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Comment on Article by Dominici et al.

David Ruppert∗ and Raymond J. Carroll†

We thank the authors for a very thought-provoking paper. They address a problem

of great importance and have proposed an interesting and ingenious solution. It is quite

challenging to develop a model that is suitable for the complex data structure presented

by this problem, and the authors should be congratulated for their success.

We believe in the philosophy of using whatever works best, and for complex problems

such as this one, a fully Bayesian analysis seems much more satisfactory than anything

else we know of. As the authors show, a Bayesian analysis allows one to multiply impute

missing data, the true values of mismeasured covariates, and counterfactuals and to

adjust inference for uncertainty in the imputations. Figure 4 shows the importance of

the latter. As we will discuss shortly, there are a few places where the authors could

have improved their analysis by taking further advantage of Bayesian techniques. For

example, Bayesian modeling would allow for a more data-driven choice of the spline

model. We also believe that their measurement error model (9) could be improved by

a fully Bayesian analysis rather than using a regression that is fit outside the Gibbs

sampler.

The authors use counterfactuals to relate treatment effects on birth weight to treat-

ment effects on survival. This is a very interesting technique and relatively new to us.

However, as discussed at the end of these comments, we wonder to what extent the

results, which are based on counterfactuals, really prove a causal relationship between

these treatment effects.

The paper starts with a simple analysis based upon model (1) for W obs
iti

that is

conditional upon covariates including the outcome Y obs
i . Because models such as (1) do

not distinguish between cause and effect, e.g., do not say whether W obs
iti

influences Y obs
i

or vice versa, we find them less satisfactory than hierarchical Bayesian models such as

equation (4). The authors appear to be in agreement with us here.

A common approach taken in the measurement error literature is to develop a hi-

erarchical model with three basic components. Using, for the moment, the notation of

Carroll et al. (2006), the three parts of the model are

• an “exposure model” for the true values, X, of the error-prone covariates condi-

tional upon correctly measured covariates, Z,

• a “measurement error model” for the surrogates, W , given (Z,X), and

• an “outcome model” for the responses, Y , given (Z,X), which is assumed to be
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the same as the distribution of Y given (Z,X,W )—this assumption is called

nondifferential measurement error.

Given these three components and a prior, it is straightforward to implement an MCMC

to sample from the posterior—see Richardson (1998), Gustafson (2004), or Carroll et al.

(2006). The vector X is an unknown “latent variable” or “missing data” and treated

in the same way as the parameters, that is, one samples from its full conditional given

the observed data and the parameters. Other missing data can be treated in this way

as well.

Since the authors’ data have a more complex structure than a typical measurement

error model, the hierarchical model must be somewhat more complicated. Returning to

the authors’ notation, the approach when applied to the authors’ study has the following

three components:

a) a model for {W (0),W (1)} conditional on xi, where xi is a vector of covariates,

e.g., the authors’ model (7),

b) a model for {Witi
(0),Witi

(1)} conditional upon {W (0),W (1)} and ti, and

c) a model for {Yi(0), Yi(1)} given xi and {W (0),W (1)}, e.g., the author’s model

(5) and (6).

Equation (9) is an attempt at supplying part b). For the reader’s convenience we

repeat that equation here:

Witi
(z)|Wi(z), ti ∼ N(γ0i + γ1ti, τ

2).

As the authors explain, the parameter γ0i on the right hand side is γ0 + δi where δi is

“known and equal to Witi
(z)−Ŵiti

(z). This seems to make the conditional distribution

Witi
(z)|Wi(z), ti dependent on Witi

(z), which of course cannot really be true, so we

asked the authors for some clarification. In email correspondence, Professor Dominici

provided us with further details about how the birth weights at time 0 are predicted.

The authors’ methodology includes estimation of certain parameters “. . . outside the

Gibbs sampling by fitting a regression on (Wit(zi), ti) . . . .” It our belief that a fully

Bayesian approach here would both be conceptually simpler and just as effective, if not

more so. We still do not understand whether model (9) as implemented by the authors

produces a distribution that is dependent only upon (Wi(z), ti). Also, it may be that

this non-Bayesian component does not allow for all uncertainties to be reflected in the

posterior, as a fully Bayesian analysis would allow. Figure 3 shows the potential danger

of not using a fully Bayesian methodology. At the Case Studies Workshop, Professor

Zeger mentioned that the authors fell back on (9) because of a convergence problem

when the fitting was done inside the Gibbs sampler. We wonder whether this problem

might be due to non-identifiability; see below.

