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Abstract: This paper deals simultaneously with linear structural and func-
tional error-in-variables models (SEIVM and FEIVM), revisiting in this
context generalized and modified least squares estimators of the slope and
intercept, and some methods of moments estimators of unknown variances
of the measurement errors. New joint central limit theorems (CLT’s) are
established for these estimators in the SEIVM and FEIVM under some
first time, so far the most general, respective conditions on the explanatory
variables, and under the existence of four moments of the measurement er-
rors. Moreover, due to them being in Studentized forms to begin with, the
obtained CLT’s are a priori nearly, or completely, data-based, and free of
unknown parameters of the distribution of the errors and any parameters
associated with the explanatory variables. In contrast, in related CLT’s in
the literature so far, the covariance matrices of the limiting normal distribu-
tions are, in general, complicated and depend on various, typically unknown
parameters that are hard to estimate. In addition, the very forms of the
CLT’s in the present paper are universal for the SEIVM and FEIVM. This
extends a previously known interplay between a SEIVM and a FEIVM.
Moreover, though the particular methods and details of the proofs of the
CLT’s in the SEIVM and FEIVM that are established in this paper are
quite different, a unified general scheme of these proofs is constructed for
the two models herewith.
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1. Introduction

First, we present linear structural and functional error-in-variables models, as-
sumptions that will be used in each of them, and estimators of unknown param-
eters of interest under study (cf. respective Sections 1.1–1.3). We then discuss
the essence of the main results of this paper in Section 1.4.

1.1. Linear structural and functional error-in-variables models

(SEIVM and FEIVM)

In the linear structural and functional error-in-variables models (EIVM’s) of
this paper we observe pairs (yi, xi) ∈ IR2 according to

yi = βξi + α+ δi, xi = ξi + εi, (1.1)

where ξi are unknown explanatory/latent variables, the real-valued slope β and
intercept α are to be estimated, and δi and εi are unknown measurement error
terms/variables, 1 ≤ i ≤ n, n ∈ IN. EIVM (1.1) is also known as a measurement
error model, or structural/functional relationship, or regression with errors in
variables. It is a generalization of the simple linear regression of form yi =



Yu. V. Martsynyuk/CLT’s in error-in-variables models 349

βξi + α+ δi in that in (1.1) it is assumed that, in addition to the two variables
η := βξ+α and ξ being linearly related, now not only η, but also ξ, are observed
with respective measurement errors δi and εi.

The explanatory variables ξi are assumed to be independent identically dis-
tributed (i.i.d.) random variables (r.v.’s) that are independent of the error terms
when we deal with the structural EIVM (SEIVM) (cf. upcoming condition
(S2)), and deterministic in case of the functional EIVM (FEIVM).

1.2. Assumptions in SEIVM and FEIVM

Both in the SEIVM and FEIVM versions of (1.1), the following assumptions are
made on the error terms.

(A) {(δ, ε), (δi, εi), i ≥ 1} is a sequence of i.i.d. random vectors with mean
zero, E δ4 < ∞ and E ε4 < ∞, and with a positive definite covariance
matrix

Γ = Cov(δ, ε) =

(
λθ µ
µ θ

)
. (1.2)

(B) The r.v.’s δ and ε are either both continuous, or one of them is continuous,
and the other one is discrete.

In the SEIVM, we suppose that the explanatory variables {ξ, ξi, i ≥ 1} obey
(S1) and (S2) as follows:

(S1) {ξ, ξi, i ≥ 1} are i.i.d.r.v.’s in the domain of attraction of the normal law
(DAN), i.e., there are constants an and bn, bn > 0, for which (

∑n
i=1 ξi − an)

b−1
n

D→ N(0, 1), as n→ ∞.
(S2) ξ is independent of (δ, ε).

Remark 1.1. Further to the definition of DAN in (S1), it is known that an can
be taken as nE ξ and bn = n1/2ℓξ(n), where ℓξ(n) is a slowly varying function
at infinity (i.e., ℓξ(az)/ℓξ(z) → 1, as z → ∞, for any a > 0), defined by the
distribution of ξ. Moreover, ℓξ(n) =

√
Var ξ > 0, if Var ξ <∞, and ℓξ(n) ր ∞,

as n→ ∞, if Var ξ = ∞. Also, ξ has moments of all orders less than 2, and the
variance of ξ is positive, but need not be finite.

Remark 1.2. One of the several necessary and sufficient conditions for i.i.d.r.v.’s
{Z,Zi, i ≥ 1} to be in DAN is commonly associated with O’Brien [19] (for
more details see also Remark (iii) in Maller [13], p.194), and it reads as fol-

lows: max1≤i≤n Z
2
i

/∑n
i=1 Z

2
i

P→ 0, n → ∞. In Remark (iv) of Maller [13] it

is pointed out that this “negligibility” condition has appeared and played an
important role in the asymptotic theory of many stochastic models. In addition
to the models listed in [13], Z ∈ DAN has also been used for CLT’s in a simple
linear regression (cf. Maller [12]) and, as frequently an optimal, or nearly opti-
mal, condition on the explanatory variables, for various marginal CLT’s in the
SEIVM (1.1) (cf. Martsynyuk [14, 15, 17]).
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For the deterministic ξi in the FEIVM (1.1), we assume the following (F1)–
(F3) conditions that, in view of Remarks 1.1 and 1.2, are natural companions
to (S1).

(F1) limn→∞ n−1
∑n

i=1 ξi = m and m is finite.
(F2) Either 0 < limn→∞ n−1

∑n
i=1 ξ

2
i <∞, or limn→∞ n−1

∑n
i=1 ξ

2
i = ∞.

(F3)
max1≤i≤n ξ

2
i∑n

i=1 ξ
2
i

→ 0, n→ ∞.

For some further comments on the introduced assumptions on the explana-
tory variables in the SEIVM (1.1) and FEIVM (1.1), we refer to Remarks 2.10
and 2.11 of Section 2.2.

To ensure identifiability of unknown parameters in the SEIVM and FEIVM
versions of (1.1), it is common to make use of some additional side conditions
in this regard, usually as conditions on the matrix Γ of (1.2) in (A). Here we
distinguish three most frequently used identifiability assumptions, namely:

(1) the positive ratio of the error variances λ =Var δ/Var ε is known, and the
covariance of δ and ε is zero, i.e., cov(δ, ε) = µ = 0;

(2) Var δ = λθ and cov(δ, ε) = µ are known, while Var ε = θ is unknown;
(3) Var ε = θ and cov(δ, ε) = µ are known, while Var δ = λθ is unknown.

The identifiability assumption (1) corresponds to orthogonal regression es-
timation in (1.1), while (3) is likely to be realistic in many applications (cf.
Carroll and Ruppert [1], Carroll et al. [2], Cheng and Van Ness [4] and Fuller
[6] for some further discussions along these lines).

1.3. Estimators for slope β, intercept α and unknown error

variances

For further use throughout, for real-valued variables {ui, 1 ≤ i ≤ n} and
{vi, 1 ≤ i ≤ n}, we put

u =
1

n

n∑

i=1

ui, si,uv = (ui − u)(vi − v) and Suv =
1

n

n∑

i=1

si,uv.

Under each of the identifiability assumptions in (1)–(3), we are to estimate
the slope β, intercept α, and the respective, typically unknown, error variance
λθ, or θ, that is denoted throughout by γ for convenience in notations.

When (1) is assumed, it has been common to estimate β and α with gener-

alized least squares estimators (GLSE’s) β̂1n and α̂1n that are simply derived
under (A) without assuming the finiteness of the fourth error moments (cf.,
e.g., Section 3.4 in [4]). For estimating γ = θ, a method of moments estimator
(MME) γ̂1n is a usual one. Provided that Sxy 6= 0, these estimators are given
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by

β̂1n = sign(Sxy)

√(
λSxx − Syy

2Sxy

)2

+ λ− λSxx − Syy

2Sxy
,

α̂1n = y − x β̂1n, γ̂1n =
Syy − 2Sxyβ̂1n + Sxxβ̂

2
1n

λ+ β̂2
1n

,

(1.3)

where sign(Sxy) denotes the sign of Sxy.
When either (2) or (3) is assumed, modified least squares estimators (MLSE’s)

for β and α (cf. Section 3.5 in [4]), and MME’s for the respective unknown error
variances γ = θ and γ = λθ are available. The MLSE’s and MME under (2) are

β̂2n =
Syy − λθ

Sxy − µ
, α̂2n = y − x β̂2n and γ̂2n = Sxx − Sxy − µ

β̂2n

, (1.4)

assuming that Sxy − µ 6= 0 and Syy − λθ > 0, while those under (3) are

β̂3n =
Sxy − µ

Sxx − θ
, α̂3n = y − x β̂3n and γ̂3n = Syy − (Sxy − µ)β̂3n, (1.5)

provided that Sxx − θ > 0.

1.4. Introduction to main results

In this paper, we revisit the triples of the estimators in (1.3)–(1.5) in the SEIVM
and FEIVM versions of (1.1), and prove two joint central limit theorems (CLT’s)
for each of the triples (cf. Theorem 2.1), under the respectively introduced as-
sumptions on the explanatory variables that are, to the best of our knowledge,
the most general ever used so far in this context (cf. Remarks 2.2, 2.3). As to
the conditions (A) and (B) on the error terms here, they seem to be the least
restrictive that have been considered in the literature thus far (cf. Remarks 2.2,
2.3, 2.8, 2.9).

Further to the special features of our CLT’s in Theorem 2.1, these CLT’s are
in Studentized forms to begin with and, as a result, are automatically nearly, or
completely, data-based. Namely, as compared to the related CLT’s for (β, α, γ)
in the literature, the ones in Theorem 2.1 are a priori free of any unknown
parameters associated with the explanatory and error variables (cf. Remarks
2.5 and 2.6).

The CLT’s of Theorem 2.1 also extend a previously known interplay between
a SEIVM and a FEIVM as in Gleser [8]. This extension is due to a synchronized
choice of the respective conditions on the explanatory variables in the SEIVM
and FEIVM of the present paper (cf. Remark 2.11). Consequently, the CLT’s of
Theorem 2.1 are universal in form for the SEIVM (1.1) and FEIVM (1.1) (cf.
Remark 2.12).

The idea of establishing the joint CLT’s of Theorem 2.1 for the estimators
in (1.3)–(1.5) has originated from a wish to extend and unify the Studentized
marginal CLT’s for each of these estimators that are proved, among other things,
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for the SEIVM (1.1) in Martsynyuk [14, 15, 17], and for the FEIVM (1.1) in
Martsynyuk [15, 16], under nearly the same respective model assumptions as
those in Theorem 2.1. When establishing the multivariate CLT’s of the present
paper, it was important for us to preserve and build on the new assumptions
on the explanatory variables that had first been introduced and used in the
SEIVM (1.1) and FEIVM (1.1) in [14, 15] (cf. Remarks 2.10 and 2.11 on the
crucial roles of (S1) and (F1)–(F3) in [14, 15]). However, it was even more
desirable that the CLT’s for (β, α, γ) should be of suitable Studentized forms,
like their marginal predecessors, and so that they would also be universal in
form both for the SEIVM (1.1) and FEIVM (1.1).

