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Improving Classification When a

Class Hierarchy is Available Using a

Hierarchy-Based Prior

Babak Shahbaba∗ and Radford M. Neal†

Abstract. We introduce a new method for building classification models when we
have prior knowledge of how the classes can be arranged in a hierarchy, based on
how easily they can be distinguished. The new method uses a Bayesian form of
the multinomial logit (MNL, a.k.a. “softmax”) model, with a prior that introduces
correlations between the parameters for classes that are nearby in the tree. We
compare the performance on simulated data of the new method, the ordinary MNL
model, and a model that uses the hierarchy in a different way. We also test the
new method on page layout analysis and document classification problems, and
find that it performs better than the other methods.
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1 Introduction

In this paper, we consider classification problems where classes have a hierarchical struc-

ture. The hierarchy reflects our prior opinion regarding similarity of classes. Two classes

are considered similar if it is difficult to distinguish them from each other on the basis

of the features available. The similarity of classes increases as we descend the hierarchy.

Our original motivation for studying hierarchical classification schemes was predic-

tion of the biological functions of genes. Functions are usually presented in a hierarchical

form starting with very general classes (eg, cell processes) and becoming more specific

in lower levels of the hierarchy (eg, cell division). Figure 1 shows a small part of the

scheme proposed by Riley (1993) to catalogue the proteins of Escherichia coli. We dis-

cuss this application of our methods elsewhere (Shahbaba and Neal 2006). Here, we

discuss this problem more generally, and illustrate its use for two other examples of

hierarchical classification. We look at the problem of classifying regions of a page in

an article, using classes such as “Section Heading”, “Text”, or “Figure Caption”, which

can be arranged in a hierarchy based on distinguishability. We also look at the problem

of classifying patent documents relating to textiles, where again the classes can be ar-

ranged in a hierarchy in which, for example, a high-level category of “Weaving” contains

sub-classes for “Looms” and for “Weavers’ Tools”.
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Figure 1: A part of a gene annotation hierarchy proposed by Riley (1993) for the E.
coli genome.

In a Bayesian model, we can incorporate prior knowledge of the class hierarchy using

a suitable prior distribution over parameters of the model. In this paper, we introduce a

new method of this sort for the multinomial logit (MNL) model, in which the regression

coefficents for classes that are nearby in the hierarchy are correlated in the prior.

This paper is organized as follows. In section 2, simple classification models and their

extensions for analysing hierarchical classes are discussed. In section 3, using simulated

data, we compare the performance of our model, the ordinary MNL model, and an

alternative model that uses the hierarchy in a different way. In section 4 we compare the

same models on the page region labelling and patent document classification problems.

The last section summarizes our findings and presents some ideas for future research.

2 Hierarchical Classification

Consider a classification problem in which we have observed data for n cases, (x(1), y(1)),

...,(x(n), y(n)), where x(i) = (x
(i)
1 , ..., x

(i)
p ) is the vector of p covariates (features) for case

i, and y(i) is the associated class. Our goal is to classify future cases for which the

class membership is unknown but the covariates are available. For binary classification

problems, a simple logistic model can be used:

P (y = 1|x, α, β) =
exp(α + xβ)

1 + exp(α + xβ)
(1)

Here, α is the intercept, β is a p × 1 vector of unknown parameters and xβ is its inner

product with the covariate vector.
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When there are three or more classes, we can use a generalization known as the

multinomial logit (MNL) model (called “softmax” in the machine learning literature):

P (y = j|x, α, β) =
exp(αj + xβj)∑c

j′=1 exp(αj′ + xβj′)
(2)

where c is the number of classes. For each class, j, there is a vector of p unknown

parameters βj . The entire set of regression coefficients β = (β1, ..., βc) can be presented

as a p × c matrix. This representation is redundant, since one of the βj ’s can be

set to zero without changing the set of relationships expressible with the model, but

removing this redundancy would make it difficult to specify a prior that treats all classes

symmetrically. For this model we can use the following priors:

αj |η ∼ N(0, η2)

βjl|τ ∼ N(0, τ2)

η−2 ∼ Gamma(v, V )

τ−2 ∼ Gamma(w, W )

where j = 1, ..., c and l = 1, ..., p.

