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EXTENDING THE SCOPE OF EMPIRICAL LIKELIHOOD
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This article extends the scope of empirical likelihood methodology in
three directions: to allow for plug-in estimates of nuisance parameters in esti-
mating equations, slower than

√
n-rates of convergence, and settings in which

there are a relatively large number of estimating equations compared to the
sample size. Calibrating empirical likelihood confidence regions with plug-
in is sometimes intractable due to the complexity of the asymptotics, so we
introduce a bootstrap approximation that can be used in such situations. We
provide a range of examples from survival analysis and nonparametric statis-
tics to illustrate the main results.

1. Introduction. Empirical likelihood [Owen (1990, 2001)] has traditionally
been used for providing confidence regions for multivariate means and, more gen-
erally, for parameters in estimating equations, under various standard assumptions:
the number of estimating equations is fixed, they do not involve nuisance parame-
ters, and the parameters of interest are estimable at

√
n-rate, where n is the sample

size. Under such assumptions and with i.i.d. observations [or even dependent ob-
servations; see, e.g., Chapter 8 of Owen (2001)], empirical likelihood (EL) based
confidence regions can be calibrated using a nonparametric version of Wilks’s the-
orem involving a chi-squared limiting distribution.

The aim of the present paper is to develop adaptations when the traditional as-
sumptions are violated. More specifically, under certain asymptotic stability condi-
tions, we establish generalizations of the basic theorem of EL to allow for plug-in
estimates of nuisance parameters in the estimating equations, for slower than

√
n-

rates of convergence, and for i.i.d. settings in which there are a relatively large
number of estimating equations compared to the sample size. Several of our ex-
amples share the characteristic that they would be harder to analyze with other
methods. In particular, the method of profile EL [see, e.g., Owen (2001), page 42]
for dealing with nuisance parameters in estimating equations is often not applica-
ble for infinite-dimensional nuisance parameters, and even when it is applicable,
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implementation can be computationally difficult. The triangular array EL theorem
of Owen [(2001), page 85] applies under slower than

√
n-rates, and has been useful

in the context of nonparametric density estimation, for instance, but is not flexible
enough to handle estimating functions with plug-in.

The use of plug-in for nuisance parameters in EL confidence regions is not new.
It has recently been applied in various survival analysis contexts; see Qin and Jing
(2001a, 2001b), Wang and Jing (2001), Li and Wang (2003) and Qin and Tsao
(2003). The technique has also been used in survey sampling with imputation for
missing response; see Wang and Rao (2002). Our aim here, however, is to pro-
vide a more widely applicable version of this approach, that can accommodate a
wide array of examples, allowing both plug-in and slower than

√
n-rates of con-

vergence. We take the point of view that it is preferable to derive a general result
using generic assumptions, that can be checked in a large number of applications,
rather than reinventing the basic theory on each occasion. Calibrating EL confi-
dence regions with plug-in is sometimes intractable due to the complexity of the
asymptotics, so we introduce a bootstrap approximation that can be used in such
situations.

To illustrate our general results we consider a range of examples from survival
analysis and nonparametric statistics in settings where the inference is based on
estimating functions. In particular, we look at functionals of survival distributions
with right censored data [treated via EL in Wang and Jing (2001)], the error dis-
tribution in nonparametric regression [Akritas and Van Keilegom (2001)], density
estimation [treated by EL in Hall and Owen (1993) and Chen (1996)], and sur-
vival function estimation from current status data [van der Vaart and van der Laan
(2006)].

Standard maximum likelihood theory for parametric models, as well as EL the-
ory, keeps the dimension of the parameter (or the number of estimating equations)
fixed, say at p, as sample size n grows. This is what leads to asymptotic normality,
Wilks type theorems for likelihood ratio statistics and Owen type theorems for EL.
Portnoy (1986, 1988) and others have investigated the extent to which maximum
likelihood theory based results still hold, when p is allowed to increase with n. The
canonical growth restriction for normal approximations to hold is that p2/n → 0,
while p3/2/n → 0 typically suffices for certain quadratic approximations associ-
ated with Wilks theorems to hold.

In this article we investigate the similar problem of finding conditions under
which the EL methods continue to work adequately when p grows. The canonical
growth condition will be seen to be p3/n → 0. Under this condition, in addition
to other requirements that have to do with stability of eigenvalues of covariance
matrices, minus twice the log-EL can be approximated well enough with a certain
quadratic form that in itself is close to a χ2

p .
We should add that in situations with a high number of parameters the typical

aim is not to provide a simultaneous confidence region for the full parameter vec-
tor, say (μ1, . . . ,μp). It could rather be to test whether a subset of the parameters
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have zero values, or to compare one distribution with another, or, more generally, to
make inference for a focus parameter of dimension q < p, say f (μ1, . . . ,μp). For
any linear map f , these tasks can be carried out inside our framework for growing
p by constructing a q-dimensional confidence region in which q grows with n. For
further discussion in the context of a regression example, see Section 5.4.

The paper is organized as follows. Section 2 develops the EL theory with plug-
in and the bootstrap approximation of the limiting distribution of the EL statistic.
Six examples, including two involving slower than

√
n-rates of convergence, are

discussed in Section 3. In Section 4 we examine the limiting behavior of the EL sta-
tistic in situations where the number of estimating functions is allowed to increase
with growing sample size. Some examples are presented in Section 5, including
setups with “growing polynomial regression” and “growing exponential families.”
Proofs can be found in the Appendix.

2. Plug-in empirical likelihood. We first describe the general framework.
The basic idea of empirical likelihood (EL) is to regard the observations X1, . . . ,

Xn as if they are i.i.d. from a fixed and unknown d-dimensional distribution P ,
and to model P by a multinomial distribution concentrated on the observations.
Inference for the parameter(s) of interest, θ0 = θ(P ) ∈ �, is then carried out us-
ing a p-dimensional estimating function of the form mn(X, θ,h), where, for the
purposes of the present paper, h is a (possibly infinite-dimensional) “nuisance”
parameter with unknown true value h0 = h(P ) ∈ H .

When h0 is known, it can replace h in the EL ratio function

ELn(θ, h) = max

{
n∏

i=1

(nwi) : each wi > 0,

n∑
i=1

wi = 1,

n∑
i=1

wimn(Xi, θ, h) = 0

}
,

leading to a confidence region {θ : ELn(θ, h0) > c} for θ0, where c is a suitable
positive constant, and the maximum of the empty set is defined to be zero. The
constant c can be calibrated using Owen’s (1990) EL theorem, provided mn = m

does not depend on n: if the observations are i.i.d. and m(X,θ0, h0) has zero mean
and a positive definite covariance matrix, then −2 log ELn(θ0, h0) →d χ2

p , where
χ2

p has a chi-squared distribution with p degrees of freedom.

2.1. Main result. We now establish a generalization of Owen’s result in which
the unknown h0 is replaced by an estimator ĥ, and the estimating function is al-
lowed to depend on n. This result will provide a way of calibrating {θ : ELn(θ, ĥ) >

c} as a confidence region for θ0. We extract the basic structure of Owen’s result,
and only impose an existence condition, (A0) below, and some “generic” asymp-
totic stability conditions, (A1)–(A3) below. These conditions ensure a nondegener-
ate limiting distribution, but do not require i.i.d. observations or consistency of ĥ,
although such structure may very well be helpful for checking the conditions in
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specific applications. Our proof (placed in the Appendix) uses tools somewhat dif-
ferent from those usually employed in the EL literature, as in, for example, Owen
(2001), Chapter 11; see also Remark 2.7 below.

We use the following notation throughout. For vectors v, let ‖v‖ denote the
Euclidean norm, and v⊗2 = vvt. For matrices V = (vi,j ), let |V | = maxi,j |vi,j |.

Let {an} be a sequence of positive constants bounded away from zero, and U a
nondegenerate p-dimensional random vector. In most of the applications we con-
sider, an = 1 and U ∼ Np(0,V1), where the covariance matrix V1 is positive def-
inite, but the extra generality can be useful in some applications. Let V2 denote a
p × p positive definite covariance matrix. The following conditions are needed:

(A0) P {ELn(θ0, ĥ) = 0} → 0.
(A1)

∑n
i=1 mn(Xi, θ0, ĥ) →d U .

(A2) an

∑n
i=1 m⊗2

n (Xi, θ0, ĥ) →pr V2.
(A3) an max1≤i≤n ‖mn(Xi, θ0, ĥ)‖ →pr 0.

As pointed out by a referee, ĥ just plays the role of indicating that mn is being
estimated, and we could replace mn(X, θ, ĥ) by the simpler notation m̂n(X, θ).
This also covers situations in which h depends on θ with an estimating function of
the form mn(X, θ, ĥθ ). We prefer to include ĥ explicitly in the notation, however,
because all our examples involve a plug-in estimator, as does our bootstrap result
in Section 2.3.

Condition (A0) is equivalent to P(0 ∈ Cn) → 1, where Cn denotes the interior
of the convex hull of {mn(Xi, θ0, ĥ), i = 1, . . . , n} and 0 is the zero vector in R

p .
This is the basic existence condition needed for EL to be useful in our general
setting. Below we describe how the EL statistic can be expressed, up to a negligible
remainder term, as a quadratic form involving the left-hand sides of (A1) and (A2),
so these conditions play a natural role in the asymptotics (see Remark 2.7). Finally,
(A3) is required to obtain the negligibility of the remainder term. For the practical
verification of these conditions, we refer the reader to Section 3, where they are
checked in detail in a number of applications.

THEOREM 2.1. If (A0)–(A3) hold, then −2a−1
n log ELn(θ0, ĥ) →d U tV −1

2 U .

2.2. Remarks. This theorem is related to many results in the literature, which
we now discuss, along with a sketch of its proof; the complete proof appears in the
Appendix.

REMARK 2.1. Owen’s EL theorem follows from Theorem 2.1 by taking
an = 1 and mn = m/

√
n. Indeed, (A0) then holds using an argument involving

the Glivenko–Cantelli theorem over half-spaces [see page 219 of Owen (2001)],
(A1) by the multivariate central limit theorem, (A2) by the law of large numbers,
and (A3) by a Borel–Cantelli argument [Lemma 11.2 of Owen (2001)].
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REMARK 2.2. When U ∼ Np(0,V1) with V1 positive definite, the limit dis-
tribution above may be expressed as r1χ

2
1,1 + · · · + rpχ2

1,p , where the χ2
1,j ’s are

independent chi-squared random variables with one degree of freedom and the
weights r1, . . . , rp are the eigenvalues of V −1

2 V1; cf. Lemma 3 of Qin and Jing
(2001a). If, in addition, V1 and V2 coincide, we have the standard χ2

p limit distri-
bution. When V1 and V2 are not identical, the weights r1, . . . , rp may need to be
estimated, for example via consistent estimators V̂1, V̂2 and computing the eigen-
values of V̂ −1

2 V̂1. It is not possible to say anything in general about estimation
of V1, which will depend on the structure of the specific application; later in this
section we examine a bootstrap approach which can be applied when V1 is diffi-
cult to estimate by other means. For an = 1, an estimator of V2 is easily provided
given plug-in of a consistent estimator θ̂ for θ0. In the Appendix we show that
V̂2 = ∑n

i=1 m⊗2
n (Xi, θ̂ , ĥ) consistently estimates V2 under the following two addi-

tional conditions: there exists a p × p-matrix-valued function V (θ,h) such that

(A4) For some subset H̄ of H such that P {ĥ ∈ H̄} → 1, and for some δ > 0,

sup
‖θ−θ0‖<δ,h∈H̄

∣∣∣∣∣
n∑

i=1

m⊗2
n (Xi, θ, h) − V (θ,h)

∣∣∣∣∣ →pr 0;

(A5) sup‖θ−θ0‖≤δn,h∈H̄ |V (θ,h) − V (θ0, h)| → 0 for any real sequence δn ↓ 0.