Theorem 2.1 would have remained a wishfull thinking only if not for the
auxiliary results in Section 3 that bridge the context of the SEIVM (1.1) and
FEIVM (1.1) with recent advances in Studentization of random vectors by a
matrix, the generalized domain of attraction of the multivariate normal law
(GDAN), and the domain of attraction of the univariate normal law (DAN).
For the sake of providing convenient reference in Section 3, we summarize some
of these advances in the subsidiary Section 4. Among the auxiliary results of
Section 3, the key Theorems 3.1 and 3.2 of Sections 3.1 and 3.2, respectively,
namely, a CLT for a multivariate Student statistic that is based on indepen-
dent but not necessarily identically distributed random vectors that satisfy the
Lindeberg condition, and a special characterization of GDAN, may also be of
interest beyond the scope of the present paper. Also, the auxiliary CLT’s of Sec-
tion 3.3 are rather versatile, and can also be used to prove multivariate CLT’s
for estimators other than (1.3)–(1.5) in the SEIVM (1.1) and FEIVM (1.1), and
in the respective no-intercept versions of these models, where α is assumed to
be zero (cf. Remarks 3.4 and 3.5). Although the particular methods and details
of the proofs of Theorem 2.1 for the SEIVM and FEIVM versions of (1.1) are
fundamentally different, a unified general scheme of these proofs is constructed
for the two models (cf. Sections 3.3 and 3.4).

This paper is based on parts of the author’s Ph.D. thesis Martsynyuk [15],
written under the supervision of Miklós Csörgő, and on parts of Martsynyuk
[14].

2. Main results

2.1. Main results with remarks

The (a) and (b) parts of Theorem 2.1, namely the Studentized CLT’s for the
triples of the estimators in (1.3)–(1.5) in the SEIVM (1.1) and FEIVM (1.1),
constitute the main results of this paper.

In the sequel, all vectors are row-vectors. For vectors Z1, · · · , Zn and W1, · · · ,
Wn in IRd , d ≥ 1, introduce vector Z = n−1

∑n
i=1 Zi and matrix VZW =

(n− 1)−1
∑n

i=1 si,ZW , where si,ZW = (Zi −Z)T (Wi −W ) and (Zi −Z)T is the
transpose of Zi − Z. For a positive definite matrix A (A > 0), notation A 1/2

stands both for the (left) Cholesky and symmetric positive definite square roots
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of A. We recall that the (left) Cholesky square rootA 1/2 of A > 0 is the uniquely
existing lower triangular matrix with positive diagonal elements that is such that
A 1/2(A 1/2)T = A. Clearly, it is invertible. As to the symmetric positive definite
square root A 1/2 of matrix A > 0, the latter exists and satisfies (A 1/2)2 = A,
where A1/2 = (A1/2)T . By definition, AT/2 = (A 1/2)T , A−1/2 = (A 1/2)−1 and
A−T/2 = (A−1/2)T . Notation diag(·, · · · , ·) stands for a block-diagonal matrix,
where in the brackets square matrix blocks that are on its diagonal are listed.

Theorem 2.1. Let assumptions

{
(A), (B), (S1) and (S2), in the SEIVM (1.1),
(A), (B) and (F1)–(F3), in the FEIVM (1.1),

be satisfied. Suppose also that the identifiability condition in (1)–(3) that is
appropriate for the estimators in hand is valid. Let

U(j, n) =






2Sxy , if j = 1,

Sxy − µ , if j = 2,

Sxx − θ , if j = 3,

L(j, n) =






n−1(n− 2)(λ+ β̂2
1n) , if j = 1,

1 , if j = 2,

1 , if j = 3,
(2.1)

ui(j, n, β) =





−2β2

λ+ β2

(
λsi,xx − si,yy − λ− β2

β
si,xy

)
, if j = 1,

(si,yy − λθ) − β(si,xy − µ) , if j = 2,
(si,xy − µ) − β(si,xx − θ) , if j = 3,

(2.2)

vi(j, n, β) = yi − α− βxi −
x

U(j, n)
ui(j, n, β), 1 ≤ j ≤ 3, (2.3)

wi(j, n, β) =






(si,yy − λθ) − 2β(si,xy − µ) + β2(si,xx − θ) , if j = 1,

β−2wi(1, n, β) , if j = 2,

wi(1, n, β) , if j = 3,

(2.4)

zi(j, n, β) =
(
ui(j, n, β), vi(j, n, β), wi(j, n, β)

)
, 1 ≤ j ≤ 3. (2.5)

Then, for 1 ≤ j ≤ 3, as n→ ∞, the following CLT’s hold true:

(a)
√
n
(
U(j, n)(β̂jn−β), α̂jn−α,L(j, n)(γ̂jn−γ)

)
V

−T/2
z(j,n,β)z(j,n,β)

D→ N(0, I3);

(b)
√
n
(
U(j, n)(β̂jn−β), α̂jn−α,L(j, n)(γ̂jn−γ)

)
V

−T/2

z(j,n,β̂jn)z(j,n,β̂jn)

D→ N(0, I3).

Remark 2.1. Matrices V
−T/2
z(j,n,β)z(j,n,β) and V

−T/2

z(j,n,β̂jn)z(j,n,β̂jn)
in the respective

(a) and (b) parts of Theorem 2.1 are well defined both in the SEIVM and
FEIVM. Indeed, for j = 3, on combining Remark 4.1, (3.80) and (3.87) with
pi(n) of (3.86), we conclude that Vz(3,n,β)z(3,n,β) > 0 and V

z(3,n,β̂jn)z(3,n,β̂jn)
> 0

on sets whose probabilities converge to one, as n → ∞. We note that matrices
Bn in (3.80) are invertible in view of (3.72) and Remark 3.3. Similar arguments
apply in the case of j = 1 or j = 2.
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Remark 2.2. In view of Remark 1.1, the assumption ξ ∈ DAN of (S1) in the
SEIVM (1.1) is weaker than the following one:

E ξ = m and Var ξ = E ξ2 − (E ξ)2 =: M −m2 > 0, with M <∞. (2.6)

Also, conditions (F1)–(F3) on the explanatory variables in the FEIVM (1.1)
are less restrictive than those of

ξ → m and ξ2 →M, as n→ ∞, and M −m2 > 0, with finite m and M.
(2.7)

Indeed, convergence of ξ2 to the finite positive limit M implies that n−1ξ2n =

ξ2 −n−1(n− 1)(n− 1)−1
∑n−1

i=1 ξ
2
i → 0, n→ ∞, and the latter convergence, via

a proof by contradiction, leads to n−1 max1≤i≤n ξ
2
i → 0, n → ∞, and thus, to

(F3). While conditions (2.6) and (2.7) have commonly been used for the CLT’s
in the SEIVM’s and FEIVM’s in the literature so far, our (S1) and the group
of assumptions of (F1)–(F3) are believed to be new respective assumptions for
these models. More precisely, (S1) and (F1)–(F3) have first been introduced
respectively for the SEIVM (1.1) and FEIVM (1.1) in Martsynyuk [14, 15] (cf.
also Remarks 2.10 and 2.11), and have not yet been used in EIVM’s by other
authors. As to the conditions on the error terms in (A) and (B) here, they seem
to be the least restrictive that have been considered for CLT’s thus far (we will
elaborate further on the assumption (B) in Remarks 2.8, 2.9).

Remark 2.3. In the literature, the vectors of the estimators (β̂jn, α̂jn, γ̂jn),
1 ≤ j ≤ 3, are known to be

√
n−asymptotically normal (cf., e.g., Gleser [7, 8]

for j = 1, Cheng and Van Ness [3] for j = 2 and 3), under the respective iden-
tifiability assumption in (1)–(3), (A), and (2.6) and (S2) in the SEIVM, or
(2.7) in the FEIVM, and, in case of [3], also under the condition that ξ, δ and
ε are indepedent normal r.v.’s in the SEIVM, and that δ and ε are independent
normal r.v.’s in the FEIVM. In view of Remark 2.2, if (2.6) and (2.7) are not
assumed, then the CLT’s of Theorem 2.1 appear to be first time ones. Oth-
erwise, under (2.6) (in the SEIVM), or (2.7) (in the FEIVM), subject to the
above mentioned additional normality conditions in [3] and comments on (B)
in upcoming Remarks 2.8 and 2.9, the CLT’s of [3, 7, 8] follow respectively from
those in Theorem 2.1. For the proof of this statement, we refer to the very end
of Section 3.4.

Remark 2.4. Theorem 2.1 is a unifying generalization of the author’s Studen-
tized marginal CLT’s for β̂jn, α̂jn and γ̂jn, 1 ≤ j ≤ 3, that are established for
the SEIVM (1.1) and FEIVM (1.1) respectively in [14, 15, 17] and [15, 16]. Also,
Theorem 2.1 is proved under nearly the same assumptions as those used for the
marginal CLT’s in [14, 15, 16, 17].

Remark 2.5. Due to them being in Studentized forms to begin with, the CLT’s
of Theorem 2.1 are a priori free of any unknown parameters (such as moments)
of the distribution of (δ, ε) depend only on the error moments that are assumed
to be known according to the corresponding identifiability assumption in (1)–
(3)), and do not contain any parameters associated with ξ in the SEIVM and
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{ξi, i ≥ 1} in the FEIVM. In addition, the CLT’s of the (b) part of Theorem
2.1 are completely data-based. Hence, the latter CLT’s are readily applicable to
constructing large-sample approximate confidence regions for (β, α, γ).

Remark 2.6. A priori Studentized forms, and the corresponding features de-
scribed in Remark 2.5, of our CLT’s make them new even under the stronger
conditions in (2.6) and (2.7) that were used in the CLT’s of [3, 7, 8]. Indeed, as
opposed to Theorem 2.1, the expression (the same for the SEIVM and FEIVM)

for the covariance matrix of the asymptotic normal distribution of (β̂1n, α̂1n, γ̂1n)
that is due to Gleser [7, 8] is complicated, and in addition to the unknown pa-
rameters β, m and M , where m and M are as in (2.6) and (2.7), it involves
typically unknown cross-moments and moments of order ≤ 4 of the error terms
that are hard-to-estimate from data. Then, in order to be able to estimate the
covariance matrix of the CLT in [7] (in the FEIVM), it is additionally assumed
that the moments of δ and ε are like those of two independent normal r.v.’s.
Consequently, the covariance matrix of the latter CLT becomes much simpler
in form and contains only the unknown, but estimable β, m, M and γ = λθ. As
to the respective asymptotic covariance matrices of (β̂jn, α̂jn, γ̂jn) in [3], j = 2
and 3, similarly, what results in their simple forms, and hence straightforward
estimability, is the normality conditions on independent ξ, δ, ε in the SEIVM
and independent δ, ε in the FEIVM that are required for the CLT’s in [3].

Remark 2.7. Studentized bivariate CLT’s for (β̂jn, α̂jn), (β̂jn, γ̂jn) and (α̂jn,
γ̂jn), 1 ≤ j ≤ 3, that are similar in form and features to those in (a) and (b) of
Theorem 2.1 also hold true. The proofs of such CLT’s are based on the auxiliary
CLT’s in Theorem 3.4 and are like the proofs of (a) and (b) of Theorem 2.1.

Remark 2.8. Condition (B) on the error terms in Theorem 2.1 imposes hardly
any restrictions, and is only assumed there for the sake of checking (3.72) that,
in particular, implies that in the (a) and (b) parts, the respective matrices
Vz(j,n,β)z(j,n,β) and V

z(j,n,β̂jn)z(j,n,β̂jn)
are positive definite on sets whose prob-

abilities go to one, as n → ∞. Moreover, along the lines of the proof of (3.72),
it is not hard to see that the Studentized bivariate version of Theorem 2.1 for
(β̂jn, α̂jn) does not require assuming (B) at all.

