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Abstract: Inference based on the penalized density ratio model is pro-
posed and studied. The model under consideration is specified by assum-
ing that the log–likelihood function of two unknown densities is of some
parametric form. The model has been extended to cover multiple samples
problems while its theoretical properties have been investigated using large
sample theory. A main application of the density ratio model is testing
whether two, or more, distributions are equal. We extend these results by
arguing that the penalized maximum empirical likelihood estimator has less
mean square error than that of the ordinary maximum likelihood estima-
tor, especially for small samples. In fact, penalization resolves any existence
problems of estimators and a modified Wald type test statistic can be em-
ployed for testing equality of the two distributions. A limited simulation
study supports further the theory.
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1. Introduction

The density ratio model is specified by assuming that the log–ratio of two un-
known probability density functions is linear in some parameters, see
Qin and Zhang (1997) and Qin (1998). The model is motivated by consider-
ing a logistic regression model for a binary random variable Y , which assumes
the values 1 and 2–where “1” denotes success–and X a d–dimensional vector of
covariates, see Anderson (1972, 1979), Breslow and Day (1980), Cox and Snell
(1989), for example. Then, the logistic regression model expresses the probabil-
ity of the event {Y = 1} as a function of X by

P [Y = 1 | x] =
exp (α⋆ + β′x)

1 + exp (α⋆ + β′x)
,

where α⋆ is a scalar parameter and β is a d × 1 vector of regression coeffi-
cients. The logistic model leads to the density ratio model when considering
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case–control or retrospective sampling, see Prentice and Pyke (1979), Farewell
(1979). Suppose that X11, . . . , X1n1

is a random sample from G(x | Y = 1)
and X21, . . . , X2n2

is another independent sample from G(x | Y = 2). Set
π = P [Y = 1] and g(x | Y = i) = dG(x | Y = i)/dx, for the conditional
probability density function of X given Y = i, i = 1, 2. Bayes’ theorem shows
that

g(x | Y = 1)

g(x | Y = 2)
=

1 − π

π
exp (α⋆ + β′x)

= exp (α+ β′x) ,

with α = α⋆ + log{(1 − π)/π}. The last equation justifies the term density
ratio model: the densities of the observations are related by a parametric expo-
nential tilt, but otherwise are unknown. In general, consider the following two
independent samples semiparametric problem:

X11, . . . , X1n1
is a random sample from g1(x) = exp (α+ β′h(x)) g2(x),

X21, . . . , X2n2
is a random sample from g2(x),

(1)
where gi(x), i = 1, 2 are unknown probability density functions. The quantity α
is an unknown scalar, β is a d– dimensional vector of parameters while h(x) is a
d-dimensional vector which consists of known functions of X. Several examples
of distribution fall within the above framework, in particular the exponential
family of distributions satisfies (1) trivially. An important observation is that
when the model holds, and if β = 0, then the two samples are identically dis-
tributed. We conclude that model (1) is useful to the semiparametric comparison
of two samples in the sense that the densities gi(.), i = 1, 2 are left completely
unspecified but the weight function exp (α+ β′h(x)) depends on some finite
dimensional parameter. The last remark connects the density ratio model and
biased sampling theory, see Vardi (1982, 1985), Gill et al. (1988), Gilbert et al.
(1999) and Gilbert (2000).

Inference regarding both finite and infinite dimensional parameters of model
(1) has been studied by various authors assuming that the sample sizes tend
to infinity in a suitable way. The methodology is based on empirical likelihood
inference, see Owen (2001). Accordingly, a parametric likelihood function for
the finite dimensional parameters is obtained after profiling out the infinite di-
mensional parameter of the model. However, there are applications where the
sample sizes are small and therefore direct application of the empirical likelihood
methodology might not be suitable. To overcome these problems we put forward
a penalized empirical likelihood function for inference, see (4), which depends
on two forms, a regularization parameter and a penalty function. The regular-
ization parameter controls the amount of penalization whereas the penalty term
is a function of the finite dimensional parameter of the model. The choice of the
penalty function is independent of the infinite dimensional parameter as it will
be explained in Section 2 where the methodology is developed in detail. Using
penalized empirical likelihood leads to solution of several problems including
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elimination of non existence and non convergence issues. In addition approxi-
mations even for relatively small sample sizes are adequate enough to allow for
testing. Section 3 reviews several facts about the resulting estimators and shows
that a judicious choice of the regularization parameter leads to consistent and
asymptotically normal estimators. The last section examines the finite sample
performance of the proposed estimators by some limited simulations. The paper
closes with several remarks and an appendix.