We suggest replacing equation (9) by

Witi
(z)|Wi(z), ti ∼ Normal{Wi(z) + γ1ti, τ

2t2α
i }, (1)
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α > 0, which allows for heteroscedastic measurement error, reflecting the belief that

there should be more uncertainty about Wi(0) the longer the time interval between

birth and the time an infant is weighed. One advantage of (1) is that there is no need

to fit a regression model outside the Gibbs sampler. Instead, the parameters in (1) and

the unobserved birth weights at time 0 are sampled by the MCMC using information

from all observed data, observed weights, covariates, and Y obs. Any uncertainty due

to prediction from this model is incorporated in the posterior. Another advantage of

(1), one due to the heteroscedasticity, is that the conditional standard deviation τtαi
is zero when ti = 0, so our model satisfies the obvious “boundary condition” that

Witi
(z)|ti=0 = Wi(z). The obvious linear trends in Figure 2 suggest that γ1 is well-

determined from the data. It is unclear whether α can be accurately estimated without

additional data or an informative prior. We would be surprised if there were no data in

Nepal or a similar third world country where birth weights are measured longitudinally

so that one could get informative priors for τ and α. Even data from a developed

country might provide some useful information. However, locating and obtaining such

data may be difficult, especially from a developing country, and in its absence we suggest

a somewhat informative prior such as α ∼ Uniform(.5, 1) or perhaps a beta distribution

supported on [.5, 1] with more probability near 1. The values α = .5 and α = 1 seem

to us to be extreme cases of the likely values of α. The former is implied by the model

where Wit(z) is a Brownian motion in t with drift that is constant across individuals.

The latter is implied by model where each baby’s weight grows linearly in t with a rate

that varies among individuals and is normally distributed. Compared to the Brownian

motion model, this model seems more realistic to us, which suggests that the prior put

more probability near 1. Both models imply the linear mean in (1) as well as the normal

distribution. The combination of Brownian motion and individual-specific drifts might

be reasonably approximated by an α between .5 and 1. Of course, if we really believed

that a random-drift Brownian motion model held, we could use this to obtain a variance

function model.

The heteroscedasticity in model (1) has another advantage besides realism—it makes

the parameter τ identified. To appreciate this, note that by equation (7) of the paper

and (1),

var{Witi
(z)|xi, ti} = τ2t2α

i + σ2
z .

In the homoscedastic case where α = 0, only the sum of τ 2 + σ2
z is identified, not the

individual components. Allowing α > 0 is an example of model expansion inducing

identifiability (Gustafson (2005)). As Gustafson shows, model expansion can be ill-

advised if the parameters are near the region of non-identifiability. Thus, we would

be concerned if we α was close to 0. However, as just explained, α should be close

to 1 and certainly at least 0.5. Non-identifiability is a common problem when there

is measurement error and no validation data or replications, but fortunately it can be

avoided here by using a suitable model. We wonder whether the non-identifiability

when α = 0 could be the cause of convergence problems with the Gibbs sampler that

the authors experienced and was mentioned above. Despite their identifiability here, τ
and α may be poorly determined by the data, so we reiterate that longitudinal data on

the growth of infants could be useful.
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It might be mentioned in passing that measurement error model (1) is somewhat

unusual. First, the measurement error seems to be in an outcome, not a covariate.

Often response measurement errors can be ignored and incorporated into equation error.

However, in this case, the measurement error has a bias depending on ti, so correction

for this bias is needed. Moreover, although weight is an outcome, it is also used as

a covariate in the model for survival, so in that sense there is covariate measurement

error.

Choosing a likely value of ρ does not seem easy, and will depend upon whether it

is viewed as a conditional correlation, as in (7), or an unconditional correlation, as in

(10)—we will assume the former. One possible way to view ρ is that it measures the

heterogeneity in the response to the treatment. We gained some insight by considering

the model

Wi(z) = β0 + z∗βz + xT

i βx + z∗xT

i βzx + ωi,1 + z∗ωi,2, (2)

where z∗ = 1 or −1 for treatment and control, respectively, z∗i βz is the treatment

main effect, xT

i βx is the main effect of the covariates, z∗xT

i βzx is the interaction be-

tween the covariates and treatment, ωi,1 is a random effect due to the infant, and

z∗ωi,2 is an infant-treatment interaction. Assume that ωi,1 is Normal(0, σ2
ω,1), ωi,2 is

Normal(0, σ2
ω,2), and ωi,1 and ωi,2 are independent. Then (2) is equivalent to model (8)

of the paper with σ2
0 = σ2

1 = σ2
ω,1 + σ2

ω,2 and

ρ =
σ2

ω,1 − σ2
ω,2

σ2
ω,1 + σ2

ω,2

. (3)

Notice that if there is no interaction between infants and treatment, meaning that and