Remark 2.9. Under (2.6) and (2.7), matrices
(
diag(U(j, n), 1, L(j, n))

)−1

V
z(j,n,β̂jn)z(j,n,β̂jn)

(
diag(U(j, n), 1, L(j, n))

)−1

are natural estimators for the respective asymptotic covariance matrices of
(β̂jn, α̂jn, γ̂jn) obtained in [3, 7, 8] (for the proof in the case of j = 3 see
(3.80), (3.87) and (3.89)–(3.91)). These matrices are different from the respec-
tive estimators in [3, 7, 8] that were constructed under the additional normality,
or normality like, conditions specified in Remark 2.6, and also work when these
conditions fail. These normality conditions also ensured positive definiteness of
the asymptotic covariance matrices of (β̂jn, α̂jn, γ̂jn) in [3, 7, 8], 1 ≤ j ≤ 3,
but they seem to be more restrictive than our weak assumptions of (B) that
guarantee such positivity on account of (3.72) and (3.89)–(3.91).
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2.2. Interplay between SEIVM and FEIVM

Remark 2.10. We elaborate further on assumption (S1) on the explanatory
variables in the SEIVM (1.1). (S1) is inherited from the author’s previous work
in [14], where it was introduced the first time around for SEIVM’s. In [14] that
also led to [15, 17], the motivations for introducing (S1) into the asymptotic
theory in the SEIVM (1.1) amounted to more than just aiming at a general-
ization of the usual assumptions in (2.6) that had been used in the literature
before. From the empirical standpoint, by letting ξi in (1.1) to have an infinite
deviation (Var ξ = ∞), we make them more dominant over the errors with finite
variances. This, in turn, renders observations yi and xi to be more robust to
noise (errors) and thus, more precise. Moreover, from a rigorous mathematical
point of view, condition ξ ∈ DAN is optimal, or nearly optimal for the marginal
CLT’s for β̂jn and α̂jn in [14, 15, 17], 1 ≤ j ≤ 3 (cf., e.g., Proposition 1.1 in
[14]). In additon, some distinctive features of the SEIVM’s under Var ξ = ∞
were discovered (cf., e.g., Corollary 1 and Remarks 5, 6, 7, 9 in [17]).

Remark 2.11. Assumptions (F1)–(F3) on the explanatory variables in the
FEIVM (1.1) were first introduced and used in the FEIVM (1.1) in [15]. In [15],

for the sake of achieving a strong similarity between the marginal CLT’s for β̂jn,
α̂jn and γ̂jn in the FEIVM (1.1) of [15] and those in the SEIVM (1.1) of [14],
assumptions (F1)–(F3) on the deterministic ξi were introduced in such a way
that, due to Remarks 1.1 and 1.2, they would be natural companions for the
DAN condition in (S1) on stochastic ξi in [14]. An empirical rationale behind
allowing limn→∞ ξ2 = ∞ as in (F2) is similar to that behind possibly having
Var ξ = ∞ as in (S1) (cf. Remark 2.10). Also, (F3) is in some sense optimal

for the marginal CLT’s for β̂jn and α̂jn in [15], 1 ≤ j ≤ 3 (cf. Remark 2.1.8
of [15]). A further similarity of (S1) and (F2) relates to the fact that their
respective partial cases Var ξ = ∞ and limn→∞ ξ2 = ∞ make the SEIVM (1.1)
and FEIVM (1.1) behave as if they were the simple regressions yi = βxi +α+δi
(cf. Remarks 1.1.6, 2.1.10 and Sections 1.1.5, 2.1.5 in [15]).

Remark 2.12. Between the SEIVM under (2.6) and the FEIVM under (2.7)
there is an interplay established by Gleser [8] that yields, in particular, that the

CLT’s for (β̂jn, α̂jn, γ̂jn) as in [3, 7], j = 1, 3, that are proved in the FEIVM
under (2.7) also hold true in the SEIVM with {ξ, ξi, i ≥ 1} satisfying (2.6).

Similarly, the identity in form of the marginal CLT’s for β̂jn, α̂jn and γ̂jn in
the FEIVM under (F1)–(F3) in [15] to those in the SEIVM under (S1) of [14]
establishes an asymptotic interplay between these two more general models. The
CLT’s for (β̂jn, α̂jn, γ̂jn) as in Theorem 2.1 and the respective bivariate CLT’s
as in Remark 2.7 are also universal in form for the latter two models, invariant
as to whether the explanatory variables have a deterministic nature, as in the
FEIVM, or a stochastic nature, as in the SEIVM, and thus, further contribute
to the models’ interplay in terms of their asymptotics.
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3. Auxiliary results and proofs of main results

3.1. CLT for a multivariate Student statistic that is based on

independent random vectors satisfying the Lindeberg condition

In this section we state and prove Theorem 3.1, a key auxiliary CLT required for
the proofs in the FEIVM of this paper. It may also be of independent interest.

For random vectors Z1, · · · , Zn in IRd , we introduce a multivariate Student
statistic as follows:

Stn(Z) =
√
nZV

−T/2
ZZ , (3.1)

where V
1/2
ZZ is either the (left) Cholesky, or the symmetric positive definite,

square root of the matrix VZZ = (n−1)−1
∑n

i=1(Zi−Z)T (Zi −Z). In the latter

case V
−T/2
ZZ = V

−1/2
ZZ . Hereafter, notations ‖ · ‖, 11{·} and Z(j) respectively stand

for the Euclidean norm in IRd , an indicator function and the jth component of
vector Z ∈ IRd , d ≥ 1. When we will write that a (random) matrix converges
(in probability) to another (random) matrix of the same size, it will mean that
each entry of the converging matrix goes (in probability) to the corresponding
entry of the limiting matrix.

Theorem 3.1. Let {Zi(n), 1 ≤ i ≤ n, n ≥ 1} be a triangular sequence of random
vectors in IRd . For each n ≥ 1, suppose that Z1(n), · · · , Zn(n) are independent,
E Zi(n) = 0 and covariance matrices CovZi(n) are finite, 1 ≤ i ≤ n. Assume
also that, as n→ ∞,

n∑

i=1

CovZi(n) → Σ > 0, (3.2)

with some limiting d× d matrix Σ, and that the Lindeberg condition is satisfied,
namely,

for each µ > 0,

n∑

i=1

E
(
‖Zi(n)‖211{‖Zi(n)‖≥µ}

)
→ 0. (3.3)

Then, for the Student statistic Stn(Z(n)) as in (3.1), as n→ ∞, Stn(Z(n))
D→

N(0, Id).

Proof. According to the Lindeberg-Feller theorem (cf., e.g., 2.27 Proposition in

[21]), (3.2) and (3.3) yield that
∑n

i=1 Zi(n)
D→ N(0,Σ), n → ∞. Since Σ > 0,

Theorem 3.1 follows via Theorem 4.1 from the latter convergence in distribution
and from showing that

(n− 1)VZ(n)Z(n)
P→ Σ, n→ ∞. (3.4)

The proof of (3.4) goes first for Zi(n) that are such that the limiting matrix
Σ = Id in (3.2).
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Lindeberg’s condition (3.3) implies that the same condition holds true for

{Z(j)
i (n), 1 ≤ i ≤ n, n ≥ 1} for each 1 ≤ j ≤ d, that, in turn, results in

∑n
i=1

(
Z

(j)
i (n)

)2

∑n
i=1 VarZ

(j)
i (n)

P→ 1 and

∑n
i=1

(
Z

(j)
i (n) − Z(j)(n)

)2

∑n
i=1

(
Z

(j)
i (n)

)2

P→ 1,

as n→ ∞ (cf., e.g., respective conclusions (3.6) and (3.7) in [16]). Consequently,

∑n
i=1

(
Z

(j)
i (n) − Z(j)(n)

)2

∑n
i=1 VarZ

(j)
i (n)

P→ 1, n→ ∞,

and for having (3.4), it suffices to show the convergence in probability of the
off-diagonal entries of the matrix (n− 1)VZ(n)Z(n) to the corresponding entries
of the matrix Σ = Id, namely, for any 1 ≤ j, k ≤ d, j 6= k, as n→ ∞,

n∑

i=1

(Z
(j)
i (n)−Z(j)(n))(Z

(k)
i (n)−Z(k)(n))

P→ 0. (3.5)

First, for any 1 ≤ j, k ≤ d, j 6= k, we prove that
n∑

i=1

Z
(j)
i (n)Z

(k)
i (n)

P→ 0, n→ ∞. (3.6)

Then, for (3.6) to hold true, by Theorem 3 in [20] on p.210, it is sufficient to
show that for any ν > 0 and some τ > 0, as n→ ∞,

n∑

i=1

P
(∣∣∣Z(j)

i (n)Z
(k)
i (n)

∣∣∣ ≥ ν
)
→ 0, (3.7)

n∑

i=1

(
E

((
Z

(j)
i (n)Z

(k)
i (n)

)2

11{∣∣Z(j)
i

(n)Z
(k)
i

(n)
∣∣<τ
}
)

−
(
E

(
Z

(j)
i (n)Z

(k)
i (n)11{∣∣Z(j)

i
(n)Z

(k)
i

(n)
∣∣<τ
}
))2

)
→ 0 (3.8)

and
n∑

i=1

E

(
Z

(j)
i (n)Z

(k)
i (n)11{∣∣Z(j)

i
(n)Z

(k)

i
(n)
∣∣<τ
}
)

→ 0. (3.9)

Since
n∑

i=1

P
(∣∣∣Z(j)

i (n)Z
(k)
i (n)

∣∣∣ ≥ ν
)

≤ 1

ν

n∑

i=1

E

(∣∣∣Z(j)
i (n)Z

(k)
i (n)

∣∣∣ 11{∣∣Z(j)
i

(n)Z
(k)
i

(n)
∣∣≥ν
}
)

≤ 1

2ν

n∑

i=1

E
(
‖Zi(n)‖211{‖Zi(n)‖≥

√
2ν}

)
,
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then (3.7) with any ν > 0 follows from (3.3). As to (3.8), we have

n∑

i=1

E

((
Z

(j)
i (n)Z

(k)
i (n)

)2

11{∣∣Z(j)
i

(n)Z
(k)
i

(n)
∣∣<1
}
)

≤
n∑

i=1

E

((
Z

(j)
i (n)Z

(k)
i (n)

)2

11{∣∣Z(j)

i
(n)
∣∣<1
}
)

+

n∑

i=1

E

((
Z

(j)
i (n)Z

(k)
i (n)

)2

11{∣∣Z(k)
i

(n)
∣∣<1
}
)

=: B1n +B2n.

For any φ > 0 and sufficiently large n,

B1n ≤
n∑

i=1

E




(
Z

(j)
i (n)Z

(k)
i (n)

)2

11{∣∣Z(j)
i

(n)
∣∣<1,

∣∣Z(k)
i

(n)
∣∣≥
√
φ

4

}




+

n∑

i=1

E




(
Z

(j)
i (n)Z

(k)
i (n)

)2

11{∣∣Z(j)

i
(n)
∣∣<1,

∣∣Z(k)

i
(n)
∣∣<
√
φ

4

}




≤
n∑

i=1

E



(
Z

(k)
i (n)

)2

11{∣∣Z(k)
i

(n)
∣∣≥
√
φ

4

}




+
φ

4

n∑

i=1

E

((
Z

(j)
i (n)

)2

11{∣∣Z(j)
i

(n)
∣∣<1
}
)

≤ φ

2
+
φ

2
= φ,

where, on account of (3.2) with Σ = Id and that Z
(j)
i (n) satisfy Lindeberg’s

condition,
∑n

i=1 E
(
(Z

(j)
i (n))211{|Z(j)

i
(n)|<1}

)
→ limn→∞

∑n
i=1 VarZ

(j)
i (n) = 1,

n → ∞. Consequently, B1n → 0, n → ∞. By symmetry, B2n → 0, n → ∞.
Hence, (3.8) with τ = 1 holds true. As to the convergence in (3.9), it is valid
because (3.3) and the assumption that Σ = Id in (3.2) (hence, limn→∞

∑n
i=1

E
(
Z

(j)
i (n)Z

(k)
i (n)

)
= 0 for any 1 ≤ j, k ≤ d, j 6= k) yeild that for any τ > 0,

lim
n→∞

n∑

i=1

E

(
Z

(j)
i (n)Z

(k)
i (n)11{∣∣Z(j)

i
(n)Z

(k)
i

(n)
∣∣<τ
}
)

= − lim
n→∞

n∑

i=1

E

(
Z

(j)
i (n)Z

(k)
i (n)11{∣∣Z(j)

i
(n)Z

(k)

i
(n)
∣∣≥τ
}
)

and

lim
n→∞

∣∣∣∣∣

n∑

i=1

E

(
Z

(j)
i (n)Z

(k)
i (n)11{∣∣Z(j)

i
(n)Z

(k)
i

(n)
∣∣≥τ
}
)∣∣∣∣∣
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≤ lim
n→∞

n∑

i=1

E

(∣∣∣Z(j)
i (n)Z

(k)
i (n)

∣∣∣ 11{∣∣Z(j)
i

(n)Z
(k)
i

(n)
∣∣≥τ
}
)

≤ 1

2
lim

n→∞

n∑

i=1

E
(
‖Zi(n)‖211{‖Zi(n)‖≥

√
2τ}

)
= 0.

