follow without much difficulty.
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i) By Lemma A.1.1 1), procedure (3.2) with Dt = Γh∗(t) is the same as the BH
procedure applied to p1, . . . , pn. Therefore, statement 1) holds and FDR = (1−
a)α [2, 22]. Since the set of rejected nulls is uniquely determined by ξ1, . . . , ξn,
the procedure satisfies condition (A).

Recall α∗ = 1/(1−a+a sup g). By Lemma A.1.1 2), F (t) = (1−a)t+aG(Dt)
is strictly concave. Then

α∗ = lim
u→sup g

1

1 − a+ aG(Γu)/ℓ(Γu)
=

1

F ′(0)
.

For α ∈ (α∗, 1), t/α = F (t) has a unique positive solution t∗ ∈ (0, 1). Since

pi are i.i.d. ∼ F , by [12], for τ in (3.2), τ
P→ t∗ as n → ∞ and procedure (3.2)

asymptotically has the same power as the one that rejects Hi with pi ≤ t∗. By

the law of large numbers, R/n
P→ F (t∗). On the other hand, for α < α∗, by [7],

R/n
P→ 0. In either case, condition (B) is satisfied.

ii) Given ξ1, . . . , ξn, θ1, . . . , θn are independent Bernoulli variables with

ri := P (θi = 1 | ξ1, . . . , ξn) =
ag(ξi)

1 − a + ag(ξi)
.

Sort ri into r(1) ≥ r(2) ≥ . . . ≥ r(n). Let δ be a procedure satisfying condi-
tion (A). Then R =

∑n
i=1 δi and V =

∑n
i=1(1 − θi)δi. By condition (A), θi is

conditionally independent of (δi, R) given ξ1, . . . , ξn. Then

E[V | ξ1, . . . , ξn, R] =

n
∑

i=1

E[(1− θi)δi | ξ1, . . . , ξn, R]

=

n
∑

i=1

(1 − ri)E[δi | ξ1, . . . , ξn, R] ≥
R
∑

i=1

(1 − r(i)),

where the last inequality is due to R =
∑n

i=1 δi. Then

FDR = E

[

E[V | ξ1, . . . , ξn, R]

R ∨ 1

]

≥ E

[

1

R ∨ 1

R
∑

i=1

(1 − r(i))

]

with equality being true if rejected nulls are exactly those with the R largest ri.
On the other hand, since N =

∑n
i=1 θi, by Lemma A.1.2,

E

[

R− V

N ∨ 1
ξ1, . . . , ξn, R

]

=
n
∑

i=1

E

[

θiδi
N ∨ 1

ξ1, . . . , ξn, R

]

=

n
∑

i=1

E

[

θi

N ∨ 1
ξ1, . . . , ξn

]

E [δi | ξ1, . . . , ξn, R]

≤
R
∑

i=1

E

[

θ(i)

N ∨ 1
ξ1, . . . , ξn

]
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where θ(i) corresponds to the null with the ith largest ri. Then

power ≤ E

[

R
∑

i=1

E

[

θ(i)

N ∨ 1
ξ1, . . . , ξn

]

]

.

Note that ri ≥ rj ⇐⇒ g(ξi) ≥ g(ξj) ⇐⇒ pi ≤ pj. Construct procedure δ′

which first applies δ and then, provided δ rejects R nulls, rejects nulls with the
R smallest pi instead. It follows that 1) if δ has FDR ≤ (1 − a)α, then so does
δ′; 2) δ′ is at least as powerful as δ; 3) if δ satisfies condition (A), then, as the
second step of δ′ is uniquely determined by ξ1, . . . , ξn, δ′ satisfies condition (A)
as well; and 4) since δ and δ′ reject the same number of nulls, if one satisfied
condition (B), the other does as well.

iii) Let δ satisfy conditions (A), (B) and attain maximum power asymptot-
ically while having FDR ≤ (1 − a)α. As n → ∞, the empirical distribution
of ξ1, . . . , ξn converges to the distribution that has density 1 − a + ag(x). By

condition (B), R/n
P→ some t∗ ∈ [0, 1]. Let Fn be the empirical distribution

of pi. Then Fn
P→ F . Since F is strictly concave and continuous, F is strictly

increasing. By Lemma A.1.3, F ∗
n(R/n)