2. Penalized likelihood inference

Suppose that Xij, j = 1, . . . , ni, i = 1, 2 are two independent random samples
from cumulative distribution functions Gi(x), i = 1, 2, respectively. Let gi(x) be
the corresponding density functions, that is gi(x) = dGi(x)/dx, and denote by
X = (X11, X12, . . . , X1n1

, X21, . . . , X2n2
)
′

the vector of all observations. Suppose
further that the density ratio model (1) holds. Inference for the finite dimen-
sional parameters θ = (α, β′)′ is based on the so–called empirical likelihood–see
Owen (2001). Accordingly, let pij denote the size of the jump at the observed
datum xij, that is pij = dG2(xij) = G2(x

+
ij) −G2(x

−
ij), j = 1, 2, . . . , ni, i = 1, 2

and consider the following nonparametric likelihood given the data,

L(α, β, G2 | x) =

{

n1
∏

j=1

exp (α+ β′h(x1j)) dG2(x1j)

}{

n2
∏

j=1

dG2(x2j)

}

=

{

2
∏

i=1

ni
∏

j=1

pij

}{

n1
∏

j=1

exp (α+ β′h(x1j))

}

. (2)

Following Qin and Zhang (1997) and Fokianos et al. (2001), elimination of
the infinite dimensional parameter G2(.) is accomplished by maximizing

the first product of (2) subject to the constraints
∑2

i=1

∑ni

j=1 pij = 1, and
∑2

i=1

∑ni

j=1 pij(exp(α+β′h(xij)−1)) = 0. Avoiding unnecessary repetition, the
empirical log-likelihood is given by

l(θ) = −
2
∑

i=1

ni
∑

j=1

log [1 + ρ1 exp(α + β′h(xij))] +

n1
∑

j=1

(α+ β′h(x1j)) (3)

where ρ1 = n1/n2. Furthermore, if θ̂ = (α̂, β̂)′ denotes the maximum likelihood
estimator of θ, assuming that it exists, then it can be shown that

p̂ij =
1

n2

1

1 + ρ1 exp(α̂ + β̂′h(xij))
.

Hence a consistent estimator for both of G1(.) and G2(.) can be constructed
provided that the total sample size n = n1 + n2 tends to infinity such that
n1/n2 → ρ1–see Qin and Zhang (1997) and Fokianos et al. (2001) for further
details.
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Expression (3), after reparametrization, is equivalent to standard logistic re-
gression likelihood–a direct consequence of the equivalence between retrospec-
tive and prospective sampling, see Prentice and Pyke (1979). Accordingly, infer-
ence for the parameter θ is carried out by numerous statistical programs which
include logistic regression modeling. However, it is well known that if the sample
size is large, then the logistic likelihood equations yield the maximum likelihood
estimator provided that it exists. In this case, the score equations are solved
by the Fisher scoring method and under some reasonable regularity assump-
tions a sequence of approximations is derived that converges to the maximum
likelihood estimators of α and β. In contrast, convergence and existence issues
arise when the sample size is relatively small. When the sample size is small,
maximum likelihood estimates fail to exist in general if the data are completely,
quasi–completely or partially separated. More specifically, there does not exist
a maximum likelihood estimator of β if there exists a hyperplane in the co-
variate space such that when Y = 1, the covariates belong to the left side of
the hyperplane whereas for Y = 2, the covariates belong to the other side of
the hyperplane (see Albert and Anderson (1984), McCullagh and Nelder (1989,
Sec. 4.4) and Santner and Duffy (1989, p. 234)). The discussion shows that ap-
plication of the density ratio model is questionable when only a few observations
belong to each group.

However, regularization of the log –likelihood function (3), in the sense of
adding a concave penalty term, avoids existence and convergence issues, see
also Hastie and Tibshirani (2004). Consider the so–called penalized empirical
log-likelihood function

lp(θ) = l(θ) − λnJ(β). (4)

where l(θ) denotes the unrestricted log–likelihood function given by (3), λn is
a sequence of regularization parameter controlling the amount of shrinkage and
J(.) is a penalty function on the parameter β. The parameter α–the intercept–
is not penalized explicitly because it is a function of β when (1) holds. It is
well known that when λn → 0 then (4) yields to the unrestricted maximum
likelihood estimator whereas if λn → ∞ then θ shrinks towards 0.

