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Abstract: We establish a functional limit law of the logarithm for the in-
crements of the normed quantile process based upon a random sample of
size n → ∞. We extend a limit law obtained by Deheuvels and Mason (12),
showing that their results hold uniformly over the bandwidth h, restricted
to vary in [h′

n
, h′′

n
], where {h′

n
}

n≥1 and {h′′
n
}

n≥1 are appropriate non-
random sequences. We treat the case where the sample observations follow
possibly non-uniform distributions. As a consequence of our theorems, we
provide uniform limit laws for nearest-neighbor density estimators, in the
spirit of those given by Deheuvels and Mason (13) for kernel-type estima-
tors.
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1. Introduction

1.1. Motivations

The theory of empirical processes has been extensively investigated over the past
decades. Several authors (see Deheuvels (7), Csörgő and Révész (4), Stute (27))
have underlined its relevance to the study of kernel nonparametric functional
estimators, such as the Parzen-Rosenblatt density function estimator (refer to
Parzen (22) and Rosenblatt (24)), or the Nadaraya-Watson regression func-
tion estimator (see, e.g., Nadaraya (21) and Watson (33)). Lately, these results
have been significantly extended by, especially, Einmahl and Mason (14), (15),
Mason (19), Deheuvels and Mason (13) and Varron (31). By combining empir-
ical process arguments with combinatorial techniques initiated by Vapnik and
Červonenkis ((30), (29)), these authors have established various versions of the
uniform consistency of kernel type estimators, the latter being also shown to
hold uniformly over the bandwidth parameter, with some restrictions. A direct
statistical application of these results is given by the construction of limiting
certainty bands for the density and the regression functions (see, e.g., Deheuvels
and Mason (13)). A parallel field of study is that of quantile processes, for which
a series of functional limit laws have been provided by Deheuvels and Mason
(12) and Deheuvels (9). The motivation of the present study is that the re-
cent refinements of the functional limit laws, initiated by Deheuvels, J.Einmahl,
U.Einmahl and Mason, have been mostly written in the framework of the usual
empirical (distribution) processes, and cover only in part the case of quantile
processes. We will therefore orient our work towards bridging the remaining
gaps in this theory. As a main result, we shall provide, in the sequel, a uniform
in bandwidth functional limit law of the logarithm for the increments of the
normed quantile processes. This result will be then applied to establish a uni-
form in bandwidth law of the logarithm for Nearest-Neighbor density function
estimators. In this particular framework, we recall that such uniform in band-
width results are particularly helpful to derive similar properties for estimators
based on data-driven (and then random) bandwidths (see, for instance, (13)).
We also mention that our results should be useful in the construction of non-
parametric goodness-of-fit tests (see, e.g., Theorem 3.2 below). Likewise, some
applications to the study of Lorenz process and score function estimators, in the
spirit of Csörgő (6), may be derived from our results. We refer to Csörgő (6) for
other examples of applications of quantile processes, which have some relevance
to our work.

1.2. Notation and main Results

Let X1, X2, · · · be independent and identically distributed [iid] random variables
with distribution function F (x) := IP(X1 ≤ x), for x ∈ IR, and quantile function
Q(t) := inf{x ≥ 0 : F (x) ≥ t}, for 0 ≤ t ≤ 1. For x ∈ IR, we denote by
Fn(x) := n−1♯{Xi ≤ x, 1 ≤ i ≤ n} the empirical distribution function based
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upon X1, · · · , Xn and by Qn(t) := inf{x ∈ IR : Fn(x) ≥ t}, for 0 ≤ t ≤ 1, the
corresponding empirical quantile function. Here ♯E denotes the cardinality of
E. We denote by an(x) := n1/2(Fn(x)−F (x)), for x ∈ IR, the empirical process
of order n ≥ 1, and we let (see, e.g., Csörgő (6))

bn(t) := n1/2(Qn(t) −Q(t))/q(t) for 0 < t < 1, (1.1)

denote the normed quantile process. Here,

q(t) :=
d

dt
Q(t) =

1

f(Q(t))
, (1.2)

stands for the quantile density function (see, e.g., Parzen (23)), and

f(x) =
d

dx
F (x),

denotes the probability density function, both assumed to be properly defined
and continuous in domains specified later on (see, e.g., the assumptions (F.1-
2) below). In this paper, we are concerned with limit laws for the increments
ϑn(·) of the normed quantile process bn(·), which are defined as follows. Given
0 < t < 1 and a bandwidth h ∈ (0, t∧ (1 − t)), we set

ϑn(t, h, s) := bn(t+ hs) − bn(t), for s ∈ [−1, 1]. (1.3)

We will let h > 0 vary in such a way that h′n ≤ h ≤ h′′n, where {h′n}n≥1 and
{h′′n}n≥1 are two sequences of positive constants such that 0 < h′n ≤ h′′n < 1
and, for either choice of hn = h′n or hn = h′′n, the conditions (H.1-2-3) below
are fulfilled by {hn}n≥1. Set, for x ∈ IR+, log2 x := log+ log+ x, and log+ x :=
log(x ∨ e). We assume that

(H.1) hn ↓ 0 and nhn ↑ ∞ as n→ ∞;

(H.2) log(1/hn)/ log2 n → ∞ as n→ ∞;

(H.3) nhn/ logn→ ∞ as n→ ∞.

In addition, we will say that the sequences {h′n}n≥1 and {h′′n}n≥1, with 0 < h′n ≤
h′′n < 1, for n ≥ 1, fulfill the assumption (H.4) if at least one of the conditions
(H.4)(i), (H.4)(ii) below are satisfied.

(H.4)(i)

√
nh′n log(1/h′n)

logn
√

log2 n
→ ∞ as n→ ∞;

(H.4)(ii)

√
h′′n log(1/h′′n)

h′n log(1/h′n)
= o

( √
n

logn

)
as n→ ∞.

Remark 1.1. (i) Note that, under (H.1-2), the hypothesis (H.4)(i) is satisfied
whenever (H.3′), introduced below, is satisfied.

(H.3′) n1/2h′n/ logn→ ∞ as n→ ∞.
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Obviously (H.3′) is a stronger condition than (H.3).

(ii ) For the particular choices h′n = n−r and h′′n = n−s, for n ≥ 1, with
0 < s ≤ r < 1, the hypothesis (H.4)(ii) is satisfied whenever s ≤ r < (1 + s)/2.

(iii) Our main results are established under the hypotheses (H.1-2-3-4). How-
ever, it is unlikely that (H.4) is necessary, and these results may still hold under
the only hypotheses (H.1-2-3) (see Remark 4.2 in the sequel).

We now specify the range of t in (1.3). We define the endpoints u1 and u2 of
the random variable X1 as follows

−∞ ≤ u1 := inf{x : F (x) > 0} and ∞ ≥ u2 := sup{x : F (x) < 1}. (1.4)

Further introduce en,h := h + 25n−1 log2 n, with h ∈ [h′n, h
′′
n]. We will work on

intervals of the form [t1,n,h, t2,n,h] with t1,n,h = en,h and t2,n,h = 1 − en,h.

We will assume that the following conditions hold.