P→ F ∗(s). Since δ rejects and only rejects
nulls with pi ≤ F ∗

n(R/n), δ is asymptotically equivalent to a procedure which
rejects and only rejects nulls with pi ≤ t∗ = F ∗(s). If t∗ > 0, by the law of large
numbers and dominate convergence, as n→ ∞,

FDR = (1 + o(1))E

[

#{i : pi ≤ t∗, θi = 0}
#{i : pi ≤ t∗} ∨ 1

]

→ (1 − a)t∗
F (t∗)

,

power = (1 + o(1))E

[

#{i : pi ≤ t∗, θi = 1}
#{i : θi ≤ t∗} ∨ 1

]

→ G(Dt∗).

In order to attain maximum power while maintaining FDR ≤ (1 − a)α, t∗ has
to be the largest value of t satisfying t/F (t) ≤ α. It is easy to see that for
α ∈ (α∗, 1), t∗ is the unique positive solution of t/α = F (t). Combined with
part i) of the proof, this shows procedure (3.2) with Dt = Γh∗(t) can be taken
as δ. Furthermore, in this case, power → G(Dt∗) > 0 and since P (R > 0) → 1,
pFDR = (1 + o(1))FDR → (1 − a)α. Thus 2) is proved.

On the other hand, for α < α∗, no t > 0 satisfies t/F (t) ≤ α. As a result, t∗ =
0. Thus, the power of δ is asymptotically 0 and procedure (3.2) with Dt again
can be taken as δ. Furthermore, by [7], the procedure has pFDR → (1 − a)α∗.
This proves 3).

Proof of Lemma 3.2. By change of variable xk = (u/νk)1/εzk, for 0 < u ≤
minνk,

h(u; ν) =

∫

I

1 {ν ′xε ≤ u} dx =

∫

I

1
{

∑

zε
k ≤ 1

}

∏

(

u

νk

)1/ε

dz,
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which yields (3.10). Likewise,

∫

I

xε
k1 {ν ′xε ≤ u} dx =

ν̄

νk

(u

ν̄

)K/ε+1
∫

I

zε
k1
{

∑

zε
k ≤ 1

}

dz.

By symmetry,

∫

I

zε
k1
{

∑

zε
k ≤ 1

}

dz =
1

K

∫

I

(

∑

zε
k

)

1
{

∑

zε
k ≤ 1

}

dz.

By Vε(u) := ℓ({z ∈ R
K : zk ≥ 0,

∑

zε
k ≤ u}) = Vεu

K/ε and change of measure,

the right hand side equals (1/K)
∫ 1

0 t dVε(t) = Vε/(K+ ε). It is then easy to get
(3.11). Finally, by (3.7),

∫

Γu(ν)

g = g(0)

(

h(u; ν) −
∑

γk

∫

Γu(ν)

xε
k dx

)

+ g(0)

∫

Γu(ν)

r.

As u → 0, supΓu(ν) |x| → 0, implying r(x)/|x|ε → 0 uniformly on Γu(ν), and

by (3.11),
∫

Γu(ν)
r = o(uK/ε+1), which together with (3.10) yields (3.12).

Proof of (3.13). Let ν1 < ν2 without loss of generality. For 0 < u < ν1 + ν2,
h(u; ν) is equal to

∫ 1

0

1 {ν1x
ε ≤ u− ν2} dx+

∫ 1

0

1 {u− ν2 < ν1x
ε ≤ u}

(

u− ν1x
ε

ν2

)1/ε

dx.

The first integral on the right hand side equals [(u− ν2)/ν1]
1/ε if u ≥ ν2 and 0

otherwise. By variable substitution z = ν1x
ε/u, the second integral equals

1

ε

(

u2

ν1ν2

)1/ε ∫ ν1/u

0

1
{

1 − ν2

u
< z ≤ 1

}

z1/ε−1(1 − z)1/ε dz

=
Γ(1/ε)2

2εΓ(2/ε)

(

u2

ν1ν2

)1/ε
[

F
(ν1

u
∧ 1
)

− F
((

1 − ν2

u

)

∨ 0
)]

,

where F is the Beta distribution function with parameters 1/ε and 1/ε + 1.
Since F (x∧ 1) = F (x) and F (x ∨ 0) = F (x), this yields the proof.

