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Let (Ui) be a sequence of i.i.d. random variables uniformly distributed on [0, 1],
and let Fn be the so-called cumulative empirical function, associated with the
n first Ui’s:

Fn(t) := n−1# {Ui ≤ t, i ∈ {1, . . . , n}} , t ∈ [0, 1].

The sequence of processes (Fn) converges pointwise a.s. on [0,1] to F defined by
F (t) = t; this is a consequence of the strong law of large numbers. The Glivenko-
Cantelli theorem asserts that this a.s. convergence stands also for the uniform
convergence: a.s. supx∈[0,1] |Fn(x)−F (x)| →

n
0. To see this, take 0 = x1 < · · · <

xk = 1 and check that by monotonicity of Fn and F , supx∈[0,1] |Fn(x)−F (x)| ≤
maxj max(|Fn(xj+1)− F (xj)|, |Fn(xj) −F (xj+1)|)

(a.s.)−−−→
n

maxxj+1 − xj , which

may be chosen as small as wanted.
In some sense, Donsker’s Theorem [1] provides the second term in this con-

vergence. Consider

bn(t) :=
√

n (Fn(t) − F (t)) , t ∈ [0, 1]. (1)

Theorem 1 (Donsker [1]) The sequence (bn) converges in distribution to the
Brownian bridge b on D[0, 1] the space of càdlàg functions on [0,1] equipped
with the Skorohod topology.

Note 1 When the variables Ui’s are not uniform, the study of the empirical
process reduces to the uniform case thanks to a classical “time change” involving
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the inverse of the cumulative function of the Ui’s. Some problems of continuity
arise due to the atoms of the Ui’s but roughly speaking one may say that all the
difficulties are present in the case of the uniform distribution.

We recall that the Brownian bridge is the continuous centered Gaussian pro-
cess such that cov(b(s), b(t)) = s(1 − t) when 0 ≤ s ≤ t ≤ 1. It owns the
following trajectorial representation :

(b(t))t∈[0,1]
(d)
= (Bt − tB1)t∈[0,1], (2)

where B is the standard Brownian motion. This may immediately be checked
using that B is a centered Gaussian process such that cov(Bs, Bt) = min(s, t).

In fact, Donsker proves only in details maxbn
(d)−−→
n

maxb justifying the Doob’s

heuristic [3]. One may find in the literature numerous more or less direct proofs
of Theorem 1. See e.g. Billingsley [2] (and references therein), Kallenberg [4],
and also more advanced proofs and constructions (and stronger results) as that
of Komlós, Major and Tusnády [5]. Some books are devoted to the convergence
of empirical measures and processes : we send the interested reader to Shorack
& Wellner [6], van der Vaart & Wellner [7]. As a matter of fact, usual proofs of
Theorem 1 use often some advanced constructions or are treated in probability
books when a lot of materials have been introduced, leading to some intricate
and complex proofs, quite difficult to be taught entirely to beginners. The aim of
this paper is to present a new proof of Theorem 1 using only “simple” arguments:
only immediate considerations about the weak convergence in C[0, 1] and D[0, 1],
and the other very famous Donsker’s Theorem which says that a rescaled random
walk converges to the Brownian motion are used. The Appendix recalls this
material.

We begin the proof of Theorem 1 following the steps of Donsker [1]. We
say that a random vector (Mi)i=1,...,n has the multinomial distribution with
parameters (k, p1, . . . , pn), we write (Mi)i=1,...,n ∼ mult(k, p1, . . . , pn), when

P(Mi = mi, i = 1, . . . , n) = k!
∏

n

i=1
mi !