We argue that it is reasonable to employ the profile empirical likelihood for
inference. Expression (4) is not a proper log–likelihood function in the sense
that the first summand, namely the quantity l(θ), is the outcome of a pro-
filing procedure derived by means of empirical likelihood methodology. How-
ever, recent work in the area of semiparametric statistical inference shows that
such functions share the same properties of common likelihood functions, see
Murphy and van der Vaart (2000). Thus, it is sensible to penalize (3) by in-
troducing an extra concave term which does not depend on the distribution
function G2. The method resolves successfully the existence problem of the max-
imum likelihood estimator of θ and yields estimates of the unknown distribution
functions even for relatively small samples.

Motivation of penalized empirical likelihood (4) stems also from a Bayesian
point of view. Suppose that the density ratio model (1) holds conditionally on
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β and suppose that β is a random variable with a density proportional to

π(β) ∝ exp (−λnJ(β)) .

The above display points out to a crucial point, namely the independence be-
tween the prior of β and the cdf G2. It is precisely this fact that enables to base
inference on the posterior likelihood function

π(β|G2,x) ∝ L(α, β, G2|x)π(β).

By setting lp(θ) ≡ log π(β|G2,x) we obtain the penalized log–likelihood ex-
pression (4). Indeed, maximization of the last display with respect to pij’s is
equivalent to maximization of (2) since the second factor does not depend on
the infinite dimensional parameter. That is the penalized log–likelihood function
still produces valid cdf estimators that satisfy the constraints imposed by the
density ratio model. We conclude that maximization of π(β|G2,x) has no effect
on the final form of the profile log–likelihood function as long as the designated
function of β that multiplies (2) does not depend on G2. Note that the method-
ology is quite general and it is rather interesting to study its properties for a
wider class of examples associated with empirical likelihood theory.

The penalized log–likelihood equations (4) depends on the choice of regular-
ization parameter and the penalty term J(β). The selection of λn can be based
on existing cross–validation methods but it is unclear what are the properties
of such an approach especially when few observations are available. There are
various approaches to choose the penalty function–perhaps the most popular
being J(β) =

∑d
j=1 β

2
j leading to the so called ridge regression type estimators

(see Le Cessie and Van Houwelingen (1992) for the case of the logistic regres-
sion when the number of covariates is large). A more general family of penalty

functions is given by J(β) =
∑d

j=1 γkψ(βj), with γk > 0 and leads to several
well known examples. For instance, if γk = 1 and ψ(βj ) =| βj |, then J(β) re-
duces to the L1 penalty (see Tibshirani (1996)) while the Lq penalty is obtained
when ψ(βj) =| βj |q, for q > 0, see Frank and Friedman (1993). Insight on the
choice of penalty function is given in the recent articles of Antoniadis and Fan
(2001) and Fan and Li (2001). However, in what follows consider the penalty
function

J(β) =
d
∑

j=1

| βj |q, q > 1. (5)

In particular, the ridge penalty will be employed in applications since the linear
combination β′h(x) is expected to vary smoothly in accordance with (1).

3. Main results

To fix notation, suppose that θ̂ = (α̂, β̂′)′ denotes the maximum likelihood esti-

mator derived by maximization of the unrestricted log–likelihood (3) and let θ̂λ

denote the constrained maximum likelihood estimator obtained by maximizing
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(4). In what follows, θ0 denotes the true value of the parameter θ when (1)
holds. Define

A11(t) =

∫ t

−∞

exp(α+ β′h(x))

1 + ρ1 exp(α+ β′h(x))
dG2(x), A11 = A11(∞),

A21(t) =

∫ t

−∞

exp(α+ β′h(x))

1 + ρ1 exp(α+ β′h(x))
h(x)dG2(x), A21 = A21(∞),

A22(t) =

∫ t

−∞

exp(α+ β′h(x))

1 + ρ1 exp(α+ β′h(x))
h(x)h′(x)dG2(x), A22 = A22(∞),

and put

A =

(

A11 A21

A
′

21 A22

)

, V =
ρ1

1 + ρ1
A − ρ1

(

A11

A′
12

)

(

A11, A12

)

.

The following lemma summarizes some useful facts regarding the large sample
behavior of both the score function and the Hessian matrix. It is used for the
proofs of Theorems 3.1, 3.2 and 3.3 and it is stated for completeness of the
presentation.

