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1. Introduction

In nonparametric estimation, exponential inequalities of Bernstein type repre-
sent a powerful tool for proving convergence rates. The significance of exponen-
tial inequalities toward several probability and statistical applications is well
known. There exist several versions available in the literature for independent
sequences of variables. Sometimes, the random variables are positively associ-
ated. Ioannides and Roussas [4] proved an exponential inequality for positively
associated random variables under some assumptions of uniform boundedness
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and some conditions on the covariance structure of the variables. Oliveira [9]
extended these results by dropping the boundedness assumption.

One of dependent structure of random variables (r.v.’s) that has attracted
the interest of probabilists and statisticians is negative association (NA). This
concept is one qualitative version of negative dependence among random vari-
ables. For other versions of negative dependence, such as upper (lower) orthant
dependence, reverse regular of order two in pairs, conditionally decreasing in se-
quence and negatively dependent in sequence, we refer to Lehmann [8], Block et
al. [1], Ebrahimi and Ghosh [3], Joag-dev and Patil [6], and Karlin and Rinott [7].
Among those types of negative dependence, only the NA class enjoys the impor-
tant property of being closed under formation of increasing functions of disjoint
sets of random variables. As pointed out and proved by Joag-dev and Proschan
[5], a number of well known multivariate distributions possess the NA property,
such as (a) multinomial, (b) convolution of unlike multinomial, (c) multivariate
hypergeometric, (d) Dirichlet, (e) Dirichlet compound multinomial, (f) nega-
tively correlated normal distribution, (g) permutation distribution, (h) random
sampling without replacement, and (i) joint distribution of ranks. Because of
their wide applications in multivariate statistical analysis and reliability theory,
the notations of negatively associated random variables have received more and
more attention recently.

The article is organized as follows: in the next section, the necessary notation
and terminology are introduced before the main result. In addition to the ba-
sic assumption of negative association, we require that the r.v.’s are uniformly
bounded and we impose some further conditions on the covariance structure, see
assumptions (A1)-(A3). The proof of the theorem rests on Lemma 3.4 which is
formulated and proved in Section 3. Actually, all preliminary results needed are
taken care of in the same section, as is the proof of the theorem. The optimal as-
sociated rate of convergence depends on the underlying covariance function and
is explicitly calculated by way of formulas (3.34) and (3.31) for given covariance
function. In Section 4, we discuss two classes of covariances falling into scope of
Theorem 2.1. To avoid unnecessary repetitions, it is stated at the outset that
all limits are taken as n → ∞.

2. Definitions, notations and formulation of main results

At first, we introduce two definitions for ND and NA random variables.

Definition 2.1. Two random variables X and Y are negatively quadrant de-
pendent (NQD) if for every x, y ∈ R we have

P(X ≤ x, Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y). (2.1)

Definition 2.2. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to
be negatively associated (NA) if for every pair of disjoint subsets A and B of
{1, 2, . . . , n},

Cov(f1(Xi, iǫA), f2(Xj , jǫB)) ≤ 0. (2.2)
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whenever f1 and f2 are coordinatewise increasing and such that the covariance
exists. An infinite family of random variables is NA if every finite subfamily is
NA.

Consider a sequence of natural numbers pn such that, for each n ≥ 1, 1 ≤
pn < n and pn → ∞. Then, we divide the set {1, 2, . . . , n} into successive groups
each containing pn elements. Define rn as the greatest integer less or equal to
n/2pn, which implies that n/2rnpn → 1. Thus the set {1, 2, . . . , n} is split
into 2rn groups, each consisting of pn elements; the remaining n − 2rnpn < pn

elements constitute a set which may be empty.
For easy reference, we consider some assumptions that the main result in this

paper remained valid.

Assumptions
(A1) The basic assumption is that the r.v.’s {Xi, i ≥ 1} are NA.
(A2) The r.v.’s are bounded, |X| ≤ M/2, i ≥ 1 (M is independent of i) and

covariance invariant,

Cov(Xi, Xi+k) = Cov(X1 , Xk+1). i ≥ 1, k ≥ 1 (2.3)

(A3) Without loss of generality, it is assumed Cov(X1 , Xk+1) is nondecreas-
ing as k → ∞.