The MNL model treats classes as unrelated entities without any hierarchical struc-

ture. This is not always a realistic assumption. In many classification problems, like

those discussed above, one can arrange classes in a hierarchical form analogous to the

hierarchy of species arranged in genera, families, etc. If the classes have in fact the

assumed structure, one would expect to obtain a higher performance by using this ad-

ditional information. A special case is when the classes are ordered (e.g., education

level). For these problems a more parsimonious model (e.g., cumulative logit model)

with improved power can be used (Agresti 2002).

The importance of using the hierarchy in classification models has been emphasized

by many authors (e.g., Sattath and Tversky 1977; Fox 1997; Koller and Sahami 1997).

One approach for modelling hierarchical classes is to decompose the classification model

into nested models (e.g., logistic or MNL). Nested MNL models are extensively discussed

in econometrics (e.g., Sattath and Tversky 1977; McFadden 1980) in the context of

estimating the probability of a person choosing a specific alternative (i.e., class) from a

discrete set of options (e.g., different modes of transportation). These models, known

as discrete choice models, aim at forecasting and explaining human decisions through

optimizing an assumed utility (preference) function, which is different from our aim of

maximizing classification accuracy.

Goodman (2001) showed that using hierarchical classes can significantly reduce the

training time of maximum entropy-based language models and results in slightly lower

perplexities. He illustrated his approach using a word labelling problem, and recom-

mended that instead of predicting words directly, we first predict the category to which

the word belongs, and then predict the word itself. Such a two-level hierarchical model

was also used by Weigend et al. (1999) for document classification. They evaluated their

model on the Reuters-22173 corpus and showed significant improvement, especially for

rare classes.
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For hierarchical classification problems with simple binary partitions, Fox (1997)

suggested using successive logistic models for each binary class. In Figure 2 below, for

example, these partitions are {12, 34}, {1, 2}, and {3, 4}. The resulting nested binary

models are statistically independent, conditioned on the upper levels. The likelihood

can therefore be written as the product of the likelihoods for each of the binary models.

For example, in Figure 2 we have

P (y = 1|x) = P (y ∈ {1, 2}|x) × P (y ∈ {1}|y ∈ {1, 2}, x) (3)

Restriction to binary models is unnecessary. At each level, classes can be divided into

more than two subsets and MNL can be used instead of logistic regression. We refer to

methods based on decomposing the tree structure into nested MNL models as treeMNL.

Consider a parent node, m, with cm child nodes, representing sets of classes defined by

Sk, for k = 1, ..., cm. The portion of the nested MNL model for this node has the form:

P (y ∈ Sk|x, αm, βm) =
exp(αmk + xβmk)∑cm

k′=1 exp(αmk′ + xβmk′)

αmk|ηm ∼ N(0, η2
m)

βmkl|τm ∼ N(0, τ2
m)

η−2
m ∼ Gamma(vm, Vm)

τ−2
m ∼ Gamma(wm, Wm)

where l = 1, ..., p. We calculate the probability of each end node, j, by multiplying the

probabilities of all intermediate nodes leading to j.

In contrast to this treeMNL model, Mitchell (1998) showed that the hierarchical

naive Bayes classifier is equivalent to the standard non-hierarchical classifier when the

probability terms are estimated by maximum likelihood. To improve the hierarchi-

cal naive Bayes model, McCallum et al. (1998) suggested to smooth parameter esti-

mates of each end node by shrinking its maximum likelihood estimate towards the esti-

mates of all its ancestors in the hierarchy. More recently, new hierarchical classification

models based on large margin principals, specifically support vector machine (SVM),

have been proposed (Dumais and Chen 2000; Dekel et al. 2004; Cai and Hoffmann 2004;

Tsochantaridis et al. 2004; Cesa-Bianchi et al. 2006). Dekel et al. (2004) introduced a

large margin hierarchical classification model that uses the sum of parameters along the

tree for classifying cases to the end nodes. These parameters are estimated based on a

set of classifiers that assign cases to the intermediate nodes. Cai and Hoffmann (2004)

suggested a similar approach based on the generalization of multiclass SVM. We also

use sums of parameters along paths in the tree, but in a rather different way from this

past work.