When the observations are i.i.d. and mn = m/
√

n for some function m(X,θ,h)

that does not depend on n, we would expect to use V (θ,h) = Em⊗2(X1, θ, h)

and then (A4) amounts to a (convergence-in-probability) version of the Glivenko–
Cantelli property for F = {m⊗2(·, θ, h) :‖θ − θ0‖ < δ,h ∈ H̄}.

REMARK 2.3. For i.i.d. observations and mn = m/
√

n, with m(X,θ0, h0)

having zero mean and a finite covariance matrix V0, the multivariate central limit
theorem implies that

∑n
i=1 mn(Xi, θ0, h0) tends to Np(0,V0), so condition (A1)

describes the perturbation of V0 due to replacing h0 by ĥ. In the “highly smooth”
case that M(θ0, ĥ) = opr(n

−1/2), where M(θ,h) = Em(X,θ,h), it can be shown
(under some additional assumptions) that there is no perturbation: V1 = V0. For
instance, suppose that the class of functions {m(·, θ0, h) :h ∈ H} is Donsker, and
ĥ is consistent in the sense that ρj (ĥ, h0) →pr 0 for j = 1, . . . , p, where ρj (h,h0)

is the L2(P ) distance between mj(X, θ0, h) and mj(X, θ0, h0). Then
n∑

i=1

mn(Xi, θ0, ĥ) = n−1/2
n∑

i=1

{m(Xi, θ0, ĥ) − M(θ0, ĥ)} + √
nM(θ0, ĥ)

tends to Np(0,V0), so V1 = V0, where empirical process theory is used to obtain
weak convergence of the first term; cf. van der Vaart (1998), page 280. However,
M(θ0, ĥ) = opr(n

−1/2) is a strong condition, so we have avoided using it in favor
of the less restrictive condition (A1), which is flexible enough to be checked within
the context of the examples considered in the next section.
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REMARK 2.4. Kitamura (1997) introduces blockwise EL with estimating
functions, without plug-in, in models having weakly dependent stationary obser-
vations. The maximum EL estimator under blocking is shown to have greater effi-
ciency than the standard maximum EL estimator, but the blockwise approach has
not been extended to allow plug-in. Standard EL (with plug-in), however, can still
provide accurate confidence sets under dependent observations, for according to
Theorem 2.1 the limiting distribution of the standard EL statistic, while not chi-
square, is of a tractable form. If mn = m/

√
n and there is no plug-in, conditions

(A1) and (A2) can be checked by central limit theorems and ergodic theorems for
weakly dependent sequences. Condition (A3) holds provided E‖m(X,θ0)‖2 < ∞
by a Borel–Cantelli argument [cf. Owen (2001), Lemma 11.2]. For an estimat-
ing function m(X,θ) such that Em(X,θ0) = 0, the limiting distribution of the
EL statistic is as in Remark 2.2 with V1 = ∑∞

i=1 Cov{m(X1, θ0),m(Xi, θ0)} and
V2 = Var{m(X,θ0)}, which could be estimated easily.

REMARK 2.5. Nordman, Sibbertsen and Lahiri (2007) develop blockwise
EL for the mean of the long-range dependent (stationary and ergodic) process
Xi = G(Zi), where {Zi} is a stationary sequence of N(0,1) random variables
such that cov(Zi,Zi+n) = n−αL(n), for some 0 < α < 1 and slowly varying L(·),
and G(·) is a Borel function with G(Z1) having finite mean θ0 and finite vari-
ance σ 2. Suppose that α, L(·) and G(·) − θ0 are known and we use an estimating
function of the form mn(Xi, θ) = bn(Xi − θ), where bn depends on the rate of
convergence of the sample mean of the Xi . Condition (A1) is checked using a
result of Taqqu (1975), which shows that bn

∑n
i=1(Xi − θ0) →d U if we specify

bn = nα/2−1L(n)−1/2. Here U is defined by a multiple Wiener integral and does
not depend on θ0. Condition (A2) is checked by setting an = n−1b−2

n = n1−αL(n)

and using the ergodic theorem:

an

n∑
i=1

mn(Xi, θ0)
2 = n−1

n∑
i=1

(Xi − θ0)
2 →a.s. σ

2 = V2.

In this case the choice of an tends to infinity, and it is not possible to arrange
an = 1.

REMARK 2.6. In the special case that the nuisance parameter h is finite di-
mensional, the profile EL statistic

−2 log
{

max
h

ELn(θ0, h)
/

max
θ,h

ELn(θ, h)

}
→d χ2

q

under various regularity conditions [Qin and Lawless (1994), Corollary 5], where
q is the dimension of θ . This provides an attractive method of obtaining an EL
confidence region for θ , and is easier than using plug-in, but it is restricted to finite-
dimensional nuisance parameters and the estimating function needs to be differen-
tiable in (θ, h). Bertail (2006) extended this approach to infinite-dimensional h in
some “highly smooth” cases (cf. Remark 2.3).
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REMARK 2.7. Our proof of Theorem 2.1 differs from the usual EL approach
in that we take the dual problem perspective; see, for example, Christianini and
Shawe-Taylor (2000), Section 5.2, for the relevant convex optimization theory. An
outline of the proof is as follows. Write Xn,i = mn(Xi, θ0, ĥ). By (A0), with prob-
ability tending to 1, ELn = ELn(θ0, ĥ) = ∏n

i=1(1 + λ̂tXn,i)
−1, where the p-vector

of Lagrange multipliers λ̂ satisfies
∑n

i=1 Xn,i/(1+ λ̂tXn,i) = 0, as in Owen (2001),
page 219. Thus, with probability tending to 1, we can express the EL statistic in
dual form as

−2 log ELn = Gn(̂λ) = sup
λ

Gn(λ),(1)

where Gn(λ) = 2
∑n

i=1 log(1 + λtXn,i), and the domain of Gn is the set on which
it is defined (regarding logx as undefined for x ≤ 0). Note here that Gn is concave
and achieves its maximum at λ̂ since ∇Gn(̂λ) = 0. Now consider the following
quadratic approximation to Gn:

G∗
n(λ) = 2λtUn − λtVnλ where Un =

n∑
i=1

Xn,i,Vn =
n∑

i=1

X⊗2
n,i ,

and the domain of G∗
n is taken as the whole of R

p . We show in our Appendix that
the difference between the maxima of Gn and G∗

n (over their respective domains)
is of order opr(an). Thus, by (1) and the fact that G∗

n is maximized at λ∗ = V −1
n Un

when Vn is invertible (which happens with probability tending to 1), it follows that

−2a−1
n log ELn = a−1

n sup
λ

G∗
n(λ) + opr(1) = U t

n(anVn)
−1Un + opr(1),(2)

which tends in distribution to U tV −1
2 U , via assumptions (A1) and (A2). It

also follows from the proof that Theorem 2.1 continues to hold in cases where
(Un,Vn) →d (U,V2), with a random rather than a fixed V2.

2.3. Bootstrap calibration. As mentioned above, the estimation of V1 can be
difficult in certain situations and, more seriously, U may not be normally distrib-
uted, in which case a bootstrap calibration is desirable. The procedure developed
below consists in replacing U by a bootstrap approximation, and in consistently
estimating V2.

We restrict attention to i.i.d. data and mn = m/
√

n. Assume that M(θ,h0) = 0
if and only if θ = θ0, where M(θ,h) = Em(X,θ,h), and denote Mn(θ,h) =
n−1 ∑n

i=1 m(Xi, θ, h). Let {X∗
1, . . . ,X∗

n} be drawn randomly with replacement
from {X1, . . . ,Xn}, let ĥ∗ be the same as ĥ but based on the bootstrap data, and
define M∗

n(θ, h) = n−1 ∑n
i=1 m(X∗

i , θ, h). Also, let θ̂ be a consistent estimator of
θ0, and V̂2 = n−1 ∑n

i=1 m⊗2(Xi, θ̂ , ĥ).
We use the abbreviated notation 
n = Mn − M , as a function of (θ, h), and 
∗

n

denotes the bootstrap version of 
n (here and in the sequel we define the boot-
strap version of any statistic as the expression obtained by replacing M,Mn, θ0, h0
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and ĥ by Mn,M
∗
n, θ̂ , ĥ and ĥ∗, resp.). Let H be a vector space of functions en-

dowed with a pseudo-metric ‖ · ‖H , which is a sup-norm metric with respect to the
θ -argument and a pseudo-metric with respect to all the other arguments. Also let
�n = √

n{
n(θ0, h0)+�(θ0, h0)[ĥ−h0]}, where �(θ0, h0)[ĥ−h0] is the Gâteaux
derivative of M(θ0, h0) in the direction ĥ − h0 [see, e.g., Bickel, Klaassen, Ritov
and Wellner (1993), page 453]. The bootstrap analogue of �n is denoted by �∗

n.
Finally, let P ∗ denote the bootstrap distribution conditional on the data. The fol-
lowing conditions are needed to formulate the validity of the bootstrap approxima-
tion:

(B1) supt∈Rp |P ∗{�∗
n ≤ t} − P {�n ≤ t}| →pr 0.

(B2) sup‖θ−θ0‖≤δn,‖h−h0‖H≤δn
‖
n(θ,h) − 
n(θ0, h0)‖ = opr(n

−1/2) for all
δn ↓ 0.

(B3) ‖M(θ0, ĥ) − M(θ0, h0) − �(θ0, h0)[ĥ − h0]‖ ≤ c‖ĥ − h0‖2
H for some

c > 0.
(B4) ‖ĥ − h0‖H = opr(n

−1/4).
(B5) The bootstrap analogues of conditions (B2)–(B4) hold pr-a.s.

THEOREM 2.2. Under conditions (A0)–(A5) and (B1)–(B5),

sup
t≥0

|P ∗{n[M∗
n(θ̂ , ĥ∗) − Mn(θ̂, ĥ)]tV̂ −1

2 [M∗
n(θ̂ , ĥ∗) − Mn(θ̂, ĥ)] ≤ t}

− P {−2 log ELn(θ0, ĥ) ≤ t}| →pr 0.

