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Abstract: The positive false discovery rate (pFDR) is a useful overall mea-
sure of errors for multiple hypothesis testing, especially when the underlying
goal is to attain one or more discoveries. Control of pFDR critically depends
on how much evidence is available from data to distinguish between false
and true nulls. Oftentimes, as many aspects of the data distributions are
unknown, one may not be able to obtain strong enough evidence from the
data for pFDR control. This raises the question as to how much data are
needed to attain a target pFDR level. We study the asymptotics of the
minimum number of observations per null for the pFDR control associated
with multiple Studentized tests and F tests, especially when the differences
between false nulls and true nulls are small. For Studentized tests, we con-
sider tests on shifts or other parameters associated with normal and general
distributions. For F tests, we also take into account the effect of the num-
ber of covariates in linear regression. The results show that in determining
the minimum sample size per null for pFDR control, higher order statistical
properties of data are important, and the number of covariates is important
in tests to detect regression effects.
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1. Introduction

A fundamental issue for multiple hypothesis testing is how to effectively control
Type I errors, namely the errors of rejecting null hypotheses that are actually
true. The False Discovery Rate (FDR) control has generated a lot of interest
due to its more balanced trade-off between error rate control and power than
the traditional Familywise Error Rate control (1). For recent progress on FDR
control and its generalizations, see (6–12, 14–16, 19) and references therein.

Let R be the number of rejected nulls and V the number of rejected true nulls.
By definition, FDR = E[V/(R∨1)]. Therefore, in FDR control, the case R = 0 is
counted as “error-free”, which turns out to be important for the controllability
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of the FDR. However, multiple testing procedures are often used in situations
where one explicitly or implicitly aims to obtain a nonempty set of rejected
nulls. To take into account this mind-set in multiple testing, it is appropriate to
control the positive FDR (pFDR) as well, which is defined as E[V/R |R > 0]
(18). Clearly, when all the nulls are true, the pFDR is 1 and therefore cannot
be controlled. This is a reason why the FDR is defined as it is (1). On the other
hand, even when there is a positive proportion of nulls that are false, the pFDR
can still be significantly greater than the FDR, such that when some nulls are
indeed rejected, chance is that a large proportion or even almost all of them are
falsely rejected (3, 4).

The gap between FDR and pFDR arises when the test statistics cannot pro-
vide arbitrarily strong evidence against nulls (4). Such test statistics include t
and F statistics (3). These two share a common feature, that is, they are used
when the standard deviations of the normal distributions underlying the data
are unknown. In reality, it is a rule rather than exception that data distributions
are only known partially. This suggests that, when evaluating rejected nulls, it
is necessary to realize that the FDR and pFDR can be quite different, especially
when the former is low.

In order to increase the evidence against nulls, a guiding principle is to in-
crease the number of observations for each null, denoted n for the time being. In
contrast to single hypothesis testing, for problems that involve a large number
of nulls, even a small increase in n will result in a significant increase in the de-
mand on resources. For this reason, the issue of sample size per null for multiple
testing needs to be dealt with more carefully. It is known that FDR and other
types of error rates decrease in the order of O(

√

logn/n) (13). In this work, we
will consider the relationship between n and pFDR control, in particular, for the
case where false nulls are hard to separate from true ones. The basic question to
be considered is: in order to attain a certain level of pFDR, what is the minimum
value for n. This question involves several issues. First, how does the complexity
of the null distribution affect n? Second, is normal or t approximation appropri-
ate in determining n? In other words, is it necessary to incorporate information
on higher order moments of the data distribution? Third, what would be an at-
tainable upper bound for the performance of a multiple testing procedure based
on partial knowledge of the data distributions?

In the rest of the section, we first set up the framework for our discussion,
and then outline the other sections.

1.1. Setup and basic approach

Most of the discussions will be made under a random effects model (10, 18).
Each null Hi is associated with a distribution Fi and tested based on ξi =
ξ(Xi1, . . . , Xin), where Xi1, . . . , Xin are iid ∼ Fi and the function ξ is the same
for all Hi. Let θi = 1 {Hi is true}. The random effects model assumes that
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(θi, ξi) are independent, such that

θi ∼ Bernoulli(π), ξi | θi ∼
{

P
(n)
0 with density p

(n)
0 , if θi = 0

P
(n)
1 with density p

(n)
1 , if θi = 1

(1.1)

where π ∈ [0, 1] is a fixed population proportion of false nulls among all the

nulls. Note that P
(n)
i of depend on n, the number of observations for each null.

It follows that the minimum pFDR is (cf. (4))

α∗ =
1 − π

1 − π + πρn
, with ρn := sup

p
(n)
1

p
(n)
0

. (1.2)

In order to attain pFDR ≤ α, there must be α∗ ≤ α, which is equivalent to
(1 − α)(1 − π)/(απ) ≤ ρn. For many tests, such as t and F tests, ρn < ∞ and
ρn ↑ ∞ as n→ ∞. Then, the minimum sample size per null is

n∗ = min {n : (1 − α)(1 − π)/(απ) ≤ ρn} . (1.3)

In general, the smaller the difference between the distributions Fi under false
nulls and those under true nulls, the smaller ρn become, and hence the larger
n∗ has to be. Our interest is how n∗ should grow as the difference between the
distributions tends to 0.

Notation Because (1−α)(1−π)/(απ) regularly appears in our results, it will
be denoted by Qα, π from now on.

1.2. Outlines of other sections

Section 2 considers t tests for normal distributions. The nulls are Hi : µi = 0
for N(µi, σi), with σi unknown. It will be shown that if µi/σi ≡ r for false
nulls, then, as r ↓ 0, the minimum sample size per null ∼ (1/r) lnQα, π and
therefore it depends on at least 3 factors: 1) the target pFDR control level, α,
2) the proportion of false nulls among the nulls, π, 3) and the distributional
properties of the data, as reflected by µi/σi. In contrast, for FDR control, there
is no constraint on the sample size per null. The case where µi/σi associated
with false nulls are sampled from a distribution will be considered as well. This
section also illustrates the basic technique used throughout the article.

Section 3 considers F tests. The nulls are Hi : βi = 0 for Y = βT
i X + ǫ,

where X consists of p covariates and ǫ ∼ N(0, σi) is independent of X. Each
Hi is tested with the F statistic of a sample (Yik,Xk), k = 1, . . . , n+ p, where
n ≥ 1 and X1, . . . ,Xn+p consist a fixed design for the nulls. Note that n now
stands for the difference between the sample size per null and the number of
covariates included in the regression. The asymptotics of n∗, the minimum value
for n in order to attain a given pFDR level, will be considered as the regression
effects become increasingly weak and/or as p increases. It will be seen that n∗
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must stay positive. The weaker the regression effects are, the larger n∗ has to
be. Under certain conditions, n∗ should increase at least as fast as p.

Section 4 considers t tests for arbitrary distributions. We consider the case
where estimates of means and variances are derived from separate samples,
which allows detailed analysis with currently available tools, in particular, uni-
form exact large deviations principle (LDP) (2). It will be shown that the mini-
mum sample size per null depends on the cumulant generating functions of the
distributions, and thus on their higher order moments. The asymptotic results
will be illustrated with examples of uniform distributions and Gamma distribu-
tions. An example of normal distributions will also be given to show that the
results are consistent with those in Section 2. We will also consider how to split
the random samples for the estimation of mean and the estimation of variance
in order to minimize the sample size per null.

Section 5 considers tests based on partial information on the data distribu-
tions. The study is part of an effort to address the following question: when
knowledge about data distributions is incomplete and hence Studentized tests
are used, what would be the attainable minimum sample size per null. Under
the condition that the actual distributions belong to a parametric family which
is unknown to the data analyzer, a Studentized likelihood test will be studied.
We conjecture that the Studentized likelihood test attains the minimum sam-
ple size per null. Examples of normal distributions, Cauchy distributions, and
Gamma distributions will be given.

Section 6 concludes the article with a brief summary. Most of the mathemat-
ical details are collected in the Appendix.

2. Multiple t-tests for normal distributions

2.1. Main results

Suppose we wish to conduct hypothesis tests for a large number of normal dis-
tributions N(µi, σi). However, neither σi nor any possible relationships among
(µi, σi), i ≥ 1, are known. Under this circumstance, in order to test Hi : µi = 0
simultaneously for allN(µi, σi), an appropriate approach is to use the t statistics
of iid samples Yi1, . . . , Yi,n+1 ∼ N(µi, σi):

Ti =

√
n+ 1 Ȳi

Si
, Ȳi =

1

n+ 1

n+1
∑

j=1

Yij , S2
i =

1

n

n+1
∑

j=1

(Yij − Ȳi)
2. (2.1)

Suppose the sample size n + 1 is the same for all Hi and the samples from
different normal distributions are independent of each other.

Under the random effects model (1.1), we first consider a case where distribu-
tions with µi 6= 0 share a common characteristic, i.e., signal-noise ratio defined
in the remark following Theorem 2.1.

Theorem 2.1. Under the above condition, suppose that, unknown to the data
analyzer, when Hi is false, µi/σi = r > 0, where r is a constant independent
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of i. Given 0 < α < 1, let n∗ be the minimum value of n in order to attain
pFDR ≤ α. Then n∗ ∼ (1/r) lnQα, π as r → 0+.

Remark. We will refer to r as the signal-noise ratio (SNR) of the multiple
testing problem in Theorem 2.1.

Theorem 2.1 can be generalized to the case where the SNR follows a distribu-
tion. To specify how the SNR becomes increasingly small, we introduce a “scale”
parameter s > 0 and parameterize the SNR distribution as Gs(r) = G(sr),
where G is a fixed distribution.

Corollary 2.1. Suppose that when Hi : µi = 0 is false, ri = µi/σi is a ran-
dom sample from G(sr), where G(r) is a distribution function with support
on (0,∞) and is unknown to the data analyzer. Suppose there is λ > 0, such

that
∫

eλr2

G(dr) < ∞. Let LG be the Laplace transform of G, i.e., LG(λ) =
∫

eλrG(dr). Then n∗ ∼ (1/s)L−1
G (Qα, π) as s→ 0.

2.2. Preliminaries

Recall that, for the t statistic (2.1), if µ = 0, then T ∼ tn, the t distribution
with n degrees of freedom (dfs). On the other hand, if µ > 0, then T ∼ tn,δ,
the noncentral t distribution with n dfs and (noncentrality) parameter δ =√
n+ 1µ/σ, with density

tn,δ(x) =
nn/2

√
π Γ(n/2)

e−δ2/2

(n+ x2)(n+1)/2

×
∞
∑

k=0

Γ

(

n+ k + 1

2

)

(δx)k

k!

(

2

n+ x2

)k/2

.

Apparently tn,0(x) = tn(x). Denote

an,k = Γ

(

n+ k + 1

2

)

/

Γ

(

n+ 1

2

)

.

Then

tn,δ(x)

tn(x)
= e−δ2/2

∞
∑

k=0

an,k(δx)k

k!

(

2

n+ x2

)k/2

. (2.2)

It can be shown that tn,δ(x)/tn(x) is strictly increasing in x and

sup
x

tn,δ(x)

tn(x)
= lim

x→∞
tn,δ(x)

tn(x)
= e−δ2/2

∞
∑

k=0

an,k(
√

2 δ)k

k!
<∞ (2.3)

(cf. (3)). Since the supremum of likelihood ratio only depends on n and r = µ/σ,
it will be denoted by L(n, r) henceforth.
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2.3. Proofs of the main results

We need two lemmas. They will be proved in the Appendix. The proofs of the
main results are rather straightforward. The proofs are given in order illustrate
the basic argument, which is used for the other results of the article as well.

Lemma 2.1. 1) For any fixed n, L(n, r) → 1, as r → 0. 2) Given a ≥ 0, if
(n, r) → (∞, 0) such that nr → a, then L(n, r) → ea. 3) If (n, r) → (∞, 0) with
nr → ∞, then L(n, r) → ∞.

Lemma 2.2. Under the same conditions as in Corollary 2.1, as (n, s) → (∞, 0)
such that ns→ a ≥ 0,

∫

L(n, sr)G(dr) → LG(a).

Proof of Theorem 2.1. By (1.2), in order to get pFDR ≤ α,

1 − π

1 − π + πL(n, r)
≤ α, or L(n, r) ≥ Qα, π.

Let n∗ be the minimum value of n in order for the inequality to hold. Then by
Lemma 2.1, as r = µ/σ → 0, n∗r → lnQα, π, implying Theorem 2.1.

Proof of Corollary 2.1. Following the argument for (1.2), it is seen that under
the conditions of the corollary, the minimum attainable pFDR is

α∗ =
1 − π

1 − π + π
∫

L(n, sr)G(dr)
.

Then the corollary follows from a similar argument for Theorem (2.1).

3. Multiple F -tests for linear regression with errors being normally
distributed

3.1. Main results

Suppose we wish to test Hi : βi = 0 simultaneously for a large number of joint
distributions of Y and X, such that under each distribution, Y = βT

i X + ǫi,
where βi ∈ R

p are vectors of linear coefficients and ǫi ∼ N(0, σi) are independent
of X. Suppose neither σi or any possible relationships among σi are known.
Under this condition, consider the following tests based on a fixed design. Let
Xk, k ≥ 1, be fixed vectors of covariates. Let n+ p be the sample size per null.
For each i, let (Yi1,X1), . . . , (Yi,n+p,Xn+p) be an independent sample from

Y = βT
i X + ǫ. Assume that the samples for different Hi are independent of

each other.
Suppose that, unknown to the data analyzer, for all the false nulls Hi,

(βT
i X1)

2 + · · · + (βT
i Xk)2

kσ2
i

≤ δ2, k = 1, 2, . . . , (3.1)
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where δ > 0. This situation arises when all Xk are within a bounded domain,
either because only regression within the domain is of interest, or because only
covariates within the domain are observable or experimentally controllable.