Our new framework for modeling hierarchical classes is illustrated in Figure 2, which

shows a hierarchical classification problem with four classes. For each branch in the

hierarchy, we define a different set of parameters. In Figure 2, these parameters are

denoted as φ11 and φ12 for branches in the first level and φ21, φ22, φ23 and φ24 for

branches in the second level. We assign objects to one of the end nodes using an MNL
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model (Equation 2) whose regression coefficients for class j are represented by the sum

of parameters on all the branches leading to that class. In Figure 2, these coefficients are

β1 = φ11 + φ21, β2 = φ11 + φ22, β3 = φ12 + φ23 and β4 = φ12 + φ24 for classes

1, 2, 3 and 4 respectively. Sharing the common terms, φ11 and φ12, introduces prior

correlation between the parameters of nearby classes in the hierarchy.

In our model, henceforth called corMNL, φ’s are vectors with the same size as β’s.

We assume that, conditional on higher level hyperparameters, all the components of the

φ’s are independent, and have normal prior distributions with zero mean. The variances

of these components are regarded as hyperparameters, which control the magnitudes

of coefficients. We use one hyperparameter for each non-terminal node. When a part

of the hierarchy is irrelevant, we hope the posterior distribution of its corresponding

hyperparameter will be concentrated near zero, so that the parameters it controls will

also be close to zero.

In detail, the prior we use is as follows:

αj |η ∼ N(0, η2)

φmkl|τm ∼ N(0, τ2
m)

η−2 ∼ Gamma(v, V )

τ−2
m ∼ Gamma(wm, Wm)

Here, j = 1, . . . , c indexes classes, and φmkl refers to the parameter related to covariate

xl and branch k of node m. The φ parameters of all the branches that share the same

node are controlled by one hyperparameter, τm, which controls the degree to which that

portion of the hierarchy is active. In figure 2, for example, when the hyperparameters

in the first level are small (compared to the hyperparameters in the second level), the

model reduces to simple MNL. In contrast, when these hyperparameters are relatively

large, the model reinforces our assumption of hierarchical classes.

By introducing prior correlations between parameters for nearby classes, we can

better handle situations in which these classes are hard to distinguish. If the hierarchy

actually does provide information about how distinguishable classes are, we expect that

performance will be improved. This would be especially true when the training set is

small and the prior has relatively more influence on the results. Using an inappropriate

hierarchy will likely lead to worse performance than a standard MNL model, but since

the hyperparameters can adapt to reduce the prior correlations to near zero, the penalty

may not be large.

3 Results for Synthetic Datasets

So far, we have discussed three alternative models: MNL, treeMNL, and corMNL. We

first compare these models using a synthetic four-way classification problem with two

covariates. Data are generated from each of these models in turn, and then fit with each

model in order to test the robustness of the models when applied to data generated from

other models.



226 Improving Classification When a Class Hierarchy is Available

All regression parameters are given normal priors with mean zero. For the MNL

model, the standard deviation for all the intercepts, η, and the standard deviation for

the rest of coefficients, τ , have the following priors:

η−2 ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

τ−2 ∼ Gamma(1, 1) (0.52, 1.20, 6.27)

We use the parameterization of the Gamma distribution in which Gamma(a, b) has

density f(x|a, b) = [baΓ(a)]−1xa−1e−x/b, for which the mean is ab and the standard

deviation is a1/2b. The 2.5, 50 and 97.5 percentiles of τ and η are shown in parenthesis.