This completes the proof of (3.6).

Now, since (3.6) holds true and
∑n

i=1

(
Z

(j)
i (n) − Z(j)(n)

)(
Z

(k)
i (n) − Z(k)(n)

)

=
∑n

i=1 Z
(j)
i (n)Z

(k)
i (n) − nZ(j)(n) Z(k)(n), to show (3.5), it suffices to prove

that for any 1 ≤ j, k ≤ d, j 6= k,

nZ(j)(n) Z(k)(n)
P→ 0, n→ ∞.

The latter follows from (3.2) and Markov’s inequality for any 1 ≤ j ≤ d and
φ > 0, namely,

P

(
n
(
Z(j)(n)

)2

≥ φ

n∑

i=1

VarZ
(j)
i (n)

)
≤ (φn)−1 → 0, n→ ∞.

This also completes the proof of (3.4) for Zi(n) with Σ = Id in (3.2).

When Σ 6= Id in (3.2), we take {Z̃i(n) = Zi(n)Σ−T/2, 1 ≤ i ≤ n, n ≥ 1}.
Clearly, Z̃i(n) satisfy all the conditions of Theorem 3.1, with respective Σ =

Id in (3.2). Hence, (3.4) with Z̃i(n) replacing Zi(n) holds true, namely, (n −
1)V

Z̃(n)Z̃(n)

P→ Id, n→ ∞. The latter convergence implies (3.4) for Zi(n).

Remark 3.1. Though the CLT of Theorem 3.1 appears to be quite natural,
especially in view of the well-known multivariate Lindeberg-Feller CLT (cf., e.g.,
2.27 Proposition in [21]) and Theorem 4.1, one essential link for its conclusion,
namely, an appropriate version of (4.1) as in (3.4) used to be missing. Our
(3.4) is essentially a multivariate extension of a part of Raikov’s theorem (cf.
Theorem 4 on p.143 in [9]) that amounts to saying that for r.v.’s {Xi(n), 1 ≤
i ≤ n, n ≥ 1} that are independent in each row and satisfy the Lindeberg

condition, we have
∑n

i=1(Xi(n)−EXi(n))2
/∑n

i=1 VarXi(n)
P→ 1, n→ ∞. On

p.145 in [22], the authors of Theorem 4.1 as in Section 4 of the present paper,
with applications of their theorem in mind, pose the question of having (4.1)
with some matrix Vn as in Theorem 4.1 that would correspond to a case of
independent nonidentically distributed random vectors, at least when the latter
have finite covariance matrices. Hence, our (3.4) can also be viewed as a partial
answer to this question.

3.2. Special characterization of the generalized domain of attraction

of the multivariate normal law

The purpose of this subsection is to establish a special, convenient character-
ization of the generalized domain of attraction of the multivariate normal law
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(GDAN) as in Theorem 3.2. It will enable us to apply Theorem 4.3 for obtaining
an auxiliary CLT of (a) of Theorem 3.3 for proving (a) of Theorem 2.1 in the
SEIVM (1.1). By establishing Theorem 3.2, we also give an example of special
vectors Z = (Z(1), · · · , Z(d)) for which the fact that Z(j) ∈ DAN for all 1 ≤ j ≤ d
characterizes that Z ∈ GDAN. In this example we get away from the condition
that components Z(j) of vector Z are identically distributed as in the related
example with spherically symmetric Z at the end of Remark 4.5.

We recall that random vector Z is a full vector, or has a full distribution, if
〈Z, u〉 is a nondegenerate r.v. for all deterministic unit norm vectors u. In the
sequel, for Z ∈ IRd , when d ≥ 2, Z(k,k+l) = (Z(k), Z(k+1), · · · , Z(k+l)) denotes a
subvector of Z that has all the components of Z starting with Z(k) and ending
with Z(k+l), 1 ≤ k ≤ d− 1, 1 ≤ l ≤ k + l ≤ d. Notation diag(·, · · · , ·) stands for
a block-diagonal matrix, where in the brackets square matrix blocks that are on
its diagonal are listed.

Theorem 3.2. Let {Z,Zi, i ≥ 1} be i.i.d. random vectors in IRd . Suppose that

for j 6= k, E|Z(j)Z(k)| <∞, if E(Z(j))2 = ∞ and/or E(Z(k))2 = ∞.
(3.10)

For vector Z̃ formed by all the components, if any, of Z whose second moments
exist, assume that

Z̃ is full. (3.11)

Then the following two statements are equivalent:

(a) Z ∈ GDAN;
(b) Z(j) ∈ DAN for all 1 ≤ j ≤ d.

Proof. That (a) implies (b) is explained in Remark 4.5.
Conversely, assume that (b) holds true. By equivalence of the (a) and (b) parts

of Theorem 4.2, the proof of (a) of this lemma reduces to verifying convergence
in (b) of Theorem 4.2 for suitably chosen matrices Bn, provided that vector Z
is full. Clearly, we are concerned with the case of d ≥ 2 only.

If E(Z(j))2 < ∞ for all 1 ≤ j ≤ d, then Z = Z̃ is full by (3.11). Hence,
CovZ > 0 and, due to a weak law of large numbers applied to each entry of∑n

i=1(Zi − Z)T (Zi − Z), the (b) part of Theorem 4.2 is satisfied with matrix

Bn = n−1/2 (CovZ)
−1/2

. (3.12)

Suppose now that, without loss of generality, E(Z(j))2 = ∞ for all 1 ≤ j ≤ m,
1 ≤ m < d, while E(Z(j))2 <∞ for all m+1 ≤ j ≤ d. First, note that such vec-
tor Z is full and thus, Theorem 4.2 is applicable. Indeed, for any unit norm scalar
vector u, Var 〈Z, u〉 =

∑d
j=1(u

(j))2VarZ(j) +
∑

j 6=k u
(j)u(k)cov(Z(j), Z(k)), and,

if |u(1)| + · · · + |u(m)| > 0, on account of (3.10), Var 〈Z, u〉 = ∞, while when
u(1) = · · · = u(m) = 0, Var 〈Z, u〉 > 0 by (3.11). Next, we introduce the block-
diagonal matrix

Bn = n−1/2diag
(
(ℓ(1)(n))−1, · · · , (ℓ(m)(n))−1,

(
CovZ(m+1, d)

)−1/2 )
, (3.13)
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where ℓ(1)(n) ր ∞, · · · , ℓ(m)(n) ր ∞ are slowly varying functions at infinity
that correspond to Z(j) ∈ DAN (cf. Remark 1.1), namely, we have for 1 ≤ j ≤
m, ∑n

i=1(Z
(j)
i − EZ(j))√
nℓ(j)(n)

D→ N(0, 1), n→ ∞. (3.14)

Note that
(
CovZ(m+1, d)

)−1/2
in (3.13) is well-defined on account of (3.11). For

Bn as in (3.13), we are to verify convergence in the (b) part of Theorem 4.2,
namely, that

Bn

n∑

i=1

(Zi − Z)T (Zi − Z)BT
n = Bn

n∑

i=1

si,ZZB
T
n

:= En = (ejk
n )j,k=1,d =

(
E1

n E2
n

(E2
n)T E3

n

)
P→ Id, n→ ∞, (3.15)

where matrix En consists of the following matrix blocks:

E1
n = (ejk

n )1≤j,k≤m , with ejk
n =

∑n
i=1 si,Z(j)Z(k)

nℓ(j)(n)ℓ(k)(n)
, (3.16)

E2
n = (ejk

n )1≤j≤m, m+1≤k≤d , e
jk
n = const

∑n
i=1 si,Z(j)Z(m+1)

nℓ(j)(n)

+ · · ·+ const

∑n
i=1 si,Z(j)Z(d)

nℓ(j)(n)
, (3.17)

with some absolute constants in (3.17) depending on j and k, but not on n, and

E3
n =

(
CovZ(m+1, d)

)− 1
2

∑n
i=1 si,Z(m+1,d)Z(m+1,d)

n

(
CovZ(m+1, d)

)−T
2

.(3.18)

As n→ ∞, on account of (3.14) and (4.7) of Remark 4.4,

ejj
n

P→ 1 for all 1 ≤ j ≤ m, (3.19)

and, due to (3.10) and the fact that ℓ(j)(n) ր ∞, 1 ≤ j ≤ m,

ejk
n

P→ 0 for j 6= k, 1 ≤ j ≤ m and 1 ≤ k ≤ d, (3.20)

while, clearly,

E3
n

P→ Id−m. (3.21)

This concludes the proof of the convergence in (3.15) with Bn as in (3.13).
Finally, the third type of vectors satisfying (3.10), (3.11) and having all their

components in DAN consists of vectors Z with E(Z(j))2 = ∞ for all 1 ≤ j ≤ d.
Such vectors Z are full, since for any deterministic unit norm vector u, on
account of (3.10), Var 〈Z, u〉 = ∞. Put

Bn = n−1/2diag
(
(ℓ(1)(n))−1, · · · , (ℓ(d)(n))−1

)
, (3.22)
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where ℓ(j)(n) are as in (3.14), and ℓ(j)(n) ր ∞, n → ∞, for all 1 ≤ j ≤ d. For
all elements ejk of matrix En in (3.15) defined now via Bn of (3.22), by (4.7)
and (3.10),

ejk
n =

∑n
i=1 si,Z(j)Z(k)

nℓ(j)(n)ℓ(k)(n)

P→
{

1, j = k,
0, j 6= k,

1 ≤ j, k ≤ d, (3.23)

as n → ∞. Hence, convergence in probability in (3.15) with Bn of (3.22) is
valid.

Remark 3.2. Relationship in (3.10) may follow from independence of Z(j)

and Z(k) and the existence of their respective first moments. According to the
Cauchy-Schwarz inequality, (3.10) is also satisfied when, e.g., Z(1) ∈ DAN with
E(Z(1))2 = ∞ (from Remark 1.1, E(Z(1))2−a < ∞ for any a ∈ (0, 2]), while
E(Z(j))2+∆ <∞ for some ∆ > 0, for all 2 ≤ j ≤ d.

3.3. Auxiliary CLT’s required for the proof of Theorem 2.1 in

Section 3.4

This subsection presents Theorems 3.3 and 3.4 containing auxiliary CLT’s re-
quired for the proof of Theorem 2.1 in Section 3.4. Theorems 3.3 and 3.4 are
based on, and extend and unite, the auxiliary results in [14, 15, 16, 17]. This
subsection is written with the genuinely multivariate case of d > 1 in mind. This
is understood from, but not spelled out in, some of the conditions and notations
that are to appear (cf., e.g., (3.25)). However, simply omitting the arguments
that are suitable and used only for the case of d > 1, makes the results of this
subsection also valid for the case of d = 1.

