
Bayesian Analysis (2007) 2, Number 3, pp. 473–478

Comment on Article by Jain and Neal

David B. Dahl∗

1 Introduction

Sonia Jain and Radford Neal (JN) make a significant contribution to the literature on
Markov chain Monte Carlo (MCMC) sampling techniques for Dirichlet process mixture
(DPM) models. The paper presents some very nice ideas and will be on my required
reading list for students working with me. DPM models are widely used for Bayesian
nonparametric analyses and efficient sampling techniques are essential for their routine
application. Incremental samplers for nonconjugate DPM models, such as the Auxiliary
Gibbs sampler in Neal (2000), are easily implemented and potentially very efficient.
Unfortunately, these samplers can also have difficulty mixing over the entire sample
space and standard MCMC diagnostics may fail to indicate the problem. JN’s paper
represents a significant advance by providing a non-incremental sampler for conditionally
conjugate DPM models.

The authors have a history of influential papers in this area, including Neal (2000)
and Jain and Neal (2004). Their 2004 paper provided a split-merge sampler for con-
jugate DPM models, where the base distribution G0 in the Dirichlet process prior is
conjugate to the likelihood F . By exploiting this conjugacy, the model parameters of a
cluster can be integrated away. The state of the Markov chain is merely the clustering of
observations. Thus, sampling algorithms for conjugate DPM model attempt to sample
from the posterior clustering distribution.

In nonconjugate DPM models, the model parameters of a cluster cannot be inte-
grated away. Sampling algorithms must simultaneously address the clustering and the
model parameters associated with each cluster. Green and Richardson (2001) were the
first to propose a split-merge sampler for nonconjugate DPM models. Their procedure is
based on reversible jump MCMC (Green 1995; Richardson and Green 1997) where the
Metropolis-Hastings proposals are model-specific. In this paper, JN provide an MCMC
sampler that can be generically applied to any conditionally conjugate DPM model.

2 Conditional Conjugate vs. Nonconjugate

It is important to note that conditional conjugacy is a necessary prerequisite for the
application of JN’s sampler. Suppose the model parameters for the cluster containing
observation i are φ1, . . . , φH with likelihood F (yi|φ1, . . . , φH) and prior G0(φ1, . . . , φH ).
A DPM model is conditionally conjugate if, for each φh ∈ {φ1, . . . , φH}, G0(φ1, . . . , φH )
is conjugate to F (yi|φ1, . . . , φH) in φh. JN’s procedure relies on conditional conjugacy

∗Department of Statistics, Texas A&M University, College Station, TX,
http://www.stat.tamu.edu/~dahl

c© 2007 International Society for Bayesian Analysis ba0007

http://www.stat.tamu.edu/~dahl


474 Comment on Article by Jain and Neal

and hence their procedure is not applicable to all nonconjugate DPM model. Whether
the conditional conjugacy constraint imposes a practical limitation is perhaps problem-
specific.

3 Cluster Labels, Set Partition, and Implementation

JN describe their algorithm using notation involving cluster labels c1, . . . , cn. An al-
ternative way of describing sampling algorithms for DPM models uses set partition
notation. In my experience, the set partition notation provides a straightforward presen-
tation with simple notation. A set partition π = {S1, . . . , Sq} of S0 = {1, . . . , n} divides
the n integers into mutually-exclusive, non-empty, and exhaustive clusters S1, . . . , Sq . I
especially find the set partition notation helpful when translating sampling algorithms
for DPM models to computer code. I use an array of length n whose elements point to
C++ classes representing clusters containing the model parameters and a set of integers
(for the cluster membership).

Regardless of notational preference, readers should be assured that the actual imple-
mentation of JN’s sampler need not be complex. The core of my implementation of JN’s
split-merge procedure is 158 lines of C++ code, whereas the core of my implementation
of the Auxiliary Gibbs sampler is 53 lines of C++ code. The extra time and mental
effort needed to implement their split-merge sampler can pay large dividends for models
and datasets where the Auxiliary Gibbs sampler is likely to have problems.