For the treeMNL and corMNL models, we assume that classes are arranged in a

hierarchical form as shown in Figure 2. This hierarchy implies that while it might

be easy to distinguish between groups {1, 2} and {3, 4}, further separation of classes

might not be as easy. As mentioned above, the treeMNL model for this hierarchy is

comprised of three nested logistic models. These models are: P (y ∈ {1, 2}|α1, β1, x),

P (y = 1|α2, β2, x, y ∈ {1, 2}) and P (y = 3|α3, β3, x, y ∈ {3, 4}). The priors for the

treeMNL and corMNL models are discussed in section 2. The variances of the regression

parameters, β, in treeMNL and of the φ’s in corMNL are regarded as hyperparameters.

For these two models, one hyperparameter controls all the parameter emerging from

the same node. These hyperparameters are given the following prior distributions:

η−2 ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

τ−2
1 ∼ Gamma(1, 5) (0.23, 0.54, 2.82)

τ−2
2 ∼ Gamma(1, 20) (0.05, 0.12, 0.63)

τ−2
3 ∼ Gamma(1, 20) (0.05, 0.12, 0.63)

Here, τ1, τ2 and τ3 correspond to nodes 1, 2, and 3 respectively (Figure 2). These

parameters have a narrower prior compared to τ in the MNL model. This is to account

for the fact that the role of β in the MNL model is played by more than one parameter

in treeMNL and corMNL. Moreover, the regression parameters in the second level of

hierarchy have a relatively smaller standard deviation τ . As a result, these parameters

tend to be smaller, making separation of class 1 from 2 and class 3 from 4 more difficult.

We do three tests, in which we assume that each of the MNL, treeMNL and corMNL

is the correct model. This allows us to see how robust each model is when data actually

come from a somewhat different model. For each test, we sample a set of parameters

from the prior distribution of the corresponding model. Pairs of data items (x(i), y(i)) are

generated by first drawing 10000 independent samples x
(i)
1 , x

(i)
2 from the uniform(−5, 5)

distribution and then assigning each data item to one of the four possible classes. The

assignment is either based on a multinomial model (for data generated from MNL and

corMNL) or based on successive logistic models (for data generated from treeMNL).

All three models were trained on the first 100 data items and tested on the remain-

ing 9900 items. The regression coefficients were sampled from their posterior distribu-

tion using MCMC methods with single-variable slice sampling (Neal 2003), using the

“stepping out” procedure to find an interval around the current point, and then the
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Figure 2: The simple model used for the simulation study. The coefficient parameters

for each classes are presented as a sum of parameters at different level of hierarchy.

Data

N=100 MNL treeMNL corMNL

log-prob acc log-prob acc log-prob acc

MNL -0.7958 67.1 -0.8918 58.4 -0.9168 59.4

Method treeMNL -0.8489 65.0 -0.8770 58.7 -0.9113 59.4

corMNL -0.7996 67.1 -0.8797 58.6 -0.9075 59.5

Table 1: Comparison of models on simulated data created based on Figure 2. Average

log-probability (log-prob) and accuracy rate (acc) are estimated on the test sets.

“shrinkage” procedure to sample from this interval. Since the hyperparameters were

given conjugate priors, direct Gibbs sampling could be used for them. For all tests we

ran 1000 MCMC iterations to sample from the posterior distributions. We discarded

the initial 250 samples and used the rest for prediction. Performance on the test set is

measured in terms of average log-probability (based on the estimated probability of the

correct class) and accuracy rate (defined as the percentage of the times the correct class

is predicted). We make predictions based on the posterior predictive probabilities.

The above procedure was repeated 100 times. Each time, new regression parame-

ters were sampled from priors and new pairs of data items were created based on the

assumed models. The average results (over 100 repetitions) are presented in Table 1.

In this table, each column corresponds to the model used for generating the data and

each row corresponds to the model used for building the classifier. As we can see, the

diagonal elements have the best performance in each column. That is, the model whose

functional form matches the data generation mechanism performs significantly better
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Figure 3: A hypothetical hierarchy with a more complex structure.