Let

ζi =
(
(ξi −m)δi, (ξi −m)εi, δi, εi, δiεi −µ, δ2i −λθ, ε2i − θ

)
, 1 ≤ i ≤ n, (3.24)

where

m =

{
E ξ, in the SEIVM (1.1),

limn→∞ ξ, in the FEIVM (1.1).

Using (3.24) and vectors of constants b1, · · · , bd in IR7, whose components are
such that

if

{
Var ξ = ∞, in the SEIVM,

limn→∞ ξ2 = ∞, in the FEIVM,
then b

(1)
j = b

(2)
j = 0 for all 2 ≤ j ≤ d,

(3.25)

we define vectors

Ji =
(
〈ζi, b1〉, · · · , 〈ζi, bd〉

)
, 1 ≤ i ≤ n. (3.26)

In the SEIVM (1.1), we will also consider random vectors ζ0 and J0 that re-
spectively generate ζi and Ji, namely,

ζ0 =
(
(ξ −m)δ, (ξ −m)ε, δ, ε, δε− µ, δ2 − λθ, ε2 − θ

)
(3.27)
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and
J0 =

(
〈ζ0, b1〉, · · · , 〈ζ0, bd〉

)
. (3.28)

Next, for a special case of the multivariate Student statistic in (3.1), we prove
Theorem 3.3, the first of the two auxiliary theorems of this subsection.

Theorem 3.3. Consider Stn(J) =
√
nJV

−T/2
JJ based on Ji of (3.26) that are

defined via nonrandom vectors b1, · · · , bd in IR7 satisfying (3.25).

(a) In the SEIVM (1.1), assume (A), (S1), (S2) and also that
{
J0 is full, if Var ξ <∞ and/or b

(1)
1 = b

(2)
1 = 0,

J
(2, d)
0 =

(
〈ζ0, b2〉, · · · , 〈ζ0, bd〉

)
is full, if Var ξ = ∞ and |b(1)1 | + |b(2)1 | > 0.

(3.29)

Then, as n→ ∞, Stn(J)
D→ N(0, Id).

(b) In the FEIVM (1.1), let (A) and (F1)–(F3) be satisfied, and




lim
n→∞

1

n

n∑

i=1

CovJi > 0, if limn→∞ ξ2 <∞ and/or b
(1)
1 = b

(2)
1 = 0,

lim
n→∞

1

n

n∑

i=1

CovJ
(2,d)
i > 0, if limn→∞ ξ2 = ∞ and |b(1)1 | + |b(2)1 | > 0.

(3.30)

Then, as n→ ∞, Stn(J)
D→ N(0, Id).

Proof of the (a) part of Theorem 3.3. The proof follows from Theorem 4.3, pro-
vided that we show that J0 ∈ GDAN by using Theorem 3.2.

First, we argue that the components of J0 obey (3.10) and (3.11). Indeed, if

Var ξ < ∞ and/or b
(1)
1 = b

(2)
1 = 0, then E 〈ζ0, bj〉2 < ∞ for all 1 ≤ j ≤ d, and

due to (3.29), conditions (3.10) and (3.11) are clear satisfied. If Var ξ = ∞ and

|b(1)1 |+|b(2)1 | > 0, then (3.25) implies that E 〈ζ0, b1〉2 = ∞, while E 〈ζ0, bj〉2 <∞
for all 2 ≤ j ≤ d. In this case (3.11) is guaranteed by (3.29), while (3.10)

follows from E
∣∣∣〈ζ0, b1〉〈ζ0, bj〉

∣∣∣ < ∞ for all 2 ≤ j ≤ d, that can be checked

straightforwardly.
Further, from (26) of the proof of Lemma 6 in [17], by noticing that condition

(24) with 〈ζ0, bj〉 in place of 〈ζ0, b〉 in that lemma is now a part of (3.29), we
have that 〈ζ0, bj〉 ∈ DAN, for all 1 ≤ j ≤ d. Finally, on account of (b) implying
(a) in Theorem 3.2, J0 ∈ GDAN.

Proof of the (b) part of Theorem 3.3. Consider a triangular sequence of random
vectors {Zi(n), 1 ≤ i ≤ n, n ≥ 1}, where

Zi(n) =





Ji√
n
, if limn→∞ ξ2 <∞ and/or b

(1)
1 = b

(2)
1 = 0,

(
J

(1)
i√∑n

i=1(ξi−m)2
,
J

(2,d)
i√
n

)
, if limn→∞ ξ2 = ∞ and |b(1)1 | + |b(2)1 | > 0,
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(3.31)

and Z1(n), · · · , Zn(n) are independent with E Zi(n) = 0 and finite CovZi(n).
For Zi(n) of (3.31), we are to check conditions (3.2) and (3.3) of Theorem 3.1.

If limn→∞ ξ2 <∞ and/or b
(1)
1 = b

(2)
1 = 0, then by (3.30), limn→∞

∑n
i=1 CovZi(n)

= limn→∞
∑n

i=1 CovJi/n > 0. Otherwise, it is not hard to see that limn→∞
∑n

i=1

CovZi(n) = diag
(
〈b(1,2)

1 Γ, b
(1,2)
1 〉, limn→∞ n−1

∑n
i=1 CovJ

(2,d)
i

)
, since by (3.25),

limn→∞
∑n

i=1 cov(Z
(1)
i (n), Z

(j)
i (n)) = limn→∞(const

∑n
i=1(ξi − m) + const ·

n)(n
∑n

i=1(ξi − m)2)−1/2 = 0 in this case. Hence, by (A) and (3.30), (3.2)

is also satisfied when limn→∞ ξ2 = ∞ and |b(1)1 | + |b(2)1 | > 0. As to the Linde-
berg condition (3.3) for (3.31), it suffices to show that for all 1 ≤ j, k ≤ d, as
n→ ∞,

for any µ > 0,
n∑

i=1

E

(
(Z

(j)
i (n))211{

(Z
(k)
i

(n))2≥µ
}
)

→ 0. (3.32)

Let

γin =

(
ζ
(1,2)
i√∑n

i=1(ξi −m)2
,
ζ
(3,7)
i√
n

)
(3.33)

and

b̃jn =
(√∑n

i=1(ξi −m)2 b
(1,2)
j ,

√
n b

(3,7)
j

)
, 1 ≤ j ≤ d. (3.34)

Then,
〈ζi, bj〉 = 〈γin, b̃jn〉. (3.35)

If limn→∞ ξ2 <∞ and/or b
(1)
1 = b

(2)
1 = 0, then by (3.35),

n∑

i=1

E

(
(Z

(j)
i (n))211{

(Z
(k)
i

(n))2≥µ
}
)

= n−1
n∑

i=1

E
(
〈ζi, bj〉211{〈ζi,bk〉2≥µn}

)

≤ n−1
n∑

i=1

E

(
‖γin‖2‖b̃jn‖211{‖γin‖2‖̃bkn‖2≥µn

}
)

≤ const
n∑

i=1

E
(
‖γin‖211{const ‖γin‖2≥µ}

)
,

where for any 1 ≤ j ≤ d and large enough n,

‖b̃jn‖2

n
=

const
∑n

i=1(ξi −m)2 + const · n
n

≤ const.

Consequently, (3.32) reduces to the Lindeberg condition for {‖γin‖, 1 ≤ i ≤
n, n ≥ 1} that amounts to having the verified (3.36) of the proof of Lemma 3.4
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in [16] (we note that condition (F2) is replaced there by a weaker one, namely,

lim infn→∞(ξ2 − (ξ)2) > 0). In the case of limn→∞ ξ2 = ∞ and |b(1)1 | + |b(2)1 | >
0, the arguments for (3.32) are similar, and also lead to the just mentioned
Lindeberg condition by additionally using (3.25).

Thus, conditions (3.2) and (3.3) for (3.31) are satisfied, and by Theorem 3.1,

Stn(Z(n))
D→ N(0, Id), n→ ∞. (3.36)

Now, if limn→∞ ξ2 < ∞ and/or b
(1)
1 = b

(2)
1 = 0, then Stn(Z(n)) = Stn(J)

and (3.36) implies Stn(J)
D→ N(0, Id), n→ ∞. Otherwise, concluding the latter

convergence from (3.36) requires some work that takes the rest of the proof.

Assume that limn→∞ ξ2 = ∞ and |b(1)1 | + |b(2)1 | > 0. Define matrix

Dn = diag

(
1√∑n

i=1(ξi −m)2
,
Id−1√
n

)
. (3.37)

Then Zi(n) = JiDn and

Stn(Z(n)) =
√
nJDnV

−T/2
Z(n)Z(n) = Stn(J)V

T/2
JJ DnV

−T/2
Z(n)Z(n), (3.38)

where matrix VZ(n)Z(n) = (n−1)−1
∑n

i=1(Zi(n)−Z(n))T (Zi(n)−Z(n)). It was
shown earlier in the proof that Zi(n) of (3.31) obey the conditions of Theorem
3.1. Combining (3.4) and (4.5) with An = Σ > 0 therein, where matrix Σ is as
in (3.2), we conclude that

(
(n− 1)VZ(n)Z(n)

)−1/2 P→ Σ−1/2,

and hence, also, that

(
(n− 1)VZ(n)Z(n)

)T/2
=
(
(n− 1)VZ(n)Z(n)

)−1/2 (
(n− 1)VZ(n)Z(n)

) P→ ΣT/2,
(3.39)

as n→ ∞. Next, we observe that in view of (3.4),

Σ−1/2Dn(n− 1)VJJDnΣ−T/2 = Σ−1/2(n− 1)VZ(n)Z(n)Σ
−T/2 P→ Id, n→ ∞.

(3.40)

Now, (3.40) and (4.5) with A
1/2
n = D−1

n Σ1/2 (An = D−1
n ΣD−1

n > 0) therein
result in, as n→ ∞,

ΣT/2D−1
n ((n− 1)VJJ)

−T/2 P→ Id,

or, equivalently, in

D−1
n ((n− 1)VJJ)

−T/2 P→ Σ−T/2. (3.41)

From (3.39) and (3.41), as n→ ∞,
(
V

T/2
JJ DnV

−T/2
Z(n)Z(n)

)−1

=
(
(n− 1)VZ(n)Z(n)

)T/2
D−1

n ((n− 1)VJJ )
−T/2 P→ Id,

while the latter convergence, (3.38) and (3.36) yield Stn(J)
D→ N(0, Id), as

n→ ∞.
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Remark 3.3. In general, condition (3.29) is checked on a case-by-case basis,
depending on the vectors b1, · · · , bd in hand. The first line of (3.29) amounts
to saying that r.v. 〈ζ0, u1b1 + · · · + udbd〉 is nondegenerate for any vector u =
(u1, · · · , ud), ‖u‖ = 1. In particular, on account of the proof of Lemma 6 in [17],
the latter statement holds true when Var ξ < ∞ and the first two components
of vector u1b1 + · · ·+ udbd are not simultaneously zero for any u = (u1, · · · , ud),

‖u‖ = 1, namely, when the nonrandom vectors b
(1,2)
1 , · · · , b(1,2)

d are linearly inde-
pendent. The assumption in the second line of (3.29) is interpreted similarly. As
to the conditions in (3.30), due to the similarity in form of the matrices CovJ0

and CovJ
(2,d)
0 in the SEIVM respectively to those of limn→∞ n−1

∑n
i=1 CovJi

and limn→∞ n−1
∑n

i=1 CovJ
(2,d)
i in the FEIVM, (3.30) holds true whenever

(3.29) does. Indeed, the respective entries of the aforementioned corresponding
matrices are the same functions of the moments and cross-moments of order ≤ 4
of the error terms, and of m = E ξ and, in case of CovJ0, also of M = E ξ2,
when dealing with the SEIVM (1.1), and, respectively, of m = limn→∞ ξ and,
in case of limn→∞ n−1

∑n
i=1 CovJi, also of M = limn→∞ ξ2 when the FEIVM

(1.1) obtains. Moreover, the assumptions in the FEIVM (1.1) and SEIVM (1.1)
on the error moments, m and M are in complete synchrony (cf. (A), (S1),
(F1), (F2)).