Remark 2.1. Covariance invariant in assumption (A2) can be dropped, if we
assumed

Cov(X1 , Xk+1) = inf{Cov(Xi, Xi+k); i ≥ 1}, k ≥ 1.

Define S̄n and εn by

S̄n =
1

n

n∑

i=1

(Xi − EXi), εn =

(
αM2

2

)1/2(
log n

rn

)1/2

, (2.4)

where M is as in assumption (A2) and α is an arbitrary constant greater than
one. Then the main result obtained in following theorem.

Theorem 2.1. Let S̄n and εn be defined by (2.4). Then, under assumptions
(A1) and (A2), and the proviso

Cov(X1, Xk+1) ≤ exp

{

−4(M + 1)

3
M

(
α

2

)1/2

(rn log n)1/2

}

, (2.5)

it holds

P (|S̄n| ≥ εn) ≤ C0 exp(−crnεn
2), c = 2/9M2 (2.6)

for all sufficiently large n, n ≥ n0, where C0 is a constant.
Furthermore, S̄n → 0 a.s. at the rate 1/εn. The optimal specification of rn is

given by (3.33) or (3.34) and the respective 1/εn is given by (3.31).



H. Jabbari et al./An exponential inequality for NA random variables 168

3. Preliminary results

Let Yi = Xi − EXi, so that |Yi| ≤ M , i ≥ 1 are NA and S̄n = n−1
∑n

i=1 Yi.
Define the r.v.’s Ui, Vi, i = 1, . . . , rn and Wn by

Ui = Y2(i−1)pn+1 + · · ·+ Y(2i−1)pn
, Vi = Y(2i−1)pn+1 + · · ·+ Y2ipn

, (3.1)

Wn = Y2pnrn+1 + · · ·+ Yn, (3.2)

where pn and rn are as in the previous section and

Ūn =
1

n

rn∑

i=1

Ui, V̄n =
1

n

rn∑

i=1

Vi, W̄n =
Wn

n
. (3.3)

So that

S̄n = Ūn + V̄n + W̄n. (3.4)

Lemma 3.1. Suppose X and Y are NQD random variables with finite variance
and f, g are complex valued functions on R1 with f ′ and g′ bounded. Then

|Cov(f(X), g(Y ))| ≤ −‖f ′‖∞‖g′‖∞Cov(X, Y ), (3.5)

where ‖.‖ denotes the sup norm on R1; in particular, for any real s and t,

|E(eisX+itY ) − E(eisX)E(eitY )| ≤ −|s||t|Cov(X, Y ). (3.6)

Proof. Define

H(x, y) = P(X ≤ x, Y ≤ y) − P(X ≤ x)P(Y ≤ y). (3.7)

By Hoeffding lemma [8],

Cov(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞

H(x, y)dxdy. (3.8)

This equation can be easily generalized (see, for more information Newman,
1980) to yield

Cov(f(X), g(Y )) =

∫ ∞

−∞

∫ ∞

−∞

f ′(x)g′(y)H(x, y)dxdy.

Since X and Y are NQD random variables H(x, y) ≤ 0, thus

|Cov(f(X), g(Y ))| =

∫ ∞

−∞

∫ ∞

−∞

|f ′(x)|.|g′(y)||H(x, y)|dxdy.

≤ ‖f ′‖∞.‖g′‖∞Cov(X, Y ), (3.9)

as desired.
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Lemma 3.2. Let X1, X2, . . . , Xn be a sequence of NA random variables bounded
by constant δ′. Then, for every λ > 0,

|Cov(eλ
∑

n−1

i=1
Xi , eλXn)| ≤ −λ2enλδ′

∑

1≤i<j≤n

Cov(Xi, Xj). (3.10)

Proof. By Lemma 3.1 for λ > 0, we have

|Cov(eλX1 , eλX2)| ≤ λ2e2λδ′

Cov(X1, X2). (3.11)

The result follows by induction and using the fact that if X, Y and Z are NA
then so are X and Y + Z as they are increasing functions of NA r.v.’s.

We quote next a general lemma used to control some of the terms appearing
in the course of proof.