Data

N=100 MNL treeMNL corMNL

log-prob acc log-prob acc log-prob acc

MNL -0.2539 89.9 -0.3473 87.7 -0.3106 88.7

Method treeMNL -0.6837 76.9 -0.2898 90.3 -0.3614 87.9

corMNL -0.2910 89.7 -0.2854 90.1 -0.2841 90.3

Table 2: Comparison of models on simulated data created based on Figure 3. Average

log-probability (log-prob) and accuracy rate (acc) are estimated on the test sets.

than the other two models (all p-values based on average log-probability are less than

0.01 using a paired t-test with n = 100). Moreover, the results show that when the sam-

ples are generated according to the MNL model (i.e., classes are unrelated), corMNL

has a significantly (p-value < 0.001) better performance compared to treeMNL. When

treeMNL is used to generate data, corMNL performs only slightly worse than treeMNL.

The conclusions remain the same when we use different priors and ranges of covariates.

While statistically significant, the results presented in Table 1 might not be signifi-

cant for some practical purposes. This is mostly due to the simplicity of the hierarchical

structure. We repeated the above tests with a more complex hierarchy, shown in Figure

3. For this problem we used four covariates randomly generated from the uniform(0, 1)

distribution. In all three models, we used the same prior as before for the intercepts.

For the MNL model we set τ−2 ∼ Gamma(1, 1). The hyperparameters of treeMNL

and corMNL were given Gamma(1, 5), Gamma(1, 20) and Gamma(1, 100) priors for

the first, second and third level of the hierarchy respectively.

Table 2 shows the average results over 100 datasets for each test. As we can see, the

differences between models are more accentuated. When data are generated by other

models, corMNL again performs well, being outperformed only by the true model. When

data come from treeMNL, the results from corMNL are very close to those of the true

model (i.e., treeMNL), and are actually better for log-probability, though this must of
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course be due to chance, and is not statistically significant. In contrast, treeMNL’s

performance on data generated by corMNL is substantially worse than corMNL’s per-

formance, and is also worse than that of the non-hierarchical MNL model.

4 Results for Real Datasets

In this section, we test our approach on two real classification tasks. The first task is

labelling the regions of a page using a predefined set of labels. The dataset used for

this problem was collected by Laven et al. (2005) and is derived from the page images

of 58 articles (460 pages) appearing in the proceedings of the Neural Information Pro-

cessing Systems (NIPS) conference in 2001 and 2002. The second task is classification

of documents into different groups based on their contents. For this task we use patent

documents released by World Intellectual Property Organization (WIPO). The MAT-

LAB files for MNL, treeMNL and corMNL, along with the NIPS dataset, are available

online at http://www.utstat.utoronto.ca/~babak.

4.1 Performance Measures

To compare the performance of different models, we use average log-probability and

accuracy rate as described above. We also employ several other measurements includ-

ing macroaverage F1 (van Rijsbergen 1972), parent accuracy, precision, and taxonomy-

based loss (Cai and Hoffmann 2004). F1 is a common measurement in document la-

belling and is defined as:

F1 =
1

J

J∑

j=1

2Aj

2Aj + Bj + Cj

where Aj is the number of cases which are correctly assigned to class j, Bj is the num-

ber cases incorrectly assigned to class j, and Cj is the number of cases which belong to

the class j but are assigned to other classes. The taxonomy-based loss is equal to half

the distance between the predicted and the actual class in the tree. Parent accuracy

is accuracy after grouping the end nodes with the same parent. While accuracy mea-

surements are based on the top-ranked (based on the posterior predictive probabilities)

category only, precision measures the quality of ranking and is defined as follows:

precision =
1

n

n∑

i=1

( 1

|y : P (y|x(i)) ≥ P (y(i)|x(i))|
)

Here, y ranges over all classes and y(i) is the correct class of case i. The denominator

is, therefore, the number of classes with equal or higher rank compared to the correct

class.