REMARK 2.8. When θ̂ is defined as the minimizer of ‖Mn(θ, ĥ)‖, sufficient
conditions for θ̂ to be consistent can be found in Theorem 1 in Chen, Linton and
Van Keilegom (2003). In order to verify condition (B2) in the case of i.i.d. obser-
vations, it suffices by Corollary 2.3.12 in van der Vaart and Wellner (1996) to show
that the class {m(·, θ, h) : θ ∈ �,h ∈ H} is Donsker, and that

Var{m(X,θ,h) − m(X,θ0, h0)} ≤ K1‖θ − θ0‖ + K2‖h − h0‖H + εn

for some K1,K2 ≥ 0, and for some εn ↓ 0. The former condition can be verified by
making use of Theorem 3 in Chen, Linton and Van Keilegom (2003). The bootstrap
analogue of (B2) then follows from Giné and Zinn (1990), provided

Var∗{m(X∗, θ, h) − m(X∗, θ̂ , ĥ)} ≤ K ′
1‖θ − θ̂‖ + K ′

2‖h − ĥ‖H + ε′
n

for some K ′
1,K

′
2 = O(1) a.s. and for some ε′

n = o(1) a.s. Finally, condition (B3)
and its bootstrap version can often be verified by using a two-term Taylor expan-
sion of M(θ0, ĥ) and of M(θ̂, ĥ∗) around h0 and ĥ, respectively.

3. Applications of the plug-in theory. This section gives six illustrations of
the preceding plug-in theory. The first uses parametric plug-in for a nonparametric
estimand while the five others effectively use nonparametric plug-in to solve non-
parametric empirical likelihood problems. The last two are examples of situations
where the rate of convergence of the estimator of θ0 is slower than the usual root-n
rate. All the examples use an = 1.



EMPIRICAL LIKELIHOOD 1087

3.1. Symmetric distribution functions. Let F be a continuous distribution
function of a random variable X, that is symmetric about an unknown location a,
so F(x) = 1 − F(2a − x) for all x. Consider estimation of θ0 = F(x) at a fixed x

from n i.i.d. observations from F . The estimating function has p = 2 components
(the first being the usual estimating function and the second making use of the
symmetry assumption): mn = n−1/2m, with

m(X,θ, a) =
(

I {X ≤ x} − θ

I {X > 2a − x} − θ

)
.

The plug-in estimator of a is taken as the sample median â. Let η0 = min(θ0,1 −
θ0) and suppose 0 < θ0 < 1. Condition (A2) holds and

V2 =
(

θ0(1 − θ0) −η2
0

−η2
0 θ0(1 − θ0)

)
when θ0 �= 1/2, and V2 is singular when θ0 = 1/2. A consistent estimator of V2
is obtained by replacing θ0 by F̂ (x), where F̂ is the empirical distribution func-
tion of X. The validity of condition (A3) is straightforward. Now, let us turn to
condition (A1). First note that

√
n{1 − F̂ (2â − x) − θ0}

= √
n{1 − F(2â − x) − F̂ (2a − x) + F(2a − x) − θ0} + oP (1)

= √
n{1 − F̂ (2a − x) − θ0} − 2f (2a − x)

√
n(â − a) + oP (1)

= √
n{1 − F̂ (2a − x) − θ0} − 2f (x)f (a)−1√n{F̂ (a) − 1/2} + oP (1)

provided f (a) > 0, and hence n−1/2 ∑n
i=1 m(Xi, θ0, â) is asymptotically normal

from the Cramér–Wold device and the central limit theorem. It is easily seen that
the asymptotic variance matrix V1 is given by

V1 =
(

θ0(1 − θ0), −η2
0 − f (x)f (a)−1η0

−η2
0 − f (x)f (a)−1η0, θ0(1 − θ0) + f (x)2f (a)−2 + 2f (x)f (a)−1η0

)
.

The elements of this matrix can be estimated by replacing θ0 by F̂ (x) and plugging
in kernel estimators for f (x) and f (a).

Finally, we check condition (A0) when 0 < θ0 < 1/2; the case 1/2 < θ0 < 1 is
similar. We need to show that P {(0,0)t ∈ Cn} → 1. First, P {â > x} → 1 so we
can condition on the event that â > x. Next, note that m(X,θ0, â) takes only three
possible values: (

1 − θ0
−θ0

)
,

( −θ0
1 − θ0

)
or

(−θ0
−θ0

)
,

each with positive probability. It can be easily seen that the origin (0,0)t is con-
tained in the interior of the convex hull of these three points, from which the as-
sertion follows.
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3.2. Integral of squared densities. Let X1, . . . ,Xn be i.i.d. from an unknown
density f0 which is assumed to be uniformly continuous and nonuniform. The
quantity θ0 = ∫

f 2
0 dx is of interest for various problems related to nonparamet-

ric density estimation. The limit distribution of the Hodges–Lehmann estimator of
location has variance proportional to 1/θ2

0 ; see Lehmann (1983), page 383. Simi-
larly, the power of the Wilcoxon rank test is essentially determined by the size of
θ0; see Lehmann (1975), page 72.

Consider the estimating function m(X,θ, f ) = f (X) − θ and let mn =
n−1/2m. As a plug-in for f0, we employ a kernel density estimator f̂ (x) =
n−1 ∑n

i=1 kb(Xi − x), where kb(·) = k(·/b)/b is a scaled version of a symmet-
ric and bounded kernel function k using bandwidth b = bn. [For discussion of
methods for deciding on good kernel bandwidths, when the specific purpose is
precise estimation of θ0, see Schweder (1975).] Define

V =
∫

(f0 − θ0)
2f0 dx =

∫
f 3

0 dx −
(∫

f 2
0 dx

)2

,

which is the asymptotic variance of n−1/2 ∑n
i=1 m(Xi, θ0, f0), and is positive since

f0 is nonuniform. We now show that (A2) holds with V2 = V . Write

n−1
n∑

i=1

m2(Xi, θ0, f̂ ) = n−1
n∑

i=1

{f̂ (Xi) − θ0}2 =
∫

f̂ 2 dF̂ − 2θ0θ̂ + θ2
0 ,

in terms of the empirical distribution function F̂ and θ̂ = n−1 ∑n
i=1 f̂ (Xi) =∫

f̂ dF̂ . Then
∫

f̂ dF̂ and
∫

f̂ 2 dF̂ have the required limits in probability,
∫

f 2
0 dx

and
∫

f 3
0 dx, respectively, provided b → 0 and nb → ∞. This verifies (A2).

Checking (A1) requires a more precise study of

θ̂ = n−1
n∑

i=1

f̂ (Xi) = n−2
∑
i,j

kb(Xi − Xj) = k(0)

nb
+ n − 1

n
ĝ.

Here ĝ = ĝ(0), where ĝ(y) = (n
2

)−1 ∑
i<j k̄b(Yi,j , y) is a natural kernel estima-

tor of the density g(y) = ∫
f (y + x)f (x) dx of the difference Yi,j = Xi − Xj ,

and k̄b(Yi,j , y) = 1
2{kb(Yi,j − y) + kb(Yi,j + y)}. Hjort (1999), Section 7, shows

that ĝ(y) has mean value g(y) + 1
2b2g′′(y)

∫
u2k(u) du + o(b2), with variance

(4/n){g∗(y) − g(y)2} plus smaller order terms, where g∗(y) = (1/4){ḡ(y, y) +
ḡ(y,−y) + ḡ(−y, y) + ḡ(−y,−y)} and ḡ(y1, y2) is the joint density of two re-
lated differences (X2 − X1,X3 − X1). It follows that

n−1/2
n∑

i=1

m(Xi, θ0, f̂ ) = √
n(θ̂ − θ0)

has mean of order O(1/(
√

nb) + √
nb2) and variance going to 4V . This, in

conjunction with the asymptotic theory of U-statistics, verifies (A1) with U ∼
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N(0,4V ), under the conditions
√

nb → ∞ and
√

nb2 → 0. (If b = b0n
−α , we

need 1
4 < α < 1

2 .) For (A3), note that f̂ (x) ≤ b−1kmax for all x, where kmax is the
maximum of k(u). Hence maxi≤n |f̂ (Xi)−θ0| is bounded by b−1kmax +θ0, which
implies (A3), provided only that

√
nb → ∞.

Finally, for (A0) we need to show that

P

{
min

1≤i≤n
m(Xi, θ0, f̂ ) < 0 < max

1≤i≤n
m(Xi, θ0, f̂ )

}
→ 1.

First, consider

max
1≤i≤n

m(Xi, θ0, f̂ ) ≥ max
1≤i≤n

f0(Xi) − max
1≤i≤n

|f̂ (Xi) − f0(Xi)| − θ0.

Note that max1≤i≤n |f̂ (Xi) − f0(Xi)| → 0 a.s. by the uniform consistency of
f̂ , which holds for b as above (and suitable kernels k) by Theorem A of
Silverman (1978), where we have used the assumption that f0 is uniformly con-
tinuous. An example of a suitable kernel is the standard normal density function.
Also, max1≤i≤n f0(Xi) →a.s. supt f0(t) > θ0, since f0 is continuous and nonuni-
form, so P {max1≤i≤n m(Xi, θ0, f̂ ) > 0} → 1. In a similar way we can consider
min1≤i≤n m(Xi, θ0, f̂ ). We may now conclude that −2 log ELn(θ0, f̂ ) →d 4χ2

1 .

3.3. Functionals of survival distributions. Wang and Jing (2001) (henceforth
WJ) developed a plug-in version of EL for a class of functionals of a survival
function (including its mean) in the presence of censoring. Denote the survival
and censoring distribution functions by F and G, respectively. The parameter of
interest is a linear functional of F of the form θ = θ(F ) = ∫ ∞

0 ξ(t) dF (t), where
ξ(t) is a (known) nonnegative measurable function and θ(F ) is assumed finite.
The estimating function is mn = n−1/2m, with

m(Z,
, θ,G) = ξ(Z)


1 − G(Z)
− θ,

Z = min(X,Y ), 
 = I {X < Y }, Y ∼ G. Here X ∼ F and Y ∼ G are assumed
to be independent. The Kaplan–Meier estimator Ĝn of the censoring distribution
function G plays the role of the plug-in estimator. The resulting estimator θ̂ of
θ0 takes the form of an inverse-probability-weighted average. Equivalently, θ̂ =
θ(F̂n), where F̂n is the Kaplan–Meier estimator of F ; see Satten and Datta (2001)
for further discussion and references.