A.2. Theoretical details for Section 4

Proof of Proposition 4.1. Denote h(u) = h(u; ν) and Dt the regularization of
Γu(ν) defined in (3.8). Let Zi = ν ′ξε

i . Under true Hi, since ξi ∼ Unif(I),
P (Zi ≤ u) = h(u). Since h is continuous, h(Zi) ∼ Unif(0, 1). On the other hand,
under false Hi, P (h(Zi) ≤ t) = P (ν′ξε

i ≤ h∗(t)) = G(Γh∗(t)(ν)) = G(Dt), so
by (4.2), the density of h(Zi) at 0 is g(0). Because procedure (3.9) is the BH
procedure applied to h(Zi), it follows that its minimum attainable pFDR is
(1 − a)α∗.
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To get (4.1), let F (t) = (1 − a)t + aG(Dt) and t∗ the maximum solution to
F (t) = t/α. Then

G(Dt∗) =

(

1

αa
− 1

a
+ 1

)

t∗ =

(

1

αa
− 1

α∗a
+ g(0)

)

t∗.

Replacing the left hand side by (4.2), it is seen that as α ↓ α∗,

(t/Vε)
ε/K ν̄

K + ε

∑ γk

νk
∼ α− α∗
aα2

∗g(0)

=⇒ t∗ ∼ Vε

(

K + ε

aα2
∗g(0)

/

∑ ν̄γk

νk

)K/ε

(α− α∗)
K/ε.

Clearly, as α ↓ α∗, t∗ → 0. If G(Dt) is strictly concave, then by [12], Pow(α) =
G(Dt∗) ∼ g(0)t∗, which, combined with the asymptotic of t∗, proves (4.1).
However, it is not clear whether G(Dt) is strictly concave in general. To get
around the problem, we use the following argument. Let τ = τn be defined as
in (3.2), where n is the total number of nulls. The goal is to show that, given
0 < η < 1, as 0 < α− α∗ ≪ 1,

P ((1 − η)t∗ < τn < (1 + η)t∗) → 1, as n → ∞. (A.1)

If this holds, then it is easy to see that G(D(1−η)t∗) ≤ Pow(α) ≤ G(D(1+η)t∗).
As G(D(1±η)t∗) ∼ (1 ± η)g(0)t∗ and η is arbitrary, (4.1) then follows.

The remaining part of the proof is for (A.1). By (4.2),

F (t)

t
= 1 − a+

aG(Dt)

t
=

1

a∗
− Ctε/K + o(tε/K), as t→ 0.

where C > 0 is a constant. By this expansion, there is 0 < δ ≪ 1, such that

inf
s≤(1−η)t

F (s)

s
>
F (t)

t
, sup

(1+η)t≤s≤δ

F (s)

s
<
F (t)

t
, for 0 < t < δ.

By g ∈ C(I) and g(x) < g(0) for x 6= 0, for t > 0, G(Dt)/t < g(0), yielding
F (t)/t < 1/α∗. Thus, for 0 < α − α∗ ≪ 1, supt≥δ F (t)/t > 1/α. On the other
hand, t∗ ∈ (0, δ). Consequently,

inf
s≤(1−η)t∗

F (s)

s
>

1

α
, sup

(1+η)t∗≤s≤1

F (s)

s
<

1

α
.

Because the empirical distribution of h(Zi) converges to F in probability, the
above inequalities imply (A.1).

Corollary A.2.1. For procedure (3.4) using Γu(ν), Hi is rejected if and only
if ν′ξε

i ≤ ζ, where ζ = ζn is a random variable such that given 0 < η ≪ 1, for
0 < α− α∗ ≪ 1, P (|ζ − v∗| ≤ ηv∗) → 1 as n → ∞, where

v∗ ∼ C(ν)(α− α∗), with C(ν) =
K + ε

aα2
∗g(0)

/

∑ γk

νk
. (A.2)
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Proof. Let ζ = h∗(τ ), where h(u) = h(u; ν) and τ is as in the proof of Proposi-
tion 4.1. Then Hi is rejected ⇐⇒ h(ν ′ξε

i ) ≤ τ ⇐⇒ ν ′ξε
i ≤ ζ. Let v∗ = h∗(t∗).