Lemma 3.1 (Qin and Zhang (1997)) Suppose that the density ratio model (1)
holds and assume that A is nonsingular. Denote by

∇l(θ) =

(

∂l(θ)

∂α
,
∂l(θ)

∂β

)′

,

a (d+ 1) -dimensional vector. Then

• The score function of the unrestricted likelihood (3) is asymptotically nor-
mal,

n−1/2∇l(θ0) → Nd+1(0, V ), (6)

as n → ∞ such that n1/n2 → ρ1.
• The Hessian matrix of the unrestricted likelihood (3) converges in proba-

bility, as n→ ∞ such that n1/n2 → ρ1, to

− 1

n
∇2l(θ0) →

ρ1

1 + ρ1
A ≡ S. (7)

The large sample behavior of the score and the Hessian matrix requires a
number of standard regularity conditions to be satisfied. However, in the context
of logistic regression, these conditions can be easily verified, see for instance
Santner and Duffy (1989). Hence, the density ratio model can be applied to
a variety of settings provided that the log likelihood ratio of two probability
densities whose support is identical, is a sufficiently smooth function. Several
well known examples of distributions fall within this class and therefore model
(1) is applicable to a large collection of problems.
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The first task is to establish existence of θ̂λ, that is whether the problem of
maximizing (4) is well defined and if the resulting estimator is unique. When
considering penalty functions of the form (5)–and more generally sums of smooth
convex functions–the answer is given by the following result:

Lemma 3.2 (Fu (1998)) For the penalty function (5) and for given q > 1 and
λn > 0 there exists a unique solution of the penalized score equations

∇lp(θ) = ∇l(θ) − λn∇J(β).

The unique solution is equal to the unique estimator of the maximization problem
maxθ lp(θ), provided that ∇l(θ) is continuously differentiable with respect to θ
and ∇2l(θ) is positive semi definite.

The equivalence of the density ratio model to logistic regression implies that
both conditions of Lemma 3.2 are satisfied, or, in other words, a unique re-
stricted estimator θ̂λ exists. Summarizing, the issue of non existence of max-
imum likelihood estimators in the context of logistic regression is successfully
resolved by penalization. Thus, the density ratio model is applicable to situa-
tions where the available sample size is small. Furthermore, it will be shown
that the choice of λn = O(

√
n) yields to

√
n–consistent estimators. In the case

of λn = o(
√
n) then θ̂λ is consistent. These conclusions are supported further

by some limited simulation results which are reported in the next section.

Theorem 3.1 Suppose that the density ratio model (1) holds and assume the
regularity conditions of Lemma 3.1. Assume that the true parameter vector θ0
lies in a compact set. Suppose further that the penalty function is given by (5)
and λn/

√
n → λ0 ≥ 0. If n → ∞ in such a way that n1/n2 → ρ1, then there

exists a unique maximizer θ̂λ of (4) such that || θ̂λ − θ0 ||= Op(n
−1/2). In

particular, if λ0 = 0, then θ̂λ is consistent.

In addition, estimates of the unknown distribution functions are computed
by setting

p̂λ
ij =

1

n2

1

1 + ρ1 exp(α̂λ + β̂λ
′
h(xij))

.

Then

Ĝλ
2(x) =

2
∑

i=1

ni
∑

j=1

p̂λ
ijI(Xij ≤ x), (8)

and

Ĝλ
1(x) =

2
∑

i=1

ni
∑

j=1

exp(α̂λ + β̂λ
′
h(xij))p̂

λ
ijI(Xij ≤ x),

where I(.) is the indicator function. The jump sizes p̂λ
ij sum up to 1 by construc-

tion since the penalized log likelihood function (4) is employed after profiling
out the parameters pij.
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Remark 3.1 Identifiability of α, β and G2(.) is guaranteed by the work of
Gilbert et al. (1999, Th. 2) which shows that if there exist a value x0 such that
h(x0) = 0, then the density ratio model (1) is identifiable.

Next, consider the asymptotic distribution of θ̂λ. It is useful to introduce the
quantities

b = ∇J(β), (9)

a d+ 1 dimensional vector, and

D = ∇2J(β) (10)

a (d+ 1) × (d+ 1) diagonal matrix. The choice of (5) yields

b = (0, sign(β1)q | β1 |q−1, . . . , sign(βd)q | βd |q−1)′,

and
D = diag(0, q(q− 1) | β1 |q−2, . . . , q(q − 1) | βd |q−2)′.