Note that n is not the sample size per null. Instead, it is the difference between
the sample size per null and the number of covariates in each regression equation.
Given α ∈ (0, 1), let

n∗ = inf {n : pFDR ≤ α for F tests on Hi under the constraint (3.1)} .

It can be seen that n∗ is attained when equality holds in (3.1) for all the false
nulls. The asymptotics of n∗ will be considered for 3 cases: 1) δ → 0 while p is
fixed, 2) δ → 0 and p → ∞, and 3) p → ∞ while δ is fixed. The case δ → 0 is
relevant when the regression effects are weak, and the case p → ∞ is relevant
when a large number of covariates are incorporated.

Theorem 3.1. Under the random effects model (1.1) and the above setup of
multiple F tests, the following statements hold.

a) If δ → 0 while p is fixed, then

n∗ ∼ (1/δ)M−1
p (Qα, π), with Mp(t) :=

∞
∑

k=0

Γ(p/2)(t2/4)k

k!Γ(k + p/2)
.

b) If δ → 0 and p→ ∞,

n∗ ∼























(1/δ)
√

2p lnQα, π if δ2p→ 0,

(2/δ2) lnQα, π if δ2p→ ∞,

(4/δ2) lnQα, π

1 +
√

1 + 8 lnQα, π/L
if δ2p→ L > 0.

c) Finally, if δ > 0 is fixed while p→ ∞, then

n∗ →
⌈

2 lnQα, π

ln(1 + δ2)

⌉

.

3.2. Preliminaries and proofs

Given data (Y1,X1), . . . , (Yn+p,Xn+p), such that Yi = βT Xi + ǫi, where Xi

are fixed and ǫi are iid ∼ N(0, σ), if β = 0, then the F statistic of (Yi,Xi)
follows the F distribution with (p, n) dfs. On the other hand, if β 6= 0, the F
statistic follows the noncentral F distribution with (p, n) dfs and (noncentrality)
parameter ∆, where

∆ =
(βT

i X1)
2 + · · · + (βT

i Xn+p)
2

σ2
i

.
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The density of the noncentral F distribution is

fp,n,∆(x) = e−∆/2θp/2xp/2−1(1 + θx)−(p+n)/2

×
∞
∑

k=0

(∆/2)k

k!B (p/2 + k, n/2)

(

θx

1 + θx

)k

, x ≥ 0,

where θ = p/n, and B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the Beta function. Note
fp,n,0(x) = fp,n(x), the density of the usual F distribution with (p, n) dfs.

Denote

bp,n,k =
B(p/2, n/2)

B(p/2 + k, n/2)
=

k−1
∏

j=0

(

n+ p+ 2j

p+ 2j

)

.

Then for x ≥ 0,

fp,n,∆(x)

fp,n(x)
= e−∆/2

∞
∑

k=0

bp,n,k(∆/2)k

k!

(

θx

1 + θx

)k

, (3.2)

which is strictly increasing, and

sup
x>0

fp,n,∆(x)

fp,n(x)
= lim

x→∞
fp,n,∆(x)

fp,n(x)
= e−∆/2

∞
∑

k=0

bp,n,k(∆/2)k

k!
<∞. (3.3)

First, it is easy to see that the following statement is true.

Lemma 3.1. The expression in (3.3) is strictly increasing in ∆ > 0.

It follows that, under the constraint (3.1), the supremum of the likelihood
ratio is attained when ∆ = (n+ p)δ2 and is equal to

K(p, n, δ) = e−(n+p)δ2/2
∞
∑

k=0

bp,n,k[(n+ p)δ2/2]k

k!
.

Therefore, under the random effects model (1.1), pFDR ≤ α is equivalent to
K(p, n, δ) ≥ Qα, π. Theorem 3.1 then follows from the lemmas below and an
argument as to that of Theorem 2.1. The proof of Theorem 3.1 is omitted for
brevity. The proofs of the lemmas are given in the Appendix.

Lemma 3.2. Fix p ≥ 1. If δ → 0 and n = n(δ) such that nδ → a ∈ [0,∞),
then K(p, n, δ) →Mp(a). If nδ → ∞, then K(p, nδ) → ∞.

Lemma 3.3. Let δ → 0 and p→ ∞. If n = n(δ, p) such that

n(n+ p)δ2

2p
→ a ≥ 0, (3.4)

then K(p, n, δ) → ea. In particular, given a > 0, (3.4) holds if

n ∼



















(1/δ)
√

2pa if δ2p→ 0,

2a/δ2 if δ2p→ ∞,

4a/δ2

1 +
√

1 + 8a/L
if δ2p→ L > 0.
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Lemma 3.4. Fix δ > 0. Then for any n ≥ 1, K(n, p, δ) → (1 + δ2)n/2 as
p→ ∞.

4. Multiple t-tests: a general case

4.1. Setup

Suppose we wish to conduct hypothesis tests for a large number of distributions
Fi in order to identify those with nonzero mean µi. The tests will be based on
random samples from Fi. Assume that no information on the forms of Fi or
their relationships is available. As a result, samples from different Fi cannot
be combined to improve the inference. As in the case of testing mean values
for normal distributions, to test Hi : µi = 0 simultaneously, an appropriate
approach is to use the t statistics Ti =

√
nµ̂i/σ̂i, where both µ̂i and σ̂2

i are
derived solely from the sample from Fi, and n is the number of observations
used to get µ̂i.

Again, the goal is to find the minimum sample size per null in order to
attain a given pFDR level, in particular when Fi under false Hi only have
small differences from those under true Hi. The results will also answer the
following question: are normal or t approximations appropriate for the t statistics
in determining the minimum sample size per null?

We only consider the case where µi is either 0 or µ0 6= 0, where µ0 is a
constant. In order to make the analysis tractable, the problem needs to be
formulated carefully. First, unlike the case of normal distributions, in general,
if µ̂i and σ̂2

i are the mean and variance of the same random sample, they are
dependent and σ̂2

i cannot be expressed as the sum of iid random variables. As
seen below, the analysis on the minimum sample size per null requires detailed
asymptotics of the t statistics, in particular, the so called exact LDP (2, 5).
For Studentized statistics, there are LDP techniques available (17). However,
currently, exact LDP techniques cannot handle complex statistical dependency
very well. To get around this technical difficulty, we consider the following t
statistics. Suppose the samples from different Fi are independent of each other,
and contain the same number of iid observations. Divide the sample from Fi

into two parts, {Xi1, . . . , Xin} and {Yi1, Yi2, . . . , Yi,2m}. Let

Ti =

√
nµ̂i

σ̂i
, with µ̂i =

1

n

n
∑

k=1

Xik, σ̂2
i =

1

2m

n
∑

k=1

(Yi,2k−1 − Yi,2k)2.

Then µ̂i and σ̂2
i are independent, and σ̂2

i is the sum of iid random variables.
Second, the minimum attainable pFDR depends on the supremum of the

ratio of the actual density of Ti and its theoretical density under Hi. In general,
neither one is tractable analytically. To deal with this difficulty, observe that in
the case of normal distributions, the supremum of the ratio equals

P (T ≥ t |µ = µ0 > 0)

P (T ≥ t |µ = 0)
, as t→ ∞.
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We therefore consider the pFDR under the rule that Hi is rejected if and only if
Ti > x, where x > 0 is a critical value. In order to identify false nulls as µ0 → 0,
x must increase, otherwise P (T ≥ x |µ = µ0)/P (T ≥ x |µ = 0) → 1, giving
pFDR → 1. The question is how fast x should increase.

Recall Section 2. Some analysis on (2.2) and (2.3) shows that, for normal dis-
tributions, the supremum of the likelihood ratio can be obtained asymptotically
by letting x = cn

√
n, where cn > 0 is an arbitrary sequence converging to ∞;

specifically, given a > 0, as r ↓ 0 and n ∼ a/r,

P (T > cn
√
n |µ/σ = r )/P (T > cn

√
n |µ = 0 )

supx tn,r
√

n(x)/tn(x)
→ 1.

If, instead, x increases in the same order as
√
n or more slowly, the above limit

is strictly less than 1. Based on this observation, for the general case, we set
x = cn

√
n, with cn → ∞. In general, there is no guarantee that using cn growing

at a specific rate can always yield convergence. Thus, we require that cn grow
slowly.

Under the setup, suppose that, unknown to the data analyzer, when Hi :
µi = 0 is true, Fi(x) = F (six), and when Hi is false, Fi(x) = F (six− d), where
si > 0 and d > 0, and F is an unknown distribution such that

F has a density f, EX = 0, σ2 := EX2 <∞, for X ∼ F, (4.1)

The sample from Fi consists of (Xij − d)/si, 1 ≤ j ≤ n, and (Yik − d)/si,
1 ≤ k ≤ 2m, with Xij , Yik iid ∼ F . Then the t statistic for Hi is

Ti =

{√
nX̄in/Sin if Hi is true,√
n(X̄in + d)/Sin if Hi is false,

where X̄in =
Xi1 + . . .+Xin

n
, S2

im =
1

2m

m
∑

k=1

(Yi,2k−1 − Yi,2k)2.

Let N = n+m and zN = cn. Then Hi is rejected if and only if Ti ≥ zN
√
n.

Under the random effects model (1.1), the minimum attainable pFDR is

α∗ = (1 − π)

[

1 − π + π
P
(

X̄n + d ≥ zNSm

)

P
(

X̄n ≥ zNSm

)

]−1

, (4.2)

where X̄n =
∑n

k=1Xk/n, and Sm =
∑m

k=1(Y2k−1 −Y2k)2/(2m), with Xi, Yj iid
∼ F . The question now is the following:

• Given α ∈ (0, 1), as d→ 0, how should N increase so that α∗ ≤ α?

4.2. Main results

By the Law of Large Numbers, as n → ∞ and m → ∞, X̄n → 0 and Sm → σ
w.p. 1. On the other hand, by our selection, zN → ∞. In order to analyze (4.2)
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as d → 0, we shall rely on exact LDP, which depends on the properties of the
cumulant generating functions

Λ(t) = lnEetX , Ψ(t) = lnE

[

exp
t(X − Y )2

2

]

, X, Y iid ∼ F. (4.3)

The density of X − Y is g(t) =
∫

f(x)f(x + t) dx. It is easy to see that
g(t) = g(−t) for t > 0. Recall that a function ζ is said to be slowly varying at
∞, if for all t > 0, limx→∞ ζ(tx)/ζ(x) = 1.

Theorem 4.1. Suppose the following two conditions are satisfied.

a) 0 ∈ Do
Λ and Λ(t) → ∞ as t ↑ supDΛ, where DΛ = {t : Λ(t) <∞}.

b) The density function g is continuous and bounded on (ǫ,∞) for any ǫ > 0,
and there exist a constant λ > −1 and a function ζ(z) ≥ 0 which is increasing
in z ≥ 0 and slowly varying at ∞, such that

lim
x↓0

g(x)

xλζ(1/x)
= C ∈ (0,∞). (4.4)

Fix α ∈ (0, 1). Let N∗ be the minimum value for N = m + n in order to
attain α∗ ≤ α, where α∗ is as in (4.2). Then, under the constraints 1) m and n
grow in proportion to each other such that m/N → ρ ∈ (0, 1) as m,n→ ∞ and
2) zN → ∞ slowly enough, one gets

N∗ ∼ 1

d
× lnQα, π

(1 − ρ)t0
, as d→ 0+, (4.5)

where t0 > 0 is the unique positive solution to

tΛ′(t) =
(1 + λ)ρ

1 − ρ
. (4.6)

Remark. (1) By (4.5) and (4.6), N∗ depends on the moments of F of all
orders. Thus, t or normal approximations of the distribution of T in general are
not suitable in determining N∗ in order to attain a target pFDR level.

(2) If zN → ∞ slowly enough such that (4.5) holds, then for any z′N → ∞
more slowly, (4.5) holds as well. Presumable, there is an upper bound for the
growth rate of zN in order for (4.5) to hold. However, it is not available with
the technique employed by this work.

(3) We define N as n + m instead of n + 2m because in the estimator Sm,
each pair of observations only generate one independent summand. The sum
n+m can be thought of as the number of degrees of freedom that are effectively
utilized by T .

Following the proof for the case of normal distributions, Theorem 4.1 is a
consequence of the following result.
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Proposition 4.1. Let T > 0. Under the same conditions as in Theorem 4.1,
suppose d = dN → 0, such that dNN → T > 0. Then

P
(

X̄n + dN ≥ zNSm

)

P
(

X̄n ≥ zNSm

) → e(1−ρ)Tt0 . (4.7)

Indeed, by display (4.2) and Proposition 4.1, if dN → T ≥ 0, then the
minimum attainable pFDR has convergence

α∗ → 1 − π

1 − π + πe(1−ρ)Tt0
. (4.8)

In order to attain pFDR ≤ α, there must be α∗ ≤ α, leading to (4.5). The proof
of Proposition 4.1 is given in the Appendix A3.