Since h∗(t) = ν̄(t/Vε)
ε/K for 0 < t ≪ 1, the result follows from the asymptotics

of τ and t∗.

Proof of Proposition 4.2. For ease of notation, integration over x will be implic-
itly restricted in I. First consider Powo(α) of procedure (3.2) using Dt = Γh∗(t),
where Γu = {x ∈ I : g(x) ≥ u} and h(u) = ℓ(Γu). By Lemma A.1.1, G(Dt) is
strictly concave. Then by [12], Powo(α) = G(Γu∗

), where u∗ = h(t∗), with t∗
the unique positive solution to (1 − a)t+ aG(Dt) = t/α. Therefore,

(1 − a)ℓ(Γu∗
) + aG(Γu∗

) = ℓ(Γu∗
)/α. (A.3)

Using (A.3) followed by α∗ = 1/(1 − a+ ag(0)),

ag(0)

∫

Γu∗

[γ′xε − r(x)] dx = [1− a+ ag(0) − 1/α]

∫

Γu∗

dx (A.4)

=
α− α∗
αα∗

∫

Γu∗

dx. (A.5)

Fix η > 0. For α > α∗, denote

v = v(α) = 1 − u∗/g(0), λ = α− α∗. (A.6)

Then Γu∗
= {x ∈ I : γ′xε − r(x) ≤ v} and v ↓ 0 as α ↓ α∗. By γk > 0 and

r(x) = o(|x|ε), for 0 < α−α∗ ≪ 1, γ ′xε ≤ (1 + η)v and |r(x)| ≤ ηγ′xε on Γu∗
.

Together with (A.4) and (A.5), this gives

(1 + η)ag(0)

∫

γ′xε≤(1+η)v

γ ′xε dx ≥ λ

αα∗

∫

γ′xε≤(1−η)v

dx,

(1 − η)ag(0)

∫

γ′xε≤(1−η)v

γ′xε dx ≤ λ

αα∗

∫

γ′xε≤(1+η)v

dx.

By Lemma 3.2, the inequalities imply

a(1 + η)K/ε+2Kv

K + ε
≥ λ(1 − η)K/ε

α∗αg(0)
,
a(1 − η)K/ε+2Kv

K + ε
≤ λ(1 + η)K/ε

α∗αg(0)
.

Since η is arbitrary, it follows that

v ∼ (K + ε)λ

Kaα2
∗g(0)

, as α ↓ α∗.

Comparing with (A.2), v ∼ C(γ)λ.
Applying (A.3) followed by (3.10),

Powo(α) =

(

1

aα
− 1

a
+ 1

)∫

γ′xε−r(x)≤v

dx

∼ g(0)

∫

γ′xε≤C(γ)λ

dx ∼ g(0)Vε

[

1

ν̄

(K + ε)λ

Kaα2
∗g(0)

]K/ε

.
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On the other hand, by Proposition 4.1, Pow(α) has the same asymptotic.
Then Powo(α)/Pow(α) → 1.

Let ϑ = C(γ)(α− α∗). The above argument shows that, for procedure (3.2)
based on Γu, if 0 < α− α∗ ≪ 1, then Hi is rejected if only if γ′ξε

i − r(ξi) ≤ ζo,
where ζo = ζo,n is a random variable satisfying P (|ζo −ϑ| ≤ ηϑ) → 1 as n→ ∞.
On the other hand, by Corollary A.2.1, for procedure (3.9) based on Γu(γ), Hi

is rejected if and only if γ ′ξε
i ≤ ζ, where ζ satisfies P (|ζ − ϑ| ≤ ηϑ}) → 1 as

n → ∞.
Recall Vo = {true Hi : γ′ξε

i − r(ξi) ≤ ζo} and V = {true Hi : γ′ξε
i ≤ ζ}.