∏k
i=1 pmi

i for any prescribed non negative

integers m1, . . . , mk summing to k, and 0 otherwise.
The vector (Nj)j=1,...,n defined by

Nj := # {i ∈ {1, . . . , n}, Ui ∈ [(j − 1)/n, j/n]} ,

has the mult(n, 1/n, . . . , 1/n) distribution. The empirical process taken at time
k/n for k ∈ {0, . . . , n} is a simple function of this vector :

bn(k/n) =
√

n (Fn(k/n) − F (k/n)) = n−1/2
k

∑

j=1

(Nj − 1). (3)

Let bn be the process obtained by interpolating bn between the points {k/n, k ∈
{0, . . . , n}}.
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Let (Pk) be a sequence of i.d.d. Poisson random variables with parame-
ter 1. The distribution of (Pk)k=1,...,n under the condition

∑n
k=1 Pk = n (or

∑n
k=1(Pk − 1) = 0) is also mult(n, 1/n, . . . , 1/n) as can be straightforwardly

checked. For any k ∈ {0, . . . , n}, set

Sk =

k
∑

j=1

(Pj − 1) (4)

and let S = (Sk)k=0,...,n be the “centered” Poisson random walk, interpolated
between integer points. Hence, we have

(bn(t))t∈[0,1]
(d)
=

(

n−1/2Snt

)

t∈[0,1]
conditioned by Sn = 0, (5)

and
sup

t∈[0,1]

∣

∣bn(t) − bn(t)
∣

∣ ≤ n−1/2 max
k=1,...,n

Nk. (6)

This is controlled as follow: the Ni’s are Binomial(n, 1/n). By the Markov
inequality write P(maxk Nk ≥ ε

√
n) ≤ nP(N1 ≥ ε

√
n) ≤ nE(eN1 )e−ε

√
n =

n(1 + e−1
n

)ne−ε
√

n ∼ nee−1e−ε
√

n →
n

0, and then

n−1/2 max
k=1,...,n

Nk
(proba)−−−−−→

n
0. (7)

Hence, by (5), (6) and (7), (see also Lemma 7 in Appendix) Theorem 1 stat-
ing the convergence of (bn) to b in D[0, 1] is easily implied by the following
proposition.

Proposition 2 The sequence
(

n−1/2Snt

)

t∈[0,1]
conditioned by Sn = 0 converges

in distribution to b in C[0, 1] equipped with the topology of the uniform conver-
gence.

The proof we propose for this classical proposition is the real novelty of this
paper.

The “correction” of a Poisson random walk

The main line in our approach is the comparison between S and S conditioned
by Sn = 0. We introduce a correcting process C = (Ck)k=0,...,n, such that the
pair (S, C) have the following feature :
• S is the centered Poisson random walk (defined in (4)),
• S + C is distributed as S conditioned by Sn = 0.

Note 2 Transforming a problem involving n random variables into a problem
involving In ∼ Poisson(n) random variables is called Poissonization. Taking
U1, . . . , UIn

instead of U1, . . . , Un in the construction presented at the beginning
of the paper amounts to replacing S conditioned by Sn = 0 by the centered
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Poisson random walk S. This is a Poissonization. The correction of the Poisson
random walk we propose, which allows to pass from S to S conditioned by Sn = 0
is from our point of view different in nature from the usual depoissonization
techniques. Here, everything relies on an exact combinatoral correction, when
usually, most rely on the convergence in distribution of (In−n)/

√
n, ensuring the

problem with n variables and with In variables being asymptotically equivalent,
which is not the case here.

Let us come back to our correction procedure. To fix the details, we will use
a classical interpretation of Poisson random walk in term of urns/balls.
Conditionally on Sn = s, the vector (Pi)i=1,...,n has the mult(s+n, 1/n, . . . , 1/n)
law. When m balls labeled 1, . . . , m are sent independently in n urns according
to the uniform distribution, the vector (N ′

i)i=1,...,n giving the number of balls
in the urns follows also the mult(m, 1/n, . . . , 1/n) distribution.

Let us throw Pi balls in urn i where (Pi)i=1,...,n are i.i.d. Poisson random
variables with parameter 1. Then three cases arise:

∑n
i=1 Pi = n or

∑n
i=1 Pi < n,

or
∑n

i=1 Pi > n (recall that Sn =
∑n

i=1 Pi − n).
In the first case Sn = 0, no correction are necessary, then set Ci = 0 for any i.
The two last cases are treated below. Notice that we focus on the uni-dimensional
distributions of the process C since this will appear to be sufficient.