4.3. Examples

Example 4.1 (Normal distribution). Under the setup in Section 4.1, let
F = N(0, σ) in (4.1). By Λ(t) = lnE(etX) = σ2t2/2, condition a) of Theorem
4.1 is satisfied. ForX , Y iid ∼ F ,X−Y ∼ N(0,

√
2σ). Therefore, (4.4) is satisfied

with λ = 0 and ζ(x) ≡ 1. The solution to (4.6) is t0 = (1/σ)
√

ρ/(1 − ρ). Then
by Theorem 4.1,

N∗ ∼ σ

d
× lnQα, π
√

ρ(1 − ρ)
, as d→ 0 + . (4.9)

To see the connection to Theorem 2.1, observe X̄n = σZ/
√
n and Sm =

σWm/
√
m, where Z ∼ N(0, 1) and W 2

m ∼ χ2
m are independent. Since zN ↑ ∞

slowly, so is am :=
√

n/mzN . Let rm = (d/σ)
√

n/(m+ 1). Then

P (X̄n + d ≥ zNSm)

P (X̄n ≥ zNSm)
=
P (Z +

√
m+ 1 rm ≥ amWm)

P (Z ≥ amWm)

=
1 − Tm,

√
m+1 rm

(am)

1 − Tm(aN )
,

where Tm,δ denotes the cumulative distribution function (cdf) of the noncentral
t distribution with m dfs and parameter δ, and Tm the cdf of the t distribution
with m dfs. Comparing the ratio in (2.2) and the above ratio, it is seen that the
difference between the two is that probabilities densities in (2.2) are replaced
with tail probabilities. Since rm = (d/σ)

√

n/(m+ 1) ∼ (d/σ)
√

(1 − ρ)/ρ, by
Theorem 2.1, in order to attain pFDR ≤ α based on (2.2), the minimum value
m∗ for m satisfies m∗ ∼ (σ/d)

√

ρ/(1 − ρ) lnQα, π. Since m∗/N∗ → ρ, the
asymptotic of N∗ given by Theorem 2.1 is identical to that given by Theorem
4.1.

Example 4.2 (Uniform distributions). Under the setup in Section 4.1, let
F = U(− 1

2 ,
1
2 ) in (4.1). Then for t > 0,

Λ(t) = − t

2
+ ln(et − 1) − ln t, tΛ′(t) =

t

2 tanh t
− 1.
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and for t < 0, Λ(t) = Λ(−t). Thus condition a) in Theorem 4.1 is satisfied. It
is easy to see that condition b) is satisfied as well, with λ = 0 and ζ(x) ≡ 1 in
(4.4). Then by (4.5),

N∗ ∼ 1

d
× lnQα, π

2 tanh t0
, with t0 > 0 solving

t

tanh t
=

2

1 − ρ
. (4.10)

Example 4.3 (Gamma distribution). Under the setup in Section 4.1,
let F be the distribution of ξ − αβ, where ξ ∼ gamma(α, β) with density
β−αxα−1e−x/β/Γ(α). For 0 < t < 1/β,

Λ(t) = lnE[et(ξ−αβ)] = −α ln(1 − βt) − αβt, tΛ′(t) =
αβ2t2

1 − βt
.

Therefore, condition a) in Theorem 4.1 is satisfied. Because the value of λ in (4.4)
is invariant to scaling, in order to verify condition b), without loss of generality,
let β = 1. For x > 0, the density of X−Y is then g(x) = e−xk(x)/Γ(α)2, where
k(x) =

∫∞
0 uα−1(u + x)α−1e−2u du. It suffices to consider the behavior of k(x)

as x ↓ 0. We need to analyze 3 cases.

Case 1: α > 1/2 As x ↓ 0, k(x) →
∫∞
0
u2α−1e−2u du < ∞. Therefore, (4.4)

holds with λ = 0 and ζ ≡ 1.

Case 2: α = 1/2 As x ↓ 0, k(x) → ∞. We show that (4.4) still holds
with λ = 0, but ζ(z) = ln z. To establish this, for any ǫ > 0, let kǫ(x) =
∫ ǫ

0 u
−1/2(u+ x)−1/2 du. Then

1 ≤ lim
x↓0

k(x)

kǫ(x)
≤ lim

x↓0

k(x)

kǫ(x)
≤ e2ǫ.

By variable substitution u = xv2,

kǫ(x) = 2

∫

√
ǫ/x

0

dt√
t2 + 1

= (1 + o(1)) ln(1/x), as x ↓ 0.

As a result,

1 ≤ lim
x↓0

k(x)

ln(1/x)
≤ lim

x↓0

k(x)

ln(1/x)
≤ e2ǫ

Since ǫ is arbitrary, (4.4) is satisfied with λ = 0 and ζ(z) = ln z.

Case 3: α < 1/2 As x ↓ 0, k(x) → ∞. Similar to the case α = −1/2, it suffices
to consider the behavior of kǫ(x) =

∫ ǫ

0
uα−1(u + x)α−1 du as x ↓ 0, where ǫ > 0

is arbitrary. By variable substitution u = tx,

kǫ(x) = t2α−1

∫ ǫ/x

0

tα−1(t+ 1)α−1 dt = (1 + o(1))Cαt
2α−1, as x ↓ 0,



Z. Chi/Sample size and pFDR 90

where Cα =
∫∞
0 tα−1(t + 1)α−1 dt < ∞. Therefore, (4.4) is satisfied with λ =

2α− 1 and ζ(z) ≡ 1.
From the above analysis and (4.4), N∗ ∼ (1/d)(lnQα, π)/[(1 − ρ)t0], where

t0 =

√

γ2 + 2γ − γ

β
, with γ =

1

1 ∨ (2α)
× ρ

1 − ρ
. (4.11)

4.4. Optimal split of sample

For the t statistics considered so far, m/N is the fraction of degrees of freedom
allocated for the estimation of variance. By (4.5), the asymptotic of N∗ depends
on the fraction in a nontrivial way. It is of interest to optimize the fraction in
order to minimize N∗. Asymptotically, this is equivalent to maximizing (1−ρ)t0
as a function of ρ, with t0 = t0(ρ) > 0 as in (4.6).

Example 4.1 (Continued)

By (4.9), it is apparent that the optimal value of ρ is 1/2. In other words,
in order to minimize N∗, there should be equal number of degrees of freedom
allocated for the estimation of mean and the estimation of variance for each
normal distribution. In particular, if m ≡ n−1, then ρ = 1/2, and the resulting
t statistic has the same distribution as

√
n− 1Z/Wn−1, where Z ∼ N(0, 1) and

Wn−1 ∼ χn−1 are independent, which is the usual t statistic of an iid sample of
size n.

Example 4.2 (Continued)

By (4.10), the larger tanh t0 is, the smaller N∗ becomes. The function tanh t0
is strictly increasing in t0, and tanh t0 → 1 as t0 → ∞. By ρ = 1 − 2 tanh t0/t0,
the closer ρ is to 1, the smaller N∗.

Example 4.3 (Continued)

Denote θ = 1/[1 ∨ (2α)]. By (4.11), we need to find ρ to maximize

(1 − ρ)
[

√

γ2 + 2γ − γ
]

=
√

θ2ρ2 + 2θρ(1 − ρ) − θρ.

By some calculation, the value of ρ that maximizes the above quantity is

ρ∗ =
1

2 +
√

2θ
=

1

2 +
√

2 ∧ (1/α)
.

For 0 < α ≤ 1/2, the optimal fraction of degrees of freedom allocated for the
estimation of the variance of gamma(α, β) tends to 1/(2 +

√
2) as d → 0. On
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the other hand, as α→ ∞, the optimal fraction tends to 1/2 as d→ 0, which is
reasonable in light of Example 4.1. To see this, let β = 1. For integer valued α
and ξ ∼ gamma(α, 1), ξ−α can be regarded as the sum of Wi − 1, i = 1, . . . , α,
with Wi iid following gamma(1, 1). Therefore, for α ≫ 1, ξ − α follows closely
a normal distribution with mean 0. Thus by Example 4.1, the optimal value of
m/(n+m) is close to 1/2.

5. Multiple tests based on likelihoods

5.1. Motivation

In many cases of multiple testing, only limited knowledge is available on the
distributions from which data are sampled. The knowledge relevant to a null
hypothesis is expressed by a statistic M such that the null is rejected if and
only if the observed value of M is significantly different from 0. In general, as
the distribution ofM is unknown,M has to be Studentized so that its magnitude
can be evaluated.

On the other hand, oftentimes, despite the complexity of the data distri-
butions, it is reasonable to believe they have an underlying structure. Consider
the scenario where all the data distributions belong to a parametric family {pθ},
such that the distribution under a true null is p0, and the one under a false null
is pθ∗

for some θ∗ 6= 0. A question of interest is: under this circumstance, what
would be the optimal overall performance of the multiple tests? The question is
in the same spirit as questions regarding estimation efficiency. However, it as-
sumes that neither the existence of the parameterization nor its form is known
to the data analyzer and all the machinery available is the test statistic M .

As before, we wish to find out the minimum sample size per null required
for pFDR control, in particular, as the tests become increasingly harder in the
sense that θ∗ → 0. Our conjecture is that, asymptotically the minimum sample
size per null is attained if M “happens” to be ∂[ln p0]/∂θ. By “happens” we
mean that the data analyzer is unaware of this peculiar nature of M and uses
its Studentized version for the tests. This conjecture is directly motivated by
the fact that the MLE is efficient under regular conditions. Although a smaller
minimum sample size per null could be possible if M happens to be the MLE,
due to Studentization, the improvement appears to diminish as θ → 0. Certainly,
had the parameterization been known, the (original) MLE would be preferred.
The goal here is not to establish any sort of superiority of Studentized MLE,
but rather to search for the optimal overall performance of multiple tests, when
we are aware that our knowledge about the data distributions is incomplete and
beyond the test statistic, we have no other information.

The above conjecture is not yet proved or disproved. However, as a first step,
we would like to obtain the asymptotics of the minimum sample size per null
when Studentized ∂[ln p0]/∂θ is used for multiple tests. We shall also provide
some examples to support the conjecture.
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5.2. Setup

Let (Ω,F) be a measurable space equipped with a σ-finite measure µ. Let
{pθ : θ ∈ [0, 1]} be a parametric family of density functions on (Ω,F) with re-
spect to µ. Denote by Pθ the corresponding probability measure. Under the
random effects model (1.1), each null Hi is associated with a distribution Fi,
such that when Hi is true, Fi = P0, and when Hi is false, Fi = Pθ, where θ > 0
is a constant. Assume that each Hi is tested based on an iid sample {ωij} from
Fi, such that the samples for different Hi are independent, and the sample size
is the same for all Hi.

We need to assume some regularities for pθ. Denote

rθ(ω) =
pθ(ω)

p0(ω)
, ℓθ(ω) = ln pθ(ω), ω ∈ Ω. (5.1)

Condition 1 Under P0, for almost every ω ∈ Ω, p0(ω) > 0 and pθ(ω) as a
function of θ is in C2([0, 1]).

Condition 2 The Fisher information at θ = 0 is positive and finite, i.e. 0 <
‖ℓ̇0‖L2(P0) < ∞, where the “dot” notation denotes partial differentiation with
respect of θ.

Condition 3 Under P0, the second order derivative of ℓθ(ω) is uniformly
bounded in the sense that supθ∈[0,1] ‖ℓ̈θ(ω)‖L∞(P0) <∞.

Condition 4 For any q > 0, there is θ′ = θ′(q) > 0, such that

E0

[

sup
θ∈[0,θ′]

(rθ(ω)q + rθ(ω)−q)

]

<∞. (5.2)

Remark. By Condition 1, for any interval I in [0, 1], the extrema of rθ(ω) over
θ ∈ I are measurable. Thus the expectation in (5.2) is well defined.

For brevity, for θ ∈ [0, 1] and n ≥ 1, the n-fold product measure of Pθ is
still denoted by Pθ, and the expectation under the product measure by Eθ. We
shall denote by ω, ω′, ωi, ω

′
i generic iid elements under a generic distribution

on (Ω,F). Denote

X = ℓ̇0(ω), Y = ℓ̇0(ω
′), Xi = ℓ̇0(ωi), Yi = ℓ̇0(ω

′
i). (5.3)

For m, n ≥ 1, denote

S2
m =

1

m

m
∑

i=1

(Y2i−1 − Y2i)
2

2
, X̄n =

X1 + · · · +Xn

n
.

Since ℓ̇θ(ω) = ṗθ(ω)/pθ(ω), from Conditions 1–4 and dominated convergence,
it follows that E0ℓ̇0 = 0 and

(Eθ ℓ̇0)
′∣
∣

θ=0
=

d

dθ

∫

ℓ̇0(ω)pθ(ω)µ(dω)

∣

∣

∣

∣

θ=0

=

∫

(ℓ̇0(ω))2p0(ω)µ(dω) > 0.
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As a result, for θ > 0 close to 0, Eθ ℓ̇0(ω) > 0. This justifies using the upper tail
of

√
nX̄n/Sm for testing. The multiple tests are such that

Hi is rejected ⇐⇒
√
nX̄in

Sim
≥ zN

√
n, i ≥ 1, (5.4)

where X̄in and Sim are computed the same way as X̄n and Sm, except that they
are derived from ωi1, . . . , ωin, ω′

i1, . . . , ω
′
i,2m iid ∼ Fi, N = n+m, and zN → ∞

as N → ∞. Then, under the random effects model, the minimum attainable
pFDR is

α∗ = (1 − π)

[

1 − π + π
Pθ

(

X̄n ≥ zNSm

)

P0

(

X̄n ≥ zNSm

)

]−1

. (5.5)

The question now is the following:

• Given α ∈ (0, 1), as θ ↓ 0, how should N increase so that α∗ ≤ α?