σ2
ω,2 = 0, then ρ = 1. For this reason, ρ may be even higher than the correlation between

successive children with the same mother or even identical twins. However, ρ could be

small if some children respond much more to the treatment than others. Depending upon

the variance, σ2
ω,1, of the infant effects and the variance, σ2

ω,2, of the infant-treatment

interactions, ρ might be less than 0.5 and perhaps even negative. Consideration of

model (2) might help practitioners elicit a prior for ρ. Model (2) implies that σ2
0 = σ2

1

but it could be easily generalized to remove this constraint, e.g., to

Wi(z) = β0 + z∗βz + xT

i β1 + z∗xT

i β2 + exp(θz∗) {ωi,1 + z∗ωi,2} . (4)

Equation (3) continues to hold under model (4), though ωi,1 and ωi,2 lose their simple

interpretations, since if θ 6= 0 then Wi(1) +Wi(0) depends on ωi,2 as well as ωi,1 and

Wi(1) −Wi(0) depends on ωi,1 as well as ωi,2.

An interesting paper by Gustafson (2005) argues in favor of using an informative

prior on non-identified nuisance parameters such as (ρ, ψ) rather that using a sensitivity

analysis with several fixed values of the nuisance parameters. It would be interesting to

see how this strategy would work on the authors’ case study.

The authors use splines in several places. These splines could be natural cubic splines

with three knots, as the authors have used in their work, but such splines have only three

parameters and might not be flexible enough to fit the data. They could also be too
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flexible and overfit the data. It is difficult to know a priori whether more or less degrees of

freedom are needed. An alternative is to use more knots, e.g., 5 to 8, and a penalty which

allows the “effective” number of parameters to be determined by the data. The penalty

can be imposed by an appropriate prior of the coefficients of spline basis functions. Then

the smoothing parameter is a ratio of variances which are sampled during the MCMC.

This not only allows for data-driven smoothing parameter, but also adjusts the inference

for uncertainty about the smoothing parameter. Moreover, simultaneous confidence

bands are easy within this framework, and simultaneous bands on derivatives allow

inference about where the function is increasing or decreasing (Ruppert et al. (2003)).

We have had much success with Bayesian penalized splines for nonparametric regression,

both with and without measurement error (Ruppert et al. (2003); Berry et al. (2002)).

Although there is a large and increasing causal inference literature, many statis-

ticians are not very familiar with the area. It would be helpful if the authors could

more fully separate inferences that depend on counterfactuals from those that do not.

Marginal treatment effects such as those illustrated in Figure 5 should be independent of

the counterfactuals and therefore independent of assumptions about ρ and ψ. Figure 6

shows the average of treatment effects for subpopulations defined by both {W (1),W (0)}.
These effects are shown under four pairs of assumed values of (ρ, ψ), and it appears that

the assumed value of (ρ, ψ) has little effect on the stratified treatment effect. A first we

thought this was a remarkable robustness property, but now this is not so clear to us.

Perhaps the authors can comment.

The point we do not fully understand can be explained by considering the second

from the left set of boxplots in Figure 6(a). These show that for the stratum with low

birth weight, i.e., W (0) < 2500, and a large imputed treatment effect, i.e., {W (1) −
W (0)} > 50, there is large beneficial imputed treatment effect. This is a wonderful

result, to the extent that it is true. Remember that the treatment effects on both birth

weight and survival are imputed. The imputed values should be consistent with the

marginal effects, and, in fact, might be largely determined by the marginal effects. It

seems to us that given the marginal treatment effects, those low birth weight babies

with a large imputed effect on birth weight must have a large imputed effect on survival,

regardless of (ρ, ψ). This is a issue where further discussion by the authors of the

meaning of these results and perhaps cautions about their use would be welcome. Model

(2) might be a useful aid to thinking about this issue. Model (2) decomposes the

covariance between Wi(0) and Wi(1) into a component xT

i βx + z∗xT

i βzx due to the

covariate effects and a subject-specific component ωi,1 + z∗ωi,2. The variance of Wi(0)

and Wi(1) of course have the same types of decomposition. The components due to

the covariates are identified, and, if they dominate, then conclusions will be robust to

misspecification of (ρ, ψ); perhaps this is what is happening here.

In any application of statistics, the biggest mistake is to ask the wrong questions.

Fortunately, this is a mistake that the authors have been careful to avoid. The key

questions are,

1. does the treatment shift the lower end of the birth weight distribution upwards

without shifting the upper end?
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2. does the survival probability increase with increasing birth weight at the lower

end of the birth weight distribution?

The authors have asked both questions and found positive answers. The answers depend

upon the distribution of (birth weight, survival) marginally within the the treatment

and control groups, and these distributions can be estimated because the assignment

to control or treatment has been randomized. The joint distribution of (birth weight,

survival) under both treatment and control within an individual is not needed to address

these questions. Because of this, the conclusions of the paper in regards to questions 1.

and 2. should be robust to misspecification about the counterfactuals.
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