On using Theorem 3.3, we are to study another Studentized partial sum in
Theorem 3.4, the second auxiliary theorem of this subsection. This Studentized
partial sum is a prototype for the main terms in the expansions for the Studen-
tized estimators of (β, α, γ) as in Theorem 2.1.

Let

ηi(n) = (yi − α, xi, si,yy − λθ, si,xy − µ, si,xx − θ), 1 ≤ i ≤ n, (3.42)

c1, c2, · · · , cd ∈ IR5 be nonzero vectors of constants, and

Ki(n) =
(
〈ηi(n), c1〉, · · · , 〈ηi(n), cd〉

)
, 1 ≤ i ≤ n. (3.43)

Theorem 3.4. Consider the random vectors in (3.43) defined via (3.42) and
nonzero deterministic vectors c1, · · · , cd in IR5 satisfying

c
(1)
j β + c

(2)
j = 0 and c

(3)
j β2 + c

(4)
j β + c

(5)
j = 0 for all 1 ≤ j ≤ d. (3.44)

Assume also (3.25) for vectors b1, · · · , bd in IR7 defined by

bj =
(
2βc

(3)
j + c

(4)
j , βc

(4)
j + 2c

(5)
j , c

(1)
j , c

(2)
j , c

(4)
j , c

(3)
j , c

(5)
j

)
, 1 ≤ j ≤ d. (3.45)

(a) Let (A), (S1) and (S2) be valid in the SEIVM (1.1). Suppose also that

(3.29) holds true. Then for Stn(K(n)) =
√
nK(n)V

−T/2
K(n)K(n) =

√
nK(n)

(
(n− 1)−1

∑n
i=1(Ki(n) −K(n))T (Ki(n) −K(n))

)−T/2

, as n→ ∞,

Stn(K(n))
D→ N(0, Id).
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(b) Suppose that conditions (A), (F1)–(F3) and (3.30) in the FEIVM (1.1)

are satisfied. Then, as n→ ∞, Stn(K(n))
D→ N(0, Id).

Proof of the (a) part of Theorem 3.4. We have,

Stn(K(n)) = (Stn(J) +R(n)V
−T/2
JJ )V

T/2
JJ V

−T/2
K(n)K(n), (3.46)

where vector R(n) =
√
n K(n)−√

n J , and, according to (41) of [17] and (3.25)
for bj, components R(j)(n) of vector R(n) are such that





R(1)(n) = oP (1), if Var ξ <∞ and/or b
(1)
1 = b

(2)
1 = 0,

R(1)(n)

ℓξ(n)
= oP (1), if Var ξ = ∞ and |b(1)1 | + |b(2)1 | > 0,

R(j)(n) = oP (1), for all 2 ≤ j ≤ d,

(3.47)

with slowly varying function ℓξ(n) as in Remark 1.1, such that ℓξ(n) ր ∞ when
Var ξ = ∞, n→ ∞. If in (3.46), as n→ ∞,

∥∥∥R(n)V
−T/2
JJ

∥∥∥ = oP (1) (3.48)

and
V

T/2
JJ V

−T/2
K(n)K(n)

P→ Id, (3.49)

then the (a) part of Theorem 3.4 follows from that of Theorem 3.3 for Stn(J).
First, we are to show (3.48). Introduce matrix

Bn =





n− 1
2 diag

((
ℓξ(n)

√
Var(b

(1)
1 δ+b

(2)
1 ε)

)−1

, (CovJ
(2, d)
0 )−

1
2

)
,

if Var ξ = ∞, |b(1)1 | +|b(2)1 | > 0,

n− 1
2 (CovJ0)

− 1
2 , otherwise.

(3.50)
Note that Bn is well-defined on account of (A) and (3.29). Interpreting (3.48) as
a degenerate weak convergence in (IRd , ‖·‖), by Theorem 4.1 from the Appendix,
for (3.48) it suffices to show that, as n→ ∞,

Bn(n− 1)VJJB
T
n

P→ Id (3.51)

and
‖
√
n− 1R(n)BT

n ‖ = oP (1). (3.52)

Convergence in (3.51) follows from the fact that J0 is as in (3.10) and (3.11)
(this was shown in the proof of the (a) part of Theorem 3.3), and is argued the
same way as convergence in (3.15) with therein matricesBn as in (3.12) or (3.13).
In this regard, we also note that the correspondence of Bn in (3.50) to Bn in

(3.12) or (3.13) is seen by noticing that if Var ξ = ∞ and |b(1)1 |+ |b(2)1 | > 0, then,

on account of Remark 10 in [17],
∑n

i=1 J
(1)
i

(√
nVar(b

(1)
1 δ + b

(2)
1 ε)ℓξ(n)

)−1
D→
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N(0, 1), n → ∞. As to (3.52), when Var ξ < ∞ and/or b
(1)
1 = b

(2)
1 = 0, it

is a direct consequence of (3.47). Otherwise, namely under Var ξ = ∞ and

|b(1)1 | + |b(2)1 | > 0, it is due to (3.47) and observing that

∥∥∥
√
n− 1R(n)BT

n

∥∥∥
2

=
∣∣∣
√
n− 1R(1)(n)

∣∣∣
2(√

nℓξ(n)

√
Var(b

(1)
1 δ+b

(2)
1 ε)

)−2

+
∥∥∥
√
n− 1R(2, d)(n)n−1/2 (CovJ

(2, d)
0 )−T/2

∥∥∥
2

.

This completes the proof of (3.48).
For establishing (3.49), it suffices to prove that, as n→ ∞,

(
(n− 1)VJJ

)T/2

BT
n

P→ Id, (3.53)

and

B−T
n

(
(n− 1)VK(n)K(n)

)−T/2 P→ Id, (3.54)

with matrix Bn given by (3.50). Since

(
(n− 1)VJJ

)T/2

BT
n =

(
(n− 1)VJJ

)−1/2

B−1
n

(
Bn(n− 1)VJJB

T
n

)
,

then (3.53) follows from the convergence in (3.51) via (4.5). Similarly, (3.54) is
a consequence of (4.5) and

Bn(n− 1)VK(n)K(n)B
T
n

P→ Id, n→ ∞. (3.55)

The rest of the proof is concerned with verifying (3.55).
Defining vector

Qi(n) := Ki(n) − Ji, (3.56)

we have

VK(n)K(n) = VJJ + VJQ(n) + VQ(n)J + VQ(n)Q(n). (3.57)

Due to (49) of Lemma 8 in [17] (condition (24) in [17] with bj as in (3.45) in
place of e of (37) in [17] is satisfied on account of (3.25) and (3.29)), as n→ ∞,

VQ(j)(n)Q(j)(n) = oP (1), for all 1 ≤ j ≤ d, (3.58)

whereQ
(j)
i (n) is the jth component ofQi(n). The latter and the Cauchy-Schwarz

inequality applied to each off-diagonal entry of matrix VQ(n)Q(n) yeild that

VQ(n)Q(n)
P→ O (zero matrix), and therefore,

Bn(n− 1)VQ(n)Q(n)B
T
n

P→ O, (3.59)

with matrix Bn of (3.50), as n→ ∞. Now, in view of (3.51), (3.57) and (3.59),
convergence in (3.55) is a consequence of

Bn(n− 1)
(
VJQ(n) + VQ(n)J

)
BT

n
P→ O, n→ ∞, (3.60)
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which, in turn, follows from (3.51), (3.59) and the Cauchy-Schwarz inequality
applied to each of the entries of the converging matrix product in (3.60). While

the latter implication is easily seen when Var ξ < ∞ and/or b
(1)
1 = b

(2)
1 = 0,

otherwise, namely under Var ξ = ∞ and |b(1)1 | + |b(2)1 | > 0, one should first
obtain the explicit forms of the converging matrix products in (3.51), (3.59)
and (3.60) via the lines in (3.15)–(3.18).

Proof of the (b) part of Theorem 3.4. The proof follows the same scheme as the
one used for the proof of the (a) part of Theorem 3.4. Instead of (3.47) we now
have





R(1)(n) = oP (1), if limn→∞ ξ2 <∞ and/or b
(1)
1 = b

(2)
1 = 0,

R(1)(n)√∑n
i=1(ξi − ξ)2/n

= oP (1), if limn→∞ ξ2 = ∞ and |b(1)1 | + |b(2)1 | > 0,

R(j)(n) = oP (1), for all 2 ≤ j ≤ d,
(3.61)

which follows from (3.53) in [16] and (3.25). In place of Bn of (3.50), we choose
here matrix

Bn =

{
Σ−1/2n−1/2, if limn→∞ ξ2 <∞ and/or b

(1)
1 = b

(2)
1 = 0,

Σ−1/2Dn, otherwise,
(3.62)

where matrix Σ > 0 is as in (3.2) that reads for Zi(n) of (3.31), while matrix
Dn is defined in (3.37). Then, convergence in (3.51) with Bn of (3.62) is due to
having (3.31), (3.4) and (3.40). As to the validity of (3.52) in the context of the
FEIVM (1.1), with Bn of (3.62), it is based on (3.61) and convergence

∑n
i=1(ξi − ξ)2∑n
i=1(ξi −m)2

P→ 1, n→ ∞, (3.63)

which amounts to (3.28) in [16]. Thus, (3.48) in the FEIVM is verified via the
appropriate versions of (3.51) and (3.52).

Now, we are to argue (3.49) in the present context. In fact, we only need
to show (3.59) with Bn of (3.62). By (3.54) in [16] and (3.25), for Qi(n) as in
(3.56),






VQ(1)(n)Q(1)(n) = oP (1), if limn→∞ ξ2 <∞ and/or b
(1)
1 = b

(2)
1 = 0,

nVQ(1)(n)Q(1)(n)∑n
i=1(ξi − ξ)2

= oP (1), if limn→∞ ξ2 = ∞ and |b(1)1 | + |b(2)1 | > 0,

VQ(j)(n)Q(j)(n) = oP (1), for all 2 ≤ j ≤ d.

(3.64)
Combining (3.63) and (3.64), we conclude (3.59) with Bn of (3.62).

Remark 3.4. The use of Theorem 3.4 can also go beyond the studies of the
present paper, since Theorem 3.4 is suitable for establishing joint CLT’s for
estimators, other than those in (1.3)–(1.5), that are also appropriately based on
vector (y, x, Syy, Sxy, Sxx) in the SEIVM (1.1) and FEIVM (1.1).
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Remark 3.5. We note that, via [14, 15, 16, 17], Theorem 3.3 can be adapted
for the no-intercept versions of the SEIVM (1.1) and FEIVM (1.1), where the
intercept α is known to be zero, and respective CLT’s for estimators that are
appropriately based on vector (y, x, y2, xy, x2) can thus be established.

3.4. Proof of Theorem 2.1

The proof of Theorem 2.1 is given for the MLSE’s β̂3n and α̂3n, and the MME γ̂3n

only, simultaneously for the SEIVM (1.1) and FEIVM (1.1). The corresponding

CLT’s for (β̂jn, α̂jn, γ̂jn) for j = 1 and 2 can be established in similar ways and
thus, the respective proofs are omitted here.