The conditions (A0)–(A3) needed to apply Theorem 2.1 are now checked by
referring to various parts of WJ’s proof of their Theorem 2.1, the conditions of
which we assume implicitly. For (A0) we need to make the further mild assumption
that the distribution of ξ(X) is nondegenerate (i.e., not concentrated at its mean θ0).
Then,

max
1≤i≤n

m(Zi,
i, θ0, Ĝn) ≥ max
1≤i≤n

ξ(Zi)
i − θ0,
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which is strictly positive for n sufficiently large a.s. Also,

min
1≤i≤n

m(Zi,
i, θ0, Ĝn) = −θ0 < 0

for n sufficiently large a.s. This, together with the lower bound for the maximum,
entails (A0). Condition (A1) is immediate from the lemma on page 524 of WJ,
with U ∼ N(0,V1) and V1 being the asymptotic variance of θ̂ . Condition (A2) is
checked using a Glivenko–Cantelli argument almost identical to that used below
for estimation of V2, where V2 = Em2(Z,
, θ0,G) < ∞ by condition (C3) of WJ.
Condition (A3) is the display immediately before (4.5) in WJ.

It remains to provide consistent estimators of V1 and V2, and we do this along
the lines of Remark 2.2. Stute’s (1996) jackknife estimator can be used for V̂1. Un-
der conditions (A4)–(A5), we have that V̂2 = n−1 ∑n

i=1 m2(Zi,
i, θ̂ , Ĝn) consis-
tently estimates V2, where we also use the consistency of θ̂ . To check (A4), assume
that G(τH−) < 1, where τH = inf{t :H(t) = 1}, and H is the distribution function
of Z. Choose a constant c such that G(τH−) < c < 1. Specify H̄ as the class of
increasing nonnegative functions h such that h(τH−) < c and h(t) = h(τH ) for
t ≥ τH . Now, sup0≤t<τH

|Ĝn(t) − G(t)| is bounded by

sup
0≤t<τH

∣∣Ĝn(t) − G
(
t ∧ Z(n)

)∣∣ + sup
0≤t<τH

∣∣G(
t ∧ Z(n)

) − G(t)
∣∣

= sup
0≤t≤Z(n)

|Ĝn(t) − G(t)| + sup
Z(n)<t<τH

∣∣G(
Z(n)

) − G(t)
∣∣ →pr 0,

by uniform consistency of Ĝn on the interval [0,Z(n)]; see Wang (1987). Thus
P {Ĝn ∈ H̄} = P {Ĝn(τH−) < c} → 1. The class {1/(1 − h) :h ∈ H̄} is contained
in the class of all monotone functions into [0,1/(1 − c)], which is Glivenko–
Cantelli; see van der Vaart and Wellner (1996), page 149. Thus, using the preser-
vation property of Glivenko–Cantelli classes under a continuous function [see
van der Vaart and Wellner (2000)], it follows that F , defined right after condi-
tions (A4) and (A5), is Glivenko–Cantelli. Condition (A5) follows by noting that
E|m2(Z, θ,h) − m2(Z, θ0, h)| is bounded above by

E
(|m(Z, θ,h) − m(Z, θ0, h)||m(Z, θ,h) + m(Z, θ0, h)|)

≤ ‖θ − θ0‖{‖θ + θ0‖ + 2 E|ξ(Z)|/(1 − c)}
for h ∈ H̄ .

3.4. Error distributions in nonparametric regression. Consider the model Y =
μ(X) + ε, where X and ε are independent, ε has unknown distribution function
Fε , and μ(·) is an unknown regression function. We now use our approach with
bootstrap calibration to construct an EL confidence interval for θ0 = Fε(z) ∈ (0,1),
at a fixed point z. The same assumptions as in Akritas and Van Keilegom (2001)
are imposed. In particular, Fε is assumed to be continuous, μ(·) is smooth and X

is bounded. For simplicity we restrict X to (0,1).
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Consider the Nadaraya–Watson estimator μ̂(x) = ∑n
i=1 Wn,i(x;bn)Yi , with

weights Wn,i(x;bn) = kb,x(Xi)/
∑n

j=1 kb,x(Xj ) in terms of a kernel function k

and scaled versions kb,x(u) = b−1k((u − x)/b) thereof, with b = bn = b0n
−2/7 a

bandwidth sequence (other choices of the bandwidth are possible). The estimating
function is mn = n−1/2m, where m(X,Y, θ,μ) = I {Y − μ(X) ≤ z} − θ .

We now check the conditions of Theorem 2.1. First, (A1) follows from the
asymptotic normality of θ̂ = n−1 ∑n

i=1 I {̂εi ≤ z} [with ε̂i = Yi − μ̂(Xi)], given
by Theorem 2 in Akritas and Van Keilegom (2001):

√
n{F̂ε(z) − Fε(z)} =

n−1/2 ∑n
i=1 m(Xi,Yi, θ0, μ̂) →d N(0,V1) where V1 is defined in their paper. Con-

dition (A2) holds with V2 = θ0(1 − θ0), provided 0 < θ0 < 1. Also, (A3) holds
since the function

√
nmn is uniformly bounded by 1. Finally, (A0) is an immediate

consequence of the fact that P {Y − μ̂(X) ≤ z} (probability conditionally on the
function μ̂) converges to Fε(z), which follows from a Taylor expansion and the
uniform consistency of μ̂. Since Fε(z) is strictly between 0 and 1, it follows that

P {there exist 1 ≤ i, j ≤ n such that Yi − μ̂(Xi) ≤ z and Yj − μ̂(Xj ) > z} → 1,

which yields (A0).
It remains to estimate V1 and V2. Note that V̂2 = θ̂ (1− θ̂ ) consistently estimates

V2. However, V1 is harder to estimate. A plug-in type estimator can be obtained by
making use of the estimator of the error density in Van Keilegom and Veraverbeke
(2002). Since this approach requires the selection of a new bandwidth, we pre-
fer to use the bootstrap approach. We now check the conditions of Theorem 2.2.
For (A4), set δ > 0 and define

C1+δ(0,1) = {differentiable f : (0,1) → R, such that ‖f ‖1+δ ≤ 1},
where

‖f ‖1+δ = max{‖f ‖∞,‖f ′‖∞} + sup
x,y

|f ′(x) − f ′(y)|
|x − y|δ ,

and ‖ · ‖∞ denotes the supremum norm. Careful examination of the proof of
Lemma 1 in Akritas and Van Keilegom (2001) reveals that the class {I (ε ≤
z + f (X)) :f ∈ C1+δ(0,1)} is Donsker, which is, using the notation of that proof,
equal to the class F1 with d2 ≡ 1 and z fixed. Therefore, also the class{

I
(
ε ≤ z + f (X)

) − θ :f ∈ C1+δ(0,1), θ ∈ [0,1]}
= {I {Y − h(X) ≤ z} − θ :h ∈ H̄ , θ ∈ [0,1]}

is Donsker, and hence Glivenko–Cantelli, where H̄ = H = μ + C1+δ(0,1), and
H̄ is endowed with the supremum norm. As a consequence, the class F , defined
right after (A4) and (A5), is also Glivenko–Cantelli. Moreover, P {μ̂ ∈ H̄} → 1 by
Propositions 3–5 in Akritas and Van Keilegom (2001). Condition (A5) is satisfied
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since for any δn ↓ 0,

sup
|θ−θ0|≤δn,h∈H̄

|Em2(X,Y, θ,h) − Em2(X,Y, θ0, h)|

≤ δn sup
|θ−θ0|≤δn,h∈H̄

E|2I {Y − h(X) ≤ z} − θ − θ0| → 0.

Next, let us calculate �(θ,h)[h̄ − h] for any h, h̄ ∈ H . We find

lim
τ→0

{
M

(
θ,h + τ(h̄ − h)

) − M(θ,h)
}
/τ

= lim
τ→0

τ−1
∫ [

FY |x
(
z + h(x) + τ

(
h̄(x) − h(x)

)) − FY |x
(
z + h(x)

)]
dFX(x)

=
∫

fY |x
(
z + h(x)

)(
h̄(x) − h(x)

)
dFX(x),

where FY |x and fY |x are the distribution and density function of Y given X = x,
and FX is the distribution function of X. Consequently,

�n = √
n

[
n−1

n∑
i=1

I {Yi − μ(Xi) ≤ z} − θ0

+ n−1
∫

fY |x
(
z + μ(x)

) n∑
i=1

(
kb,x(Xi)Yi − E{kb,x(X)Y })dx

]
+ opr(1)

(3)

= √
n

[
n−1

n∑
i=1

I {Yi − μ(Xi) ≤ z} − θ0

]

+ √
n

[
n−1

n∑
i=1

fY |Xi

(
z + μ(Xi)

)
Yi − E

[
fY |X

(
z + μ(X)

)
Y

]]
+ opr(1).

In a similar way, we obtain

�∗
n = √

n

[
n−1

n∑
i=1

I {Y ∗
i − μ̂(X∗

i ) ≤ z} − n−1
n∑

i=1

I {Yi − μ̂(Xi) ≤ z}
]

+ √
n

[
n−1

n∑
i=1

fY |X∗
i

(
z + μ̂(X∗

i )
)
Y ∗

i − E∗[
fY |X∗

(
z + μ̂(X∗)

)
Y ∗]]

(4)

+ oP ∗(1).

Both (3) and (4) converge to zero-mean normal random variables [use, e.g., the
Lindeberg condition to show the convergence of (4)]. We next show that the as-
ymptotic variance of (4) converges in probability to the asymptotic variance of (3).
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To show this we restrict attention to the first term of (3) and (4) (the conver-
gence of the variance of the second term and of the covariance between the two
terms can be established in a similar way). Note that the variance of the first term
of (3) respectively (4) equals θ0(1 − θ0) respectively n−1 ∑n

i=1 I {Yi − μ̂(Xi) ≤
z}[1 − n−1 ∑n

i=1 I {Yi − μ̂(Xi) ≤ z}]. Since it follows from Lemma 1 in Akritas
and Van Keilegom (2001) that

n−1
n∑

i=1

I {Yi − μ̂(Xi) ≤ z} = θ0 +
n∑

i=1

[I {Yi − μ(Xi) ≤ z} − θ0]

+ P {Y − μ̂(X) ≤ z | μ̂} − θ0 + opr(n
−1/2)

= θ0 + opr(1),

the result follows. Hence, (B1) is satisfied. For (B2) it suffices by Remark 2.8 to
show that the class {I {Y − h(X) ≤ z} − θ : 0 ≤ θ ≤ 1, h ∈ H̄} is Donsker, which
we have already established before, and that

Var[I {Y − h(X) ≤ z} − I {Y − μ(X) ≤ z} − θ + θ0]
is bounded by K1|θ − θ0| + K2‖h − μ‖∞ for some K1,K2 ≥ 0. A similar deriva-
tion can be given for the bootstrap analogue of (B2). Next write

|M(θ0, μ̂) − �(θ0,μ)[μ̂ − μ]|
=

∣∣∣∣P {Y − μ̂(X) ≤ z} − θ0 −
∫

fY |x
(
z + μ(x)