(F.1) F is twice continuously differentiable on J := (u1, u2);

(F.2) F ′ = f is strictly positive on J ;

(F.3) supu1<u<u2

(
F (u)(1 − F (u))|f ′(u)|

)
/f2(u) ≤ γ, for some γ > 0.

It is noteworthy that the inequality in (F.3) is equivalent to

sup
0<t<1

t(1 − t)
|f ′(Q(t))|
f2(Q(t))

≤ γ.

Some more notation is needed for the statement of our results. Denote by S0, the,
so-called, Strassen set, a variant of which having been introduced by Strassen
(25) in the framework of the law of the iterated logarithm for partial sums.
Here, S0 is the unit ball of the reproducing kernel Hilbert space pertaining to
the two-sided standard Wiener process {W (s) : |s| ≤ 1}. The latter process is
conveniently defined by setting

W (s) =

{
W1(s) for s ≥ 0,
W2(−s) for s < 0,

where W1 andW2 are independent standard Wiener processes. We have, namely,

S0 =
{
g ∈ AC(−1, 1), g(0) = 0 and

∫ 1

−1

ġ(s)2ds ≤ 1
}
,

where AC(−1, 1) stands for the set of all absolutely continuous functions g on
[−1, 1], with Lebesgue derivative ġ. We denote by B(−1, 1) the set of all bounded
functions on [−1, 1] and set, for any g ∈ B(−1, 1), ‖g‖ := sup−1≤s≤1 |g(s)|.
Finally, we set, for any ε > 0, Sε

0 =
{
h ∈ B(−1, 1) : infg∈S0 ‖g − h‖ < ε

}
. Our

main result may now be stated as follows.
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Theorem 1.1. Let {h′n}n≥1 and {h′′n}n≥1 be two non-random sequences fulfill-
ing the conditions (H.1-2-3-4), with 0 < h′n ≤ h′′n < 1. Then, under (F.1-2-3),
we have, almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
sup

t1,n,h≤t≤t2,n,h

(
inf

g∈S0

∥∥∥∥
ϑn(h, t; .)√
2h log(1/h)

− g

∥∥∥∥
)}

= 0. (1.5)

Moreover, for each pair of constants c1, c2 with 0 ≤ c1 < c2 ≤ 1, we have, almost
surely,

∀g ∈ S0, lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
inf

c1≤t≤c2

∥∥∥∥
ϑn(h, t; .)√
2h log(1/h)

− g

∥∥∥∥
}

= 0. (1.6)

Remark 1.2. Extensions of Theorem 1.1 can be obtained by making sharper
assumptions upon the distribution function F . In particular, t1,n,h and t2,n,h

may be replaced in (1.5) by h and 1 − h respectively, when working under the
additional assumptions (F.4-5) below.

(F.4) A1 = limu↓u1 f(u) <∞, A2 = limu↑u2 f(u) <∞;

(F.5) min(A1, A2) > 0.

It is noteworthy that assumptions (F.1-2-3-4-5) define particular tail monotone
density functions with exponent γ, as defined by Parzen (23). Other less restric-
tive assumptions may lead to alternate extensions of Theorem 1.1. We refer the
reader to Csörgő (6) for more details.

The proof of Theorem 1.1 is postponed until Section 4. A rough outline of
our arguments is as follows. First, we establish, in Section 2, a version of this
theorem for iid uniform (0,1) random variables corresponding to the case where
f(x) = 1I[0,1](x) and q(t) = 1I[0,1](t) (see, e.g., Theorem 2.1 below). Then, we
make use of a continuity argument to treat the general framework. In Section
3 we present some statistical applications of our results. Section 4 is devoted to
the proofs of our theorems. Finally, in the Appendix, we provide details on a
technical fact used in Section 4.

2. The Uniform Case

Let U1, U2, · · · , be iid uniform (0, 1) random variables. In this context, we denote
by Un(t) := n−1♯ {Ui ≤ t, 1 ≤ i ≤ n}, for t ∈ IR, the (right-continuous) empirical
distribution function, and by Vn(t) := inf {u ≥ 0 : Un(u) ≥ t}, for 0 ≤ t ≤ 1,
with Vn(t) = 0 for t ≤ 0 and Vn(t) = Vn(1) for t ≥ 1, the (left-continuous)
empirical quantile function. Here, ♯E denotes the cardinality of E. We define the
uniform empirical process based upon U1, · · · , Un by αn(t) := n1/2 (Un(t) − t)
for t ∈ IR, and the corresponding uniform quantile process

βn(t) := n1/2 (Vn(t) − t) for t ∈ IR. (2.1)
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Note that, in this setup, the quantile process is equal to the normed quantile
process, since, as was already pointed out, q(t) = 1I[0,1](t). Define further, for
any 0 ≤ t ≤ 1 and h ∈ [0, t∧ (1 − t)], the increment functions

ξn(h, t; s) := αn(t+ hs) − αn(t), (2.2)

ζn(h, t; s) := βn(t+ hs) − βn(t), (2.3)

for −1 ≤ s ≤ 1. The limiting behavior of the maximal oscillations of these
processes has been extensively investigated in the literature (see, e.g., Stute
(26), Deheuvels and Mason (11), (12), Deheuvels (9), Deheuvels and Einmahl
(10), Mason (19), and the references therein).

We are now ready to state, in Theorem 2.1, a version of Theorem 1.1 for one-
dimensional uniform (0, 1) random variables. It is noteworthy that Theorem 2.1
is somehow stronger than Theorem 1.1, in the sense that it holds on a larger
interval (compare (1.5) and (2.4) below).

Theorem 2.1. Let {h′n}n≥1 and {h′′n}n≥1 be two non-random sequences fulfill-
ing the conditions (H.1-2-3-4), with 0 < h′n ≤ h′′n < 1. Then we have, almost
surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
sup

h≤t≤1−h

(
inf

g∈S0

∥∥∥∥
ζn(h, t; .)√
2h log(1/h)

− g

∥∥∥∥
)}

= 0. (2.4)

Moreover, for any pair of constants c1, c2 with 0 ≤ c1 < c2 ≤ 1, we have, almost
surely,

∀g ∈ S0, lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
inf

c1≤t≤c2

∥∥∥∥
ζn(h, t; .)√
2h log(1/h)

− g

∥∥∥∥
}

= 0. (2.5)

The following corollary of Theorem 2.1 will be instrumental in the proof of
Theorem 1.1, postponed until Section 4.2.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have, almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
sup

h≤t≤1−h

(
sup

−1≤s≤1

|ζn(h, t; s)|√
2h log(1/h)

)}
= 1. (2.6)

The proof of Theorem 2.1 is postponed until Section 4.1. An outline of our
forthcoming arguments is as follows. First, we will establish, in Proposition 4.1
below, a version of this result for ξn(h, t; ·). Proposition 4.1 will be shown to
follow from Theorem 1.1 of Varron (31). Given this first result, Theorem 2.1 is
straightforward under (H.4)(i), and, to establish Theorem 2.1 under (H.4)(ii),
we will base the remainder of our proof on a uniform-in-bandwidth Bahadur-
Kiefer-type representation of ζn in terms of ξn (see, e.g., Bahadur (1), Kiefer
(16), (17) and Deheuvels and Mason (12)). This representation is captured in
Lemma 4.1 in the sequel.
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3. Some Applications

3.1. The k-Spacings

In this sub-section, we provide some consequences of the just-given Theorems
1.1 and 2.1. The details of the corresponding proofs are postponed to Section 4.