Proof of the (a) part of Theorem 2.1. From the proofs of Theorems 1–3 in [17],
and the proofs of the (a) parts of Theorems 2.2 and 2.3 in [16], and also by
following the lines of the proofs of Theorems 1.1.2c and 2.1.2c in [15], we have

√
nU(3, n)(β̂3n − β) =

√
nu(3, n, β),√

n (α̂3n − α) =
√
n v′(3, n, β) + oP (1),√

nL(3, n)(γ̂3n − γ) =
√
nw(3, n, β) + oP (1),

(3.65)

where

v′i(3, n, β) =




yi−α−βxi−
m

M−m2
ui(3, n, β) , if E ξ2 = M <∞ (in the SEIVM),

or lim
n→∞

ξ2 = M <∞ (in the FEIVM),

yi−α−βxi , if Var ξ = ∞, or lim
n→∞

ξ2 = ∞,

(3.66)

with m = E ξ (in the SEIVM), or m = limn→∞ ξ (in the FEIVM). Put

Ki(n) =
(
ui(3, n, β), v′i(3, n, β), w(3, n, β)

)
. (3.67)

Then from (3.65),

√
n
(
U(3, n)(β̂3n − β), α̂3n − α,L(3, n)(γ̂3n − γ)

)
V

−T/2
z(3,n,β)z(3,n,β)

=:
(√

nK(n) + ρ(n)
)
V

−T/2
z(3,n,β)z(3,n,β)

=
(
Stn(K(n)) + ρ(n)V

−T/2
K(n)K(n)

)
V

T/2
K(n)K(n)V

−T/2
z(3,n,β)z(3,n,β),

(3.68)

with
‖ρ(n)‖ = oP (1). (3.69)
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Next, we check the conditions of Theorem 3.4 for having Stn(K(n))
D→

N(0, Id), n → ∞. For Ki(n) as in (3.67), the corresponding vectors c1, c2 and
c3 as in (3.43) are

c1 = (0, 0, 0, 1,−β),

c2 =






(1,−β, 0, 0, 0)− m

M −m2
c1 , if E ξ2 = M <∞,

or limn→∞ ξ2 = M <∞,

(1, −β, 0, 0, 0) , if Var ξ = ∞, or limn→∞ ξ2 = ∞,
c3 = (0, 0, 1,−2β, β2),

(3.70)
while vectors b1, b2 and b3 as in (3.45) are

b1 = (1,−β, 0, 0, 1, 0,−β),

b2 =





(
− m

M −m2
,

mβ

M −m2
, 1,−β,− m

M −m2
, 0,

mβ

M −m2

)
,

if E ξ2 = M <∞, or limn→∞ ξ2 = M <∞,

(0, 0, 1,−β, 0, 0, 0), if Var ξ = ∞, or limn→∞ ξ2 = ∞,
b3 = (0, 0, 0, 0,−2β, 1, β2).

(3.71)

It is not hard to see that c1, c2, c3 of (3.70) satisfy (3.44), while b1, b2, b3 of
(3.71) obey (3.25). Hence, we only need to check (3.29) and (3.30) with the
vectors b1, b2, b3 of (3.71). In fact, according to Remark 3.3, it suffices to verify

(3.29) only. Since |b(1)1 | + |b(2)1 | > 0, (3.29) reads here as
{

vector (〈ζ0, b1〉, 〈ζ0, b2〉, 〈ζ0, b3〉) is full, if Var ξ <∞,
vector (〈ζ0, b2〉, 〈ζ0, b3〉) is full, if Var ξ = ∞.

(3.72)

Suppose first that Var ξ = ∞. If vector (〈ζ0, b2〉, 〈ζ0, b3〉) is not full, then there
exists vector u = (u2, u3) ∈ IR2, ‖u‖ = 1, such that

u2〈ζ0, b2〉 + u3〈ζ0, b3〉 = 0 almost surely (a.s.). (3.73)

If u3 = 0, then (3.73) reduces to 〈ζ0, b2〉 = 0 a.s., or to Var〈ζ0, b2〉 = 〈(1,−β)Γ, (1,
−β)〉 = 0, and the latter equality contradicts positive definiteness of Γ as in
(A). Assume now that u3 6= 0 in (3.73). Then it can be shown that (3.73)

is equivalent to (u2/(2u3) + (δ − βε))
2

= u2
2/(4u

2
3) + E(δ − βε)2 a.s., or to

δ − βε = ±
√
u2

2/(4u
2
3) + E(δ − βε)2 − u2/(2u3) a.s. that means that δ − βε

would have to be discretely distributed. However, this would violate (B).
Suppose now that Var ξ <∞. We are to prove that the vector (〈ζ0, b1〉, 〈ζ0, b2〉,

〈ζ0, b3〉) is full. Consider r.v.

ψ = 〈ζ0, u1b1 + u2b2 + u3b3〉 (3.74)

for all real u1, u2, u3, where ‖(u1, u2, u3)‖ = 1. We seperate the following four
cases in terms of u1 and u3.

1) If u1 = u3 = 0, then Varψ = Var〈ζ0, u2b2〉 = u2
2Var〈ζ0, b2〉. If m 6= 0, then

|b(1)2 | + |b(2)2 | > 0 and Varψ > 0 by Remark 3.3. Otherwise, when m = 0,
Varψ = 〈(1,−β)Γ, (1,−β)〉 > 0 since Γ > 0 by (A).
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2) Assume that u1 = 0, but u3 6= 0. Provided that u2 6= 0 and m 6= 0,

vector (u2b2 + u3b3)
(1,2) = u2b

(1,2)
2 = −u2m(M −m2)−1b

(1,2)
1 is nonzero

and hence, for ψ of (3.74), Varψ > 0 by Remark 3.3. If u2 = 0, then
Varψ = u2

3Var((δ−βε)2−E(δ−βε)2) > 0, because the situation δ−βε =
±
√
E(δ − βε)2 a.s. is prevented via (B) (δ − βε cannot be discretely

distributed). If m = 0, then the expression for b2 is as in the case Var ξ =
∞ (cf. (3.71)), and the proof of that Varψ > 0 goes exactly like that of
disproving (3.73) under Var ξ = ∞.

3) Let u1 6= 0 and u3 = 0. If u1b
(1,2)
1 +u2b

(1,2)
2 = (u1−u2m(M −m2)−1)b

(1,2)
1

is not a zero vector, then from Remark 3.3, Varψ = Var〈ζ0, u1b1 +u2b2〉 >
0, while otherwise, namely, equivalently if u1 = u2m(M − m2)−1, then

u1b
(5,7)
1 + u2b

(5,7)
2 is a zero vector and, due to positive definiteness of Γ

assumed in (A),

Varψ = Var〈ζ0, u1b1 + u2b2〉 = Var〈ζ(3,7)
0 , (u1b1 + u2b2)

(3,7)〉
= Var〈ζ(3,4)

0 , u2b
(3,4)
2 〉 = u2

2〈(1,−β)Γ, (1,−β)〉 > 0.

4) Finally, consider the case of u1 6= 0 and u3 6= 0. If vector u1b
(1,2)
1 +

u2b
(1,2)
2 + u3b

(1,2)
3 is nonzero, then Varψ > 0 by Remark 3.3. Otherwise,

namely, if u1b
(1,2)
1 +u2b

(1,2)
2 +u3b

(1,2)
3 = u1b

(1,2)
1 +u2b

(1,2)
2 = (u1−u2m(M−

m2)−1)b
(1,2)
1 is a zero vector, then so is vector u1b

(5,7)
1 + u2b

(5,7)
2 = (u1 −

u2m(M −m2)−1)b
(5,7)
1 and Varψ = Var〈ζ(3,7)

0 , (u1b1 +u2b2 +u3b3)
(3,7)〉 =

Var(u2〈ζ(3,4)
0 , b

(3,4)
2 〉 + u3〈ζ(5,7)

0 , b
(5,7)
3 〉). Note that (〈ζ(3,4)

0 , b
(3,4)
2 〉, 〈ζ(5,7)

0 ,

b
(5,7)
3 〉) = (〈ζ0, b̃2〉, 〈ζ0, b3〉), with vector b̃2 equal to b2 as in case of Var ξ =
∞ (cf. (3.71)). Also, |u2|+ |u3| > 0. Consequently, using the just obtained
expression for Varψ, we conclude that, on account of that (3.73) fails,
Varψ > 0.

This completes verification of (3.72).

Consequently, by Theorem 3.4, Stn(K(n))
D→ N(0, Id), as n→ ∞. Hence, in

view of (3.68), the proof reduces to showing that, as n→ ∞,

‖ρ(n)V
−T/2
K(n)K(n)‖ = oP (1) (3.75)

and
V

T/2
K(n)K(n)V

−T/2
z(3,n,β)z(3,n,β)

P→ I3. (3.76)

Similarly to the proof of (3.48), (3.75) is on account of (3.55) (proved both
for the SEIVM and FEIVM versions of (1.1)) and

‖
√
n− 1ρ(n)BT

n ‖ = oP (1), (3.77)

where ρ(n) is as in (3.69), matrix Bn is as in (3.50) in the SEIVM, with vec-
tor J0 = (〈ζ0, b1〉, 〈ζ0, b2〉, 〈ζ0, b3〉), or as in (3.62) in the FEIVM, with ma-
trix Σ of (3.2) corresponding to vectors Zi(n) of (3.31) that are based on
Ji = (〈ζi, b1〉, 〈ζi, b2〉, 〈ζi, b3〉), where the vectors b1, b2 and b3 are as in (3.71).
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As to the convergence in (3.76), it suffices to show that, as n→ ∞,

(
(n− 1)VK(n)K(n)

)T/2
BT

n
P→ I3 (3.78)

and
B−T

n

(
(n− 1)Vz(3,n,β)z(3,n,β)

)−T/2 P→ I3, (3.79)

with matrix Bn as above. Since

(
(n− 1)VK(n)K(n)

)T/2
BT

n

=
(
(n− 1)VK(n)K(n)

)−1/2
B−1

n

(
Bn(n− 1)VK(n)K(n)B

T
n

)
,

(3.78) is a consequence of (3.55) (proved both for the SEIVM and FEIVM) and
(4.5). In the same manner, by (4.5), (3.79) is due to

Bn(n− 1)Vz(3,n,β)z(3,n,β)B
T
n

P→ I3, n→ ∞. (3.80)

By writing

Vz(3,n,β)z(3,n,β) = VK(n)K(n) + VK(n)∆(n) + V∆(n)K(n) + V∆(n)∆(n),

where vectors

∆i(n) = zi(3, n, β) −Ki(n) = (0, vi(3, n, β) − v′i(3, n, β), 0), (3.81)

with vi(3, n, β) of (2.3) and v′i(3, n, β) of (3.66), and by using similar arguments
to those for (3.55), (3.80) results from (3.55) and

Bn(n− 1)V∆(n)∆(n)B
T
n

P→ 0, n→ ∞. (3.82)

As to the validity of (3.82), the lines in [17] that are right below (64) and (67)
imply that in the SEIVM V∆(2)(n)∆(2)(n) = oP (1), n → ∞. Mutatis mutandis,
the latter holds true also in the FEIVM. This leads to (3.82).