Except for average log-probability and precision, all these measurements require

that each test case be assigned to one specific class. For this purpose, we assigned each

test case to the end node with the highest posterior predictive probability, as would be

http://www.utstat.utoronto.ca/~babak
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Figure 4: Hierarchical structure of document labels.

optimal for a simple 0/1 loss function. It is, of course, possible to tailor predictions

to different performance measures. For example, to improve the parent accuracy, we

can still use the 0/1 loss function but make prediction based on the posterior predictive

probability of parent nodes. For the taxonomy-based loss, we can predict the class that

minimizes the expected distance when a case is misclassified. We tried these tailored

predictions, but since the improvements were negligible, we report only the results based

on classifying to the end node with highest predictive probability.

To provide a baseline for interpreting the results, for each task we present the per-

formance of a model that ignores the covariates and whose likelihood is solely based on

the observed frequency of classes. For this model, we use a vague Dirichlet prior with

parameter 1 for all classes. This is a conjugate prior for multinomial parameters. The

posterior distribution is also a Dirichlet distribution with parameter nj + 1 for class j.
Here, nj is the frequency of class j in the training set.

4.2 NIPS Dataset

As mentioned above, the NIPS dataset contains page images of 58 articles. Each page

was segmented to several regions, and each region was manually classified to one of 19

possible classes. Figure 4 presents these classes in a hierarchical form. The hierarchy

is based on our beliefs regarding how difficult it is to separate classes from each other

using the available covariates.

The covariates are 59 features such as the location of the region on the page and the

density of the ink inside the region. We normalized all features so they have zero mean
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and standard deviation 1. Laven et al. (2005) considered the items from the same article

as independent even though they clearly are not. Although this may cause overfitting

problems, we follow the same assumption in order to produce comparable results.

Laven et al. (2005) divided the dataset into a training set (3445 regions), and a test

set (1473 regions). We also trained our three models (MNL, corMNL and treeMNL) on

the same training set and evaluated performance on the test set.

The coefficient parameters in the MNL models were given normal priors with mean

zero. The variances of these parameters were regarded as hyperparameters. For this

problem, since the number of covariates, p = 59, is relatively large, we use the Automatic

Relevance Determination (ARD) method suggested by Neal (1996). ARD employs a

hierarchical prior to determine how relevant each covariate is in classification of objects.

In this method, one hyperparameter, σl, is used to control the variance of all coefficients,

βjl (j = 1, ..., c), for covariate xl. If a covariate is irrelevant, its hyperparameter will

tend to be small, forcing the coefficients for that covariate be near zero. We also use one

hyperparameter, τ , to control the overall magnitude of the β’s in the MNL model, so

that the the standard deviation of βjl is equal to τσl. Therefore, while σl controls the

relevance of covariate xl compared to other covariates, τ , controls the overall usefulness

of all covariates in separating classes. In detail, the prior for the MNL model was as

follows:

αj |η ∼ N(0, η2) j = 1, ..., 19

βjl|τ, σl ∼ N(0, τ2σ2
l ) l = 1, ..., 59

η−2 ∼ Gamma(0.5, 1) (0.63, 2.09, 46.31)

τ−2 ∼ Gamma(0.5, 20) (0.14, 0.47, 10.07)

σ−2
l ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

Similar priors are used for the parameters of treeMNL and corMNL. For these two

models, we again used one hyperparameter, σ−2
l ∼ Gamma(1, 10) to control all parame-

ters related to covariate xl. We also used one scale parameter τ−2
m ∼ Gamma(0.5, 100),

with 2.5, 50 and 97.5 percentiles of 0.06, 0.21 and 5.57, for all parameters (β’s in

treeMNL, φ’s in corMNL) sharing the same node m. The prior for the intercepts was

the same as in the MNL model.