Lemma 3.3 ([2]). Let W be a central random variable. If there exist a, b ∈ R
such that P(a ≤ W ≤ b) = 1 then, for every λ > 0

|E(eλW )| ≤ exp

(
λ2(b − a)2

8

)

. (3.12)

Lemma 3.4. Let εn > 0 and Ūn be defined by (3.3) and suppose assumptions
(A1)-(A3) hold. Then, for an appropriate constant C0,

P(Ūn ≥ εn) ≤ C0 exp(−2rnεn
2/M2),

provided

− Cov(X1 , Xk+1) ≤ exp(−4(M + 1)rnεn/M2).

Proof. The r.v.’s U1, . . . , Urn
are NA and |Ui| ≤ pnM for all i. For some λ > 0,

set h(x) = e
λ
n

x, −pnM < x < pnM so that h′(x) = λ
ne

λ
n

x and for their sup-

norms, it holds: ‖h‖∞ ≤ eλpn
M
n , ‖h′‖∞ ≤ λ

neλpn
M
n . With this h and A =

{1, . . . , rn − 1}, B = {rn}, so that ♯A + ♯B − 2 = rn − 2, apply Lemma 3.2 to
obtain

Cov(e
λ
n

∑
rn−1

i=1
Ui , e

λ
n

Urn ) ≤ −λ2

n2
eλpnrn

M
n

rn−1∑

i=1

Cov(Ui, Urn
),

so that

E(eλŪn) = E(e
λ
n

∑
rn−1

i=1
Ui .e

λ
n

Urn )

≤ Ee
λ
n

∑
rn−1

i=1
UiEe

λ
n

Urn − λ2

n2
eλpnrn

M
n

rn−1∑

i=1

Cov(Ui, Urn
). (3.13)
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However

rn−1∑

i=1

Cov(Ui, Urn
) =

rn−1∑

i=1

(2i−1)pn∑

j=2(i−1)pn+1

(2rn−1)pn∑

k=2(rn−1)pn+1

Cov(Yj , Yk)

≤
∑

jǫA

∑

kǫB

Cov(Yj , Yk)

=

rn−1∑

i=1

∑

jǫAi

∑

kǫB

Cov(Yj , Yk), (3.14)

where

A = {1, . . . , pn
︸ ︷︷ ︸

; 2pn + 1, . . . , 3pn
︸ ︷︷ ︸

; . . . ; 2(rn − 2)pn + 1, . . . , (2rn − 3)pn
︸ ︷︷ ︸

}

= {A1; A2; . . . ; Arn−1}

and B = {2(rn − 2)pn + 1, . . . , (2rn − 3)pn}. By assumptions (A2) and (A3),
∑

jǫA1

∑

kǫB

Cov(Yj , Yk) ≥ pnCov(Y1, Y2(rn−1)pn+1) + · · ·

+ pnCov(Ypn
, Y2(rn−1)pn+1)

≥ p2
nCov(Ypn

, Y2(rn−1)pn+1).

Similarly,
∑

jǫA2

∑

kǫB

Cov(Yj , Yk) ≥ p2
nCov(Ypn

, Y2(rn−2)pn+1)

and continuing like this
∑

jǫArn−1

∑

kǫB

Cov(Yj , Yk) ≥ p2
nCov(Ypn

, Y2pn+1).

Thus,
∑

jǫA

∑

kǫB

Cov(Yj , Yk) ≥ p2
n[Cov(Ypn

, Y2pn+1) + · · ·+ Cov(Ypn
, Y2(rn−2)pn+1)

+ Cov(Ypn
, Y2(rn−1)pn+1)]

≥ p2
nrnCov(Ypn

, Y2pn+1). (3.15)

By means of (3.15) and (3.14), inequality (19) becomes

E(eλŪn) ≤ Ee
λ
n

∑
rn−1

i=1
UiEe

λ
n

Urn − λ2

n2
eλpnrn

M
n p2

nrnCov(Ypn
, Y2pn+1). (3.16)

By applying the inequality 1+x ≤ ex, x ∈ R, for x = λ
nUrn

and x = λ
n

∑rn−1
i=1 Ui

and getting expectations, we have

1 ≤ Ee
λ
n

∑
rn−1

i=1
UiEe

λ
n

Urn . (3.17)
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From 2pnrn ≤ n, we get
p2

nrn

n2 ≤ 1/4rn. Therefore, inequality (3.16) becomes

E(eλŪn) ≤ Ee
λ
n

∑
rn−1

i=1
UiEe

λ
n

Urn [1− λ2

4rn
eλMCov(Ypn

, Y2pn+1)]. (3.18)