4 Initial States & Benefits of Split/Merge Samplers

I applied JN’s split-merge algorithm to their Normal-Gamma mixture model and the
beetle data used in their example. In the top two plots of JN’s Figure 1, they use their
vague priors with hyperparameters wj = (100, 100, 50, 100, 25, 100),
B−1

j = (500, 100, 25, 100, 25, 150), and r = R = 1 across all six dimensions. The top left
plot corresponds to Auxiliary Gibbs sampling and shows that this sampler never moves
away from the configuration with all observations in one cluster. JN contrast that with
their Split-Merge (5,1,1,5) sampler (shown in the top right plot of JN’s Figure 1) which
is able to readily find the true three-component structure in the data.

In my implementation with 100 different random number seeds, the Auxiliary Gibbs
sampler was able to find the three-component structure in 98 instances and a two-
component structure (hinted at in the bottom left plot of JN’s Figure 1) in the remaining
two instances. Why could my implementation of the algorithm find the true structure,
but their implementation of the same algorithm could not? The issue was the initial
values of the model parameters. I sampled the initial value of the model parameters from
the prior G0. If, instead, I set the initial values of the model parameters to the sample
means and precisions, I am able to replicate the results of JN in 100 of 100 instances.
Also, if each observation is initially placed in its own cluster, the Auxiliary Gibbs sampler
performed well (regardless of the method used to set the model parameters). My Figure
1 summarizes the results, showing that the problem with the Auxiliary Gibbs sampler



David B. Dahl 475

Initially One Cluster Initially n Clusters

Model
Parameter

Set to
Sample

Means &
Precisions

Model
Parameter
Sampled
from the

Prior

Figure 1: Trace plots from the Auxiliary Gibbs Sampler for the beetle data using JN’s
vague priors and four typical initial states for the Markov chain. The poor performance
of the Auxiliary Gibbs sampler (shown in top left plot of JN’s Figure 1) is only present
when every observation is initially clustered together and the model parameters are
initially set to the sample means and precisions.

is only present when every observation is initially clustered together and the model
parameters are initially set to the sample means and precisions.

In my experience replicating the JN’s Figure 1, their split-merge sampler is not
sensitive to the initial values. For the beetle data and their Normal-Gamma mixture
model, their sampler immediately finds the true three-component structure as shown in
the plots on the right in JN’s Figure 1.

It is interesting to observe that the posterior distribution apparently has virtually
no support for anything other than three components. Notice that the Split-Merge
(5,1,1,5) sampler never moves away from three clusters (to a configuration with two or
four clusters, for example). The jitter present in the right hand size of JN’s Figure 1 is
due purely to the fact that their split-merge sampler embeds the Auxiliary Gibbs sampler
(whose number of scans per split-merge attempt is given as the the third argument in



476 Comment on Article by Jain and Neal

Jain & Neal Dahl

Algorithm Example 1 Example 2 Example 1 Example 2

Gibbs Sampling v = 3 1.00 1.00 1.00 (0.80, 1.13) 1.00 (0.84, 1.12)
Split-Merge (0,1,0,0) 0.11 0.17 0.17 (0.17, 0.18) 0.18 (0.17, 0.19)
Split-Merge (0,1,1,0) 0.60 0.58 0.61 (0.60, 0.62) 0.61 (0.60, 0.63)
Split-Merge (5,1,0,5) 0.36 0.40 0.84 (0.79, 0.88) 0.86 (0.82, 0.89)
Split-Merge (5,1,1,5) 0.89 0.88 1.32 (1.30, 1.35) 1.34 (1.32, 1.37)
Seconds per Iteration 0.45 0.60 5.50 × 10−4 6.75 × 10−4

Table 1: Comparison of relative CPU time of the various samplers depending on the
dataset and the implementation. Jain & Neal columns are derived from Table 3. The
Dahl columns show averages from 100 replications and the 2.5th and 97.5th quantiles.
The data have been standardized by the “Seconds per Iteration” row to make them
comparable across computers and programming languages.

the quad specifying the details of their sampler). Thus, the CPU time spent on trying
to merge and split is wasted and time would be better spent on just the Auxiliary Gibbs
sampler. The same can be said concerning the first simulated dataset in JN’s Figure
4. In contrast, Example 2 (shown in JN’s Figure 5) does provide a compelling case for
the split-merge sampler. It freely moves between four and five components, whereas the
Auxiliary Gibbs sampler is unlikely to easily switch between four and five components.