We first consider the uniform case and denote by U(1) ≤ . . . ≤ U(n) the order
statistics pertaining to a random sample U1, . . . , Un of iid uniform (0,1) random
variables. The k-spacings of U(1) ≤ . . . ≤ U(n) are then defined by

∆i,n(k) := U(k+i) − U(i) for k = 1, . . . , n and i = 0, . . . , n+ 1 − k, (3.1)

where U(0) := 0 and U(n+1) := 1. For any integer 1 ≤ d ≤ n, we set

δn(d) := max
1≤k≤d

max
0≤i≤n+1−k

∣∣∆i,n(k) − k/n
∣∣. (3.2)

The following Theorem 3.1 will be shown to follow from Theorem 2.1. Set ⌈x⌉ ≥
x > ⌈x⌉ − 1 the ceiling function of x ∈ IR.

Theorem 3.1. Let {h′n}n≥1 and {h′′n}n≥1 be two non-random sequences fulfill-
ing the conditions (H.1-2-3-4), with 0 < h′n ≤ h′′n < 1. Then, we have, almost
surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

√
n δn(⌈nh⌉)√
2h log(1/h)

= 1. (3.3)

The proof of Theorem 3.1 is given in Section 4.4.

We now turn our attention to the case of possibly non-uniform random vari-
ables. Let X(1) ≤ . . . ≤ X(n) be the order statistics pertaining to a random
sample X1, . . . , Xn, of iid random variables with common distribution function

F , density function f and quantile function Q. Let e
(1)
n = 25n−1 log2 n, and

introduce the quantities i1,n and i2,k,n defined as follows

i1,n := min{i :
i

n
≥ e(1)

n } (3.4)

i2,k,n := max{i :
i+ k

n
≤ 1 − e(1)

n }. (3.5)

Under the hypotheses (F.1-2-3), define the k-spacings of X(1) ≤ . . . ≤ X(n) by
setting, for k = 1, . . . , n and i = i1,n, i1,n + 1, . . . , i2,k,n,

Di,n(k) := X(k+i) −X(i). (3.6)

Note that the k-spacings Di,n(k) could obviously be defined for k = 1, ..., n and
i = 0, ..., n− k. However, the restriction we propose here is needed to derive
Theorem 3.2, presented below, from Theorem 1.1.

For any integer 1 ≤ d ≤ n, we set

dn(d) := max
1≤k≤d

max
i1,n≤i≤i2,k,n

f(X(i))
∣∣∣Di,n(k) − k

nf(X(i))

∣∣∣. (3.7)
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The following Theorem 3.2 provides a complement to Theorem 1 of Csörgő and
Révész (5).

Theorem 3.2. Let {h′n}n≥1 and {h′′n}n≥1 be two non-random sequences fulfill-
ing the conditions (H.1-2-3-4), with 0 < h′n ≤ h′′n < 1. Then, under (F.1-2-3),
we have, almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

√
n dn(⌈nh⌉)√
2h log(1/h)

= 1. (3.8)

As mentioned above, Theorem 3.2 will be shown to be a consequence of Theorem
1.1, because of the well known relation Qn(t) = X(i) for (i− 1)/n < t ≤ i/n. Its
complete proof is postponed to Section 4.3.

3.2. A Law of the Logarithm for Nearest-Neighbor Density

Estimators

In this sub-section, we show that the results of the Sub-section 3.1 imply a
uniform-in-bandwidth law of the logarithm for a nearest-neighbor nonparamet-
ric density estimator. Let, as in Sub-section 3.1, X(1) ≤ . . . ≤ X(n) be the
order statistics pertaining to a random sample X1, . . . , Xn of iid variables with
distribution function F , density function F ′ = f and quantile function Q. Fix
0 < t1 < t2 < 1 and define the random sequences

u1,n := Qn(t1), u2,n := Qn(t2), n ≥ 1, (3.9)

where Qn stands, as in Sub-section 1.2, for the empirical quantile function. Note
that the fact that q(t) = d

dt
Q(t) exists and defines a positive and continuous

function on (0, 1) is a consequence of (1.2) and (1.4), when combined with the
assumptions (F.1-2-3). Thus, for n large enough, we have u1 < u1,n < u2,n < u2

almost surely, where u1 and u2 are defined in (1.4).

Further introduce K, an arbitrary kernel on IR, that is a measurable function
integrating to one on IR, and denote by {k′n}n≥1 and {k′′n}n≥1 two sequences such
that {h′n}n≥1 and {h′′n}n≥1 fulfill the conditions (H.1-2-3-4), with h′n = k′n/n
and h′′n = k′′n/n, for n ≥ 1. Select k > 0 such that k ∈ [k′n, k

′′
n]. On the interval

[u1,n, u2,n], define the k nearest-neighbor empirical density function, based upon
the kernel K and the sample X1, . . . , Xn, by

f̂n,k(x) :=
1

nRk(x)

n∑

i=1

K
(x−Xi

Rk(x)

)
, (3.10)

where

Rk(x) := inf{r > 0, such that exactly ⌊k⌋ elements of the sample

X1, . . . , Xn are in [x− r/2, x+ r/2]}.
This random function is often referred to as the adaptative variable bandwidth of
order k. The following additional assumptions upon the kernel K will be needed
to state our result concerning nearest-neighbor density estimators.
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(K.A) K is of bounded variation on IR.
(K.B) K is compactly supported.

Theorem 3.3. Let {h′n}n≥1 and {h′′n}n≥1 be two non-random sequences fulfill-
ing the conditions (H.1-2-3-4), with 0 < h′n ≤ h′′n < 1. Set, for n ≥ 1, k′n = nh′n
and k′′n = nh′′n. Then, under (F.1-2-3) and (K.A-B), we have, almost surely,

lim
n→∞

sup
x∈[u1,n,u2,n]

sup
k∈[k′

n,k′′

n]

√
k

∣∣f̂n,k(x) − IEf̂n,k(x)
∣∣

√
2f2(x) log(n/k)

=
{∫

IR

K2(t)dt
}1/2

, (3.11)

where u1,n and u2,n are defined in (3.9).

Remark 3.1. Note that, in the setting of density estimation, the hypothesis
(H.4)(i) generally holds, since most of the bandwidth selection procedures lead
to choices like h′n = c1n

−α, for a given 0 < c1 <∞, with α ≤ 1/2.

We will show, in the forthcoming Section 4.5, that Theorem 3.3 is a natural
consequence of a combination of Corollary 2.1 of Varron (32), with Theorem
3.2. We mention that Theorem 1.1 of Varron (31) may be adapted likewise to
obtain a similar result as that stated in Theorem 3.3, in the case of the usual
Parzen-Rosenblatt (see, e.g., Parzen (22) and Rosenblatt (24)) kernel density
estimator (see Facts 5.1 and 5.2 in the Appendix).