The inequality xe ≤ ex, x ∈ R gives λ2

4
≤ e−2eλ < eλ, so that

1− λ2

4rn
eλMCov(Ypn

, Y2pn+1) ≤ 1 − 1

rn
eλ(1+M)Cov(Ypn

, Y2pn+1), (3.19)

and we wish to have −eλ(1+M)Cov(Ypn
, Y2pn+1) ≤ 1 or

λ ≤ − 1

M + 1
log(−Cov(Ypn

, Y2pn+1)). (3.20)

On account of (3.19) and (3.20), inequality (3.18) yields

E(eλŪn) ≤ Ee
λ
n

∑
rn−1

i=1
UiEe

λ
n

Urn

[

1 +
1

rn

]

. (3.21)

Repeating the process which led to (3.21) another rn−1 times, we obtain, under
condition (3.20),

E(eλŪn) ≤
[

1 +
1

rn

]rn rn∏

i=1

Ee
λ
n

Ui . (3.22)

By applying Lemma 3.3 and taking W = Ui, we have |Ui| ≤ pnM and b − a =
2pnM . Then

rn∏

i=1

Ee
λ
n

Ui ≤ eλ2M2 p2
nrn

2n2 ≤ e
λ2M2

8rn . (3.23)

Since also (1 + 1
rn

)rn ≤ C1 for any positive constant C1, inequality (3.22) be-
comes

EeλŪn ≤ C1e
λ2M2

8rn . subject to (3.20) (3.24)

Thus, for εn > 0 and under (3.20)

P(Ūn ≥ εn) ≤ C1 exp(−λεn +
λ2M2

8rn
). (3.25)

By minimizing the right-hand side in (3.25) with respect to λ, we have

P(Ūn ≥ εn) ≤ C1 exp

(

−2
rnε2

n

M2

)

, (3.26)

for λ0 = 4 rnεn

M2 subject to (3.20).
For λ0 as in (3.26), (3.20) is equivalent to

− Cov(Ypn
, Y2pn+1) ≤ exp

{

−4(M + 1)

M2
rnεn

}

. (3.27)

This completes the proof of the lemma.



H. Jabbari et al./An exponential inequality for NA random variables 172

Remark 3.1. As stated in assumption (A3), the condition that the covariance
function Cov(X1, Xk+1) be nondecreasing is not, really, necessary, although it
would not be easy to envision cases where it does not occur. This can be justified
in the process of arriving at inequality (3.15) by way of (3.14). All one has to do
is to produce some more refined bounds for the covariances, but such a result
does not appear worth the effort.

For almost sure convergence purposes, we wish to have 2
rnε2

n

M2 = lognα (for
any arbitrary α > 1), or equivalently,

εn =

(
αM2

2

)1/2(
logn

rn

)1/2

. (3.28)

Then, λ0 becomes

λ0 =

(
8α

M2

)1/2

(rn logn)1/2 (3.29)

and condition (3.27) yields

− Cov(Ypn
, Y2pn+1) ≤ exp

{

−4(M + 1)

M

(
α

2

)1/2

(rn log n)1/2

}

. (3.30)

The following lemma summarizes these results.

Lemma 3.5. Suppose assumptions (A1)-(A3) hold. With εn specified by (3.28),
we have

P(Ūn ≥ εn) ≤ C1 exp

(

−2
rrε

2
n

M2

)

,

provided Cov(Ypr
, Y2pr+1) satisfies condition (3.30).

Remark 3.2. It is obvious that V̄n, as defined in (3.3), satisfies the same in-
equalities as Ūn in Lemmas 3.4 and 3.5.

We may now dispense W̄n as defined in (3.3).

Lemma 3.6. Under assumptions (A1)-(A3) and with εn defined by (3.28),
Pr(|W̄n| ≥ εn) = 0 for any large enough n.

Proof. Wn consists of n − 2pnrn terms and n − 2pnrn < pn. Then, |W̄n| <
pn

M
n = 0. So that P(|W̄n| ≥ εn) ≤ P(M ≥ nεn

pn
). However, for any large enough

n, this last expression is 0.