Theorem 3.2 Suppose that the conditions of Theorem 3.1 are satisfied and let
λn be such that λn/

√
n → λ0 ≥ 0. Then the unique maximizer θ̂λ tends to a

(d+ 1)–dimensional normal distribution. That is

√
n
(

θ̂λ − θ0 + λ0S
−1b
)

→ Nd+1(0,Σ),

in distribution, as n→ ∞, where the (d+ 1)× (d+ 1) matrix Σ = S−1V S−1 is
defined by means of (6) and (7), and b is given by (9). In particular, if λ0 = 0,
then √

n
(

θ̂λ − θ0
)

→ Nd+1(0,Σ).

The above theorem, when compared to the results of Lemma 3.1, does not
point out to any advantages of the penalization for the density ratio model.
Indeed, under the aforementioned conditions the maximum penalized empirical
likelihood estimator of θ is asymptotically biased and its covariance matrix is
equal to the covariance matrix of the unrestricted maximum empirical likelihood
estimator. However the results is asymptotic and a careful examination of the
proof of the theorem 3.2 shows that the asymptotic covariance matrix Σ is
approximated by

Σ̂ =

(

ρ1

1 + ρ1
Â +

λn

n
D̂

)−1

V̂

(

ρ1

1 + ρ1
Â +

λn

n
D̂

)−1

, (11)

where Â is the empirical estimator of A and D̂ is equal to the diagonal matrix
D evaluated at β̂λ, provided that the penalty function is twice differentiable.
Hence, for a judicial chosen value of λn, the mean square error of θ̂λ will be
smaller than that of θ̂ in small samples. This point is further illustrated in
the next section by considering some finite sample properties of the restricted
maximum likelihood estimator, see equation (13) and subsequent discussion.

The estimate (11) performs satisfactorily even for small sample sizes given a
known value of the regularization parameter–see next section. For large n, and



K. Fokianos/Penalized logistic regression 572

if λn = o(
√
n), formula (11) reduces to that used by Qin and Zhang (1997) and

Fokianos et al. (2001) for the asymptotic variance estimator of the unrestricted

maximum likelihood θ̂.
Theorem 3.2 suggests that a standard Wald test can be used to test the

hypothesis H0 : β = 0–that is the two samples are identically distributed. In
particular, under the hypothesis and provided that λn = o(

√
n), we obtain that

the test statistic

W = nβ̂λ
′

Σ̂−1
22 β̂

λ (12)

where Σ̂−1
22 denotes the estimated asymptotic variance of β̂λ which is obtained

by means of (11). Under the null hypothesis, the asymptotic distribution of W
is the chi–square with d degrees of freedom provided that the regularization
parameter satisfies the aforementioned conditions. It is clear that (12) depends
on the choice of the regularization parameter but the notation is suppressed
for ease of presentation. A limited simulation study–see Section 4– shows that
the chi–square approximation is valid even though the sample size is relatively
small.

Remark 3.2 Application of the density ratio model relies on the assumed func-
tional form of h(.). Misspecification of this form results in biased estimators and
loss of efficiency– the point is made by Fokianos and Kaimi (2006) who employ
the Box–Cox family of transformations to estimate h(.). However, we have tac-
itly assumed throughout the presentation that the function h(.) is the true
function associated with the density ratio model (1).

Remark 3.3 An alternative penalization scheme is based on (5) but with 0 <
q ≤ 1, see Knight and Fu (2000) for example, who studied the problem in the
linear regression setup. These penalty functions are rather appealing in the sense
that they combine model selection and estimation. Theory regarding the density
ratio model in connection to penalty functions of the form J(β) when 0 < q ≤ 1
might be particular useful especially for multivariate observations. In this case,
the main task is to identify a parsimonious functional form of the log likelihood
ratio of two, or more, multivariate probability density functions and estimate
some of the corresponding coefficients while setting the remaining to zero. In
other words, the problem of modeling multivariate data by the density ratio
model in large dimensions reduces to that of a model selection and estimation
problem.

The last part of this section is devoted to the study of the large sample
properties of the estimated cdf G2 given by (8). The following theorem stud-
ies its asymptotic distributions and generalizes the corresponding theorem of
Qin and Zhang (1997).

Theorem 3.3 Suppose that the conditions of Theorem 3.1 are satisfied and
let λn be such that λn/

√
n → λ0 ≥ 0. Then, as n → ∞ in such a way that

n1/n2 → ρ1,

√
n
(

Ĝλ
2(t) − Ĝ2(t) + ρ1λ0(A11(t), A12(t))S

−1b
)

→W, in D[−∞,∞]
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weakly, where W is a Gaussian process possessing continuous sample paths and
has mean 0 and covariance function specified by equation (15).