Proof of the (b) part of Theorem 2.1. If, as n→ ∞,

V
T/2
z(3,n,β)z(3,n,β)V

−T/2

z(3,n,β̂jn)z(3,n,β̂jn)

P→ I3, (3.83)

then the (b) part of Theorem 2.1 follows from its (a) part. As n→ ∞,

(
(n− 1)Vz(3,n,β)z(3,n,β)

)T/2
BT

n
P→ I3 (3.84)

and

B−T
n

(
(n− 1)V

z(3,n,β̂jn)z(3,n,β̂jn)

)−T/2 P→ I3 (3.85)

guarantee (3.83), where matrix Bn is given by the appropriate versions of (3.50)
and (3.62) in the SEIVM and FEIVM respectively, just like in the proof of the
(a) part of Theorem 2.1.
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Using (4.5), (3.80) and representation
(
(n− 1)Vz(3,n,β)z(3,n,β)

)T/2
BT

n

=
(
(n− 1)Vz(3,n,β)z(3,n,β)

)−1/2
B−1

n

(
Bn(n− 1)Vz(3,n,β)z(3,n,β)B

T
n

)
,

we conclude (3.84).
Since

V
z(3,n,β̂jn)z(3,n,β̂jn)

= Vz(3,n,β)z(3,n,β) + Vz(3,n,β)p(n) + Vp(n)z(3,n,β) + Vp(n)p(n),

with vectors
pi(n) = z(3, n, β̂jn) − zi(3, n, β), (3.86)

then by similar arguments to those for (3.55), convergence in (3.85) is a conse-
quence of (3.80) and

Bn(n− 1)Vp(n)p(n)B
T
n

P→ 0, n→ ∞. (3.87)

Now we argue the validity of (3.87). From the lines of the proofs of Theorems 2
and 3 in [17], the (b) parts of Theorems 2.2 and 2.3 in [16] and Theorems 1.1.3c
and 2.1.3c in [15], we have





Vp(1)(n)p(1)(n)

ℓ2ξ(n)
= oP (1), in the SEIVM,

nVp(1)(n)p(1)(n)∑n
i=1(ξi − ξ)2

= oP (1), in the FEIVM,

Vp(2)(n)p(2)(n) = oP (1), Vp(3)(n)p(3)(n) = oP (1)

(3.88)

and hence, also (3.87).

Proof related to Remark 2.3. In view of (3.83), it suffices to show that under
(2.6) (in the SEIVM) and (2.7) (in the FEIVM), subject to the additional nor-
mality model conditions in [3] and comments on (B) in Remarks 2.8 and 2.9,
the (a) part of Theorem 2.1 implies corresponding

√
n−asymptotic normality of

(β̂jn, α̂jn, γ̂jn), 1 ≤ j ≤ 3, as in [3, 7, 8]. Due to similar arguments, we consider
here the case of j = 3 only.

From (3.84) with Bn = n−1/2
(
Cov(〈ζ0, b1〉, 〈ζ0, b2〉, 〈ζ0, b3〉)

)−1/2

in the

SEIVM and Bn =
(∑n

i=1 Cov(〈ζi, b1〉, 〈ζi, b2〉, 〈ζi, b3〉)
)−1/2

in the FEIVM,

where vectors b1, b2, b3 are as in (3.71), and from the corresponding (3.29)
and (3.30) that have been checked in the (a) part of Theorem 2.1 via assuming
(B),

V
T/2
z(3,n,β)z(3,n,β)

P→ AT/2 :=





(
Cov(〈ζ0, b1〉, 〈ζ0, b2〉, 〈ζ0, b3〉)

)T/2

, in the SEIVM,
(

limn→∞ n−1
∑n

i=1 Cov(〈ζi, b1〉, 〈ζi, b2〉, 〈ζi, b3〉)
)T/2

, in the FEIVM.

(3.89)
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Next, as n→ ∞, since U(3, n) = Sxx − θ
P→M −m2 > 0, with M and m as in

(2.6) or (2.7), then

(
diag(U(3, n), 1, L(3, n))

)−1 P→
(
diag(M −m2, 1, 1)

)−1
:= D−1, n→ ∞.

(3.90)
Finally, the (a) part of Theorem 2.1 with j = 3 that reads as

√
n
(
U(3, n)(β̂3n − β), α̂3n − α,L(3, n)(γ̂3n − γ)

)
V

−T/2
z(3,n,β)z(3,n,β)

=
√
n
(
β̂3n − β, α̂3n − α, γ̂3n − γ

)
diag(U(3, n),1,L(3, n))V

−T/2
z(3,n,β)z(3,n,β)

D→ N(0, I3), n→ ∞,

and convergence in (3.89) and (3.90) imply that

√
n
(
β̂3n − β, α̂3n − α, γ̂3n − γ

)
D→ N(0, D−1AD−1), n→ ∞, (3.91)

where matrix D−1AD−1 reduces to the covariance matrix of the corresponding
asymptotically normal distribution that is obtained in [3], subject to the therein
assumed additional normality model conditions spelled out in Remark 2.3 that
replace our weaker assumption (B) that was used to conclude (3.91) here (for
a summary on (B) we refer to Remarks 2.8 and 2.9).

4. Appendix: some results on Studentization of random vectors by a
matrix and the generalized domain of attraction of the
multivariate normal law

This appendix of some well-known results on recent advances in Studentization
of random vectors by a matrix and the generalized domain of attraction of the
multivariate normal law (GDAN) is provided here for convenience in references
that are required for reading Section 3 of this paper.

Motivated by the importance of having matrix Studentized CLT’s for random
vectors converging in distribution to a spherically symmetric random vector Z,
which is such that all its Euclidean inner products 〈Z, u〉 with a deterministic
vector u of unit Euclidean norm have the same ditribution coinciding with that
of each single component of Z, Vu, Maller and Klass [22] established a rather
general result of such a nature. Their result that follows herewith is essentially
a general recipe of matrix “Slutskying” for random vectors.

Theorem 4.1. For n ≥ 1, let Cn be d×d real invertible nonstochastic matrices,
Vn be d×d real symmetric stochastic matrices and Sn be 1×d stochastic vectors.
If, as n→ ∞,

CnVnC
T
n

P→ Id, (4.1)

with unit d× d matrix Id, and

SnC
T
n

D→ Z, (4.2)
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where Z is a spherically symmetric random vector in IRd , then

SnV
−T/2

n
D→ Z. (4.3)

Remark 4.1. We note that (4.1) amounts to saying that each entry of matrix
CnVnC

T
n converges in probability to the corresponding entry of Id. As noted in

[22], (4.1) implies that Vn > 0 on sets whose probabilities converge to one, as
n → ∞. Hence, the Cholesky and the symmetric positive definite square roots

of Vn and, consequently, V
−T/2

n in (4.3) are well-defined.

Remark 4.2. This is a technical remark related to Theorem 4.1 and frequently
used in Section 3. It is noted in [22] that if instead of (4.1) and (4.2) one assumes,
as n→ ∞,

A−1/2
n VnA

−T/2
n

P→ Id and SnA
−T/2
n

D→ Z, (4.4)

with d × d real matrices An > 0, n ≥ 1, then spherical symmetry of Z is not
required for the conclusion in (4.3). Moreover, if (4.4) is assumed to begin with
in [22], then the proof of corresponding (4.3) there reduces to showing that, as
n→ ∞,

A−1/2
n Vn A

−T/2
n

P→ Id implies AT/2
n V −T/2

n =
(
V −1/2

n A 1/2
n

)T P→ Id. (4.5)

A definition of the generalized domain of attraction of the d−variate normal
law, denoted here by GDAN in view of the previously used DAN as in (S1),
reads as follows.

Definition 4.1. Let {Z,Zi, i ≥ 1} be i.i.d. random vectors in IRd . Z is said to
belong to GDAN if there exist nonstochastic sequences of vectors an and d× d
matrices Bn, such that

(
n∑

i=1

Zi − an

)
BT

n
D→ N(0, Id), as n→ ∞. (4.6)

Remark 4.3. It was shown in Maller [13] that if (4.6) holds, then E‖Z‖α <∞
for all 0 ≤ α < 2 and an can be taken as nEZ, while norming matrix Bn is
invertible for large enough n and may be chosen to be symmetric. Also, Bn → 0,
as n → ∞. As a general fact, it is also known that (4.6) implies that Z is full
(cf. Lemma 3.3.3 in [18]).

Below we review some known equivalent characterizations of GDAN that are
found in Theorem 1.1 of Maller [13] and are most relevant to the aims of this
paper.

Theorem 4.2. Let {Z,Zi, i ≥ 1} be i.i.d. random vectors in IRd having a full
distribution. The following statements are equivalent:

(a) Z ∈ GDAN;
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(b) there exist nonstochastic square matrices Bn such that

Bn

n∑

i=1

(Zi − Z)T (Zi − Z)BT
n

P→ Id, as n→ ∞;

(c) sup
u∈IRd , ‖u‖=1

x2P
(
|〈Z, u〉| > x

)

E
(
〈Z, u〉211{|〈Z,u〉|≤x}

) → 0, as x→ ∞.

Remark 4.4. Equivalence of (a) and (c) in Theorem 4.2 under EZ = 0 is
one of the main results of the seminal paper by Hahn and Klass [10] that has
stimulated intensive studies of GDAN. The (b) part of Theorem 4.2 can be
viewed as an analogue of the following result for DAN that was rediscovered
by Maller [12] to conclude a CLT for self-normalized partial sums of i.i.d.r.v.’s
from DAN. It is essentially a variation of Theorems 4 and 5 on pp. 143–144 in
Gnedenko and Kolmogorov [9]. Accordingly, if {Z,Zi, i ≥ 1} are i.i.d.r.v.’s in
DAN, then

n∑

i=1

(Zi − E Z)2/b2n
P→ 1, n→ ∞, (4.7)

where bn is such that
∑n

i=1(Zi − E Z)/bn
D→ N(0, 1), as n→ ∞.

Remark 4.5. It is easy to see that if Z ∈ GDAN, then each component Z(j)

of Z is in DAN, 1 ≤ j ≤ d. Indeed, the (c) part of Theorem 4.2 implies that

x2P
(
|Z(j)| > x

)

E
(
(Z(j))211{|Z(j)|≤x}

) → 0, x→ ∞. (4.8)

The latter convergence is known as Lévy’s necessary and sufficient condition
for Z(j) to be in DAN (cf. [11]). On the other hand, assuming that all Z(j) ∈
DAN is not sufficient alone to guarantee that Z ∈ GDAN. Indeed, suppose that
EZ = 0 and all Z(j) are identically distributed and belong to DAN. Then, from

(4.7) with bn chosen to be the same for all sequences {Z(j)
i , i ≥ 1}, 1 ≤ j ≤ d,

∑n
i=1 ‖Zi‖2

d b2n

P→ 1, n→ ∞. (4.9)

Further, from Remark (ii) on p.193 of [13], via p.236 of [5], (4.9) is equivalent
to (4.8) with ‖Z‖ in place of |Z(j)|, and such a form of (4.8) does not imply (c)
of Theorem 4.2. However, the class of spherically symmetric random vectors Z
is pointed out in Remark (ii) on p.217 of [13] as an exception in this regard, on
account of each projection of Z having the same distribution coinciding with
that of each single component Z(j) of Z, 1 ≤ j ≤ d.

For a multivariate Student statistic based on i.i.d. random vectors {Z,Zi,
i ≥ 1} in GDAN, by Maller [13] and Vu, Maller and Klass [22], the following
CLT holds true.
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Theorem 4.3. Let {Z, Zi, i ≥ 1} be i.i.d. random vectors in IRd and Z ∈
GDAN. Then, for the multivariate Student statistic Stn(Z) =

√
nZ

(
(n− 1)−1

∑n
i=1(Zi − Z)T (Zi − Z)

)−T/2
, as n→ ∞, Stn(Z − E Z)

D→ N(0, Id).

Remark 4.6. As noted in Remarks of [22], the proof of Theorem 4.3 goes
by Theorem 4.1, via combining (4.6) and the (b) part of Theorem 4.2 that
presents a special case of (4.1). It is pointed out in [22] that, though Studen-
tization in Theorems 4.1 and 4.3 can be performed by both the Cholesky and
symmetric positive definite square roots, one’s preference would depend on the
problem in hand. It is also conjectured in [22] that for the purpose of trans-
forming

∑n
i=1(Zi − EZ) so as to have approximately a spherically symmetric

distribution, the symmetric positive definite square root is likely a better choice
to accomplish this in small samples.
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