){μ̂(x) − μ(x)}dFX(x)

∣∣∣∣
=

∣∣∣∣∫ [
FY |x

(
z + μ̂(x)

) − FY |x
(
z + μ(x)

)
− fY |x

(
z + μ(x)

){μ̂(x) − μ(x)}]dFX(x)

∣∣∣∣
= 1

2

∣∣∣∣∫ f ′
Y |x

(
z + ξ(x)

){μ̂(x) − μ(x)}2 dFX(x)| ≤ K sup
x

|μ̂(x) − μ(x)|2,

for some ξ(x) between μ(x) and μ̂(x), and for some positive K . This shows
that (B3) holds. In a similar way, the bootstrap version of (B3) can be shown
to hold. Finally, condition (B4) follows from, for example, Härdle, Janssen and
Serfling (1988), and its bootstrap version can be established in a very similar
way. It now follows that a 100(1 − α)% confidence interval for Fε(z) is given
by {θ :−2 log ELn(θ, μ̂) ≥ e∗

1−α}, where e∗
1−α is the 100(1 −α)% percentile of the

distribution of

n

[
n−1

n∑
i=1

I {Y ∗
i − μ̂∗(X∗

i ) ≤ z} − θ̂

]2/
{θ̂ (1 − θ̂ )}.
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3.5. Density estimation. Let X1, . . . ,Xn be i.i.d. from an unknown density
f0, and suppose we are interested in estimating θ0 = f0(t), for t fixed. We
do this using the kernel density estimator f̂n(t) = n−1 ∑n

i=1 kb(Xi − t), where
kb(u) = b−1k(b−1u) is a b-scaled version of a symmetric, bounded kernel func-
tion k, supported on [−1,1]. We choose here to employ bandwidths b = bn that
satisfy nb → ∞ and nb5 → 0. The rate b = cn−1/5 (for some c > 0) is optimal for
estimating f0(t), in the sense of minimizing the asymptotic mean squared error,
but as we here aim at constructing confidence intervals, an undersmoothing rate
is preferable. Hall and Owen (1993) constructed EL confidence bands for f0, and
Chen (1996) showed that the pointwise EL confidence intervals (with and without
Bartlett correction) are more accurate than those based on the bootstrap.

Following these authors, we use the sequence of estimating functions mn(x,

θ) = n−1/2b1/2{kb(x − t) − θ}, which do not involve plug-in. We now check the
conditions of Theorem 2.1. For (A0), note that

√
nb−1/2 min1≤i≤n mn(Xi, θ0) =

−θ0 < 0, and

√
nb−1/2 max

1≤i≤n
mn(Xi, θ0) = max

1≤i≤n

1

b
k

(
Xi − t

b

)
− θ0 →a.s. ∞

provided f0 is bounded away from 0 in a neighborhood of t . Condition (A1)
can be checked under mild conditions on the density, as it follows from stan-
dard asymptotic theory for kernel density estimators that

∑n
i=1 mn(Xi, θ0) =

(nb)1/2{f̂n(t) − f0(t)} tends to N(0,V1), where

V1 = f0(t)R(k) and R(k) =
∫

k(u)2 du.(5)

For (A2),
n∑

i=1

m2
n(Xi, θ0) = b

n

n∑
i=1

{kb(Xi − t) − θ0}2 = 1

nb

n∑
i=1

k
(
(Xi − t)/b

)2 + Opr(b),

which converges to f0(t)R(k) = V1 in probability. For (A3), maxi≤n |mn(Xi,

θ0)| = O((nb)−1/2) = o(1), because k is bounded and nb → ∞.

3.6. Survival function estimation for current status data. Suppose there is a
failure time of interest T ∼ F , with survival function S = 1 − F and density f ,
but we only get to observe Z = (C,
), where 
 = I {T ≤ C} and C ∼ G is an
independent check-up time (with density g). The observations are assumed to be
i.i.d.

The nonparametric maximum likelihood estimator Sn(t) of S(t) exists.
Groeneboom (1987) showed that n1/3{Sn(t) − S(t)} converges to a nondegen-
erate limit law. The limit is not distribution-free, however, and is unsuitable for
providing a confidence region for S(t). Banerjee and Wellner (2005) found a uni-
versal limit law for the likelihood ratio statistic, leading to tractable confidence
intervals. Our approach based on estimating equations offers a simpler type of EL
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confidence region, and extends to the setting in which T and C are conditionally
independent given a covariate (although for simplicity we restrict attention to the
case of no covariates).

First consider estimation of a smooth functional of S (such as its mean): θ0 =∫ ∞
0 k(u)S(u)du, where k : [0,∞) → R is fixed. This parameter can be estimated

at a
√

n-rate, mn(Z, θ,F,g, k) = n−1/2m(Z, θ,F,g, k) is an efficient influence
curve, where

m(Z, θ,F,g, k) = k(C)(1 − 
)

g(C)
− θ

− k(C){1 − F(C)}
g(C)

+
∫ ∞

0
k(u){1 − F(u)}du,

and, given suitable preliminary estimators F̂ and ĝ of F and g, respectively, we
have a plug-in estimating function m(Z, θ, F̂ , ĝ, k) that yields a consistent estima-
tor of θ0 when either F̂ or ĝ is consistent; see van der Laan and Robins (1998).

Now consider estimation of 0 < θ0 = S(t) < 1. Van der Vaart and van der Laan
(2006) introduced a kernel-type estimator Sn,b(t) and showed that n1/3{Sn,b(t) −
S(t)} →d N(0,V1), for appropriate and positive V1. Their approach is to replace
k above by kn = kb,t , a kernel function of bandwidth b = bn = b0n

−1/3 centered
at t . Here kb,t (u) = k((u − t)/b)/b in terms of a bounded density k supported on
[−1,1]. This yields a sequence of (plug-in) estimating functions mn(Z, θ, F̂ , ĝ) =
n−2/3m(Z, θ, F̂ , ĝ, kn), and the estimator is written as Sn,b(t) = Pnψ(F̂ , ĝ, kn),
where Pn is the empirical measure, and ψ(F,g, kn)(Z) = m(Z,0,F, g, kn) is the
influence curve. The asymptotic variance of Sn,b(t) is V1 = b−1

0 σ 2R(k), where
R(k) is as in (5) and σ 2 depends on F and g, as well as on the limits of ĝ and F̂ .

We adopt the same assumptions as van der Vaart and van der Laan. In particular,
assume that F is differentiable at t , and g is twice continuously differentiable and
bounded away from zero in a neighborhood of t . Also, ĝ and F̂ are assumed to
belong to classes of functions having uniform entropy of order (1/ε)V , for some
V < 2, with probability tending to 1, and ĝ, or F̂ , or both, are locally consistent
at t .

Our result for estimating functions with plug-in gives

−2 log ELn(S(t), F̂ , ĝ, kn) →d χ2
1 .

Conditions (A0)–(A3) are easily checked by referring to van der Vaart and van der
Laan’s Theorem 2.1 and its proof. For (A0), note that

n2/3mn(Zi, θ0, F̂ , ĝ) = kn(Ci)

ĝ(Ci)

(
F̂ (Ci) − 
i

)
+

[∫ ∞
0

kn(u){1 − F̂ (u)}du − θ0

]
.
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The minimum and maximum over i ≤ n of the first term above tend a.s. to −∞
and +∞, respectively, since 0 < P(
 = 1) < 1 and it is assumed that ĝ is bounded
away from 0 in a neighborhood of t . The second term above stays bounded
as n tends to infinity, so (A0) holds. Next, note that

∑n
i=1 mn(Zi, θ0, F̂ , ĝ) =

n1/3{Sn,b(t) − S(t)}, so (A1) holds [with V1 given by the asymptotic variance of
Sn,b(t)]. For (A2), note that

n∑
i=1

m2
n(Zi, θ0, F̂ , ĝ) = n−1/3

Pn{ψ(F̂ , ĝ, kn) − S(t)}2

= n−1/3
Pn{ψ(F̂ , ĝ, kn) − Pψ(F̂ , ĝ, kn)}2

(6)
+ 2n−1/3{Sn,b(t) − S(t)}{Pψ(F̂ , ĝ, kn) − S(t)}
− n−1/3{Pψ(F̂ , ĝ, kn) − S(t)}2.

The last two terms above are asymptotically negligible, by the usual argument for
controlling the bias of a kernel estimator; see the start of the proof of Theorem 2.1
of van der Vaart and van der Laan. To handle the first term, the influence function
ψ is split into a sum of two terms ψ1 and ψ2, where

ψ2(F,g, kn)(Z) =
∫ ∞

0
kn(u){1 − F(u)}du

does not give any contribution in the limit. In our case, ψ2 acts as a constant func-
tion (there are no covariates), so the first term in (6) with ψ replaced by ψ2 is
O(n−1/3). The first term of (6) with ψ replaced by ψ1 can be expressed as

n−1/3(n−1/2
GnHn) + n−1/3 PHn,(7)

where Gn = √
n(Pn − P) is the empirical process and

Hn(F̂ , ĝ, kn)(·) = {ψ1(F̂ , ĝ, kn) − Pψ1(F̂ , ĝ, kn)}2.

Applying the part of their proof that deals with ψ1, but with ψ1 replaced by Hn

and n−1/2k2
n as the envelope functions, shows that n−1/2

GnHn is asymptotically
tight. They also show that n−1/3 PHn →pr b−1

0 σ 2R(k), with R(k) as in (5). Thus,
only the second term in (7) gives a contribution in the limit, and we have

n∑
i=1

m2
n(Zi, θ0, F̂ , ĝ) →pr b−1

0 σ 2R(k) = V1,

establishing (A2) with V2 = V1. Finally, (A3) is checked using the assumption
that ĝ is bounded away from zero in a fixed neighborhood of t . Note that kn ≤
cb−1

n 1[t−bn,t+bn] for some constant c, so

max
1≤i≤n

|mn(Zi, θ0, F̂ , ĝ)| = Opr(n
−1/3) = opr(1).
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4. Empirical likelihood asymptotics with growing dimensions. The tradi-
tional empirical likelihood theory works for a fixed number of estimating func-
tions p, or, when estimating a mean, for data having a fixed dimension d . The
present section is concerned with the question of how this theory may be extended
toward allowing p to increase with growing sample size. Consider situations with,
say, d-dimensional observations Z1, . . . ,Zn for which there are p-dimensional
estimating functions m(Zi, θ) to help assess a p-dimensional parameter θ , and
define

ELn(θ) = max

{
n∏

i=1

(nwi) : each wi > 0,

n∑
i=1

wi = 1,

n∑
i=1

wim(Zi, θ) = 0

}
.(8)

Thus the framework is “triangular,” reflecting a setup where the key quantities
p = pn, d = dn, Zi = Zn,i , θ = θn, m(z, θ) = mn(z, θ) depend on n, but where
we most of the time do not insist on keeping the extra subscript in the notation.
A particular example would be p-dimensional Zi’s for which their mean parame-
ter μ is to be assessed, corresponding to estimation equation m(z,μ) = z − μ. We
allow p to grow with n, and study the problem of establishing sufficient conditions
under which the standard χ2

p calibration can still be used. There would often be a
connection between d and p, and indeed sometimes d = p, but the main interplay
is between n and p, and we do not need to make explicit requirements on d = dn

itself.
We shall use several steps to approximate the EL statistic (8), and approximation

results will be reached under different sets of conditions. Our results and tools for
proving them shall involve the quantities

X̄n = n−1
n∑

i=1

Xn,i, Sn = n−1
n∑

i=1

Xn,iX
t
n,i, Dn = max

i≤n
‖Xn,i‖,(9)

where Xn,i = m(Zn,i, θn). Here θn is the correct parameter, assumed to be prop-
erly defined as a function of the underlying distribution of Zn,1, . . . ,Zn,n and the
requirement that the mean value of n−1 ∑n

i=1 mn(Zn,i, θn) is zero (stressing in
our notation, for this occasion, the dependence on n). We need Sn to be positive
definite, that is, at least p among the n vectors Xn,i are linearly independent. In
particular, n ≥ p, and p shall in fact have to grow somewhat slowly with n in order
for our approximation theorems to hold.