5.3. Main results

Denote the cumulant generating functions

Λ(t) = lnE0(e
tX), Ψ(t) = lnE0

[

exp
t(X − Y )2

2

]

. (5.6)

Note that the expectation is taken under P0.

Theorem 5.1. Suppose {pθ : θ ∈ [0, 1]} satisfies conditions 1–4 and the follow-
ing conditions a)–d) are fulfilled..

a) 0 ∈ Do
Λ, where DΛ = {t : Λ(t) <∞}.

b) Under P0, X has a density f continuous almost everywhere on R. Further-
more, either (i) f is bounded or (ii) f is symmetric and ‖X‖L∞(P0) <∞.

c) Under P0, the density g of X − Y is continuous and bounded on (ǫ,∞) for
any ǫ > 0, and there exist a constant λ > −1 and a function ζ(z) ≥ 0 increasing
in z ≥ 0 and slowly varying at ∞, such that

lim
u↓0

g(u)

uλζ(1/u)
= C ∈ (0,∞). (5.7)

d) There are s > 0 and L > 0, such that

E0[e
s|X+Y | |X − Y = u] ≤ LeL|u|, any u 6= 0, g(u) > 0. (5.8)

Fix α ∈ (0, 1). Let N∗ be the minimum value of N = n+m in order to attain
α∗ ≤ α, where α∗ is as in (5.5). Then, under the constraints 1) m and n grow
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in proportion to each other such that m/N → ρ ∈ (0, 1) as m,n → ∞ and 2)
zN → ∞ slowly enough, one gets

N∗ ∼ 1

d
× lnQα, π

(1 − ρ)Λ′(t0) + 2ρKf
, as d→ 0 + . (5.9)

where t0 is the unique positive solution to (4.6), and

Kf =

{

∫

zh0(z) dz if f is bounded, with h0 = f2
/ ∫

f2,

0 if f is symmetric and ‖X‖L∞(P0) <∞.

Remark. By symmetry, to verify (5.8), it is enough to only consider u > 0.
Moreover, (5.8) holds if its left hand side is a bounded function of u.

Following the proofs of the previous results, Theorem 5.1 is a consequence of
Proposition 5.1, which will be proved in Appendix A4.

Proposition 5.1. Let T > 0. Under the same conditions as in Theorem 5.1,
suppose θ = θN → 0, such that θNN → T . Then

PθN

(

X̄n ≥ zNSm

)

P0

(

X̄n ≥ zNSm

) → exp {(1 − ρ)TΛ′(t0) + 2ρTKf} . (5.10)

5.4. Examples

Example 5.1 (Normal distributions). Under the setup in Section 5.2, sup-
pose for θ ∈ [0, 1], Pθ = N(θ, σ), where σ > 0 is a fixed constant. Then

pθ(u) = exp[−(u− θ)2/(2σ2)]/
√

2πσ2, u ∈ R, giving

rθ(u) = exp

(

2θu− θ2

σ2

)

, ℓθ(u) = − (u− θ)2

2σ2
− ln(2πσ2)

2
,

ℓ̇θ(u) =
u− θ

σ2
, ℓ̈θ(u) = − 1

σ2
.

For ω ∼ P0, ℓ̇0(ω) = ω/σ2 ∼ N(0, 1/σ). It is then not hard to see that
Conditions 1–4 are satisfied. By the notations in (5.3), X , Y , Xi, Yi are iid
∼ N(0, 1/σ). Then Λ(t) = t2/(2σ2) and condition a) of Theorem 5.1 is satisfied.
It is easy to see that conditions b) and c) are satisfied with λ = 0 and ζ ≡ 1
in (5.7). Since X + Y and X − Y are independent and the moment generating
function of |X + Y | ∼

√
2|X | is finite on the entire R, (5.8) is satisfied as well.

Therefore, (5.10) holds. Therefore, (5.9) holds for N∗.
To get the asymptotic in (5.9) explicitly, note that the density f of X is p0.

Then it is not hard to see Kf = 0. On the other hand, since Λ′(t) = t/σ2,

the solution t0 > 0 to tΛ′(t) =
√

ρ/(1 − ρ) equals σ
√

ρ/(1 − ρ) and hence

Λ′(t0) = (1/σ)
√

ρ/(1 − ρ). Thus, N∗ ∼ (σ/d)(lnQα, π/
√

ρ(1 − ρ)), which is
identical to (4.9) for the t tests.



Z. Chi/Sample size and pFDR 95

Example 5.2 (Cauchy distribution). Under the setup in Section 5.2, sup-
pose for θ ∈ [0, 1], Pθ is the Cauchy distribution centered at θ such that its
density is pθ(u) = π−1[1 + (u − θ)2]−1, u ∈ R. Then

rθ(u) =
1 + u2

1 + (u − θ)2
, ℓθ(u) = − ln[1 + (u− θ)2] − lnπ,

ℓ̇θ(u) =
2(u− θ)

1 + (u− θ)2
, ℓ̇0(u) =

2u

1 + u2
.

By the notations in (5.3), X = 2ω/(1 + ω2), with ω ∼ P0. Recall that P0 is
the distribution of tan(ξ/2) with ξ ∼ U(−π, π). Therefore, X ∼ sin ξ and thus
is bounded and has a symmetric distribution. It is clear that conditions a), b),
and d) of Theorem 5.1 are satisfied. We show that condition c) is satisfied with
λ = 0 and ζ(z) = ln z in (5.7). The density f of X is 1/[π

√
1 − u2], u ∈ [−1, 1].

Then Kf = 0 and the density of X − Y is

g(u) = k(u)/π2, with k(u) =

∫ 1−u

−1

dt
√

(1 − t2)[1 − (t+ u)2]
, u ∈ (0, 1).

Given ǫ ∈ (0, 1−u/2), write the integral as the sum of integrals over [−1,−1+
ǫ], [1 − u− ǫ, 1 − u], and [−1 + ǫ, 1 − u− ǫ]. By variable substitution

k(u) = 2

∫ ǫ

0

dt
√

(2 − t)(2 − t− u)t(t+ u)
+

∫ 1−u−ǫ

−1+ǫ

dt
√

(1 − t2)[1 − (t+ u)2]

∼ 2

∫ ǫ

0

dt
√

(2 − t)(2 − t− u)t(t+ u)
, as u→ 0.

Because ǫ > 0 is arbitrary, it follows that k(u) ∼ k1(u), where

k1(u) =

∫ ǫ

0

dt
√

t(t+ u)
= 2

∫

√
ǫ/u

0

dx√
x2 + 1

∼ ln(1/u),

with the second equality due to variable substitution t = ux2. This shows that
(5.7) holds with λ = 0 and ζ(z) = ln z. By (5.9), N∗ ∼ (t0/d) × (lnQα, π/ρ),
as d → 0, where t0 the positive solution to t0Λ

′(t0) = ρ/(1 − ρ), with Λ(t) =
lnE[et sin ξ].

Remark. Because the Cauchy distributions have infinite variance, t tests can-
not be used to test the nulls. The example shows that even in this case, Stu-
dentized ℓ0(ω) can still distinguish between true and false nulls.

Example 5.3 (Gamma distribution). Under the setup in Section 5.2, sup-
pose for θ ∈ [0, 1], Pθ = gamma(1+ θ, 1), whose density is pθ(u) = uθe−u/Γ(1+
θ), u > 0. Then

rθ(u) =
uθ

Γ(θ + 1)
, ℓθ(u) = θ lnu− u− ln Γ(θ + 1),

ℓ̇θ(u) = lnu− ψ(θ + 1), ℓ̈θ(u) = −ψ′(θ + 1),



Z. Chi/Sample size and pFDR 96

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. Let c = ψ(1). By the nota-
tions in (5.3), X and Y are iid ∼ lnω − c, with ω ∼ P0. It follows that X has
density f(x) = ex+cp0(e

x+c) = ex+c exp (−ex+c), x ∈ R, which is bounded and
continuous, and hence conditions b) and c) of Theorem 5.1 are satisfied with
λ = 1 and ζ(z) = 1 in (5.7). Since

E0[e
tX ] =

∫ ∞

−∞
etxex+c exp

(

−ex+c
)

dx

=

∫ ∞

0

ztec exp (−ecz) dz =
Γ(t+ 1)

ect
<∞, any t > −1,

condition a) is satisfied. To verify d), the density of X − Y at u > 0 is

g(u) =

∫ ∞

−∞
e2c+u+2x exp

[

−(1 + eu)ec+x
]

dx (substitute z = ec+x)

= eu

∫ ∞

0

z exp [−(1 + eu)z] dz =
eu

(1 + eu)2
.

Similarly, for s > 0,

k(s, u) :=

∫ ∞

−∞
es(2x+u)e2c+u+2x exp

[

−(1 + eu)ec+x
]

dx

= e(1+s)u−2sc

∫ ∞

0

z1+2s exp [−(1 + eu)z] dz =
Γ(2 + 2s)e(1+s)u

e2sc(1 + eu)2+2s
.

As a result, for s ≤ 1/2,

E0[e
s(X+Y ) |X − Y = u] =

k(s, u)

g(u)
= Γ(2 + 2s)

[

eu

e2c(1 + eu)2

]s

.

Likewise,

E0[e
−s(X+Y ) |X − Y = u] = Γ(2 − 2s)

[

eu

e2c(1 + eu)2

]−s

.

Since es|X+Y | ≤ es(X+Y ) +e−s(X+Y ), it is not hard to see that we can choose
s = 1/2 and L > 0 large enough, such that (5.8) holds.

By Λ(t) = ln Γ(t + 1) − ψ(1)t, t0 > 0 is the solution to t[ψ(t + 1) − ψ(1)] =
ρ/(1 − ρ). By

∫

f2 = g(0) = 1/4,

Kf = 4

∫ ∞

−∞
zf(z)2 dz = 4

∫ ∞

−∞
ze2z+2c exp

(

−2ez+c
)

dz,

which equals ψ(2) − ln 2 − ψ(1). By ψ(z) = (ln Γ(z))′ and Γ(z + 1) = zΓ(z),
ψ(z + 1) − ψ(z) = 1/z. Therefore, Kf = 1 − ln 2. So by (5.9), N∗ ∼ (1/d) ×
lnQα, π/[(1 − ρ)Λ′(t0) + 2ρ(1 − ln 2)].
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6. Summary

Multiple testing is often used to identify subtle real signals (false nulls) from
a large and relatively strong background of noise (true nulls). In order to have
some assurance that there is a reasonable fraction of real signals among the
signals “spotted” by a multiple testing procedure, it is useful to evaluate the
pFDR of the procedure. Comparing to FDR control, pFDR control is more
subtle and in general requires more data. In this article, we study the minimum
number of observations per null in order to attain a target pFDR level and
show that it depends on several factors: 1) the target pFDR control level, 2)
the proportion of false nulls among the nulls being tested, 3) distributional
properties of the data in addition to mean and variance, and 4) in the case of
multiple F tests, the number of covariates included in the nulls.

The results of the article indicate that, in determining how much data are
needed for pFDR control, if there is little information about the data distribu-
tions, then it may be useful to estimate the cumulant generating functions of
the distributions. Alternatively, if one has good evidence about the parametric
form of the data distributions but has little information on the values of the
parameters, then it may be necessary to determine the number of observations
per null based on the cumulant functions as well. In either case, typically it is
insufficent to only use the means and variances of the distributions.

The article only considers univariate test statistics, which allow detailed anal-
ysis of tail probabilities. It is possible to test each null by more than one statis-
tic. How to determine the number of observations per null for multivariate test
statistics is yet to be addressed.
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Appendix: Mathematical Proofs

A1. Proofs for normal t-tests

Proof of Lemma 2.1. Part 1) is clear. To show 2), let (n, r) → (∞, 0) such that
nr → a ≥ 0. Since δ =

√
n+ 1 r → 0, by (2.3), it suffices to show

∞
∑

k=0

an,k(
√

2 δ)k

k!
→ ea. (A1.1)
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By Stirling’s formula, Γ(x) = (z/e)z
√

2π/z [1 +O(1/z)]. Then for n≫ 1,

an,k ≤ 2

(

n+ k + 1

2e

)(n+k+1)/2 (
n+ 1

2e

)−(n+1)/2

≤ 2

(

n+ k + 1

2e

)k/2 (

1 +
k

n+ 1

)(n+1)/2

= 2

(

n+ k + 1

2

)k/2

,

giving

an,k(
√

2 δ)k

k!
≤ 2(

√
2 δ)k

k!

(

n+ k + 1

2

)k/2

=
2[(n+ 1)(n+ 1 + k)r2]k/2

k!
≤ 3(nr + r)k(1 + k)k/2

k!
.

(A1.2)

The right hand side has a finite sum over k. By dominated convergence,

lim
(n,r)→(∞,0)
s.t. nr→a

L(n, r) =
∞
∑

k=0

lim
(n,r)→(∞,0)
s.t. nr→a

an,k(
√

2 δ)k

k!

=

∞
∑

k=0

lim
(n,r)→(∞,0)
s.t. nr→a

[(n+ 1)(n+ 1 + k)r2]k/2

k!
=

∞
∑

k=0

ak

k!
= ea.

This yields 2). To show 3), by similar argument, given 0 < c < 1, for n≫ 1,

an,k(
√

2 δ)k

k!
≥ c(

√
2 δ)k

k!

(

n+ 1

2

)k/2

≥ c(nr)k

k!