Since r(x) = o(γ′xε), by the asymptotics of ζo and ζ, given 0 < η ≪ 1, as
0 < α− α∗ ≪ 1,

P ({true Hi : γ′ξε
i ≤ (1 − η)ϑ} ⊂ Vo ∩ V) → 1

P (Vo△V ⊂ {true Hi : (1 − η)ϑ < γ′ξε
i ≤ (1 + η)ϑ}) → 1.

It follows that

rV (α) ≤
∫

(1−η)ϑ≤γ′xε≤(1+η)ϑ

dx

/∫

γ′xε≤(1−η)ϑ

dx = 1 −
(

1 + η

1 − η

)K/ε

.

As η is arbitrary, this gives rV (α) → 0 as α ↓ α∗. Likewise, rD(α) → 0.

Proof of Lemma 4.1. By the assumptions of the lemma and [12],

Powi(α) = G(Dit∗
i
), (A.7)

where t∗i = sup{t : (1 − a)t + aG(Dit) ≥ t/α}

and furthermore, t∗i < T . Since G(D1t) < G(D2t) for t < T and both are
continuous, it is seen that t∗1 < t∗2 . On the other hand,

G(Dit∗i
) =

(

1

aα
− 1

a
+ 1

)

t∗i ∼ g(0)t∗i , as α→ α∗. (A.8)

As a result, Pow1(α) < Pow2(α).

Proof of Proposition 4.3. By (A.8),

t∗1
t∗2

=
G(D1t∗

1
)

G(D2t∗
2
)

=
Pow1(α)

Pow2(α)
=⇒ t∗1

t∗2
=
g(0)t∗1 −G(D1t∗

1
)

g(0)t∗2 −G(D2t∗
2
)
.

Suppose M <∞. Then by the last equality and (4.2), as α ↓ α∗,

t∗1
t∗2

∼M × g(0)t∗1 −G(D2t∗
1
)

g(0)t∗2 −G(D2t∗
2
)
∼M

(

t∗1
t∗2

)ε/K+1

,

giving t∗1/t
∗
2 ∼ (1/M)K/ε and the proof. The case M = ∞ is likewise.
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Proof for Example 4.1 (Case K > 2). Define D1t and D2t as in the case K = 2.
Fix η > 0 and ak ∈ (0, γk), so that g(x) < g(0)(1 −∑akx

ε
k) on [0, η]K. Then

G(D1t) ≤ g(0)



t−
∑

ak

∫

x1···xK≤s
all xi∈(0,η)

xε
k dx





where s = exp(−F−1
K (1 − t)), with FK the Gamma distribution function with

K degrees of freedom and scale parameter 1. We need to evaluate
∫

x1···xK≤s
all xi∈(0,η)

xε
k dx = ηK+ε

∫

x1···xK≤r
all xi∈(0,1)

xε
k dx = ηK+εE[Uε1 {UV ≤ r}],

where r = s/ηK , U ∼ Unif(0, 1) and V are independent, and V is the product of
U1, . . . , UK−1 i.i.d.∼ Unif(0, 1). By transformationX = − lnU and Z = − lnV ,
the expectation equals

A(r) :=

∫ − ln r

0

e−(1+ε)(− ln r−x)[1− FK−1(x)] dx+

∫ ∞

− ln r

e−(1+ε)x dx

Recall that for n ≥ 1, as x → ∞,

1 − Fn(x) ∼ xn−1e−x/(n− 1)! (A.9)

As t→ 0, s→ 0 and hence r → 0, yielding

A(r) ∼ r1+ε

(K − 2)!

∫ − ln r

0

xK−2eεx dx+ r1+ε ∼ r(ln r−1)K−2

(K − 2)!
.

So for t ≪ 1, G(D1t) ≤ g(0)[t−Cs(ln s−1)K−2], where C > 0 is a constant. On
the other hand, by (4.2), G(D2t) ≥ g(0)[t−C ′t1+ε/K ], where C ′ > 0 is another
constant. By (A.9), for some constants c1, c2 > 0,

s(ln s−1)K−2

t1+ε/K
=

s(ln s−1)K−2

(1 − FK(− ln s))1+ε/K
∼ c1
sε/K(− ln s)c2

→ ∞.