Case Sn < 0. We work conditionally on Sn = s. Since −s balls are lacking:
throw −s new balls and denote by Ck the number of new balls fallen in the k
first urns; for any k,

Ck ∼ Binomial(−s, k/n). (8)

More precisely, (∆Ck)k=1,...,n ∼ mult(−s, 1/n, . . . , 1/n) where ∆Ck := Ck −
Ck−1 is the kth increment of the correcting process C (with C0 = 0).

Lemma 3 For any s < 0 and any n ≥ 1, conditionally on Sn = s the process
S + C is distributed as S conditioned by Sn = 0 and Ck ∼ Binomial(−s, k/n).

Proof. If X ∼ mult(n + s, 1/n, . . . , 1/n), Y ∼ (−s, 1/n, . . . , 1/n) and X and Y
are independent then X + Y ∼ mult(n, 1/n, . . ., 1/n). �

Case Sn > 0. We work conditionally on Sn = s. In this case n + s balls
have been thrown instead of n and then s balls must be taken out. The vector
(Vk)k=1,...,n giving the exceeding number of balls in the different urns (those
with labels in n+1, . . . , n+s) follows the law mult(s, 1/n, · · · , 1/n). Then given

Sn = s, we search a correcting process (∆Ck)k=1,...,n
(d)
= (−Vk)k=1,...,n. Of

course there is a problem to define the correcting process in terms of balls/urns,
the balls/urns problem living a priori on a larger probability space than the
(Pi)’s. But this gives us the intuition for a right correcting process: we define
C conditionally on the Pi’s as follows. Let (pi)i=1,...,n be non negative integers
summing to n + s. Set

P (∆Ck = −ck, k ∈ {1, . . . , n}|Pi = pi, i ∈ {1, . . . , n}) =

∏n
i=1

(

pi

ci

)1ci≤pi

(

∑

pi

s

)

(9)
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for any given non negative integers c1, . . . , cn summing to s, and 0 otherwise.

Lemma 4 For any s > 0 and any n ≥ 1, conditionally on Sn = s the process
S + C is distributed as S conditioned by Sn = 0 and Ck ∼ −Binomial(s, k/n).

Proof. We have to check that C + S is distributed as S conditioned by Sn = 0:
P(Pi + ∆Ci = ji, ∀i |Sn = s)

=
∑

(pi) :
∑

pi=n+s,pi≥ji

P (∆Ci = −(pi − ji), ∀i|Pi = pi, ∀i) P(Pi = pi, ∀i)

P(Sn = s)

=
∑

(pi−ji) : pi−ji≥0,
∑

pi−ji=s

∏n
i=1

(

pi

pi−ji

)

(

n+s
s

)

e−n
∏n

i=1
1

pi!

e−nnn+s

(n+s)!

=
e−n

∏n
i=1

1
ji!

e−nnn/n!
= P(Pi = ji, ∀i |Sn = 0)

where we have used (9), the fact that n + Sn is Poisson(n) distributed, and

∑

(αi) : αi≥0,
∑

αi=s

n
∏

i=1

s!

αi!
= (1 + · · ·+ 1)s = ns. (10)

We now show that knowing Sn = s, (−∆Ck)k=1,...,n ∼ mult(s, 1/n, . . . , 1/n).
This implies the second point. Let c1, . . . , cn be non negative integers summing
to s. Write P(∆Ck = −ck, ∀k|Sn = s)

=
∑

(pi),pi≥ci,
∑

pi=n+s

P(∆Ck = −ck, ∀k|Pi = pi, ∀i)P(Pi = pi, ∀i)

P(Sn = s)
.

By (10), Sn + n ∼Poisson(n) and (9), this is easily shown to be equal to
s!

∏

n

i=1
ci!

1
ns . �

From now on, consider the process C as being interpolated between integer
points.