Therefore, as nr → ∞, L(n, r) ≥ cenr → ∞.

Proof of Lemma 2.2

By Stirling’s formula, there is a constantC > 1, such that kk/2/k! ≤ Ck/Γ(k/2+
1) for all k ≫ 1. Fix n0 so that C2a2/n0 < λ and (A1.2) holds for all n ≥ n0. For
k ≥ n0(n0+1), 1+k/(n0+1) ≤ k/n0. Then applying (A1.2) with δ =

√
n+ 1 sr

yields

an,k(
√

2δ)k

k!
≤ 2[(n+ 1)(n+ 1 + k)s2r2]k/2

k!
≤ 2(k/n0)

k/2(nsr + sr)k

k!

≤ 2Ck

Γ(k/2 + 1)

[

(ns+ s)2r2

n0

]k/2

≤ 2[b(s)r2]k/2

Γ(⌊k/2⌋ + 1)
,

where b(s) = C2(ns + s)2/n0. Let λ∗ ∈ (C2a2/n0, λ). By
∫

eλr2

G(dr) < ∞,
∫

rpeλ∗r2

G(dr) <∞ for any p ≥ 0. Let (n, s) → (∞, 0) such that ns→ a. Then
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for n≫ n0, b(s) < λ∗ and hence

∞
∑

k=k0

an,k(
√

2(n+ 1)st)k

k!
≤

∞
∑

k=k0

2(b(s)r2)k/2

Γ(⌊k/2⌋ + 1)

≤ 2(1 +
√

λ∗r)
∞
∑

k=⌊k0/2⌋

(λ∗r2)k

k!
.

By the above inequality and dominated convergence,

lim

∫

L(n, sr)G(dr) =

∫

L(n, sr)G(dr) =

∫

ear G(dr). �

A2. Proofs for F -tests

Proof of Lemma 3.1

It suffices to show φ′(t) > 0 for t > 0, where

φ(t) = e−t
∞
∑

k=0

bp,n,kt
k

k!
.

This follows from bp,n,k+1 > bp,n,k and

φ′(t) = −φ(t) + e−t
∞
∑

k=0

bp,n,k+1t
k

k!
= e−t

∞
∑

k=0

[bp,n,k+1 − bp,n,k]tk

k!
> 0. �

Next, recall

K(p, n, δ) = e−(n+p)δ2/2
∞
∑

k=0

k−1
∏

j=0

(

n+ p+ 2j

p+ 2j

)

× 1

k!

[

(n+ p)δ2

2

]k

.

Proof of Lemma 3.2. Suppose δ → ∞ and n = n(δ) such that nδ → a ∈ [0,∞).
Since (n+ p+ 2j)/(p+ 2j) ≤ n+ p, then

K(p, n, δ) ≤
∞
∑

k=0

(n+ p)k 1

k!

[

(n+ p)δ2

2

]k

≤ e(n+p)2δ2/2, (A2.1)

and by dominated converge,

lim
δ→∞

K(p, n, δ) = lim
δ→∞

∞
∑

k=0

k−1
∏

j=0

[

1 + 2j/(n+ p)

p+ 2j

]

× 1

k!

[

(n+ p)2δ2

2

]k

=
∞
∑

k=0

k−1
∏

j=0

(

1

p+ 2j

)

× 1

k!

(

a2

2

)k

= Mp(a).
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Next suppose δ → 0 and nδ → ∞. Then one gets

K(p, n, δ) ≥ e−(n+p)δ2/2
∞
∑

k=0

k−1
∏

j=0

(

n

p+ 2j

)

× 1

k!

(

nδ2

2

)k

≥ e−(n+p)δ2/2
∞
∑

k=0

k−1
∏

j=0

(

1

1 + 2j

)

×
(

n

p

)k

× 1

k!

(

nδ2

2

)k

= e−(n+p)δ2/2
∞
∑

k=0

1

(2k)!

(

n2δ2

p

)k

=
e−(n+p)δ2/2

2

(

enδ/
√

p + e−nδ/
√

p
)

.

Because (n + p)δ2 = o(nδ) and nδ → ∞, the right hand side tends to ∞. The
proof is thus complete.

Proof of Lemma 3.3. First, one gets

K(p, n, δ) = e−(n+p)δ2/2
∞
∑

k=0

k−1
∏

j=0

[

1 + 2j/(n+ p)

1 + 2j/p

]

× 1

k!

[

(n+ p)2δ2

2p

]k

≤ e−(n+p)δ2/2
∞
∑

k=0

1

k!

[

(n+ p)2δ2

2p

]k

= e(n+p)2δ2/(2p)−(n+p)δ2/2 = exp

[

n(n+ p)δ2

2p

]

.

Thus, by dominated convergence, K(p, n, δ) → ea as n(n+ p)δ2/(2p) → a.
Now let a > 0. Regard f(n) = n(n+ p)δ2/(2p) as a quadratic function of n.

Then in order to get f(n) → a,

n ∼ −δ2p+
√

δ4p2 + 8δ2pa

2δ2
=

4pa

δ2p+
√

δ4p2 + 8δ2pa

∼



















(1/δ)
√

2pa if δ2p→ 0,

2a/δ2 if δ2p→ ∞,
4a/δ2

1 +
√

1 + 8a/L
if δ2p→ L > 0.

The proof is thus complete.

In order to prove Lemma 3.4, we need the following result.

Lemma A2.1. Given 0 < ǫ < 1, there is λ(ǫ) > 0, such that

∑

|k−A|≥ǫA

Ak

k!
≤ eA(1−λ(ǫ)), as A→ ∞.
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Proof. Let Y be a Poisson random variable with mean A. Then

e−A
∑

|k−A|≥ǫA

Ak

k!
= P (|Y −A| ≥ ǫA).

By LDP (5), I := −(1/A) lnP (|Y − A| ≥ ǫA) > 0. Then given λ(ǫ) ∈ (0, I),
P (|Y −A| ≥ ǫA) ≤ e−λ(ǫ)A for all A≫ 0, implying the stated bound.

Proof of Lemma 3.4. Fix δ > 0 and n. Then

K(p, n, δ) = e−A
∞
∑

k=0

k−1
∏

j=0

(

n+ p+ 2j

p+ 2j

)

× Ak

k!
, with A =

(n+ p)δ2

2
.

Let 0 < ǫ < 1. For each k,
∏k−1

j=0 [(n+ p+ 2j)/(p+ 2j)] ≤ (1 + n/p)k. Then

e−A
∑

|k−A|≥ǫA

k−1
∏

j=0

(

n+ p+ 2j

p+ 2j

)

× Ak

k!
≤ e−A

∑

|k−A|≥ǫA

[(1 + n/p)A]k

k!

Denote B = (1 + n/p)A. Then given any 0 < δ < ǫ, for all p≫ 1, |k −A| ≥ ǫA
implies |k −B| ≥ δB. By Lemma A2.1, as p→ ∞,

e−A
∑

|k−A|≥ǫA

[(1 + n/p)A]k

k!
≤ e−A

∑

|k−B|≥ǫB

Bk

k!
≤ eB−λ(δ)B−A = o(1),

where λ(δ) > 0 is a constant. It follows that

K(p, n, δ) = e−A
∑

|k−A|≤ǫA

k−1
∏

j=0

(

1 +
n

p+ 2j

)

× Ak

k!
+ o(1).

By ln(1 + x) = x+O(x2) as x→ 0, it is seen that

K(p, n, δ) = e−A
∑

|k−A|≤ǫA

(1 + rk) exp





n

p

k−1
∑

j=0

1

1 + 2j/p



× Ak

k!
+ o(1),

where sup|k−A|≤ǫA |rk| → 0 as p → ∞. It is not hard to see that for all p ≫ 1

and k with |k −A| ≤ ǫA, |k/p− δ2/2| ≤ ǫδ2. As a result,

(1 + rk) exp





n

p

k−1
∑

j=0

1

1 + 2j/p



 = [1 + r′k(ǫ)] exp

(

n

∫ δ2/2

0

dx

1 + 2x

)

= [1 + r′k(ǫ)](1 + δ2)n/2.
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where sup|k−A|≤ǫA |r′k(ǫ)| → 0 as p → ∞ followed by ǫ → 0. Combining the
above approximations and applying Lemma A2.1 again,

K(p, n, δ) = [1 +R(ǫ)](1 + δ2)n/2e−A
∑

|k−A|≤ǫA

Ak

k!
+ o(1)

= [1 +R(ǫ)](1 + δ2)n/2 + o(1),

where R(ǫ) → 0 as p → ∞ followed by ǫ → 0. Let p → ∞. Since ǫ is arbitrary,
then K(p, n, δ) → (1 + δ2)n/2.

A3. General t tests

A3.1. Proof of the main result

This section is devoted to the proof of Proposition 4.1. Write

Λ∗(u) = sup
t

[ut− Λ(t)], Ψ∗(u) = sup
t

[ut− Ψ(t)],

ηΛ(u) = (Λ′)−1(u), ηΨ(u) = (Ψ′)−1(u),
(A3.1)

whenever the functions are well defined. The lemma below collects some useful
properties of Λ. The proof is standard and hence omitted for brevity.

Lemma A3.1. Suppose condition a) in Theorem 4.1 is fulfilled. Then the fol-
lowing statements on Λ are true.

1) Λ is smooth on Do
Λ, strictly decreasing on (−∞, 0)∩DΛ, strictly increasing

on (0,∞) ∩ DΛ.

2) Λ′ is strictly increasing on Do
Λ, and so ηΛ = (Λ′)−1 for well defined on IΛ =

(inf Λ′, sup Λ′), where the extrema are obtained over Do
Λ. Moreover, Λ′(0) = 0,

(Λ′)−1(0) = 0, and tΛ′(t) → ∞ as t ↑ supDΛ.

3) Λ∗ is smooth and strictly convex on IΛ, and

(Λ∗)′(u) = ηΛ(u) = arg sup
t

[ut− Λ(t)], u ∈ IΛ.

On the other hand, Λ∗(u) = ∞ on (−∞, inf Λ′) ∪ (sup Λ′,∞).

The next lemma is key to the proof of Proposition 4.1. Basically, it says that
the analysis on the ratio of the extreme tail probabilities can be localized around
a specific value determined by Λ and the index λ in (4.4). As a result, the limit
(4.7) can be obtained by the uniform exact large deviations principle (LDP) in
(2), which is a refined version of the exact LDP (5).
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Lemma A3.2. Let m, n→ ∞, such that n/N → ρ ∈ (0, 1), where N = m+n.
Let ν0 = Λ′(t0), where t0 > 0 the unique positive solution to (4.6). Under
conditions a) and b) of Theorem 4.1, given D > 0 and δ > 0, there are z0 > 0
and η > 0, such that for z ≥ z0,

lim
N→∞

1

N
inf

|s|≤D/N
lnP

(

X̄n + s ≥ zSm, |zSm − ν0| ≤ δ
)

≥ −Jz(ν0) (A3.2)

and

sup
|s|≤D/N

∣

∣

∣

∣

∣

P
(

X̄n + s ≥ zSm

)

P
(

X̄n + s ≥ zSm, |zSm − ν0| ≤ δ
) − 1

∣

∣

∣

∣

∣

= O(e−ηN ), (A3.3)

where Jz(ν0) = (1 − ρ)Λ∗(ν0) − ρΨ∗(ν2
0/z

2) <∞.

Assume Lemma A3.2 is true for now. The main result is shown next.

Proof of Proposition 4.1. Recall that dN → 0 and N → ∞, such that dNN →
T . First, we show that, given ǫ > 0, there is z0 > 0, such that

lim
N→∞

∣

∣

∣

∣

∣

P
(

X̄n + dN ≥ zSm

)

P
(

X̄n ≥ zSm

) − e(1−ρ)Tt0

∣

∣

∣

∣

∣

≤ ǫ, all z ≥ z0. (A3.4)

Let δ ∈ (0, 1) such that ηΛ(u) is well defined on [ν0 − δ, ν0 + δ] and

sup
|u−ν0|≤δ

|ηΛ(u) − ηΛ(ν0)| ≤
ln(1 + ǫ)

(1 − ρ)T
.

Let z0 > 0 and η > 0 such that (A3.3) holds. Fix z ≥ z0. Denote a = a(z) =
(ν0−δ)/z and b = b(z) = (ν0 +δ)/z. Because of (A3.3), in order to show (A3.4),
it suffices to establish

lim
N→∞

∣

∣

∣

∣

∣

P
(

X̄n + dN ≥ zSm, a ≤ Sm ≤ b
)

P
(

X̄n ≥ zSm, a ≤ Sm ≤ b
) − e(1−ρ)Tt0

∣

∣

∣

∣

∣

≤ ǫ. (A3.5)

Let Gm(x) be the distribution function of Sm. Then

P
(

X̄n + dN ≥ zSm, a ≤ Sm ≤ b
)

=

∫ b

a

P (X̄n ≥ zx− dN )Gm(dx),

P
(

X̄n ≥ zSm, a ≤ Sm ≤ b
)

=

∫ b

a

P (X̄n ≥ zx) dGm(x).