4.1. Main results. At the heart of the standard large-sample EL theorem lies
the fact that

Tn = −2 log ELn(θn) is close to T ∗
n = nX̄t

nS
−1
n X̄n.(10)

One may view (10) as half of the story of how the EL behaves for large n and p,
the other half being how close T ∗

n then is to a χ2
p . A natural aim is therefore to

secure conditions under which

(Tn − T ∗
n )/p1/2 →pr 0 and (T ∗

n − p)/(2p)1/2 →d N(0,1).(11)
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These statements taken together of course imply (Tn − p)/(2p)1/2 →d N(0,1).
Even though (Tn − p)/(2p)1/2 →d N(0,1) may be achieved without (11), in spe-
cial situations, we consider the quadratic approximation part and parcel of the EL
distribution theory, and find it natural here to take “EL works for large n and p” to
mean both parts of (11).

Various sets of conditions may now be put up to secure (11), depending on the
nature of the Xn,i of (9). The following result provides an easily stated sufficient
condition for (11) in the i.i.d. case, and has a number of applications that will be
discussed in the next section.

THEOREM 4.1. Suppose that the Xn,i ’s are i.i.d. with mean zero and vari-
ance matrix �n. First, if all components of Xn,i are uniformly bounded and the
eigenvalues of �n stay away from zero and infinity, then p3/n → 0 implies (11).
Second, in case the components are not bounded, assume they have a uniformly
bounded qth moment, for some q > 2, and again that the eigenvalues of �n stay
away from zero and infinity. Then p3+6/(q−2)/n → 0 implies (11).

The complete proof of Theorem 4.1 involves separate efforts for the two parts
of (11), each of interest in its own right. We first explain the main ingredients in
what makes the first part go through.

Introduce the random concave functions

Gn(λ) = 2
n∑

i=1

log
(
1 + λtXn,i/

√
n
)

and G∗
n(λ) = 2λt√nX̄n − λtSnλ.(12)

These are similar to the two random functions worked with in Remark 2.7, but
are here defined in a somewhat different context. It is to be noted that Tn of (10)
is the same as maxGn = Gn(̂λ), say, where the maximizer λ̂ also is the solution
to

∑n
i=1 Xn,i/(1 + λtXn,i/

√
n) = 0. On the other hand, the maximizer of G∗

n is
λ∗ = S−1

n

√
nX̄n, and its maximum is precisely T ∗

n . While G∗
n is defined over all of

R
p , a little care is required for Gn, which is defined only where λtXn,i/

√
n > −1

for i = 1, . . . , n. In view of the (p/
√

n)Dn →pr 0 condition that we nearly always
shall impose, the (12) formula for Gn holds with probability going to 1 for all λ

of size O(p). We now provide basic “generic form” conditions for the first part
of (11) to hold:

(D0) P {ELn(θn) = 0} → 0.
(D1) (p/

√
n)Dn →pr 0.

(D2) ‖̂λ‖ = Opr(p
1/2).

(D3) ‖λ∗‖ = Opr(p
1/2).

(D4) max eig(Sn) = Opr(1).

PROPOSITION 4.1. Conditions (D0)–(D4) imply (Tn − T ∗
n )/p1/2 →pr 0. If in

addition (p3/2/
√

n)Dn →pr 0 in (D1), then Tn − T ∗
n → 0. Furthermore, for both

situations dealt with in Theorem 4.1, the conditions given there imply (D0)–(D4).
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Let us next focus on the second part of (11). Assume there is a population ver-
sion �n of Sn and consider T 0

n = nX̄t
n�

−1
n X̄n; when the Xn,i are i.i.d., then �n is

their variance matrix. Define

Ln = |Sn − �n| = max
j,k

|Sn,j,k − �n,j,k|.(13)

When Ln is small, a well-behaved �n leads to a well-behaved Sn. We note that for
any unit vector u, |utSnu − ut�nu| ≤ ∑

j,k |ujuk|Ln ≤ pLn, implying in particu-
lar that the range of eigenvalues for Sn is within pLn of the range of eigenvalues
for �n. Also, Tr(Sn) is within pLn of Tr(�n). Now consider the following condi-
tions:

(D5) p3/2Ln →pr 0.
(D6) The eigenvalues of �n stay away from zero and infinity.

PROPOSITION 4.2. Conditions (D5)–(D6) imply (T ∗
n −T 0

n )/p1/2 →pr 0. Fur-
thermore, the assumptions detailed in Theorem 4.1 imply (D5)–(D6), for each of
the two situations. Also, in the i.i.d. case, provided E|Xn,i,j |6 stays bounded for
all components j ≤ p, then the weak condition p/n → 0 secures approximate
χ2

p-ness in the sense that (T 0
n − p)/(2p)1/2 →d N(0,1).

While Theorem 4.1 and corollaries indirectly noted above are satisfactory for
several classes of problems, there are other situations of interest where the smallest
eigenvalues, of �n and Sn, go to zero. This will typically lead to condition (D3)
failing. For this reason we provide a parallel result that demands less regarding
the distribution of eigenvalues. For the case of i.i.d. variables Xn,i = mn(Zi, θn)

of mean zero and variance matrix �n, consider X∗
n,i = �

−1/2
n Xn,i , and let S∗

n

be the empirical variance matrix of these, that is, S∗
n = n−1 ∑n

i=1 Z∗
i (Z∗

i )t =
�

−1/2
n Sn�

−1/2
n . The eigenvalues of S∗

n are often more well-behaved than those
of Sn.

PROPOSITION 4.3. Consider the EL setup of (8), with m(Zi,μ) = Zi −μ, for
inference about the mean μn of Zi . The conclusions of Theorem 4.1 continue to
hold, without the condition on eigenvalues for �n, as long as the conditions there
are met for the transformed variables Z∗

n,i = �
−1/2
n (Zn,i − μn).

For another remark of relevance, write γ1,n and γp,n for the largest and small-
est eigenvalues of �n. Yet another version of our main result emerges by divid-
ing the Zi’s by γ

1/2
p,n , to avoid small eigenvalues. This gives a parallel result to

those of Theorem 4.1 and Proposition 4.3, where the essential condition is that
the ratio γ1,n/γp,n remains bounded. See in this connection also Owen [(2001),
page 86] where stability of this ratio is crucial also for some problems associated
with fixed p.
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For the four applications given in Section 5, along with a broad variety of others,
the above development suffices. There are nevertheless situations where further
variations on the conditions are required. In the following subsection the require-
ments (D0)–(D6) are discussed and followed up with further conditions that suffice
for the different requirements to hold. We also give some useful lemmas that partly
are needed to prove Propositions 4.1 and 4.2, and hence the master Theorem 4.1,
and partly give the opportunity to prove versions of (11) under sets of conditions
outside those of i.i.d. structures, like in regression models.

4.2. On verifying conditions (D0)–(D6). The EL operation (8) degenerates if
zero is outside the convex hull spanned by Xn,1, . . . ,Xn,n in R

p . This may happen
more frequently in higher dimensions. Condition (D0) amounts to the EL giving
a positive maximum, with probability tending to 1 with n, and we now discuss
conditions that secure this. That zero is outside the convex hull corresponds to
there being a unit vector u for which utXn,i > 0 for each i. So zero is inside the
interior of the convex hull if Hn(u) < 0 for each unit vector u, where Hn(u) =
mini≤n utXn,i . Thus condition (D0) is implied by

P

{
max
u∈Up

Hn(u) < 0
}

→ 1 as n → ∞,(14)

where Up is the set of unit vectors in R
p . This and several later problems will

be handled separately for two types of situations: (a) the components of Xn,i re-
main uniformly bounded, and (b) the components may be unbounded, but reason-
able moment conditions prevail. It will be useful to deal with (D1) in connection
with (14), that is, (D0). Yet another useful regularity condition is as follows.

(D7) For some q > 2, the sequence of E‖Xn,i/p
1/2‖q stays bounded; and for

this q it holds that p3+6/(q−2)/n → 0.

LEMMA 4.1. (a) If the components of Xn,i remain uniformly bounded, then
p3/n → 0 implies (D1). (b) If (D7) holds, then again (D1) holds.

LEMMA 4.2. For the i.i.d. case, assume there exists a positive ε such that
rp(u, ε) = P {utXn,i > −ε} ≤ r < 1 for all u ∈ Up; in particular, this necessitates
a positive lower bound for the eigenvalues of �n. (a) If the components of Xn,i are
uniformly bounded, then the requirement (p logp)/n → 0 as n → ∞ secures (14),
that is, (D0). (b) Also (D7) implies (14).

Next we assess the sizes of the maximizers λ̂ and λ∗ of Gn and G∗
n. We also

need to inspect the size of Ln of (13).

LEMMA 4.3. Suppose that
√

n‖X̄n‖ = Opr(p
1/2), that min eig(Sn) stays

away from zero in probability, and that (D1) holds. Then ‖̂λ‖ = Opr(p
1/2), that

is, (D2) holds.
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Note for the i.i.d. case, where the Xn,i’s have a variance matrix �n, then n‖X̄n‖2

is of the required size Opr(p) if only Tr(�n/p) stays bounded.

LEMMA 4.4. For the i.i.d. case, assume that the Xn,i,j ’s have finite qth-order
moments, for some q ≥ 4, and let An(p, q) = p−1 ∑p

j=1 E|Xn,i,j |q . Then, for a
positive constant c(q),

P {Ln ≥ ε} ≤ c(q)p2

εqnq/2 An(p, q)2 for each positive ε.