Lemma 5 For any t ∈ [0, 1],

n−1/2|Cnt + tSn|
(proba)−−−−−→

n
0. (11)

Proof. We work with C⌊nt⌋ instead of Cnt. For t = 0, (11) holds clearly. Let
t ∈ (0, 1], and ε > 0 be fixed. Write

P(|C⌊nt⌋ + tSn| ≥ ε
√

n) ≤ V M
n + WM

n

where

V M
n = P(|C⌊nt⌋ + tSn| ≥ ε

√
n, |Sn| ∈

√
n[M−1, M ]),

WM
n = P(|Sn| /∈ √

n[M−1, M ]).
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Let α > 0 be a fixed (small) positive real number. The central limit theorem
applied to Sn ensures that there exists M such that WM

n ≤ α, for n large enough.
Fix this M . To bound V M

n , use P(A| ∪i Bi) =
∑

P(A|Bi)P(Bi)/P (∪Bi) ≤
maxi P(A|Bi) for disjoint sets Bi. Hence

V M
n ≤ max

k,|k|∈√
n[M−1,M ]

P(|C⌊nt⌋ + tSn| ≥ ε
√

n | |Sn| = k).

By Lemmas 3 and 4, P(|C⌊nt⌋+tSn| ≥ ε
√

n | |Sn| = k) = P(|B(k, ⌊nt⌋/n)−tk| ≥
ε
√

n) where B(k, ⌊nt⌋/n) is a binomial random variable with parameters k and
⌊nt⌋/n. Further, by the Bienaymé-Tchebichev inequality

max
k,|k|∈√

n[M−1,M ]
P(|B(k, ⌊nt⌋/n) − tk| ≥ ε

√
n) → 0. �

Proposition 6 (i) The following convergence holds in C([0, 1], R2):

n−1/2(Snt, Cnt)t∈[0,1]
(d)−−→
n

(Bt,−tB1)t∈[0,1].

(ii) The following convergence holds in C[0, 1]:

n−1/2(Snt + Cnt)t∈[0,1]
(d)−−→
n

(Bt − tB1)t∈[0,1].

Proposition 2 is a consequence of (ii) thanks to Lemmas 3 and 4.
Proof. Assertion (ii) is a consequence of (i). Proof of (i) : the convergence of
n−1/2Sn. to B in C[0, 1] is given by the other famous Donsker’s theorem stating
the convergence of rescaled random walks to the Brownian motion (see [2] or
[4]). In particular

n−1/2Sn → B1. (12)

The finite dimensional distribution of n−1/2Cn. converges to those of the process
(tB1)t∈[0,1]. Indeed by Lemma 5 and (12),

n−1/2(Sn, Cnt1, . . . ,Cntk
)

(d)−−→
n

(B1,−t1B1, . . . ,−tkB1)

for any 0 ≤ t1 ≤ · · · ≤ tk ≤ 1. Then the family (n−1/2Cn.) is tight since
it is a sequence of monotone processes whose finite dimensional distribution
converge to those of the a.s. continuous process (tB1)t∈[0,1] (this is Lemma

8(ii)). Hence the family n−1/2(Sn·, Cn·) is tight. The limit is identified again
thanks to Lemma 5. �

Conclusion

The idea of this proof appeared after a discussion with Philippe Duchon, where
he explained me his algorithm to generate uniformly a Bernoulli bridge with 2n
steps, that is a random walk S = (Sk)k=0,...,2n with increments ±1, conditioned
by S2n = 0 : build first a simple random walk with 2n steps, choosing i.i.d.
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increments +1,or −1 with probability 1/2. If S2n = 0 then it’s done. If not,
assume that S2n = 2k > 0. Then pick up at random indices I1, I2, . . . in J1, 2nK.
If Ii is the index of a positive increment, change it into a negative one; if it is
negative then do nothing. Stop when you have changed k increments. By a simple
symmetry argument the path obtained is uniform in the set of Bernoulli bridges
of size 2n. I found that this was a nice way to prove that rescaled Bernoulli bridge
converges to the Brownian bridge; this can be proved using the same argument
than the ones exposed above: the correction procedure will asymptotically and
“eventually removes a straight line of the Brownian motion”. Therefore, I tried
to find other increment distributions for which a similar correction procedure
would have been possible. It appears to be not so general, or at least, not so
agreeable. The problem is the following one: in general there does not exist any
simple correction procedure that conserves at each step of the correction the
property of the trajectory to have conditionally on its terminal position k, the
law of a simple random walk conditioned by Sn = k.