From these equations, it is not hard to see that (A3.5) follows if we can show

lim
N→∞

sup
x∈[a,b]

∣

∣

∣

∣

P (X̄n ≥ zx− dN )

P (X̄n ≥ zx)e(1−ρ)Tt0
− 1

∣

∣

∣

∣

≤ ǫ. (A3.6)

To establish (A3.6), observe that for N > 1 large enough and x ∈ [a, b],
zx−dN ∈ [a/2, ν0 +δ]. Therefore, τN (x) := ηΛ(zx−dN ) is not only well defined
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but also continuous and strictly positive on [a, b]. By Theorem 3.3 of (2), as
N → ∞, the following approximation holds,

sup
x∈[a,b]

∣

∣

∣enΛ∗(zx−dN )τN (x)
√

2πnΛ′′(τN (x))P (X̄n ≥ zx− dN ) − 1
∣

∣

∣ = o(1),

which is a uniform version of the exact LDP due to Bahadur and Rao (5, The-
orem 3.7.4).

Because τN (x) → ηΛ(zx) uniformly on [a, b] and the latter is strictly positive
and continuous on [a, b], the above inequality yields

sup
x∈[a,b]

∣

∣

∣enΛ∗(zx−dN )ηΛ(zx)
√

2πnΛ′′(ηΛ(zx))P (X̄n ≥ zx− dN ) − 1
∣

∣

∣ = o(1).

Likewise,

sup
x∈[a,b]

∣

∣

∣
enΛ∗(zx)ηΛ(zx)

√

2πnΛ′′(ηΛ(zx))P (X̄n ≥ zx) − 1
∣

∣

∣
= o(1).

By the above approximations to P (X̄n ≥ zx−dN ) and P (X̄n ≥ zx), in order
to prove (A3.6), it is enough to show

M := lim
N→∞

sup
x∈[a,b]

∣

∣

∣

∣

e−nΛ∗(zx−dN )

e−nΛ∗(zx)+(1−ρ)Tt0
− 1

∣

∣

∣

∣

≤ ǫ.

By Taylor expansion and Lemma A3.1,

Λ∗(zx− dN ) = Λ∗(zx) − dNηΛ(zx− ξdN ), x ∈ [a, b],

where ξ = ξ(x) ∈ (0, 1). Therefore,

e−nΛ∗(zx−dN)

e−nΛ∗(zx)+(1−ρ)Tt0
=
e−n(Λ∗(zx−dN)−Λ∗(zx))

e(1−ρ)Tt0
=
e−ndN ηΛ(zx−ξdN )

e(1−ρ)Tt0
.

Since ndN → (1 − ρ)T and ηΛ(zx− ξdN ) → ηΛ(zx) uniformly for x ∈ [a, b],

M = sup
x∈[a,b]

∣

∣

∣e(1−ρ)(ηΛ(zx)−t0)T − 1
∣

∣

∣

Because t0 = ηΛ(ν0) and zx ∈ [ν0 − δ, ν0 + δ] for x ∈ [a, b],

M ≤ exp

[

(1 − ρ)T sup
u∈[−δ,δ]

|ηΛ(ν0 + u) − ηΛ(ν0)|
]

− 1 ≤ ǫ.

Therefore (A3.5) is proved.
Now that (A3.4) holds for any given ǫ > 0, as long as z ≥ z0 = z0(ǫ), with z0

being large enough, by the diagonal argument, we can choose zN > 0 in such as
way that zN → ∞ slowly as N → ∞ and

lim
N→∞

∣

∣

∣

∣

e−(1−ρ)Tt0P (X̄n + dN ≥ zNSm)

P (X̄n ≥ zNSm)
− 1

∣

∣

∣

∣

= 0.

This finishes the proof of the theorem.
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A3.2. Proof of Lemma A3.2

The proof needs a few preliminary results. The first lemma collects some useful
properties of Ψ.

Lemma A3.3. Let DΨ = {t : Λ(t) <∞}. Under condition b) in Theorem 4.1,
the following statements on Ψ are true.

1) DΨ ⊃ (−∞, 0]. Ψ is smooth and strictly increasing on Do
Ψ. Furthermore,

Ψ(t) → −∞ as t→ −∞.

2) Ψ′ is strictly increasing on Do
Ψ, and so ηΨ = (Ψ′)−1 is well defined on IΨ =

(0, supΨ′), where the supremum is obtained over Do
Ψ. In addition, inf Ψ′ = 0

and sup Ψ′ ≥ Ψ′(0−) = σ2. Furthermore,

lim
u→0+

uηΨ(u) = −λ+ 1

2
, (A3.7)

where λ is given in (4.4).

3) Ψ∗ is smooth and strictly convex on IΨ and

(Ψ∗)′(u) = ηΨ(u) = arg sup
t

[ut− Ψ(t)], u ∈ IΨ.

Furthermore, Ψ∗ is strictly decreasing on (0, σ2) with Ψ∗(u) → ∞ as u ↓ 0 and
Ψ∗(u) → 0 as u ↑ σ2, and is nondecreasing for u ≥ σ2.

Proof. We only show Ψ(t) → −∞ as t→ −∞ and (A3.7), which are properties
specifically due to condition b) in Theorem 4.1. The proof of the rest of Lemma
A3.3 is standard.

To get Ψ(t) → −∞ as t → ∞, it suffices to show
∫∞
0
e−tu2/2g(u) du → 0 as

t→ ∞. For later use, it will be shown that, given s ≥ 0,

∫ ∞

0

xse−tx2/2g(x) dx→ 0, as t→ ∞. (A3.8)

The proof is based on several truncations of the integral. Given 0 < η < 1,
there is 0 < ǫ < 1, such that

1 − η ≤ g(x)

xλζ(1/x)
≤ 1 + η, x ∈ (0, ǫ).

Since Mǫ = sup|x|≥ǫ g(x) <∞, given s ≥ 0, as t→ ∞,

∫ ∞

ǫ

xse−tx2/2g(x) dx ≤ e−tǫ2/4Mǫ

∫ ∞

ǫ

xse−tx2/4 dx = o(e−tǫ2/4).
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On the other hand,

∫ ǫ

0

xse−tx2/2g(x) dx ≥ (1 − η)

∫ ǫ

0

xs+λe−tx2/2ζ(1/x) dx

≥ (1 − η)ζ(1/ǫ)

∫ ǫ

0

xs+λe−tx2/2 dx.

The right hand side is of the same order as
∫∞
0 xs+λe−tx2/2 dx, which in turn is

of the same order as t−(λ+s+1)/2. As a result,

∫ ∞

0

xse−tx2/2g(x) dx = (1 + o(1))

∫ ǫ

0

xse−tx2/2g(x) dx, as t→ ∞.

Since g(x)/[xλζ(1/x)]− 1 ∈ [−η, η] for x ∈ (0, ǫ) and η is arbitrary, it is seen
that in order to prove (A3.8), it suffices to show

∫ ǫ

0

xs+λe−tx2/2ζ(1/x) dx→ 0, as t→ ∞. (A3.9)

Let a = ǫ2/2 and φ(x) = ζ(
√

x/2). By variable substitution x =
√

2u/t,

∫ ǫ

0

xs+λe−tx2/2ζ(1/x) dx = 2pt−(p+1)

∫ ta

0

upe−uφ(t/u) du, (A3.10)

where p = (s+ λ− 1)/2 > −1. Therefore, (A3.9) will follow if

t−(p+1)

∫ ta

0

upe−uφ(t/u) du→ 0, as t→ ∞, (A3.11)

Note that φ(x) is increasing and since upe−u is integrable, there is M > 1,

such that
∫∞

M
upe−u du ≤ η

∫M

0
upe−u du. Then

∫ ta

M

upe−uφ(t/u) du ≤ φ(t/M)

∫ ∞

M

upe−u du

≤ η

∫ M

0

upe−uφ(t/u) du.

(A3.12)

Fix δ ∈ (0, 1) such that δp+1 < η(1 − ηp+1η). Then

∫ δ

0

upe−uφ(t/u) du =

∞
∑

k=1

∫ δk

δk+1

upe−uφ(t/u) du

=

∞
∑

k=1

δ(p+1)k

∫ 1

δ

upφ

(

t

δku

)

du.

Note that φ(t) is slowly varying at ∞. For t large enough, φ(t/u) ≤ ηφ(t/(δu))
for u ∈ [η, 1]. By induction, φ(t/(δku)) ≤ ηk−1φ(t/u), k ≥ 1. Consequently, by
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the selection of δ and the above infinite sum,

∫ δ

0

upe−uφ(t/u) du ≤
∞
∑

k=1

δ(p+1)kηk−1

∫ 1

δ

upφ(t/u) du

=
δp+1

1 − δp+1η

∫ 1

δ

upφ(t/u) du ≤ η

∫ M

δ

upe−uφ(t/u) du.

(A3.13)

Now given 0 < δ < M <∞, as φ is increasing and slowly varying at ∞,

inf
δ≤u≤M

φ(t/u)

φ(t)
=
φ(t/M)

φ(t)
→ 1, sup

δ≤u≤M

φ(t/u)

φ(t)
=
φ(t/δ)

φ(t)
→ 1.

Therefore,

∫ M

δ

upe−uφ(t/u) du = (1 + o(1))φ(t)

∫ M

δ

upe−u du, as t→ ∞. (A3.14)

Combine (A3.12) – (A3.14) and note δ and M are arbitrary. Then

∫ ta

0

upe−uφ(t/u) du = (1 + o(1))φ(t)

∫ ∞

0

upe−u du

= (1 + o(1))φ(t)Γ(p + 1), as t→ ∞.

(A3.15)

Note φ(t) = o(tp+1) as t→ ∞. Therefore, (A3.11) is proved.
Next we prove (A3.7). For u > 0 small enough, ηΨ(u) is well defined. Let

t = −ηΨ(u). Then u = Ψ′(−t) and t → ∞ as u ↓ 0. Therefore, it suffice to
demonstrate tΨ′(−t) → (λ+ 1)/2, as t→ ∞. It is easy to see

Ψ′(−t) =
1

2

∫ ∞

0

x2e−tx2/2g(x) dx

/∫ ∞

0

e−tx2/2g(x) dx, for t > 0.

Following the argument leading to (A3.9), it suffices to show that, given
λ ≥ 0,

∫ ǫ

0

xλe−tx2/2ζ(1/x) dx =
(1 + o(1))t

λ+ 1

∫ ǫ

0

x2+λe−tx2/2ζ(1/x) dx

as t→ ∞. Denoting p = (λ+ 1)/2, by (A3.10), the above limit will follow if

∫ ta

0

up−1e−uφ(t/u) du =
1 + o(1)

p

∫ ta

0

upe−uφ(t/u) du, t→ ∞.

However, this is implied by (A3.15) and Γ(p+ 1) = pΓ(p).

Lemma A3.4. Given ρ ∈ (0, 1), let ν0 = Λ′(t0), where t0 > 0 is the positive
solution to (4.6). Then under conditions a) and b) of Theorem 4.1, for any
δ ∈ (0, ν0), there are z0 > 0 and a > 0, such that for z ≥ z0,

inf
|u−ν0|≥δ

{

(1 − ρ)Λ∗(u) + ρΨ∗(u2/z2)
}

≥ (1 − ρ)Λ∗(ν0) + ρΨ∗(ν2
0/z

2) + a.
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Proof. The infimum on the left hand side increases as δ decreases. Since ν0 <
sup Λ′, without loss of generality, let δ < sup Λ′ − ν0. For z > 0, write

Hz(u) = (1 − ρ)Λ∗(u) + ρΨ∗(u2/z2)

Then by Lemma A3.1, for u ∈ (0, σ2z2) ∩ (0, supΛ′),

H ′
z(u) = (1 − ρ)ηΛ(u) +

2ρu

z2
ηΨ(u2/z2) (A3.16)

For any η ∈ (0, ν0 − δ) and M ∈ (ν0 + δ, supΛ′), by (A3.7), as z → ∞,

uH ′
z(u) → h(u) := (1 − ρ)uηΛ(u) − ρ(λ+ 1), uniformly on [η,M ].

Since h is strictly increasing on [0,∞), ν0 is the only positive solution to
h(u) = 0. Therefore, there is a0 > 0, such that

inf
u−ν0≥δ/2

h(u) ≥ a0, sup
u−ν0≤−δ/2

h(u) ≤ −a0.

Let a = (a0/2)min
{

ln ν0+δ
ν0+δ/2 , ln

ν0−δ/2
ν0−δ

}

. As z → ∞, H ′
z(u) → h(u)/u uni-

formly on [η,M ]. Since h(u) ≥ 0 for u ∈ [ν0,M ], and h(u)/u ≥ a0/M for
u ∈ [ν0+δ,M ], it can be seen that for all z > 0 large enough and u ∈ [ν0 +δ,M ],

Hz(u) −Hz(ν0) =

∫ u

ν0

H ′
z(s) ds ≥

1

2

∫ u

ν0+δ/2

h(s)

s
ds ≥ a0

2

∫ u

ν0+δ/2

ds

s
≥ a.

Likewise, for all z > 0 large enough and u ∈ [η, ν0 − δ],

Hz(u) −Hz(ν0) =

∫ ν0

u

[−H ′
z(s)] ds ≥

a0

2

∫ ν0−δ/2

u

ds

s
≥ a.

To finish the proof, it suffices to show that there are M ∈ (ν0, supΛ′) and
η ∈ (0, ν0), such that for all z > 0 large enough, Hz(u) is strictly increasing on
(M,∞) and strictly decreasing on (0, η).

First, given z > 0 large enough, by Lemma A3.3, Hz(u) is increasing for
u ≥ zσ2 and equal to ∞ for u > sup Λ′. As a result, it is only necessary to
consider u < M ′ := min(sup Λ′, zσ2). Note that if sup Λ′ < ∞, then for all
z > 0 large enough, M ′ = supΛ′; whereas if supΛ′ = ∞, M ′ ≡ zσ2.