Proof of Theorem 2.1. From Lemma 3.5, Remark 3.2 and Lemma 3.6, we obtain
that the r.v.’s −Yi, i = 1, 2, . . . , n have the same properties as the r.v.’s Yi,
i = 1, 2, . . . , n. Thus, under condition (3.30) we have

P(|Ūn| ≥ εn) = P(Ūn ≥ εn) + P(−Ūn ≥ εn) ≤ 2C0 exp

(

−2
rnε2

n

M2

)

,
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and similarly for Pr(|V̄n| ≥ εn). Then,

P(|S̄n| ≥ 3εn) ≤ P(|Ūn| ≥ εn) + P(|V̄n| ≥ εn) + P(|W̄n| ≥ εn)

≤ P(|Ūn| ≥ εn) + P(|V̄n| ≥ εn) (for n ≥ n0, say)

≤ 4C1 exp

(

−2
rnε2

n

M2

)

.

Finally, we obtain

P(|S̄n| ≥ εn) ≤ C0 exp(−crnε2
n), c = 2/9M2, n ≥ n0,

where C0 = 4C1 provided

− Cov(Ypn
, Y2pn+1) ≤ exp

{

−4(M + 1)

3M2

(
α

2

)1/2

(rn log n)1/2

}

.

Then, S̄n convergence to zero a.s. at the rate of 1/εn.
For the value of n specified in (3.28), the rate of convergence is given by

1

εn
=

(
2

αM2

)1/2(
rn

logn

)1/2

. (3.31)

Inequality (3.30) becomes, equivalently:

rn ≤ 1

8α

(
M

M + 1

)2
log2(−Cov(Xpn

, X2pn+1))

log n
. (3.32)

Expression (3.31) shows that the maximum rate is attained for the maximum
allowed value of rn. This maximum value is obtained from (3.32) and is

rn =
1

8α

(
M

M + 1

)2
log2(−Cov(Xpn

, X2pn+1))

log n
. (3.33)

This is so, because when rn increases, pn decreases, due to the fact that rn

and pn are inverse proportional and also to the assumption that Cov(X1, Xk+1)
is an increasing function. Again, by the fact that n/2pnrn → 1, it follows that
pn = 1

2xn

n
rn

, some 0 < xn → 1. So that (3.31) becomes

rn =
1

8α

(
M

M + 1

)2
log2(−Cov(Xpn

, X2pn+1))

logn
,

pn =
1

2xn

n

rn
, 0 < xn → 1 (3.34)

and all one has to do is solve for rn. Then, the corresponding rate of convergence
is obtained from (3.31).

Remark 3.3. From (3.31), it follows that the optimal convergence rate is ob-
tained by taking rn = n. However, such a choice is not allowed here. Conse-
quently, the convergence rate (n/ logn)1/2 is unattainable in the present frame-
work.

Remark 3.4. From (3.31), by taking rn =
√

n we have the convergence rate
(
√

n/ logn)1/2.
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4. Examples

In this section, two examples with common covariance functions are discussed.
In each case, the optimal choice of rn, provided by formula (3.34) is given as
well as the corresponding best rate of almost sure convergence through formula
(3.31).

Example 4.1. Suppose that Cov(X1, Xk+1) = ρ0ρ
k, 0 < ρ < 1, ρ0 < 0. Then

relation (3.34) is of the form:

rn = C1n
1

logn
+ C2n

n

rn logn
+ C3n

n2

r2
n log n

or

rn
3 = C1n

r2
n

logn
+ C2n

nrn

log n
+ C3n

n2

log n
, (4.1)

and the last term on the right-hand side in (4.1) is of highest order. Therefore
rn

3 is of the order n2/ logn and rn is of the order (n2/ logn)1/3. Then, by (3.31),
it turns out that 1/εn is of the order (n/(logn)2)1/3.

Example 4.2. Suppose Cov(X1 , Xk+1) = a0k
−λ, λ > 0, a0 < 0.

Then, we have

rn = C1n
1

log n
+ C2n

log rn

log n
+ C3n

(log rn)2

log n
+ C4n + C5n(log rn)

+ C6n(logn), (4.2)

and the last term on the right-hand side in (4.2) is of highest order. Thus, rn is
of order log n and then, 1/εn is a constant. Therefore, in this case, we do have
almost sure convergence without rates.
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