We used Hamiltonian dynamics (Neal 1993) for sampling from the posterior distri-

bution of coefficients. To reduce the random walk aspect of sampling procedure, we use

a reasonably large number of leapfrog steps (L = 500). The stepsizes, ε’s, are set to

0.02 in order to maintain an acceptance rate of about 90%. In the MNL and corMNL

models, new values are proposed for all regression parameters simultaneously. Nested

MNL models in treeMNL are updated separately since they are regarded as independent

models. The coefficient parameters within each nested model, however, are updated at

the same time. Gibbs sampling was used for sampling from the posterior distribution of

hyperparameters. Convergence of the Markov chain simulations was assessed by plotting

the values of hyperparameters and the average log-likelihood (on training cases). We

ran each chain for 2500 iterations, of which the first 500 were discarded. Simulating the
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Figure 5: Trace plots of the ARD hyperparameters, σl, for two covariates of the corMNL

model applied to the NIPS dataset.
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corMNL model applied to the NIPS dataset.
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log-prob acc (%) pacc (%) precision (%) F1 (%) ∆-loss

Baseline -2.38 29.4 44.1 47.2 2.4 1.44

LR (ML) − 88.1 − − − −
MNL -0.429 88.8 93.0 93.1 74.6 0.22

treeMNL -0.466 87.2 91.7 92.3 68.9 0.23

corMNL -0.405 89.5 93.6 93.5 76.0 0.20

Table 3: Performance of models based on NIPS dataset. Here, “acc”, “pacc” and “∆-

loss” refer to accuracy, parent accuracy and taxonomy-based loss respectively. Larger

values are better except for ∆-loss.

Markov chain for 10 iterations took about 5 minutes for MNL, 4 minutes for treeMNL

and 9 minutes for corMNL, using a MATLAB implementation on an UltraSPARC III

machine.

Table 3 compares the results from different models. In this table, we present the

logistic regression (LR) model (based on maximum likelihood) developed by Laven et al.
(2005) as the benchmark. As we can see, the corMNL model outperforms all other

models. In contrast, treeMNL performs worse than the non-hierarchical MNL model.

To illustrate the effect of hyperparameter σ in identifying relevant features, in Fig-

ure 5 we show the trace plots of σl for two covariates in the corMNL model. These

hyperprameters correspond to two features of a region: “height” and “height divided by

width”. The latter is clearly a more relevant feature for this task. To show the effects of

the τm hyperparemeters, in Figure 6 we present the trace plots of τ3 and τ9 (i.e., scale

parameter of node 3 and node 9 in Figure 4). As we can see, the scale parameter in

node 3 is large compared to the scale parameter in node 9.

4.3 WIPO-alpha Dataset

We also evaluated our models on the WIPO-alpha dataset of patent documents (avail-

able at http://www.wipo.int/ibis/datasets). These documents are classified according

to a standard taxonomy known as the International Patent Classification (available at

http://www.wipo.int/classifications/en/). The classes in this taxonomy are arranged in

a four-level tree structure. At the highest level, documents are divided to 8 sections. For

our experiment, we use the documents in section “D” (textile; paper), which has 1710

documents and a total of 160 classes. A pre-processed dataset based on these documents

was provided by Cai and Hoffmann (2004). This dataset was generated by indexing the

title and claim contents. Document parsing, tokenization, and term normalization were

performed using the MindServer retrieval engine. The result is a set of word (i.e., to-

ken) counts for each document. Overall, there are 18077 unique words, whose counts

are used as covariates. We use a square-root transformation for these covariates in order

to emphasize more the occurrence of a word rather than its frequency.

The number of covariates is quite large compared to the number of documents.



234 Improving Classification When a Class Hierarchy is Available

log-prob acc (%) pacc (%) precision (%) F1 (%) ∆-loss

Baseline -4.492 3.6 13.8 12.1 0.04 2.47

SVM − 41.8 65.4 52.3 − 1.20

hSVM − 42.8 69.1 54.4 − 1.08

MNL -2.622 42.0 66.9 55.1 18.4 1.10

treeMNL -2.408 42.3 68.7 56.0 17.7 1.05

corMNL -2.397 43.4 69.8 56.9 18.7 1.02

Table 4: Performance of models based on WIPO-alpha dataset, section “D”. Here, “acc”,

“pacc” and “∆-loss” refer to accuracy, parent accuracy and taxonomy-based loss respec-

tively. The SVM and hierarchical SVM (hSVM) are developed by Cai and Hoffmann

(2004). Larger values are better except for ∆-loss.