As a result, for t ≪ 1, G(D1t) < G(D2t).

Proof for Example 4.2. Recall Φ̄−1(s) ∼
√

2 log(1/s) as s ↓ 0. Let sk = wk/w.
Given c > 1 and ak ∈ (0, γk), there is 0 < η ≪ 1, such that 1) g(x) < g(0)(1 −
a′x) for x ∈ (0, η)K and 2) letting

Bt :=

{

x ∈ (0, η)K :
∑

k

sk

√

log(1/xk) ≥ c
√

log(1/t)

}

,

for 0 < t ≪ 1, Bt ⊂ (0, η)K ∩D1t. Then

G(D1t) ≤ g(0)

[∫

D1t

dx−
∫

Bt

a′x dx

]

= g(0)

[

t−
K
∑

k=1

ak

∫

Bt

xε
k dx

]

.
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Let xk = tyk and δt = ln η/ ln t. For each j = 1, . . . , K,

∫

Bt

xε
j dx = | ln t|K

∫

yk∈(δt ,∞)
∑

k
sk

√
yk≥c

e(y1+···+yK+εyj) ln t dy.

As t ↓ 0, ln t → −∞ and δt ↓ 0. So by
∑

s2i = 1,

1

ln t
ln

∫

Bt

xε
j dx → inf

∑

k
sk

√
yk≥c

[y1 + · · ·+ yK + εyj ] = c2

[

1 −
εs2j

1 + ε

]−1

and hence

lim
t↓0

ln[g(0)t−G(D1t)]

ln t
≤ lim

t↓0

1

ln t
ln

(

∑

k

ak

∫

Bt

xε
k dx

)

= min
k

lim
t↓0

1

ln t
ln

(∫

Bt

xε
k dx

)

= c2
[

1 − ε

1 + ε
min

k
s2k

]−1

.

Since c > 1 is arbitrary and mink s
2
k ≤ 1/K, (4.3) then follows.

Proof of Equations (4.5) and (4.7). By (4.4), as t ↓ 0,

G(D1t) = g(0)

∫

0≤xk≤fk(t)

(1 − γ′xε + r(x)) dx

= g(0)



t− 1 + o(1)

1 + ε

∑

γkfk(t)1+ε
∏

i 6=k

fi(t)



 .

Since
∏

fk(t) = t, (4.5) then follows.
Let fk(t) = ckt

1/K . By (A.7), (A.8) and (4.5), Pow(α) ∼ g(0)t∗ as α → α∗,
where t∗ > 0 is the solution to

1 − a+ ag(0)

(

1 − 1

1 + ε

∑

γkc
ε
kt

ε/K

)

= 1/α.

Since 1/α∗ = 1 − a+ ag(0),

t
ε/K
∗ =

1 + ε

ag(0)

(

1

α∗
− 1

α

)/

∑

γkc
ε
k ∼

(

1 + ε

aα2
∗g(0)

/

∑

γkc
ε
k

)

(α− α∗).

It is then easy to see (4.7) holds.

Proof for Example 4.4. We need to show L < g(0) =
∏

k ρk, where

L = sup
x

∑

k fk(x)
∏

j 6=k Fj(x)
∑

k f0k(x)
∏

j 6=k F0j(x)
≤ max

k
sup

x

fk(x)
∏

j 6=k Fj(x)

f0k(x)
∏

j 6=k F0j(x)
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Let ψk = Fk/F0k. By Fk(x) =
∫ x

−∞ rk(t)f0k(t) dt and the assumption (4.8) on
rk, for any finite c, supx≤c ψk(x) < ρk. Since ψk(x) is continuous and tends to
1 as x→ ∞, it follows that supx ψk(x) < ρk. Then for each k,

sup
x

fk(x)
∏

j 6=k Fj(x)

f0k(x)
∏

j 6=k F0j(x)
= sup

x
rk(x)

∏

j 6=k

ψj(x) <
∏

ρk = g(0).

Thus L < g(0).