4. Proofs

4.1. Proof of Theorem 2.1

We first establish the analogue of Theorem 2.1 for ξn. Recall the definition (2.2)
of ξn.

Proposition 4.1. Let {h′n}n≥1 and {h′′n}n≥1 be two non-random sequences ful-
filling the conditions (H.1-2-3), with 0 < h′n ≤ h′′n < 1. Then, with probability
one,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
sup

h≤t≤1−h

(
inf

g∈S0

∥∥∥∥
ξn(h, t; .)√
2h log(1/h)

− g

∥∥∥∥
)}

= 0. (4.1)

Moreover, for any pair of constants 0 ≤ c1 < c2 ≤ 1, we have, almost surely,

∀g ∈ S0, lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
inf

c1≤t≤c2

∥∥∥∥
ξn(h, t; .)√
2h log(1/h)

− g

∥∥∥∥
}

= 0. (4.2)

Note that the hypotheses (H.1-2-3) are sufficient in Proposition 4.1.

Proof. Set

Gn := {1I[(t∧(t+v)),(t∨(t+v))], h ∈ [h′n, h
′′
n], h ≤ t ≤ 1 − h, −h ≤ v ≤ h}

and
G :=

{
1I[x,y], 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
. (4.3)
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It is well known that the class of all closed intervals in IR forms a V C class (see,
e.g., van der Vaart and Wellner (28)). Therefore, making use of the result of
Exercise 9 on page 151 of van der Vaart and Wellner (28), it is readily shown
that G constitutes a V C-subgraph class of functions (we refer to Section 2.6.2
in van der Vaart and Wellner (28) for the definitions of V C classes of sets, and
V C-subgraph classes of functions). Therefore G satisfies the entropy condition
(HK.III)(i) given in the Appendix, and since Gn ⊂ G, the equation (4.2) is a
direct consequence of Theorem 1.1 of Varron (31) (which is recalled in Fact 5.1
in the Appendix for convenience). The same arguments readily show that, for
each 0 < λ < 1/2 and ε > 0, there exists almost surely an n(ε) such that, for
all n ≥ n(ε),

{ξn(h, t; .) : h ∈ [h′n, h
′′
n], t ∈ [λ, 1− λ]} ⊂ Sε

0. (4.4)

Our proof is completed by the observation that Ũi := [(Ui+λ) modulo 1] and Ui

are identically distributed. Thus, for n large enough, we have the distributional
identities

{
ξn(h, t; .) : h ∈ [h′n, h

′′
n], t ∈ [h, λ]

}
n≥1

d
=

{
ξn(h, t; .) : h ∈ [h′n, h

′′
n], t ∈ [λ, 2λ− h]

}
n≥1

,

and {
ξn(h, t; .) : h ∈ [h′n, h

′′
n], t ∈ [1 − λ, 1 − h]

}
n≥1

d
= {ξn(h, t; .) : h ∈ [h′n, h

′′
n], t ∈ [1 − 2λ, 1− λ − h]}n≥1.

By combining these statements with (4.4), we obtain, in turn, that for each
ε > 0, there exists almost surely an n(ε), such that for all n ≥ n(ε),

{ξn(h, t; .) : h ∈ [h′n, h
′′
n], t ∈ [h, λ]} ⊂ Sε

0,

and
{ξn(h, t; .) : h ∈ [h′n, h

′′
n], t ∈ [1 − λ, 1 − h]} ⊂ Sε

0.

The proof of proposition 4.1 in now complete.⊔⊓

Remark 4.1. We note that Corollary 3 of Mason (19), which is a d-variate ex-
tension of Theorem 3.1 of Deheuvels and Mason (12), can be established through
these arguments.

The completion of the proof of Theorem 2.1 under the hypothesis (H.4)(i) is
now straightforward. Indeed, Kiefer (16) showed that, almost surely as n→ ∞,

sup
0≤t≤1

|αn(t) + βn(t)| = O
( (logn)1/2(log2 n)1/4

n1/4

)
,

which implies that uniformly over h ∈ [h′n, h
′′
n], h ≤ t ≤ 1 − h and |s| ≤ 1, we

have almost surely as n → ∞,

ζn(h, t; s)√
2h log(1/h)

=
−ξn(h, t; s)√
2h log(1/h)

+ O
( (logn)1/2(log2 n)1/4

n1/4(h log(1/h))1/2

)
,
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and
ζn(h, t; s)√
2h log(1/h)

=
−ξn(h, t; s)√
2h log(1/h)

+ O
( (logn)1/2(log2 n)1/4

n1/4(h log(1/h))1/2

)
.

These two last results, when combined with Proposition 4.1, are enough to
establish Theorem 2.1 under the hypothesis (H.4)(i).

To prove Theorem 2.1 under the hypothesis (H.4)(ii), we will work under the
following notation. We will set ‖g‖+ := sup0≤s≤1 |g(s)| for the sup-norm of
a function g ∈ B(0, 1), in contrast with ‖g‖ = sup−1≤s≤1 |g(s)|, used when
g ∈ B(−1, 1). To simplify matters, we will give proofs of our theorems with the
formal replacement of ‖.‖ by ‖.‖+. The technicalities needed to switch from ‖.‖+

to ‖.‖ are straightforward, but lengthy, and will therefore be omitted.

The completion of the proof of Theorem 2.1 under the hypothesis (H.4)(ii)
will require a uniform-in-bandwidth Bahadur-Kiefer-type representation of ζn
in terms of ξn. The following two lemmas are oriented towards the aim of es-
tablishing a representation of the kind. Our forthcoming results mimick that
obtained by Deheuvels and Mason (12), in a slightly more general setup of
varying bandwidths. We give the details of their proofs for the sake of com-
pleteness.

Lemma 4.1. Let {h′n}n≥1 and {h′′n}n≥1 be two sequences fulfilling the condi-
tions (H.1-2-3) and (H.4)(ii). Then, for any λ > 1, we have, almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

sup
0≤t≤1−λh

‖ζn(h, t; ·) + ξn(h, Vn(t); ·)‖+√
2h log(1/h)

= 0, (4.5)

where Vn(·) is still the empirical quantile function.

Proof. Choose any h ∈ [h′n, h
′′
n], with λ > 1, 0 ≤ t ≤ 1 − λh and 0 < s < 1.