A similar large sample result holds for Ĝλ
1 . Its proof is along the lines of the

previous theorem and is omitted. In the next section we provide some empirical
evidence for the finite sample performance of the estimate θ̂λ.

4. Simulation study

The above results show that the penalized density ratio model depends on both
the choice of the regularization parameter and the selection of the penalty
function J(β). In the sequel we assume that J(β) =

∑d
i=1 β

2
i relying on the

fact that the linear combination β′h(x) is a smooth function β. This choice
leads to the so–called ridge regression type estimators whose mean square error
is less than that of the corresponding unrestricted maximum likelihood esti-
mators, for a range of values of λn. For the ridge penalty, (see, for instance,
Le Cessie and Van Houwelingen (1992)) consider the following approximate ex-
pansion of the penalized likelihood function for

∇lp(θ̂λ) ≈ ∇lp(θ0) +
(

θ̂λ − θ0
)′∇2lp(θ0).

After rearranging terms and taking into account equations (9), (10) and Lemma

3.1, an approximate expression for θ̂λ is given by

θ̂λ ≈
(

∇2l(θ0) + 2λnDr

)−1 (∇2l(θ0)θ0 −∇l(θ0)
)

,

where

Dr =

[

0 0
0 Id

]

,

where Id denoted the d–dimensional identity matrix. On the other hand, a
similar argument shows that θ0 = θ̂ + {∇2l(θ0)}−1∇l(θ0). These two displays
when combined show that

θ̂λ ≈
(

∇2l(θ0) + 2λnD
)−1 ∇2l(θ0)θ̂. (13)

Therefore θ̂λ shrinks towards zero as the value of the regularization parame-
ter increases while for λn → 0, θ̂λ is approaching the unrestricted maximum
likelihood estimator. In particular, the above representation forms the basis
for developing an asymptotic expression of the mean square error of θ̂λ. The
methodology is quite analogous to ordinary ridge regression and therefore is
omitted (for more see Hoerl and Kennard (1970b,a). Consequently, it can be

shown that the mean square error of β̂λ attains its minimum value at some value
of the regularization parameter, see the lower left hand side plot of Figure 1 for
an example. In other words, the maximum penalized empirical likelihood esti-
mator attains smaller mean square error than that of the estimator proposed
by Qin and Zhang (1997), especially for small samples.
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Fig 1. Top: QQ–plot of the test statistic (12) under the hypothesis β = 0 for λ = 1. Here
the data have generated according two lognormal populations with µ1 = µ2 = 0, σ1 = σ2 = 1
and n1 = n2 = 10. Bottom: (a) Mean square error of β̂λ and (b) asymptotic efficiency of

β̂ with respect to β̂λ as functions of λ. The data are drawn from two lognormal populations
with µ1 = 1, µ2 = 0 σ1 = σ2 = 1, and n1 = n2 = 20. The quadratic penalty function has
been used for fitting the model and the results are based on 1000 simulations.
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Table 1

Estimated coefficient, its mean square error (MSE) and power of the test statistic (12) for
testing β = 0 (nominal significance level 0.05) for different choices of sample sizes and

regularization parameter values. The data have been generated by a log–normal distribution
and a quadratic penalty has been used. Results are based on 1000 simulations

True β Sample Size λn β̂λ MSE(β̂λ) Power

0 n1 = n2 = 10 0 0.0193 0.3488 0.021
0.5 0.0089 0.2301 0.043
1.0 -0.0181 0.1821 0.050

n1 = 10 0 -0.0189 0.1728 0.038
n2 = 30 0.5 0.0070 0.1540 0.057

1.0 0.0027 0.1138 0.045

1 n1 = n2 = 10 0 1.4123 9.7126 0.402
0.5 1.0023 0.2486 0.530
1.0 0.8525 0.1718 0.550

n1 = 10 0 1.1321 0.3999 0.707
n2 = 30 0.5 1.0122 0.1746 0.750

1.0 0.8978 0.1450 0.749

These results are empirically verified by considering the following simple ex-
ample. Consider the case of two lognormal random samples with corresponding
density functions

g(x, µi, σ
2) =

1

xσ
√

2π
exp

(

−(log x− µi)
2/2σ2

)