It follows that when qth moments are bounded, then p2+4/q/n → 0 se-
cures pLn →pr 0 and in its turn well-behaved eigenvalues of Sn under min-
imal conditions on those of �n. Similarly, the p3+4/q/n → 0 condition en-
sures p3/2Ln →pr 0, that is, (D5). We note further that when the Xn,i’s are uni-
formly bounded, then p2/n → 0 implies pLn →pr 0, whereas p3/n → 0 implies
p3/2Ln →pr 0. This may be shown using techniques of the proof of Lemma 4.4.
In situations where the Xn,i ’s have moments of all orders, the growth conditions
here come close to those for the case of bounded variables. If they are normal, for
example, then ‖Xn,i‖ is bounded by a variable of the type c(χ2

p)1/2 for a suitable c,
and one may show that p3/n → 0 and p4/n → 0 again suffice for T ∗

n − Tn being
respectively opr(p

1/2) and opr(1).

LEMMA 4.5. Suppose ‖T ∗
n ‖ = Opr(p) and that min eig(Sn) stays away from

zero in probability. Then ‖λ∗‖ = Opr(p
1/2), that is, (D3) holds.

For condition (D4) we note for the i.i.d. case that if max eig(�n) is bounded,
and pLn →pr 0, then (D4) holds, in view of comments made after (13).

Verifying eigenvalue conditions, for either Sn or �n, is sometimes technically
hard. A theorem of Bai and Yin (1993) works for the case of Zi having independent
components with zero means and unit variances, in which case the linear growth
condition p/n → y ∈ (0,1) ensures that the smallest and largest of the eigenvalues
of Sn tend a.s. to (1 − √

y)2 and (1 + √
y)2, respectively. Inspection of their proof

reveals that a version holds also when y = 0, namely that the smallest and largest
of eigenvalues then tend in probability to 1. See also Bai (1999) and the ensuing
discussion.

5. Applications with growing p. This section provides some examples
where there is a growing number of parameters, and where the theory developed in
Section 4 guarantees that the empirical likelihood methodology still is applicable.

5.1. Many independent means. Suppose that Z1, . . . ,Zn correspond to p in-
dependent samples Z1,j , . . . ,Zn,j , with mean μ0,j and standard deviation σj , for
j = 1, . . . , p, assuming for simplicity of presentation that the sample size is the
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same for each group j = 1, . . . , p. EL may then be used to make simultaneous
inference for the vector of mean parameters μ0. Consider the normalized random
vector Ui with components (Zi,j − μ0,j )/σj , which has mean zero and variance
matrix Ip . Results of Section 4 imply that the EL works properly, even when p

grows, provided p3/n → 0 and that the Ui components stay uniformly bounded,
for example, via Proposition 4.3. This is secured by the eigenvalue distribution
result of Bai and Yin (1993) mentioned above.

Similar results may be reached in other models with a growing number of mean
type parameters. An example is analysis of variance with a large number of groups;
cf. Akritas and Arnold (2000). Our theory also supports the use of EL theory when
multiple comparisons between groups are made, since the variance matrix of a col-
lection of such differences of means is well-behaved enough to have its eigenvalues
away from zero and infinity; that is, Theorem 4.1 applies.

5.2. Poisson regression. Assume that Yi given zi is Poisson with parameter
μi = exp(zt

iβ), where zi is a p-dimensional covariate vector and β a parameter
vector of the same length. EL may be used with ELn(β) defined as in (8), via
estimating equations

∑n
i=1 wi{Yi − exp(zt

iβ)}zi = 0. Assume that the covariate
vectors zi are i.i.d. from some distribution, which we for an easy concrete illustra-
tion take to be the standard p-variate normal, and let us postulate further that the
sequence of β vectors is such that ‖β‖2 = ∑p

j=1 β2
j remains bounded, as n and p

are allowed to grow. This fits the setup of Section 4 with Xn,i = (Yi −μi)zi , which
have variance matrix �n = exp(1

2‖β‖2)(Ip +ββ t). We see from this that its eigen-
values all lie between exp(1

2‖β‖2) and exp(1
2‖β‖2)(1 + ‖β‖2). The conditions of

Theorem 4.1 hold, for each even q , from which we conclude that (11) holds as
long as p3+ε/n → 0, for some positive ε.

This example may be generalized in various ways. The only point about the
Np(0, Ip) distributional assumption for the covariates here was to get an ex-
plicit and easy �n matrix, and variations are easily constructed. Second, results
can be derived inside the more usual regression framework where z1, . . . , zn are
considered known covariate vectors. Basically, this involves the variance matri-
ces �n = n−1 ∑n

i=1 μiziz
t
i and Sn = n−1 ∑n

i=1(Yi − μi)
2ziz

t
i , in generalization of

those worked with in Section 4. Under a Lindeberg condition, combined with the
requirement that the |zt

iβ| are bounded uniformly as p and n grow (which means
that all Poisson means should be bounded away from zero and infinity), one may
prove that conditions (D0)–(D6) are fulfilled as long as p3/n → 0, using meth-
ods associated with proving Lemmas 4.1–4.5. Hence the desired conclusion (11)
holds. Similar results are reached for other generalized linear regression setups.

5.3. Testing f = f0 via orthogonal expansions. For i.i.d. data X1, . . . ,Xn

from an unknown density, consider the growing class of models

fp(x | a) = f0(x)cp(a1, . . . , ap)−1 exp

{ p∑
j=1

ajψj (x)

}
.
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Here f0 is a “start density,” around which one models a flexible log-linear structure
for deviations, the ψj functions are orthonormal w.r.t. f0, that is,

∫
f0ψjψk dx =

δj,k , and cp is the appropriate normalizing constant. Here we can carry out EL
analysis for ξ = (ξ1, . . . , ξp)t, where ξj = ∫

f ψj dx, and a growing p. This is
done via the vectors Zi = (ψ1(Xi), . . . ,ψp(Xi))

t. The eigenvalues of its variance
matrix will typically be well behaved, with reasonable conditions on f , and there
is stability of fourth-order moments if, for example, the ψj ’s are bounded. Thus
EL theory holds for analysis of the ξj ’s, if p3/n → 0. Consider in particular the
problem of testing f = f0, which corresponds to the aj ’s being zero. The theory
of Section 4 ensures that Tn = −2 log ELn(0) = 2

∑n
i=1 log(1 + λ̂tZi/

√
n) is at

most Opr(p
1/2) away from T ∗

n = nψ̄ t
nS

−1
n ψ̄n, where ψ̄n is the vector of averages

n−1 ∑n
i=1 ψj(Xi) and Sn = n−1 ∑n

i=1 ZiZ
t
i , provided only p3/n → 0, if the ψj ’s

are uniformly bounded. This is since the variance matrix under the null hypothesis
is simply equal to Ip . Also, both Tn and T ∗

n have null distributions close enough to
a χ2

p , again by Theorem 4.1.

5.4. Growing polynomial regression. Consider the regression model

Yi = ξ(Xi) + εi for i = 1, . . . , n,

where the pairs (Xi, εi) are i.i.d., with Xi’s coming from some density f and the
εi ’s having mean zero and standard deviation σ0. The main objective is to make
inference about ξ(x). We do not strive for the fullest generality in this application
of our theory, and are content to work with the following scenario: f is known
(e.g., the uniform on the unit interval), and ξ(x) may be expanded in terms of basis
functions ψ0,ψ1,ψ2, . . . that are orthonormal w.r.t. f , that is,

∫
f ψjψk dx = δj,k ,

and where we take ψ0 = 1. We might for example take ψj(x) = φj (F (x)) where
the φj ’s are orthogonal w.r.t. the uniform on the unit interval and F the c.d.f. of f .
Hence ξ(x) = ∑∞

j=0 bjψj (x), where we assume that Eξ(X)2 = ∑∞
j=0 b2

j is finite,
and also that ξ(x) is bounded.

In this setup, consider as pth-order model

Yi = ξp(Xi) + ε′
i with ξp(x) =

p∑
j=0

bjψj (x) = (
ψ(p)(x)

)t
b(p),

where the residuals are ε′
i = ∑∞

j=p+1 bjψj (Xi) + εi with variance σ 2
p = σ 2

0 +∑∞
j=p+1 b2

j ; including more terms in the regression structure makes the residuals

smaller in size, and vice versa. Consider Zi = Yiψ
(p)(Xi), a vector of dimension

p + 1, with mean value seen to be b(p). We will consider conditions under which
−2 log ELn(b

(p)), based on Z1, . . . ,Zn, can be approximated by a χ2
p+1 distribu-

tion.
The key to verifying the conditions of Theorem 4.1 lies in controlling the sizes

of the eigenvalues of the variance matrix of Zi , which may be written

�n = EY 2
i ψ(p)(Xi)ψ

(p)(Xi)
t − b(p)(b(p))t = σ 2

0 Ip + �p,
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where Ip and �p are of size (p + 1)× (p + 1) and where the elements of the non-
negative definite �p matrix are

∫
ξ(x)2ψj(x)ψk(x)f (x) dx − bjbk . The eigenval-

ues of �n take the form σ 2
0 + φj , where the φj ’s are the eigenvalues of �p , and

are hence bounded downward by σ 2
0 . They are also bounded upward, since for any

unit vector u, ut�pu is bounded by M2 ∫
(u0ψ0 +· · ·+upψp)2f dx = M2, where

M bounds |ξ(x)|.
As explained in the Introduction, we may apply our results to produce confi-

dence regions for a subset of the bj parameters, to test whether some of them
are equal to zero, and to make inference for any linear combination. For ex-
ample, suppose we are interested in a simultaneous confidence region for the
regression function ξp at certain locations x1, . . . , xq . Even though p may be
very large, provided q grows slowly enough with n our results apply to the fo-
cus parameter φ = (ξp(x1), . . . , ξp(xq)), because φ = f (b(p)) is a linear func-
tion of b(p) and the confidence region can be based on the transformed data
f (Zi) = (

∑p
j=0 Yiψj (Xi)ψj (xl))l=1,...,q . Focus parameters defined by nonlinear

functions would also be of interest, but this is beyond the scope of the paper, even
in the case of a one-dimensional parameter such as φ = maxl=1,...,q |ξp(xl)|.

6. Concluding remarks.

6.1. Nonstandard limit distributions. Here we give a toy example in which
Tn = −2 log ELn has a limit distribution different from U tV −1

2 U in Theorem 2.1.
Let Xi ∼ N(θ0, σ

2
i ) be independent, and suppose

∑∞
i=1 σ 2

i < ∞. Consider the
unbiased estimating function m(X,θ) = X − θ . Using steps from the proof of
our Theorem 2.1, it can be shown that Tn →d T , the maximum of the process
G(λ) = 2

∑∞
i=1 log(1 + λσiZi) over the random interval |λ| < 1/D, where D =

maxi≥1 σi |Zi | and the Zi are independent standard normals. In this case, (A0)–
(A2) hold [with a random limit in (A2)], but (A3), which is needed to dispose of
the remainder term in the quadratic approximation to Tn, fails, hence the nonstan-
dard limit.