Observe that

ζn(h, t; s) + ξn(h, Vn(t); s) = {ζn(h, t; s) + αn(Vn(t+ hs)) − αn(Vn(t))}
+ {αn(Vn(t) + hs) − αn(Vn(t + hs))} . (4.6)

Making use of the easily proven fact that |Un(Vn(t)) − t| ≤ 1/n for any n ≥ 1
and 0 ≤ t ≤ 1, an application of the triangle inequality to the right-hand side
of (4.6) establishes, in turn, that, uniformly over h ∈ [h′n, h

′′
n], 0 ≤ t ≤ 1 − λh

and 0 ≤ s ≤ 1,

|ζn(h, t; s) + {αn(Vn(t+ hs)) − αn(Vn(t))}| ≤ 2n−1/2. (4.7)

We invoke Theorem 1(III) in Mason (18) to obtain that, whenever {h′′n}n≥1

satisfies (H.1-2-3), we have

lim
n→∞

sup
0<h≤h′′

n

sup
0≤t≤1−h

√
n|Vn(t + h) − Vn(t) − h|√

2h′′n log(1/h′′n)
= 1 a.s. .
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Thus, for any ε > 0, we have, almost surely for all n sufficiently large, uniformly
over h ∈ [h′n, h

′′
n], 0 ≤ t ≤ 1 − λh and 0 ≤ s ≤ 1,

|Vn(t+ hs) − Vn(t) − hs| ≤ υn := (1 + ε)2
(
2n−1h′′n log(1/h′′n)

)1/2
. (4.8)

We next observe that, if the sequence {h′′n}n≥1 satisfies, ultimately as n → ∞,
the assumptions (H.1-2-3), then, such is also the case for (υn)n≥1 in (4.8). The
first half of Proposition 4.1 implies therefore that

lim sup
n→∞

sup
0≤v≤υn

sup
0≤Vn(u)≤1−υn

|αn(Vn(u)) − αn(Vn(u) + v)|√
2υn log(1/υn)

≤ 1 a.s. . (4.9)

(Note that v in (4.9) plays the role of hs in (4.1)).

Now, observe that, since {h′′n, n ≥ 1} satisfies (H.1-2-3), we have

1/2 ≤ lim inf
n→∞

(log(1/υn)) / logn ≤ lim sup
n→∞

(log(1/υn)) / logn ≤ 1. (4.10)

By combining (4.8) with (4.9) and (4.10), we get that, for all n sufficiently large,

sup
h∈[h′

n ,h′′

n]

sup
0≤t≤1−λh

sup
0≤s≤1

n1/4 (h′′n log(1/h′′n))
−1/4

(logn)−1/2

× |αn (Vn(t + hs)) − αn (Vn(t) + hs)| ≤ 23/4(1 + ε) a.s.

Since ε > 0 can be chosen arbitrarily small in the above inequality, we see that,
almost surely,

lim sup
n→∞

sup
h∈[h′

n ,h′′

n]

sup
0≤t≤1−λh

sup
0≤s≤1

n1/4 (h′′n log(1/h′′n))
−1/4

(logn)−1/2

× |αn (Vn(t + hs)) − αn (Vn(t) + hs)| ≤ 23/4. (4.11)

Under the hypothesis (H.4)(ii), (4.11), when combined with (4.6) and (4.7),
suffices to complete the proof of (4.5). ⊔⊓

Remark 4.2. It is likely that the following result holds : for any sequences
{h′n}n≥1 and {h′′n}n≥1 fulfilling the hypotheses (H.1-2-3),

lim
n→∞

sup
h∈[h′

n ,h′′

n]

sup
0≤t≤1−h

sup
0≤s≤1

|Vn(t+ hs) − Vn(t) − hs|√
2h log(1/h)

≤ 1 a.s. . (4.12)

If so, following the same lines as above, it could be shown that the result of
Lemma 4.1, and, consequently, the results of Theorems 1.1, 3.1, 3.2 and 3.3,
would still hold under the only hypotheses (H.1-2-3).

Lemma 4.2. Let {h′n}n≥1 and {h′′n}n≥1 be two sequences, assumed, each, to
fulfill the conditions (H.1-2-3) and (H.4)(ii). Then, for any fixed λ > 1, we have
almost surely

lim sup
n→∞

sup
h∈[h′

n ,h′′

n]

sup
1−λh≤t≤1−h

‖ζn(h, t; ·) + ξn(h, 1 − h; ·)‖+√
2h log(1/h)

≤ 2
√
λ− 1, (4.13)
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and for all n sufficiently large, uniformly over h ∈ [h′n, h
′′
n],

Vn(1 − λh) < 1 − h. (4.14)

Proof. By setting, respectively, t = h, s = −1 in Proposition 4.1, and t = 0, s =
1 in Lemma 4.1, we obtain readily that, with probability one,

lim sup
n→∞

sup
h∈[h′

n ,h′′

n]
±βn(h)/

√
2h log(1/h) ≤ 1.

Thus, under (H.1-2-3), we have, almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

(Vn(1 − λh) − (1 − h)) /h = 1 − λ < 0. (4.15)

Set ωn(a) := sup0≤t≤1−a {‖ξn(a, t; .)‖+} for 0 ≤ a ≤ 1. From Proposition 4.1,

we have suph∈[h′

n ,h′′

n]{ωn(h)/
√

2h log(1/h)} → 1 almost surely as n → ∞. By
combining this result with (4.15), we obtain that

lim sup
n→∞

sup
h∈[h′

n ,h′′

n]
sup

1−λh≤t≤1−h

‖ξn(h, Vn(t); ·) − ξn(h, 1 − h; ·)‖+√
2h log(1/h)

≤ limn→∞ sup
h∈[h′

n,h′′

n]

2ωn((λ− 1)h)√
2h log(1/h)

= 2
√

(λ − 1) a.s.

In view of (4.5), this last result readily yields (4.13), whereas (4.14) is a direct
consequence of (4.15). ⊔⊓

We are now ready to complete the proof of Theorem 2.1. To establish (2.4), we

fix an ε > 0, and choose λ = 1 + ε2

16 . In view of (4.13), (4.14), Proposition 4.1
and (4.5), there exists almost surely an Nε <∞, such that, for all n ≥ Nε,

Vn(1 − λh) < 1 − h uniformly over h ∈ [h′n, h
′′
n],

and

sup
h∈[h′

n ,h′′

n]

{
sup

0≤t≤1−h

(
inf

g∈S0

∥∥∥∥
ξn(h, t; ·)√
2h log(1/h)

− g

∥∥∥∥
+

)}
< ε/2 a.s. ,

sup
h∈[h′

n ,h′′

n]

{
sup

0≤t≤1−λh

‖ζn(h, t; ·) + ξn(h, Vn(t); ·)‖+√
2h log(1/h)

}
≤ ε/2 a.s. , (4.16)

sup
h∈[h′

n ,h′′

n]

{
sup

1−λh≤t≤1−h

‖ζn(h, t; ·) + ξn(h, 1− h; ·)‖+√
2h log(1/h)

}
≤ ε/2 a.s.

Therefore, for all n ≥ Nε, we have, with probability one,

sup
h∈[h′

n ,h′′

n]

{
sup

0≤t≤1−h

(
inf

g∈S0

∥∥∥
ζn(h, t; ·)√
2h log(1/h)

− g
∥∥∥

+

)}
< ε.
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This last result suffices for the proof of the version of (2.4) obtained with ‖.‖+

replacing ‖.‖. The proof of the version of (2.4) making use of the sup-norm ‖.‖
follows along the same lines and is therefore omitted.