, x > 0

for i = 1, 2. The density ratio model (1) is satisfied with α = (µ2
2 − µ2

1)/2σ
2,

β = (µ1 − µ2)/σ
2 and h(x) = logx and consider penalized empirical likelihood

inference based on (4) by choosing appropriately both the penalty parameter
and the penalty function. In this limited simulation study, the parameter λn

was chosen as a constant satisfying therefore the conditions of Theorems 3.1
and 3.2. Furthermore, a simple quadratic penalty function, that is J(β) = β2,
was used for maximizing the penalized likelihood (4). Table 1 summarizes the
results of 1000 runs for different sample sizes and for values of λn. The first six
lines of Table 1 report results when both groups of data are generated by the
same log–normal distribution with µ1 = µ2 = 0 and σ1 = σ2 = 1. The mean
square error of the penalized estimator of β, say β̂λ is less than the mean square
error of the unrestricted estimator even for small sample sizes. In addition, the
nominal significance level of 5% for testing β = 0 by using the test statistic
(12) is achieved satisfactorily in all cases except that of λn = 0. The variance
estimate is obtained by means of (11). The last six lines of Table 1 report results
under the alternative hypothesis. In this case the two log–normal samples were
generated with µ1 = 1, µ2 = 0 and σ1 = σ2 = 1. The results are along the
lines of the previous findings. It is interesting to observe that for n1 = n2 = 10,
the mean square error of the unrestricted maximum likelihood estimator is large
when compared with the mean square error of the penalized maximum likelihood
estimators.

The top plot of Figure 1 shows a QQ–plot of the test static (12) under the
hypothesis H0 : β = 0. Notice that the approximation is quite satisfactory
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even though the sample sizes are relatively small. The bottom left hand side
plot of Figure 1 shows the mean square error of β̂λ as a function of λ. As the
plot illustrates, there exists a value of λ such that the mean square error is
minimized–recall the above discussion. The right hand side of the plot shows
the asymptotic efficiency of β̂ with respect to β̂λ defined by

e(β̂ ; β̂λ) =
MSE[β̂λ]

MSE[β̂]
.

For this specific example, the graph illustrates empirically that e(β̂; β̂λ) ≤ 1,
implying that the restricted estimator is more efficient than the unrestricted
estimator.

5. Conclusions

The density ratio model is a semiparametric alternative to the problem of com-
paring two, or more distributions functions. However, there are several draw-
backs for its application especially when small samples are under consideration.
The first part of this work dealt explicitly with the penalization approach to the
empirical likelihood methodology. It was shown that the method is also moti-
vated by Bayesian arguments and it is worth considering its performance to other
settings. As a result, a new two sample methodology emerges where estimation
of the parametric part can be carried out by a number of statistical programs
while estimation of the non–parametric part is achieved by simple calculations.
In particular the problem of existence of maximum empirical likelihood estima-
tors is resolved successfully. In addition, the final estimators have smaller mean
square error than the estimators without penalty. The test statistic–see (12)–for
testing the equality of two distributions is obtained and the results were applied
to simulated case control data. Application of the density ratio model depends
on a number of assumptions, in particular the assumed functional form of model
(1), the regularization parameter and the form of the penalty function (5). It is
suggested to vary the regularization parameter within a predetermined range of
values and use different functions h(x) to examine the sensitivity of the results.
Penalization by the quadratic penalty seems to be a sensible idea for several ap-
plications. As a final remark, we note that the problem can be generalized further
by considering multiple biased sampling models–or semiparametric ANOVA–as
in Fokianos et al. (2001). This will allow for semiparametric comparisons among
several treatments and will also yield estimates of the unknown cdf. Further-
more, it is worth studying estimation of functionals associated with the baseline
distribution, see Zhang (2000), in the presence of a regularization parameter.
Different penalty functions can be taken into account and this methodology
is quite promising for semiparametric comparison of multivariate distribution
where the true functional form of (1) is complicated.
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Appendix

Proof of Theorem 3.1

Let u be a vector with || u ||= M where M is a large constant. Suppose that
for every ǫ > 0 there exists M > 0 such that

P
{

sup
||u||=M

lp(θ0 + n−1/2u) < lp(θ0)
}

≥ 1 − ǫ. (14)

That means there exists a local maximizer with probability tending to 1, denoted
by θ̂λ, in the ball

{

θ0 + n−1/2u :|| u ||≤M
}

such that || θ̂λ − θ0 ||= Op(n
−1/2).