Proof for Example 4.5. We need to show L := supx≥T r(x) < g(0) = ρ1ρ2 for
T > 0, where

r(x) :=

∫ x

0
f1(t)f2(x− t) dt

∫ x

0
f01(t)f02(x− t) dt

,

As fk(x) < ρkf0k(x) for any x > 0 with fk(x) > 0, it is seen r(x) < g(0)
for any x > 0. It remains to be shown r(∞) < g(0). Once this is done, by the
continuity of r(x) on (0,∞), L < g(0). Given c, λ ∈ (0, 1),

I :=

∫ x

0

f01(t)f02(x− t) dt = I1 + I2

where I1 is the integral over [0, cx] and I2 over [cx, x]. As x≫ 1, for t ∈ [0, cx],
λx−s2 ≤ f02(x− t) ≤ λ−1(1 − c)−s2x−s2. Then

λx−s2

∫ cx

0

f01(t) dt ≤ I1 ≤ λ−1(1 − c)−s2x−s2

∫ cx

0

f01(t) dt.

Similarly, by using f01(x) ∼ x−s1 ,

λx−s1

∫ x

cx

f02(x− t) dt ≤ I2 ≤ λ−1c−s1x−s1

∫ x

cx

f02(x− t) dt

As x → ∞,
∫ cx

0
f01 → 1 and

∫ x

cx
f02(x − t) dt =

∫ (1−c)x

0
f02 → 1. Therefore, if

s1 > s2, then I2 = o(I1) and hence I ∼ I1. Since c and λ are arbitrary, I ∼ x−s2 .
Likewise

J :=

∫ x

0

f1(t)f2(x− t) dt ∼ ρ2x
−s2 ,

and hence r(x) → ρ2 . Similarly, if s1 < s2, then r(x) → ρ1. If s1 = s2, write
I = I1+I2+I3, where the integrals Ii are over [0, cx], [cx, (1−c)x] and [(1−c)x, x]
respectively, with 0 < c ≪ 1. Following argument similar to the above, I1 ∼
I3 ∼ x−s1 while I2 = O(x−2s1). Then I ∼ 2x−s1 . Likewise, J ∼ (ρ1 + ρ2)x

−s1 .
Thus r(x) → (ρ1 + ρ2)/2. In any case, r(∞) < g(0).
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A.3. Some facts about Vε

Let Vε,K(u) =
∫ 1

0
· · ·
∫ 1

0
1 {∑ xε

k ≤ u} dx and Vε,K = Vε,K(1). It is not hard to

see that Vε,K(u) = uK/εVε,K for u ∈ [0, 1]. It can be shown that

Vε,K =
(1/ε)K−1Γ(1/ε)K

KΓ(K/ε)
, K = 1, 2, . . . . (A.10)

This is clear for K = 1. For K > 1, by first integrating x1, . . . , xK−1,

Vε,K =

∫ 1

0

Vε,K−1(1 − xε
K)dxK = Vε,K−1

∫ 1

0

(1 − xε)(K−1)/εdx

= Vε,K−1 ×
1

ε

∫ 1

0

t1/ε−1(1 − t)(K−1)/ε dt

= Vε,K−1 ×
(K − 1)Γ(1/ε)Γ((K − 1)/ε)

εKΓ(K/ε)
.

Then (A.10) follows by induction.

Finally, in Example 4.3, it is claimed that
(1/Vε,K)ε/K

K+ε < 1
1+ε for K > 1. To

show this, write t = 1/ε and H(t) = ln[tΓ(t)/(1 + t)t], Then by (A.10), the
above inequality is equivalent to KH(t) ≥ H(Kt), K > 1. It is not hard to get
limt→0+H(t) = 0. Therefore, if one can show H(t) is concave for t > 0, then
the desired inequality is obtained. Now

H ′′(t) = (lnΓ(t))′′ − 1

t2
− 1

(1 + t)2
− 1

1 + t
.

It is known that (ln Γ(t))′′ =
∑∞

k=0(k + t)−2, t > 0. Since 1/(k + t)2 < 1/(k −
1 + t) − 1/(k + t) for k ≥ 2, then it is seen that H ′′(t) < 0 for t > 0 and hence
H(t) is strictly concave.
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