To establish (2.5), we first select an arbitrary g ∈ S0 and fix a ε > 0. By (4.2),

there exist almost surely an n
(4)
ε and a sequence t

(1)
n ∈ (1/4, 3/4), n = 1, 2, . . .,

such that, for all n ≥ n
(4)
ε ,

sup
h∈[h′

n ,h′′

n]

‖ ξn(h, t(1)
n ; .)/

√
2h log(1/h) − g ‖+< ε/4. (4.17)

Now set tn = Un(t
(1)
n ) for n ≥ 1. We have, uniformly over h ∈ [h′n, h

′′
n],

∥∥∥
ζn(h, t

(1)
n ; .)√

2h log(1/h)
+ g

∥∥∥
+

≤ ‖ζn(h, tn; ·) + ξn(h, Vn(tn); ·)‖+√
2h log(1/h)

+
‖ − ξn(h, Vn(tn); ·) + ξn(h, t

(1)
n ; ·)‖+√

2h log(1/h)

+
∥∥∥ − ξn(h, t

(1)
n ; .)√

2h log(1/h)
+ g

∥∥∥
+
. (4.18)

The Glivenko-Cantelli theorem, when combined with the definition tn = Un(t
(1)
n )

of tn, with t
(1)
n ∈ (1/4, 3/4), readily implies that, almost surely for all n suffi-

ciently large, tn ∈ (1/8, 7/8) and Vn(tn) ≤ t
(1)
n < Vn(tn + 1/n). This, in turn,

entails that (see, e.g., Deheuvels (8))

lim sup
n→∞

|Vn(tn) − t(1)
n |(n/ logn) = 1 a.s. (4.19)

Set ρn := logn/n for n ≥ 1. By Theorem 1(I) of Mason, Shorack and Wellner
(20), it follows that (see, e.g., (2.17) in Deheuvels and Mason (12))

sup
0≤t′≤1−ρn

sup
|t′−t′′|≤2ρn

n

logn

[
Un(t′) − Un(t′′)

]
= O(1) a.s. .

By combining this last result with (4.19) and the fact that, under the hypotheses
(H.1-2-3), logn/

√
nh log(1/h) → 0 uniformly in h ∈ [h′n, h

′′
n] as n → ∞, we

readily obtain that

lim sup
n→∞

sup
h∈[h′

n ,h′′

n]

‖ − ξn(h, Vn(tn); ·) + ξn(h, t
(1)
n ; ·)‖+√

2h log(1/h)
= 0 a.s. . (4.20)

By (4.16), (4.17) and (4.20), there exists almost surely an N ′
ε < ∞, such that,

for all n ≥ N ′
ε, we have 1/8 < tn < 7/8, tn < 1 − λh′′n and

sup
h∈[h′

n ,h′′

n]

∥∥∥
ζn(h, t

(1)
n ; .)√

2h log(1/h)
− (−g)

∥∥∥
+
< ε. (4.21)
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By choosing ε > 0 arbitrarily small in (4.21), we obtain readily (2.5) with
c1 = 1/4 and c2 = 3/4. The extension to arbitrary 0 < c1 ≤ c2 < 1 follows
from the same lines and is then omitted for the sake of conciseness. This last
result completes the proof of the version of Theorem 2.1 pertaining to the sup-
norm ‖.‖+. The extension to the case of ‖.‖ is straightforward, and hence also
omitted.⊔⊓

4.2. Proof of Theorem 1.1

Recall that Qn(t) = Q(Vn(t)) for 0 < t < 1. Keep in mind that the fact that
q(t) = d

dtQ(t) exists, and defines a positive and continuous function on (0, 1), is
a consequence of (1.2) and (1.4), when combined with the assumptions (F.1-2-
3). In view of the definitions (1.1)-(2.1) of bn and βn, this, when combined with
Taylor’s formula, entails, almost surely for all n sufficiently large, the existence
of a θt,n ∈

(
t ∧ Vn(t), t ∨ Vn(t)

)
for each t ∈ (0, 1), such that

bn(t) =
n1/2(Q(Vn(t)) −Q(t))

q(t)
= βn(t)

q(θt,n)

q(t)
. (4.22)

Thanks to this relation, Csörgő and Révész (3) showed that, under the assump-
tions (F.1-2-3) (see also Theorem 3.2.1 in (6))

sup
t∈[e

(1)
n ,1−e

(1)
n ]

|bn(t) − βn(t)| = O
( log2 n

n1/2

)
almost surely, (4.23)

with e
(1)
n = 25n−1 log2 n. The result of Theorem 1.1 directly follows by combin-

ing Theorem 2.1 with (4.23).

4.3. Proof of Theorem 3.2

Recall the definition (1.1) of bn(t) = n1/2(Qn(t)−Q(t))/q(t), whereQn(t) = X(i)

for (i − 1)/n < t ≤ i/n. Thus, for any 0 < s, t < 1, setting i = ⌈nt⌉ and
j = ⌈ns⌉, where ⌈x⌉ ≥ x > ⌈x⌉−1 is the ceiling function, we have Qn(s) = X(j),
Qn(t) = X(i), and

bn(s) − bn(t) = n1/2
{X(j) −Q(s)

q(s)
− X(i) −Q(t)

q(t)

}

=
n1/2

q(t)

{
X(j) −X(i) −

(
Q(s) −Q(t)

)
+

(
X(j) −Q(s)

)( q(t)
q(s)

− 1
)}

=
n1/2

q(t)

{(
X(j) −X(i) −

(
Q

( j
n

)
−Q

( i
n

)))
+

((
Q

( j
n

)
−Q

( i
n

))

−
(
Q(s) −Q(t)

))
+

(
Qn(s) −Q(s)

)( q(t)
q(s)

− 1
)}
.
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This allows us to write

bn(s) − bn(t) =
n1/2

q(t)

[(
X(j) −X(i) −Q

( j
n

)
−Q

( i
n

))
+ εn(t, s)

]
, (4.24)

where

εn(t, s) := ε1,n(t, s) − ε2,n(t, s), (4.25)

ε1,n(t, s) :=
(
Qn(s) −Q(s)

)( q(t)
q(s)

− 1
)
,

ε2,n(t, s) := Q(s) −Q(t) −
(
Q

( j
n

)
−Q

( i
n

))
.

Since (i − 1)/n < t ≤ i/n and (j − 1)/n < s ≤ j/n, the assumptions (F.1−2)
readily imply that,

|Q(s) −Q
( j
n

)
| ≤

∣∣s− j

n

∣∣q(s1) ≤
q(s1)

n
for some s1 ∈ ((j − 1)/n, j/n),

and, similarly,

|Q(t) −Q
( i
n

)
| ≤

∣∣t− i

n

∣∣q(t1) ≤
q(t1)

n
for some t1 ∈ ((i− 1)/n, i/n).

It follows therefore that we have, uniformly over h ∈ [h′n, h
′′
n], ultimately as

n → ∞,

sup
e
(1)
n ≤t≤t2,n,h

sup
0≤u≤1

∣∣ε2,n(t, t+ hu)
∣∣ = O

( 1

n

)
a.s. . (4.26)

To evaluate ε1,n(t, t+hu), we will make use of the following fact, due to Csörgő
and Révész (3) (see also Lemma 1.4.1 in Csörgő (6)).

Fact 4.1. Under (F 1-2-3-4), we have, for every y1, y2 ∈ (0, 1),

q(y2)

q(y1)
=
f(Q(y1))

f(Q(y2))
≤

{
(y1 ∨ y2)
(y1 ∧ y2)

× 1 − (y1 ∧ y2)
1 − (y1 ∨ y2)

}γ

,

where γ > 0 is as in (F.3).