Now

lp(θ0 + n−1/2u) − lp(θ0) =
(

l(θ0 + n−1/2u) − l(θ0)
)

− λn

(

J(β0 + n−1/2u) − J(β0)
)

= E1 +E2

But

E1 = n−1/2∇′l(θ0)u+
1

2
n−1u′∇2l(θ0)u+

1

6
n−3/2∇′

{

u′∇2l(θ⋆)u
}

u.

where θ⋆ lies in the line segment connecting the points θ0 and θ0 + n−1/2u.
Standard arguments show that

| n−1/2∇′l(θ0)u | = Op(1) || u ||,
1

2
n−1u′∇2l(θ0)u = −1

2
u′Su+ op(1),

1

6
n−3/2∇′

{

u′∇2l(θ⋆)u
}

u = op(1)

where (6) has been used and S has been defined by (7). Similarly, we obtain
that

E2 = −λn

(

n−1/2
d
∑

j=1

(

q|βj |q−1sign(βj)ujI(βj 6= 0)
)

+
1

2
n−1

d
∑

j=1

q(q − 1)
(

|βj |q−2u2
jI(βj 6= 0)

)

+ o(1)

)

Again, it can be shown that both terms of the above summand are O(1) and
o(1) respectively, provided that λn/

√
n → λ0 ≥ 0 upon recalling (9), (10) and

the fact that θ0 lies in a compact set. For large || u || all the terms are small and

dominated by 1
2
n−1u′∇2l(θ0)u. Because of Lemma 3.2, θ̂λ exists with probability

1, hence the theorem follows. If λ0 = 0, then the sequence is consistent since θ̂λ

can be chosen independently of u.
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Proof of Theorem 3.2

A Taylor expansion shows that

0 = ∇lp(θ̂λ) = ∇lp(θ0) + ∇2lp(θ
⋆)(θ̂λ − θ0)

where θ⋆ lies in the segment between θ0 and θ̂λ. Rearranging terms in the above
expression we obtain

(θ̂λ − θ0) = −
{

∇2lp(θ
⋆)
}−1 ∇lp(θ0)

= −
{

∇2lp(θ0)
}−1

E [∇lp(θ0)] −
{

∇2lp(θ
⋆)
}−1 {∇lp(θ0) − E [∇lp(θ0)]}

−
{

{

∇2lp(θ⋆)
}−1 −

{

∇2lp(θ0)
}−1

}

E [∇lp(θ0)]
= D1 +D2 +D3.

Then application of the weak law of large numbers together with the central
limit theorem shows that

√
nD1 → −λ0S

−1b,√
nD2 → Nd+1(0, V ),√
nD3 → 0,

as n→ ∞, where the first and third convergence are in probability. These results
prove the theorem.

Proof of Theorem 3.3

Following similar arguments as those of Qin and Zhang (1997), the following
representation is obtained by a Taylor expansion

Ĝλ
2 (t) −G2(t) +

ρ1

n
(A11(t), A

′
12(t))

{

− 1

n
∇2l(θ0) +

λn

n
∇2J(β)

}−1

E[∇lp(θ)]

= Λ(t) −G2(t) +K(t) + Rn(t),

with supt∈[−∞,∞] | Rn(t) |= op(n
−1/2),

Λ(t) =

2
∑

i=1

ni
∑

j=1

I(Xij ≤ t)

n2(1 + ρ1 exp(α+ β′h(xij)))
,

and

K(t) = −ρ1

n
(A11(t), A

′
12(t))

{

− 1

n
∇2l(θ0) +

λn

n
∇2J(β)

}−1

× (∇lp(θ0) − E[∇lp(θ0)]) .

Then,

E[
√
n(Λ(t) −G2(t) +K(t))] = 0
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and after lengthy calculations

Cov[
√
n(Λ(t) −G2(t) +K(t)) ;

√
n(Λ(s) −G2(s) +K(s))] =

(1 + ρ1)(G2(t ∧ s) −G2(t)G2(s))

− ρ1(1 + ρ1)A11(t ∧ s)
+ ρ1(1 + ρ1)(A11(t), A

′
12(t))

′A−1

× (A11(s), A
′
12(s)). (15)

In the above derivation, we use the fact that λn/
√
n → λ0 so that

{

− 1

n
∇2l(θ0) +

λ

n
∇2J(β)

}−1

− S−1 = op(1),

where S is recalled by (7). Therefore the central limit theorem and the Cramer–
Wold device imply that the finite dimensional distributions of the process√
n(Λ(t) −G2(t) +K(t)) converge weakly to those of a Gaussian process with

mean 0 and covariance function given by (15). In order to prove the conclusion
of the theorem, it is sufficient to show {√n(Λ(t) −G2(t) +K(t)), t ∈ [−∞,∞]}
is tight in D[−∞,∞]–a fact which can be shown by using tightness criteria.
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