Let ϕ(u) = (u2/z2)ηΨ(u2/z2). For u ∈ (ν0,M
′), 0 ≥ ϕ(u) ≥ C :=

inf0<u<σ2 [uηΨ(u)] > −∞. By Lemma A3.1, there is ν0 < M < sup Λ′ such
that (1− ρ)MηΛ(M) > −2ρC + 1. Then by (A3.16) and the fact that uηΛ(u) is
strictly increasing for u ∈ (0, supΛ′), H ′

z(u) > 1/u > 0 for u ∈ (M,M ′). Then
Hz is strictly increasing on (M,M ′).

Second, as u ↓ 0, uηΛ(u) → 0 and u2ηΨ(u2) → −(λ+1)/2 < 0. Therefore, by
(A3.16), there is δ ∈ (0, ν0), such that for all z > 0 large enough and u ∈ (0, δ),
uH ′

z(u) ≤ −ρ(λ + 1)/4. Then H ′
z(u) < 0 for u ≤ δ and hence Hz(u) is strictly

decreasing. This finishes the proof.



Z. Chi/Sample size and pFDR 110

Proof of Lemma A3.2. Since the left hand side of (A3.2) is increasing in δ,
without loss of generality, assume δ ∈ (0, ν0). Let z0 > σ2/(ν0 + δ). Given
z ≥ z0 and ǫ ∈ (0, δ), for N > D/ǫ and s ∈ [−D/N,D/N ] ⊂ (−ǫ, ǫ),

P
(

X̄n + s ≥ zSm, |zSm − ν0| ≤ δ
)

≥ P
(

X̄n + s ≥ zSm, |zSm − ν0| ≤ ǫ
)

≥ P
(

X̄n ≥ ν0 + 2ǫ, |zSm − ν0| ≤ ǫ
)

= P
(

X̄n ≥ ν0 + 2ǫ
)

P (ν0 − ǫ ≤ zSm ≤ ν0 + ǫ) .

Observe that for 0 ≤ a < b, a ≤ zSm ≤ b is equivalent to ma2/z2 ≤
∑m

k=1(Y2k−1 − Y2k)2/2 ≤ mb2/z2. Also, Λ∗(t) is increasing on (0,∞), Ψ∗(t)
is decreasing on (0, σ2), and (ν0 + ǫ)2/z2 < σ2. Therefore by LDP,

lim
N→∞

1

N
inf

|s|≤D/N
P
(

X̄n + s ≥ zSm, |zSm − ν0| ≤ δ
)

≥ lim
N→∞

1

N
lnP

(

X̄n ≥ ν0 + 2ǫ
)

+ lim
N→∞

1

N
lnP (|zSm − ν0| ≤ ǫ)

= (1 − ρ)Λ∗(ν0 + 2ǫ) + ρΨ∗((ν0 + ǫ)2/z2).

Because ǫ is arbitrary and Λ∗ and Ψ∗ are continuous, (A3.2) is proved.
Consider (A3.3) now. By Lemma A3.4, there is η > 0, such that for all z ≥ z0

and u ∈ [0, ν0 − δ/2] ∪ [ν0 + δ/2,∞),

(1 − ρ)Λ∗(u) + ρΨ∗(u2/z2) ≥ Jz(ν0) + 2η. (A3.17)

Let

R− = sup
|s|≤D/N

P
(

X̄n + s ≥ zSm, zSm ≤ ν0 − δ
)

,

R+ = sup
|s|≤D/N

P
(

X̄n + s ≥ zSm, zSm ≥ ν0 + δ
)

Since the left hand side of (A3.3) is no greater than

R− +R+

inf |s|≤D/N P
(

X̄n + s ≥ zSm, |zSm − ν0| ≤ δ
) ,

by (A3.2), in order to establish (A3.3), it suffices to show that for z ≥ z0,

lim
N→∞

1

N
ln

1

R±
≥ Jz(ν0) + η.

For any 0 < u ≤ ν0 − δ, by (A3.17), there is r = r(u) ∈ (0, u/3), such that

(1 − ρ)Λ∗(u− 2r) + ρΨ∗((u+ r)2/z2) ≥ Jz(ν0) + η.

By Ψ∗(u) ↑ ∞ as u ↓ 0, there is r0 ∈ (0, ν0 − δ), such that ρΨ∗(r20/z
2) ≥

Jz(ν0) + η. Because I = [0, ν0 − δ] is compact, one can choose u0 = 0 and
u1, . . . , up ∈ I, such that I ⊂ ∪n

i=0[ui − ri, ui + ri], with ri = r(ui) for i ≥ 1.
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It can be seen that, for N > D/min(ǫ, r0, r1, . . . , rp), R− ≤
∑p

i=0 Ai, where
A0 = P (zSm ≤ r0) and Ai = P (X̄n ≥ ui − 2ri, |zSm − ui| ≤ ri), i ≥ 1. For
the latter ones, by the choice of z and ri, ui − 2ri > 0 and (ui + ri)/z < σ2.
Therefore, by the LDP,

lim
N→∞

1

N
ln

1

Ai
= (1 − ρ)Λ∗(ui − 2ri) + ρΨ∗((ui + ri)

2/z2) ≥ Jz(ν0) + η.

Similarly, lim(1/N) ln(1/A0) ≥ Jz(ν) + η. Since there is only a finite number of
Ai, lim(1/N) ln(1/R−) ≥ Jz(ν0)+η. Likewise, lim(1/N) ln(1/R+) ≥ Jz(ν0)+η.
The proof is thus complete.

A4. Tests involving likelihood

A4.1. Proof of the main result

This section is devoted to the proof of Proposition 5.1. The proof is based on
several lemmas. Henceforth, let N = m + n and ν0 = Λ′(t0), where t0 is the
positive solution to (4.6). It will be assumed that as m → ∞ and n → ∞,
m/N → ρ ∈ (0, 1), where ρ is fixed.

Lemma A4.1. Let δ ∈ (0, ν0/2) and ǫ > 0. There are z0 > 0 and θ0 = θ0(z),
such that given z ≥ z0, as m→ ∞ and n→ ∞,

sup
θ≤θ0

Pθ(X̄n ≥ zSm, |zSm − ν0| ≥ δ)

Pθ(X̄n ≥ zSm, |zSm − ν0| ≤ δ)
→ 0, (A4.1)

sup
0≤θ≤θ0

Pθ(X̄n ≥ (1 + ǫ)zSm, |zSm − ν0| ≤ δ)

Pθ(X̄n ≥ zSm, |zSm − ν0| ≤ δ)
→ 0. (A4.2)

Lemma A4.2. Let a1 > 0. Under the conditions of Theorem 5.1, for any
ǫ > 0, there are m0 > 0 and δ > 0, such that

sup
0<|t|≤δ

∣

∣

∣E0(e
aŪm |Sm = t) − eaKf

∣

∣

∣ ≤ ǫeaKf , m ≥ m0, 0 ≤ a ≤ a1.

where E0 is expectation under P0, Kf is defined as in Theorem 5.1 and Ūm =
(1/m)

∑m
i=1 Ui with Ui = (Y2i−1 + Y2i)/2.

Proof of Proposition 5.1. We shall show that for any b > 0, there is z0 = z0(b),
such that for all z ≥ z0,

lim

∣

∣

∣

∣

PθN
(X̄n ≥ zSm)

P0(X̄n ≥ zSm)
− L

∣

∣

∣

∣

≤ b, (A4.3)

where L = exp {(1 − ρ)TΛ′(t0) + 2ρTKf}, and the limit is taken as m → ∞,
n → ∞ and θN → 0, such that θNN → T > 0 and m/N → ρ ∈ (0, 1). This
together with a diagonal argument then finishes the proof.
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Let ǫ > 0 and δ ∈ (0, ν0/2), such that Lemma A4.2 holds with a = 2ρT . Fix
z0 > (ν0 + ǫ)/δ as in Lemma A4.1. Then, given z ≥ z0, in order to show (A4.3),
it is enough to show

lim

∣

∣

∣

∣

PθN
(Em,n)

P0(Em,n)
− L

∣

∣

∣

∣

≤ b, (A4.4)

where Em,n =
{

X̄n ∈ [zSm, (1 + ǫ)zSm], |zSm − ν0| ≤ δ
}

. For θ ∈ [0, 1],

Pθ(Em,n)

P0(Em,n)
= E0

[

eJn(θ)+mZm(θ) Em,n

]

where

Jn(θ) =

n
∑

i=1

ln rθ(ωi), Zm(θ) =
1

m

m
∑

j=1

[

ln rθ(ω
′
2j−1) + ln rθ(ω

′
2j)
]

.

Since ln rθ(ωi) = ℓθ(ωi) − ℓ0(ωi) and ℓ̇θ(ωi) = Xi, by Taylor’s expansion,

Jn(θ) = nθX̄n +
θ2

2

n
∑

i=1

ℓ̈sθ(ωi), for some s ∈ (0, 1).

Let B = supθ ‖ℓ̈θ(ω)‖L∞(P0). By Condition 3, B < ∞. Since θNN → T ,
nθN → (1 − ρ)T and |Jn(θN ) − nθNX̄n| ≤ nBθ2N/2 = O(1/N). On Em,n,

|X̄n − ν0| ≤ |X̄n − zSm| + |zSm − ν0| ≤ ǫzSm + δ ≤ ǫ1 := ǫ(ν0 + δ) + δ.

It follows that for m and n large enough,

|Jn(θN ) − (1 − ρ)Tν0| ≤ ǫ+ |nθN − (1 − ρ)T |X̄n + (1 − ρ)T |X̄n − ν0|
≤ ǫ2 := ǫ+ ǫ(ν0 + ǫ1) + (1 − ρ)T ǫ1.

Denote QN = E0[e
mZm(θN ) | Em,n]. We obtain

e(1−ρ)Tν0−ǫ2QN ≤ PθN
(Em,n)

P0(Em,n)
≤ e(1−ρ)Tν0+ǫ2QN . (A4.5)

Let Am = {|zSm − ν0| ≤ ǫ}. Since ωi and ω′
j are independent, then

QN = E0[e
mZm(θN ) | Am].

Let Ūm be defined as in Lemma A4.2. By Taylor’s expansion,

mZm(θ) = θ

m
∑

i=1

(Y2i−1 + Y2i) +
θ2

2

m
∑

i=1

[ℓ̈sθ(ω2i−1) + ℓ̈sθ(ω2i)]

= 2mθŪm +
θ2

2

m
∑

i=1

[ℓ̈sθ(ω2i−1) + ℓ̈sθ(ω2i)], some s ∈ (0, 1).
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Then for m large enough, |mZm(θN )−2mθN Ūm| ≤ BT 2/m < ǫ, yielding e−ǫ ≤
QN/E0(e

2mθN Ūm | Am) ≤ eǫ. On Am, Sm ≤ (ν0 + ǫ)/z0 ≤ δ, so by Lemma A4.2,
1 − ǫ ≤ E0(e

2mθN Ūm | Am)/e2mθN Kf ≤ 1 + ǫ. By combining (A4.5), we thus
obtain

(1 − ǫ)e−ǫ−ǫ2+2(mθN−ρT )L ≤ PθN
(Em,n)

P0(Em,n)
≤ (1 + ǫ)eǫ+ǫ2+2(mθN−ρT )L.

Because ǫ and ǫ2 are arbitrary and mθN → ρT , (A4.3) is proved.

A4.2. Proof of Lemmas

We need the next result to show Lemma A4.1.

Lemma A4.3. Given a ∈ (0, 1) and ǫ > 0, there is θ0 > 0, such that

sup
θ≤θ0

Pθ(E) ≤ P0(E)1−aekǫ, inf
θ≤θ0

Pθ(E) ≥ P0(E)1/(1−a)e−kǫ (A4.6)

for all k ≥ 1 large enough and E ⊂ Ωk. Furthermore, let Ek ⊂ Ωk be events such
that lim(1/k) lnP0(Ek) >∞. Then

lim
θ0→0

lim
k→∞

1

k
sup

0≤θ≤θ0

∣

∣

∣

∣

ln
Pθ(Ek)

P0(Ek)

∣

∣

∣

∣

= 0.

Proof. Given a ∈ (0, 1), let θ′ = θ′(a) as in Condition 4. Denote ω = (ω1, . . . , ωk).
For each θ ∈ [0, θ′], k ≥ 1, and E ⊂ Ωk, by Hölder’s inequality,

Pθ(E) = E0 [1 {ω ∈ E} rθ(ω1) . . . rθ(ωk)]

≤ [E01 {ω ∈ E}]1−a
{

E0

[

rθ(ωk)1/a . . . rθ(ωk)1/a
]}a

= P0(E)1−a
{

E0

[

rθ(ω)1/a
]}ka

.

Therefore, given θ0 ∈ (0, θ′),

sup
θ≤θ0

Pθ(E) ≤ P0(E)1−a exp

{

ka lnE0

[

sup
θ≤θ0

rθ(ω)1/a

]}

Likewise, letting q = 1/a− 1,

P0(E) ≤ Pθ(E)1−a
{

Eθ

[

rθ(ω)−1/a
]}ka

= Pθ(E)1−a
{

E0

[

rθ(ω)−q
]}ka

.