5 Timing

My final point concerns inherent variability in the implementation of algorithms due to
the chosen programming language and data structures. JN have two simulated datasets
(labeled Example 1 and Example 2) which they use to compare the various samplers. My
Table 1 compares the CPU time of my C++ implementation of the various algorithms
with that of JN’s Matlab implementation. The first two columns are taken from JN’s
Table 3. The Dahl columns show averages from 100 replications and the 2.5th and 97.5th

quantiles. The important point is the relative performance of the various sampling
algorithms (not the speeds of different computers or programming languages), so the
data has been scaled by the “Seconds per Iteration” row. Specifically, the Auxiliary
Gibbs sampler with three auxiliary parameters (labeled as “Gibbs sampling v = 3”) is
set at 1.0 within each column.

Notice that relative CPU time taken by each of the samplers, within an implemen-
tation, is relatively constant across the two example datasets. There are, however, very
different relative CPU times across implementations within a dataset. Recall that the
Split-Merge(5,1,1,5) sampler embeds one Auxiliary Gibbs update with one auxiliary
parameter per split-merge attempt. The Split-Merge(5,1,0,5) does not have any embed-
ded Auxiliary Gibbs updates, leading to a 1 − 0.36/0.89 = 60% reduction in the CPU
time per iteration for JN’s implementation of Example 1. In contrast, my implemen-
tation of Split-Merge(5,1,0,5) provides only 1 − 0.84/1.32 = 36% reduction from my
Split-Merge(5,1,1,5).



David B. Dahl 477

JN (2007) compare an Auxiliary Gibbs sampler with three auxiliary parameters with
their Split-Merge(5,1,1,5) sampler which embeds an Auxiliary Gibbs sampler with one
auxiliary parameter. They chose three and one auxiliary parameters respectively to
make the CPU times comparable per iteration and then run each sampler for a fixed
number of iterations. In my experience, additional auxiliary parameters are often not
worth the extra CPU effort. For the sake of comparison, it might be more useful to
have the number of auxiliary parameters be the same for both samplers. Comparisons
would then be based on a fixed CPU time rather than a fixed number of iterations.

6 Conclusion

JN have made a significant contribution to the literature on sampling algorithms for
DPM models. In implementing their algorithm and model and in using their example
datasets, I found their method can have substantial benefits over the Auxiliary Gibbs
sampler when used to sample from the posterior distribution of conditionally conjugate
DPM models. Their algorithm is certainly more complicated than the Auxiliary Gibbs
sampler, but perhaps not as difficult as one might initially expect. My experience with
JN’s Figure 1 reinforced the importance of using a variety of starting states, particularly
when using the Auxiliary Gibbs sampler. It was nice to see that initial starting values
were not an issue for JN’s split-merge sampler. Although the relative CPU timings of
JN’s implementation and mine can be quite different, the salient point is that split-
merge samplers can finding high-probability regions in posterior distributions that may
be missed by incremental samplers.

References
Green, P. J. (1995). “Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination.” Biometrika, 82: 711–732. 473

Green, P. J. and Richardson, S. (2001). “Modelling heterogeneity with and without the
Dirichlet process.” Scandinavian Journal of Statistics, 28: 355–375. 473

Jain, S. and Neal, R. M. (2004). “A Split-Merge Markov Chain Monte Carlo Procedure
for the Dirichlet Process Mixture Model.” Journal of Computational and Graphical
Statistics, 13(1): 158–182. 473

Neal, R. M. (2000). “Markov Chain Sampling Methods for Dirichlet Process Mixture
Models.” Journal of Computational and Graphical Statistics, 9: 249–265. 473

Richardson, S. and Green, P. J. (1997). “On Bayesian Analysis of Mixtures With An
Unknown Number of Components (Disc: P758-792) (Corr: 1998V60 P661).” Journal
of the Royal Statistical Society, Series B, Methodological, 59: 731–758. 473



478 Comment on Article by Jain and Neal