Under (F.3), it follows readily from Fact 4.1 that, for u > 0 and as h→ 0,

q(t)

q(t+ hu)
− 1 = O(hγ). (4.27)

Similarly, for u < 0, one can show that q(t)
q(t+hu) − 1 = O(hγ) as h → 0. In

addition, by the Chung (2) law of the iterated logarithm [LIL] applied to the
sup-norm of βn , we observe that, almost surely as n→ ∞,

n−1/2 sup
0≤t≤1

|βn(t)| = O
(√

log2 n

n

)
. (4.28)
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We now combine (4.27) with (4.22) and (4.28). We so obtain that we have, with
probability 1, uniformly over h ∈ [h′n, h

′′
n] and ultimately as n → ∞,

sup
e
(1)
n ≤t≤t2,n,h

sup
0≤u≤1

∣∣ε1,n(t, t+ hu)
∣∣ = O

(
hγ

√
log2 n

n

)
. (4.29)

Recall that (i− 1)/n < t ≤ i/n in (4.24). A Taylor expansion based upon (F.1),
together with the Chung (2) LIL, as stated in (4.28), and (4.22), shows readily
that, almost surely as n → ∞,

|f(Q(t)) − f(X(i))| = |f(Q(t)) − f(Qn(t))| = O
(
|Q(t) −Qn(t)|

)

= O
(
|Q(t) −Q

( i
n

)
|
)

+ O
(
Q

( i
n

)
−Qn

( i
n

)
|
)

= O
(√

log2 n

n

)
+ O

( 1

n

)
= O

(√
log2 n

n

)
. (4.30)

Set

d(1)
n (d) := max

1≤k≤d
max

i1,n≤i≤i2,k,n

f(X(i))
∣∣Di,n(k) −

(
Q

(i+ k

n

)
−Q

( i
n

))∣∣,

where we recall that

i1,n = min{i :
i

n
≥ e(1)

n }

i2,n = max{i :
i+ k

n
≤ 1 − e(1)

n },

with e
(1)
n = 25n−1 log2 n. Observe that, for all h ∈ [h′n, h

′′
n] and every i1,⌈nh⌉,n ≤

i ≤ i2,n,

∀t ∈
(i− 1

n
,
i

n

]
, Qn(t) = X(i), (4.31)

∃t ∈
(i− 1

n
,
i

n

]
, Qn(t+ h) = X(i+⌈nh⌉), (4.32)

∄t ∈
(i− 1

n
,
i

n

]
, Qn(t+ h) = X(i+⌈nh⌉+1). (4.33)

Now, looking carefully at the arguments used in the proof of Theorems 1.1 and
2.1, it is straightforward that the following results hold. Under the assumptions
of Theorem 1.1, we have, almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

{
sup

e
(1)
n ≤t≤t2,n,h

(
sup

0≤s≤1

|ϑn(h, t; s)|√
2h log(1/h)

)}
= 1. (4.34)

In view of (4.24)–(4.33), (4.34) entails that

lim
n→∞

sup
h∈[h′

n ,h′′

n]

|√n d(1)
n (⌈nh⌉)|√

2h log(1/h)
= 1 a.s. . (4.35)
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We conclude by routine analysis that, under H.(1-2-3) and the assumptions

above, (4.35) holds with the formal replacement of d
(1)
n by dn. This completes

the proof of Theorem 3.2.

4.4. Proof of Theorem 3.1

Recall the definition (2.1) of βn. Following the lines of the above-given proof of
Theorem 3.2, we select 0 ≤ s, t ≤ 1 and set i = ⌈nt⌉ and j = ⌈ns⌉. We then
write

βn(t) − βn(s) = n1/2
((
U(j) − U(i) −

j − i

n

)
+
j − i

n
− (t− s)

)
, (4.36)

and observe that, in (4.36),

∣∣∣
j − i

n
− (t− s)

∣∣∣ ≤ 1

n
. (4.37)

In view of (4.36) and (4.37), we obtain the proof of (3.3) by similar arguments
as in the proof of Theorem 3.2.

4.5. Proof of Theorem 3.3

The Parzen-Rosenblatt kernel estimator of the density function f (see, e.g.,
Parzen (22) and Rosenblatt (24)) is defined, for some kernel K fulfilling (K.A-
B), and a positive bandwidth h, by

f̃n,h(x) :=
1

nh

n∑

i=1

K
(x−Xi

h

)
.

Recall the notation J = (u1, u2). An application of Theorem 1.1 of Varron (31)
(see Facts 5.1 and 5.2 in the Appendix) yields readily the following proposi-
tion whose proof is omitted. This proposition provides a uniform-in-bandwidth
version of Corollary 4 in Einmahl and Mason (14).

Proposition 4.2. Denote by J a sub-interval of J with non-empty interior.
Let {h′n}n≥1 and {h′′n}n≥1 be two non-random sequences fulfilling the conditions
(H.1-2-3), with 0 < h′n ≤ h′′n < 1. Then, under (F.1-2-3) and (K.A-B), we have,
almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

sup
x∈J

√
nh|f̃n,h(x) − IEf̃n,h(x)|√

2f(x) log(1/h)
=

{ ∫

IR

K2(t)dt
}1/2

. (4.38)

To complete the proof of Theorem 3.3, we select two sequences {h′n}n≥1 and
{h′′n}n≥1 fulfilling the conditions (H.1-2-3-4), and set k′n = nh′n and k′′n = nh′′n.
Given this notation, we claim that, almost surely as n→ ∞,

sup
x∈[u1,n,u2,n]

sup
k∈[k′

n,k′′

n]

∣∣Rk(x) − k

nf(x)

∣∣ → 0. (4.39)
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To see how (4.39) follows from Theorem 3.2, select x ∈ [u1,n, u2,n] and let
j = jk(x) be the smallest integer for which X(j) ≥ x− Rk(x)/2. Then, at least
one of the relations

X(j) = x− Rk(x)

2
, X(j+⌊k⌋−1) = x+

Rk(x)

2

holds. This naturally implies that

Rk(x) ≤ max
{[
X(j+⌊k⌋) −X(j)

]
,
[
X(j+⌊k⌋−1) −X(j−1)

]}
,

and
Rk(x) ≥

[
X(j+⌊k⌋−1) −X(j)

]
.

Moreover, observe that, for all x′ ∈ [X(j+⌊k⌋−1), X(j+⌊k⌋+1)], f(x
′) = f(x)+o(1)

almost surely as n → ∞, for all k ∈ [k′n, k
′′
n]. Putting all these results together,

we can apply Theorem 3.2 and conclude to (4.39).