Since q > 0, the above bound yields

inf
θ≤θ0

Pθ(E) ≥ P0(E)1/(1−a) exp

{

− ka

1 − a
lnE0

[

( inf
θ≤θ0

rθ(ω))−q

]}
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Under P0, for almost every ω ∈ Ω, p0(ω) > 0 and pθ(ω) is continuous in
θ. Let θ0 → 0. Then supθ≤θ0

rθ(ω) → 1 and infθ≤θ0
rθ(ω) → 1. By (5.2) and

dominated convergence,

lnE0

[

sup
θ≤θ0

rθ(ω)1/a

]

→ 0, lnE0

[

( inf
θ≤θ0

rθ(ω))−q

]

→ 0.

This implies that for θ0 small enough, both of the inequalities in (A4.6) hold.
To show the second part of the lemma, for each n ≥ 1,

1

k
lnPθ(Ek) ≤ 1 − a

k
lnP0(Ek) + a lnE0[rθ(ω)1/a],

which yields

1

k
sup

0≤θ≤θ0

ln
Pθ(Ek)

P0(Ek)
≤ a

{

−1

k
lnP0(Ek) + lnE0

[

sup
θ≤θ0

rθ(ω)1/a

]}

.

Let k → ∞ and take lim on both ends. By the assumption,

lim
k→∞

1

k
sup

0≤θ≤θ0

ln
Pθ(Ek)

P0(Ek)
≤ a

{

M + lnE0

[

sup
θ≤θ0

rθ(ω)1/a

]}

,

where M = − lim(1/k) lnP0(Ek) ≥ 0. Likewise, with q = 1/a− 1 > 0,

lim
k→∞

1

k
inf

0≤θ≤θ0

ln
Pθ(Ek)

P0(E0)
≥ − a

1 − a

{

M + lnE0

[

( inf
θ≤θ0

rθ(ω))−b

]}

.

Thus we get

lim
θ0→0

lim
k→∞

sup
0≤θ≤θ0

1

k

∣

∣

∣

∣

ln
Pθ(Ek)

P0(Ek)

∣

∣

∣

∣

≤ aM

1 − a
.

Because a is arbitrary, the lemma is proved.

It is easy to check that under the assumptions of Theorem 5.1, all the state-
ments in Lemmas A3.1 and A3.3 hold for Λ and Ψ defined in (5.6), with
X = ℓ̇0(ω), Y = ℓ̇0(ω

′). Therefore, Lemma A3.2 can be applied.

Proof of Lemma A4.1. We first show (A4.1). By Lemma A3.2, there is z0 > 0,
such that for z ≥ z0 and θ ∈ (0, ν0/2), there is η > 0, such that

P0(En,m ∩ Ac
m)

P0(En,m ∩ Am)
= o(e−ηM ), (A4.7)

where M = n + 2m, En,m =
{

X̄n ≥ zSm

}

and Am = {|zSm − ν0| ≤ δ}. Given
ǫ ∈ (0, 1), by Lemma A4.3, there is θ0 > 0, such that for θ ∈ [0, θ0] and m, n
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large enough, Pθ(E) ≤ P0(E)1−ǫeǫM and Pθ(E) ≥ P0(E)1/(1−ǫ)e−ǫM for E ⊂ ΩM .
Since both En,m and Am are events in ΩM , then

Ln,m :=
1

M
sup

0≤θ≤θ0

ln
Pθ(En,m ∩ Ac

m)

Pθ(En,m ∩ Am)

≤ 1

M
ln

P0(En,m ∩Ac
m)1−ǫ

P0(En,m ∩ Am)1/(1−ǫ)
+ 2ǫ

=
1

M

[

(1 − ǫ) ln
P0(En,m ∩ Ac

m)

P0(En,m ∩ Am)
+
ǫ(2 − ǫ)

1 − ǫ
ln

1

P0(En,m ∩Am)

]

+ 2ǫ.

By equations (A3.2) and (A4.7), there is a finite constant C > 0, such that

limLn,m ≤ −(1 − ǫ)η +
ǫ(2 − ǫ)C

1 − ǫ
+ 2ǫ,

Since ǫ is arbitrary, limLn,m < 0. This then finishes the proof of (A4.1).
It remains to show (A4.2). First, by the LDP for X̄n under P0 and an ar-

gument similar to the proof of (A4.1), it can be seen that given r > 0 and
0 < a < b < supDo

Λ
Λ′), there is θ0 > 0, such that

sup
0≤θ≤θ0

[Pθ(X̄n ≥ b)/Pθ(X̄n ∈ [a, a+ r])] → 0, as n→ ∞. (A4.8)

Now let a ∈ (0, ǫ) and η ∈ (0, (δ/ν0) ∧ (a/2)), so that (1 + ǫ)(1 − η) > 1 + a.
Denote Em = {|zSm − ν0| ≤ ην0} and Am = {|zSm − ν0| ≤ δ}. Then Em ⊂ Am.
By Lemma A3.2, given z ≫ 1, there is θ0 > 0, such that

inf
θ≤θ0

Pθ(X̄n ≥ zSm, Em)

Pθ(X̄n ≥ zSm, Am)
→ 1. (A4.9)

For θ ≤ θ0, by the independence of X̄n and Sm under Pθ,

Pθ(X̄n ≥ (1 + ǫ)zSm, Em) ≤ Pθ(X̄n ≥ (1 + ǫ)(1 − η)ν0, Em)

≤ Pθ(X̄n ≥ (1 + a)ν0)Pθ(Em).

By η < a/2, let ǫ′ ∈ (0, ǫ), such that (1 + ǫ′)(1 + η) ≤ 1 + a/2. Let I =
[(1 − η)ν0, (1 + ǫ′)(1 + η)ν0]. It is not hard to find a finite number of nonempty
(bi, ci) ⊂ I, such that for any x ∈ I, [x, (1 + ǫ′)x] contains at least one (bi, ci).
Then

Pθ(X̄n ∈ [zSm, (1 + ǫ)zSm], Em) ≥ Pθ(X̄n ∈ [zSm, (1 + ǫ′)zSm], Em)

≥ min
i
Pθ(X̄n ∈ [bi, ci])Pθ(Em)

Since ci ≤ (1 + a/2)ν0, by the above inequalities and (A4.8),

sup
θ≤θ0

Pθ(X̄n ≥ (1 + ǫ)zSm, Em)

Pθ(X̄n ≥ zSm, Em)
≤ sup

θ∈θ0

Pθ(X̄n ≥ (1 + ǫ)zSm, Em)

Pθ(X̄n ≥ [zSm, (1 + ǫ)zSm], Em)

≤ max
i

sup
θ∈θ0

Pθ(X̄n ≥ (1 + a)ν0)

Pθ(X̄n ∈ [bi, ci])
→ 0,
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yielding

inf
θ≤θ0

Pθ(X̄n ∈ [zSm, (1 + ǫ)zSm], Ēm)

Pθ(X̄n ≥ zSm, Em)

≥ inf
θ≤θ0

Pθ(X̄n ∈ [zSm, (1 + ǫ)zSm], Em)

Pθ(X̄n ≥ zSm, Em)
→ 1,

which, together with (A4.9), implies

inf
θ≤θ0

Pθ(X̄n ∈ [zSm, (1 + ǫ)zSm], Am)

Pθ(X̄n ≥ zSm, Am)

≥ inf
θ≤θ0

Pθ(X̄n ∈ [zSm, (1 + ǫ)zSm], Am)

Pθ(X̄n ≥ zSm, Em)
× inf

θ≤θ0

Pθ(X̄n ≥ zSm, Em)

Pθ(X̄n ≥ zSm, Am)
→ 1

and hence (A4.2).

Proof of Lemma A4.2. Let ǫ0 = ǫ inf0≤a≤a1
eaKf . We have to show that for

δ > 0 small enough and m0 > 0 large enough,

sup
0<|t|≤δ

∣

∣

∣
E0(e

aŪm |Sm = t) − eaKf

∣

∣

∣
< ǫ0, m ≥ m0, 0 ≤ a ≤ a1. (A4.10)

Let Vi = (Y2i−1 − Y2i)/2. Under P0, (Ui, Vi) are iid with density

P (U ∈ du, V ∈ dv)

du dv
= 2f(u+ v)f(u − v).

Denote ζ = (v1, . . . , vm) and

φv(z) = E0(e
zU |V = v).

Then

E0(e
aŪm |Sm = t) =

∫ m
∏

i=1

φvi
(a/m)1 {vi 6= 0} P0(dζ |Sm = t). (A4.11)

Case i: f is bounded In this case, g(v) =
∫

f(u + v)f(u − v) du is well
defined for all v ∈ sppt(V ), hv(u) = f(u + v)f(u − v)/g(v) is the conditional
density of U given V = v and φv(z) =

∫

ezuhv(u) du. Since f is continuous
almost everywhere and bounded, by condition a) of Theorem 5.1, there is r > 0
such that supv

∫

er|u|f(u+ v)f(u− v) du <∞, and by dominated convergence,
as v → 0, g(v) → g(0) =

∫

f2 ∈ (0,∞). It follows that there is c > 0, such that
{φv(z), v ∈ [−c, c]} is a family of smooth functions of z ∈ [−r, r] with uniformly
continuous and bounded φ′v(z) and φ′′v (z).

Given η > 0, decrease c if necessary so that

sup
(v,z)∈I

|φ(k)
v (z) − φ

(k)
0 (z)| ≤ η

3a1
, k = 1, 2,
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where I = [−c, c]× [−r, r]. By Taylor’s expansion,

φv(z) − φ0(z) = [φ′v(0) − φ′0(0)]z +
1

2
[φ′′v (θz) − φ′′0 (θz)]z2, (v, z) ∈ I,

where θ = θ(v, z) ∈ (0, 1). Then there is m0 > 0, such that for all m ≥ m0,
a ∈ [0, a1] and v ∈ I, one gets a/m ∈ [−r, r],

|φv(a/m) − φ0(a/m)| ≤ 2η/(3m) ≤ (η/m) inf
0≤a≤a1

φ0(a/m)

and hence

1 − η

m
≤ φv(a/m)

φ0(a/m)
≤ 1 +

η

m
, all a ∈ [0, a1]. (A4.12)

Given δ ∈ (0, c), for 0 < t ≤ δ, rewrite (A4.11) as

E0(e
aŪm |Sm = t) =

∫

∏

i∈J

φvi
(a/m)

∏

i6∈J

φvi
(a/m)P (dζ |Sm = t),

where J = {i : |vi| ≥ c}. Let s > 0 and L > 0 be as in (5.8). For m large enough,
a/m < s, a ∈ [0, a1]. Therefore, by Hölder’s inequality, for i ∈ J ,

φvi
(a/m) ≤ [φvi

(s)]a/(sm) ≤ La/(sm) exp

(

aL|vi|
sm

)

,

φvi
(a/m) ≥ 1

φvi
(−a/m)

≥ L−a/(sm) exp

(

−aL|vi|
sm

)

.

Let p = |J |/m. By the above first set of inequalities and Schwartz inequality,

∏

i∈J

φvi
(a/m) ≤ Lap/s exp

(

aL

sm

∑

i∈J

|vi|
)

≤ Lap/s exp

(

aL

sm

√

J
∑

v2
i

)

.

Likewise, by the above second set of inequalities and Schwartz inequality,

∏

i∈J

φvi
(a/m) ≥ L−ap/s exp

(

− aL

sm

√

J
∑

v2
i

)

Since {Sm = t} =
{

(1/m)
∑

V 2
i = t2/4

}

,

L−ap/s exp

(

−aLt
√
p

2s

)

≤
∏

i∈J

φvi
(a/m) ≤ Lap/s exp

(

aLt
√
p

2s

)

.

Observe that, due to 0 < t ≤ δ, Sm = t implies p ≤ δ2/c2. Therefore, as long
as δ is small enough, ap/s is arbitrarily close to 0, and aLt

√
p/(2s) is uniformly

arbitrarily close to 0 for 0 ≤ a ≤ a1 and 0 < t ≤ δ. Consequently, for each
ζ ∈ {Sm = t}, e−η ≤∏i∈J φvi

(a/m) ≤ eη.
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On the other hand, by (A4.12),

e−η ≤
(

1 − η

m

)m(1−p)

≤
∏

i6∈J

φvi
(a/m)

φ0(a/m)
≤
(

1 +
η

m

)m(1−p)

≤ eη.

Thus, e−2ηφ0(a/m)m(1−p) ≤ E0(e
aŪm |Sm = t) ≤ e2ηφ0(a/m)m(1−p) for all

t ∈ [−δ, δ] \ {0}. Since η and p are arbitrarily small and φ0(a/m)m → eaKf

uniformly for a ∈ [0, a1] as m→ ∞, (A4.10) then follows.

Case ii: f is symmetric and has a bounded support In this case B :=
‖U‖L∞(P0) <∞. By condition c) of Theorem 5.1, the density of V is continuous
and bounded on (ǫ,∞) for any ǫ. Then φv(z) is well defined for all z and v ∈
sppt(V ) \ {0}. Since f is symmetric, for v ∈ sppt(V ) \ {0},

φ′v(0) =

∫

uf(u+ v)f(u− v) du/g(v) = 0,

and so |φv(a/m) − 1| ≤ |φ′′v (θa/m)| (a/m)2, with θ ∈ (0, 1). By

φ′′v (s) =

∫

u2esuf(u+ v)f(u− v) du/g(v) ≤ B2e|s|B

Then |φv(a/m) − 1| ≤ (a/m)2B1, where B1 = B2e(a/m)B. Then by (A4.11),
[1−B1(a/m)2]m ≤ E0(e

aŪm |Sm = t) ≤ [1+B1(a/m)2]m, which implies (A4.10).
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