Appendix

A simple link between the convergence in C[0, 1] and in D[0, 1]

Lemma 7 Let (Xn) be a sequence of processes taking their values in D[0, 1].
Assume that for any n, Xn = Yn + Zn where Yn is a continuous process, and
Zn is a càdlag process. If (Yn) converges in distribution to Y in C[0, 1], and if

sup |Zn|
(d)−−→
n

0 then (Xn) converges in distribution to Y in D[0, 1].

Proof. As a matter of fact, this statement is easy if one knows:

(a) (Yn)
(d)−−→
n

Y in C[0, 1] implies (Yn)
(d)−−→
n

Y in D[0, 1],

(b) (Zn) càdlag, sup |Zn|
(d)−−→
n

0 implies Zn
(d)−−→
n

0 (the null process) on D[0, 1].

Indeed, knowing this, Lemma 7 is a consequence of the following classical result:
let An, Bn, Cn be random variables in a metric space (S, ρ). If An = Bn + Cn,

An
(d)−−→
n

A, ρ(Bn)
(d)−−→
n

0 then An + Bn
(d)−−→
n

A (see e.g. Billinglsey [2, Theorem

3.1]).
In order to understand why (a) and (b) hold true, recall that the Skhorohod

topology on D[0, 1] is defined by a metric: let Λ be the set of strictly increasing
continuous functions λ, satisfying λ(0) = 0, λ(1) = 1. The metric is

ds(f, g) = inf
λ∈Λ

{

sup{|λ(t) − t|, t ∈ [0, 1]}∨ sup{|f(λ(t)) − g(t)|, t ∈ [0, 1]}
}

.

Hence ds(f, g) ≤ sup{|f(t) − g(t)|, t ∈ [0, 1]}; this yields immediately to (a)
and (b). �
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Convergence in C[0, 1] and in C[0, 1]2

We recall some classical facts concerning the weak convergence in C[0, 1] and
(C[0, 1])2. First tightness and relative compactness are equivalent in these sets
by Prohorov’s theorem, since they are both Polish spaces.

Lemma 8 (i)Let (Xn, Yn) be a sequence of pairs of processes in (C[0, 1])2. The
tightnesses of both families (Xn) and (Yn) imply that of (Xn, Yn).
(ii) Let (Xn) be a sequence of monotone processes in C[0, 1]. If the finite di-
mensional distributions of (Xn) converge to those of an a.s. continuous process

X, then (Xn) is tight and then Xn
(d)−−→
n

X in C[0, 1].

Proof. (i) Take two compacts K1 and K2 of C[0, 1] such that P(Xn ∈ K1) ≥
1−ε and P(Yn ∈ K2) ≥ 1−ε, then P((Xn, Yn) ∈ K1×K2) ≥ 1−2ε and K1×K2

is compact in (C[0, 1])2.
(ii) Only the tightness of (Xn) in C[0, 1] has to be checked. For any function
f : [0, 1] → R, and δ > 0, the global modulus of continuity of f is

ωδ(f) = sup{|f(x) − f(y)|, x, y ∈ [0, 1], |x− y| ≤ δ}.

Since Xn is increasing, for any positive integer m,

ω1/m(Xn) ≤ Am,n := 2 max

{∣

∣

∣

∣

Xn(
k

m
) − Xn(

k − 1

m
)

∣

∣

∣

∣

, k = 1, . . . , m

}

.

Since the finite dimensional distributions of (Xn) converge to those of X,

Am,n
(d)−→
n

Am := 2 max

{
∣

∣

∣

∣

X(
k

m
) − X(

k − 1

m
)

∣

∣

∣

∣

, k = 1, . . . , m

}

and by the uniform continuity of X, Am
proba.−→

m
0. Hence lim

m
lim sup

n
P(ω1/m(Xn) ≥

ε) = 0 for any ε > 0. �
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