Now, introduce the modified sequences defined by

h̃′n :=
h′n
2

inf
x∈J

1

f(x)
and h̃′′n := 2h′′n sup

x∈J

1

f(x)
. (4.40)

We infer from (4.39) and (4.40) that, almost surely as n → ∞,

h̃′n ≤ inf
x∈[u1,n,u2,n]

inf
k∈[k′

n,k′′

n]
Rk(x) ≤ sup

x∈[u1,n,u2,n]

sup
k∈[k′

n,k′′

n]

Rk(x) ≤ h̃′′n. (4.41)

Recalling from (F.1-2) that f is bounded and strictly positive on J , with J ⊃
[u1,n, u2,n] for all n ≥ 1, we see that {h̃′n}n≥1 [resp. {h̃′′n}n≥1] fulfills (H.1-2-
3-4), whenever such is the case for {h′n}n≥1 [resp. {h′′n}n≥1]. Moreover, setting
ũ1 = Q(t1) and ũ2 = Q(t2), we have uℓ,n → uℓ, for ℓ = 1, 2 almost surely as
n → ∞ and ũ1 > u1 and ũ2 < u2 (by (F.1−2)). Thus, in view of Proposition
4.2, it is straightforward that, under the hypotheses of Theorem 3.3,

lim
n→∞

sup
x∈[u1,n,u2,n]

sup
k∈[k′

n,k′′

n]

√
k

∣∣f̂n,k(x) − IEf̂n,k(x)
∣∣

√
2f2(x) log(n/k)

≤
{ ∫

IR

K2(t)dt
}1/2

. (4.42)

Moreover, in view of (4.39), for all kn = nhn ∈ [k′n, k
′′
n], it holds that, almost

surely as n→ ∞,

inf
x∈J

1

f(x)

hn

2
≤ inf

x∈[u1,n,u2,n]
Rkn

(x) ≤ sup
x∈[u1,n,u2,n]

Rkn
(x) ≤ 2hn sup

x∈J

1

f(x)
.

(4.43)
We now compare (4.43) with the condition (B.1) in Deheuvels and Mason (13).
The fact that

lim
n→∞

sup
x∈[u1,n,u2,n]

√
kn

∣∣f̂n,kn
(x) − IEf̂n,kn

(x)
∣∣

√
2f2(x) log(n/kn)

=
{∫

IR

K2(t)dt
}1/2

(4.44)
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follows from Proposition 4.2, in view of (4.39) and (4.41), along the same lines
as the first part of Theorem 1.2 in Deheuvels and Mason (13) is shown to be
a consequence of their Corollary 3.2. We omit the details of this book-keeping
argument.

By combining (4.42) with (4.44), the proof of Theorem (3.3) is readily achieved.

Acknowledgments:We thank the referees for careful reading of our manuscript
and for insightful comments leading, in particular, to some extensions of our
original Theorem 1.1.

5. Appendix

5.1. Useful facts

Here we present two necessary facts, that have been shown to be instrumental
in our proofs.

Fix d ≥ 1. Let (Zi)i≥1 be a sequence of iid random variables defined on IRd, and
G be a class of real Borel functions defined on IRd. For each h > 0, n ≥ 1 and
z ∈ IRd, we set

Gn(K, h, z) :=

n∑

i=1

K
(z− Zi

h1/d

)
− IE

{
K

(z −Zi

h1/d

)}
,

where K ∈ G.

Further set Id := [0, 1]d, |u| := max1≤i≤d |ui| and

F :=
{
K(λ(z − .)), z ∈ IRd, λ > 0, K ∈ G

}
.

Introduce the following assumptions on G.

(HK.I) (i) lim|u|→0 supK∈G

∫
IRd

(
K(x) −K(x + u)

)2
dx = 0.

(ii) limλ→1 supK∈G

∫
IRd

(
K(λx) −K(x)

)2
dx = 0.

(HK.II) (i) ∀K ∈ G, sup
x∈IRd |K(x)| ≤ 1.

(ii) ∀K ∈ G, ∀x /∈ Id, K(x) = 0.

(HK.III) (i) ∃ C > 0, v > 0, ∀ 0 < ε < 1, N (ε,F) ≤ Cε−v.

(ii) F is pointwise separable.

Here N (ε,F) := sup{N (ε,F ,L2(P)),P probability measure} denotes the uni-
form covering number of F for ε and the class of norms {L2(P)}, with P varying
in the set of all probability measures on IRd (for more details we refer to van
der Vaart and Wellner (28), pp 83-84).
Let B(G) denote the set of all real bounded functions on G, continuous with re-
spect to pointwise convergence. Let L⋆

2(G) be the Hilbert subspace of L2(IR
d, m)
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spanned by G (here, m denotes the Lebesgue measure on IRd). For f ∈ L⋆
2(IR

d) =

L2(IR
d), denote by Ψf (g) := (f, g) =

√∫
fgdm, g ∈ G, the inner product in

L2(IR
d, m) and J(Ψf ) :=

∫
IRd f

2dm the squared norm of f in L2(IR
d, m). For

each Ψ ∈ B(G) that can not be expressed as a Ψf , f ∈ L2(IR
d), we set J(Ψ) = ∞.

Finally, set K := {Ψ : J(Ψ) ≤ 1}.
The following result is due to Varron (31) (see also Varron (32)).

Fact 5.1. Let {h′n}n≥1 and {h′′n}n≥1 be two sequences of positive constants,
fulfilling the assumptions (H.1-2-3), and such that 0 < h′n ≤ h′′n < 1. Suppose
that Z1 has a density function f, such that the following conditions hold. For
some compact set H ∈ IRd, there exists a ς > 0 such that f is continuous and
strictly positive on

Hς := {x ∈ IRd : inf
z∈H

‖x− z‖IRd ≤ ς}.

Here, ‖.‖IRd denotes the usual Euclidean norm on IRd. Then, if G is a class of
real Borel functions satisfying (HK.I-II-III), we have almost surely,

lim
n→∞

sup
z∈H

sup
h∈[h′

n ,h′′

n]

inf
Ψ∈K

∥∥∥
Gn(., h, z)√

2f(z)nh log(1/h)
− Ψ

∥∥∥
G

= 0,

∀Ψ ∈ K, lim
n→∞

sup
h∈[h′

n ,h′′

n]

inf
z∈H

∥∥∥
Gn(., h, z)√

2f(z)nh log(1/h)
− Ψ

∥∥∥
G

= 0,

where ‖ψ‖G = supK∈G |ψ(K)|.
A direct consequence of this result is as follows (see, e.g., Varron (32)).

Fact 5.2. Let K be a measurable kernel of bounded variation, with compact
support. Under the relevant assumptions of Fact 5.1, we have, almost surely,

lim
n→∞

sup
h∈[h′

n ,h′′

n]

sup
x∈H

√
nh|fn(K,x, h) − IEfn(K,x, h)|√

2f(x) log(1/h)
=

√∫

IRd

K2dm,

where fn(K,x, h) =
1

nh

n∑

i=1

K
(z− Zi

h1/d

)
− IE

{
K

(z− Zi

h1/d

)}
.

References

[1] R.R. Bahadur. A note on quantiles in large samples. Ann. Math. Stat.,
37:577–580, 1966. MR0189095

[2] K.L. Chung. On the maximum partial sums of sequences of independent
random variables. Trans. Am. Math. Soc., 64:205-233, 1948. MR0026274
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[7] P. Deheuvels. Conditions nécessaires et suffisantes de convergence
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