Cai and Hoffmann (2004) devised a variable selection strategy which provides an op-

timal solution according to their SVM model. Here, we apply Principal Component

Analysis (PCA). We first centred the covariates but did not scale them to have variance

one. We then projected the covariates on the 300 principal component directions with

the highest variance, and used these 300 principal component scores as covariates for

our models, rather than the original covariates. For all models, we use the same priors

as discussed in section 4.2, with the exception of ARD hyperparameters, σl. For these

hyperparameters, we used σ−2
l ∼ Gamma(2, 1), where l = 1, ..., 300 (2.5, 50 and 97.5

percentiles of σl are 0.45, 0.78 and 1.98). Compared to the priors used in section 4.2,

these priors are more concentrated close to 1. We used these priors to minimize the

effect of the ARD hyperparameters since the task of variable selection and relevance

determination are mainly performed through PCA. As before, Hamiltonian dynamics

(L = 100 and ε = 0.005) and Gibbs sampling were used for sampling from the posterior

distribution of coefficients and hyperparameters respectively. We ran each chain for 3000

iterations and discarded the first 500 iterations. For 10 iterations, the Markov chain

simulations took about 6 minutes for MNL, 2 minutes for treeMNL and 10 minutes for

corMNL.

Table 4 compares the performance of different models. Following Cai and Hoffmann

(2004), the results are presented based on a three-fold cross-validation where singular

classes (i.e., nj = 1) appear only in the training set. As we can see, the corMNL model

outperforms both MNL and treeMNL. Although the results reported for the corMNL

model are better than the hiearchical SVM (hSVM) developed by Cai and Hoffmann

(2004), the difference could be due to several factors, such as randomness of cross-

validation, transformation of variables, or the efficiency of variable selection strategy,

as well as the different approach to using the hierarchy. For this problem, treeMNL did

by most measures improve on the non-hierarchical MNL model, though it was not as

good as corMNL.
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5 Conclusions and Future Directions

In this paper, we have introduced a new approach for modelling hierarchical classes. Our

experiments show that when the hierarchy actually does provide information regarding

the similarity of classes, our approach outperforms both the simple MNL model and

models based on decomposing the hierarchy into nested MNL models. Our method can

be applied to many classification problems where there is prior knowledge regarding the

structure of classes.

Our method can be applied to many classification problems where there is prior

knowledge regarding the structure of classes. One such problem, which was our original

motivation, is annotation of gene function. Using a prior based on the class hierarchy,

we have been able to predict gene function with a higher accuracy (Shahbaba and Neal

2006). For this problem, we used a more elaborate prior for hyperparameters. We also

introduced a new method for combining different data sources, which is a common issue

in gene function classification.

More experiments are needed to compare corMNL with other approaches to utilizing

the hierarchy, such as hSVM (Cai and Hoffmann 2004). One difference in our approach

is that it is based on a probability model for hierarchical prior information, not on

any particular hierarchy-based loss function. If a good probability model is used, the

probability distributions obtained should provide the information needed to obtain good

performance with any loss function.

So far, we have focused only on simple tree-like structures. There are other hier-

archical structures that are more complex than a tree. For example, one of the most

commonly used gene annotation schemes, known as Gene Ontology (GO), is imple-

mented as a directed acyclic graph (DAG). In this structure a node can have more than

one parent. Our method, as it is, cannot be applied to these problems, but it should be

possible to extend the idea of summing coefficients along a path to the class in order to

allow for multiple paths.

In our approach, we considered only one structure for each hierarchical classification

problem. However, we might sometimes be able to think of more than one possible class

hierarchy. It is possible to generalize our method to multiple hierarchies. As for the

generalization to DAG’s, it should be possible to sum coefficients along the multiple

paths within different hierarchies. We can further use a set of hyperparameters to

discover the relevance of each hierarchy. If we have prior knowledge that leads us to

prefer some structures over others, we can incorporate that knowledge into the priors

for these hyperparameters.

Finally, although the results presented in this paper are for linear models, we expect

that a similar approach can be used in non-linear models such as neural networks.
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