6.2. Weighted EL. The basic EL setup can be generalized to allow for weights.
In the framework of Section 2, we can place a weight τi in front of each term
mn(Xi, θ, ĥ) in ELn(θ). This would be useful in situations where the Xi’s have
different precision. Conditions sufficing for −2 log ELn(θ0) to converge in distrib-
ution are readily developed, paralleling (A0)–(A3).

6.3. Joint convergence of maximum and maximizer. Our proof of Theorem 2.1
(in the case an = 1) shows that Tn = supλ Gn(λ) with probability tending to 1, and
λ̂ = argmaxλGn(λ) = Opr(1), where Gn(λ) = 2

∑n
i=1 log(1 + λtXn,i). Appealing

to Theorem 5.1 of Banerjee and McKeague (2007), we can then infer the more
general result that (̂λ, Tn) →d (V −1

2 U,U tV −1
2 U). On the computational side, the

proof also indicates that maximization or equation-solving algorithms should work
better with λ∗ = V −1

n Un as starting point, rather than, for example, zero.
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APPENDIX

Here we provide proofs of theorems and claims presented earlier in our article.

PROOF OF THEOREM 2.1. The basic steps and notation of the proof were
given in Remark 2.7. It remains to show that Tn − T ∗

n = opr(an), where Tn =
supGn and T ∗

n = supG∗
n. First we determine the stochastic order of λ̂. Write

λ̂ = ‖̂λ‖u, in terms of a random unit vector u. As in Owen [(2001), page 220]
we have

‖̂λ‖(utVnu − Dnu
tUn) ≤ utUn,(15)

where Dn = maxi≤n ‖Xn,i‖. But utVnu ≥ min eig(Vn) = Opr(a
−1
n ), utUn =

Opr(1) and Dnu
tUn = opr(a

−1
n ), so ‖̂λ‖ = Opr(an). Moreover, λ∗ = V −1

n Un when
Vn is invertible, so λ∗ is of the same stochastic order Opr(an) as λ̂.

Write log(1 + x) = x − 1
2x2 + 1

3x3h(x), with |h(x)| ≤ 2 for |x| ≤ 1
2 . This gives,

for any c > 0 and ‖λ‖ ≤ c,

Gn(λ) = 2λtUn − λtVnλ + rn(λ),(16)

where

|rn(λ)| ≤ (2/3)

n∑
i=1

|(λtXn,i)
3||h(λtXn,i)|

≤ (4/3)‖λ‖Dnλ
tVnλ ≤ (4/3)c3Dn max eig(Vn),

provided cDn ≤ 1
2 . With Tn,c and T ∗

n,c denoting the maxima of Gn and G∗
n over

the ball �n(c) = {λ :‖λ‖ ≤ can}, we have

|Tn,c/an − T ∗
n,c/an| ≤ (1/an)max{|rn(λ)| :‖λ‖ ≤ can}

≤ (4/3)c3anDn max eig(anVn),

as long as canDn ≤ 1
2 . Choose c big enough to have both λ̂ and λ∗ inside �n(c)

with probability above 1 − η, for some preassigned η. Then

P {|Tn/an − T ∗
n /an| ≥ ε}

≤ P {(4/3)c2anDn max eig(anVn) ≥ ε}
+ P {‖̂λ‖ > can} + P {‖λ∗‖ > can} + P

{
canDn > 1

2

}
.

Hence the lim-sup of the probability sequence on the left is bounded by 2η. Since
η was arbitrary, Tn/an and T ∗

n /an must have the same limit distribution, namely
U tV −1

2 U . �

PROOF OF THE CLAIM OF REMARK 2.2. Conditions (A4) and (A5) with an =
1 imply that, given any real sequence δn ↓ 0,

sup
‖θ−θ0‖≤δn,h∈H̄

∣∣∣∣∣
n∑

i=1

{m⊗2
n (Xi, θ, h) − m⊗2

n (Xi, θ0, h)}
∣∣∣∣∣ →pr 0.
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The consistency of θ̂ then implies

Rn =
n∑

i=1

{m⊗2
n (Xi, θ̂ , ĥ) − m⊗2

n (Xi, θ0, ĥ)} →pr 0.

Thus

|V̂2 − V2| ≤ |Rn| +
∣∣∣∣∣

n∑
i=1

m⊗2
n (θ0, ĥ) − V2

∣∣∣∣∣ →pr 0,

where we have used assumption (A2) for the last term, so V̂2 consistently esti-
mates V2. �

PROOF OF THEOREM 2.2. By (2), the singular value theorem applied to V −1
2

and V̂ −1
2 , along with the Cramér–Wold theorem, it suffices to show that V̂2 →pr V2

and that

P ∗{√n[M∗
n(θ̂ , ĥ∗) − Mn(θ̂, ĥ)] ≤ t} − P {U ≤ t} = opr(1).

The former follows from Remark 2.2, under conditions (A4) and (A5). For the
latter, define, for any sequences α1

n,α
2
n ↓ 0,

An,αn =
{
|θ̂ − θ0| ≤ α1

n, sup
t

|Bn(t)| ≤ α1
n, sup‖Cn(θ,h)‖ ≤ α2

nn
−1/2,

‖ĥ − h0‖H ≤ α1
nn

−1/4
}
,

where Bn(t) respectively Cn(θ,h) is the expression between absolute values
(norm-signs) in condition (B1) respectively (B2), and where the supremum for
Cn is taken over ‖θ − θ0‖ ≤ α1

n,‖h − h0‖H ≤ α1
n. Then, by conditions (B1), (B2),

(B4) and the consistency of θ̂ , α1
n and α2

n can be chosen such that P(An,αn) → 1
as n tends to infinity. Hence it suffices to establish the convergence in probability,
conditionally on the event An,αn . It now follows from condition (B5) that

‖M∗
n(θ̂ , ĥ∗) − M∗

n(θ̂ , ĥ) − �(θ̂, ĥ)[ĥ∗ − ĥ]‖
= ‖Mn(θ̂, ĥ∗) − Mn(θ̂, ĥ) − �(θ̂, ĥ)[ĥ∗ − ĥ]‖ + oP ∗(n−1/2)

≤ c‖ĥ∗ − ĥ‖2
H + oP ∗(n−1/2) = oP ∗(n−1/2) a.s.

In a similar way it follows from (B2), (B3) and (B4) that

‖Mn(θ0, ĥ) − Mn(θ0, h0) − �(θ0, h0)[ĥ − h0]‖ = opr(n
−1/2).

Hence condition (B1) implies that
√

n{M∗
n(θ̂ , ĥ∗) − Mn(θ̂, ĥ)}

= √
n{M∗

n(θ̂ , ĥ) − Mn(θ̂, ĥ) + �(θ̂, ĥ)[ĥ∗ − ĥ]} + oP ∗(1) a.s.
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has the same limiting distribution as
√

n{Mn(θ0, h0) + �(θ0, h0)[ĥ − h0]} = √
nMn(θ0, ĥ) + opr(1),

which by condition (A1) converges to U . �

We note that Theorem 4.1 is an immediate consequence of Propositions 4.1
and 4.2. We now tend to proving these.

PROOF OF PROPOSITION 4.1. That the conditions of Theorem 4.1 secure con-
ditions (D0)–(D4) follows from Lemmas 4.1–4.4, proven below. Here we show
that these conditions imply (Tn − T ∗

n )/p1/2 →pr 0.
Using (12) and (16) we see that G∗

n is the natural two-step Taylor expansion
approximation of Gn, and that Gn = G∗

n + rn with

rn(λ) = (2/3)

n∑
i=1

(
λtXn,i/

√
n
)3

h
(
λtXi/

√
n
) ≤ (4/3)‖λ‖(

Dn/
√

n
)
λtSnλ

as long as ‖λDn/
√

n‖ ≤ 1
2 . Choose c such that the set �n(c) = {λ :‖λ‖ ≤ cp1/2}

catches both λ̂ and λ∗, with probability at least 1 −η for all large n, where η is any
preassigned positive number. Then

|rn(λ)| ≤ (4/3)c3p3/2n−1/2Dn max eig(Sn) for all λ ∈ �n(c),

with arguments similar to those used for proving Theorem 2.1. This implies

P {|Tn − T ∗
n |/p1/2 ≥ ε}

≤ P {(4/3)c3pn−1/2Dn max eig(Sn) ≥ ε}
+ P

{
cp1/2n−1/2Dn > 1

2

} + P {̂λ /∈ �n(c)} + P {λ∗ /∈ �n(c)}.
Accordingly, under (D1)–(D4), the lim-sup of the left-hand side sequence is
bounded by 2η, and is hence zero. The modified and stronger result Tn −T ∗

n →pr 0
follows similarly under the stronger assumption. �

PROOF OF PROPOSITION 4.2. That the conditions of Theorem 4.1 guarantee
conditions (D5)–(D6) is a consequence of Lemma 4.4, proven below. Here we
show that these imply (T ∗

n − T 0
n )/p1/2 →pr 0.

To this end, write Sn = �n + εn, so that S−1
n

.= �−1
n − �−1

n εn�
−1
n when the

elements of �−1
n εn become uniformly small, which they do in view of (D5)–(D6).

Hence

T ∗
n − T 0

n
.= nX̄t

n�
−1
n εn�

−1
n X̄n = W t

nEnWn,

where Wn = �
−1/2
n

√
nX̄n is seen to have ‖Wn‖ = Opr(p

1/2) and En = �
−1/2
n εn

�
−1/2
n must have the property that |utEnu| = Opr(pLn) for each unit vector u.
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This proves the first claim. The second claim of the proposition follows, after
a transformation to new variables X′

n,i = �
−1/2
n mn(Zi, θn) with mean zero and

variance matrix the identity matrix Ip , from efforts of Portnoy (1988), who used a
martingale central limit theorem. �

PROOF OF LEMMA 4.1. When |Xn,i,j | ≤ M for all components, then Dn ≤
Mp1/2, proving part (a). For the general case, to gauge the size of Dn we cannot
appeal to arguments involving the Borel–Cantelli lemma, as Owen (2001), Chap-
ter 11, could when analyzing the fixed p situation. However, P {(p/

√
n)Dn ≥ ε}

is bounded by

n∑
i=1

P
{‖Xn,i‖ ≥ ε

√
n/p

} ≤ n
p3q/2

nq/2εq
max
i≤n

E‖Xn,i/p
1/2‖q,

which is seen to imply (b) of the lemma. �

PROOF OF LEMMA 4.2. Observe that |Hn(u) − Hn(v)| ≤ ‖u − v‖Dn. The
full surface of the p-dimensional unit ball may be covered by the union of a finite
number Cp,n of rectangles with side length δn, provided Cp,nδ

p−1
n is as big as

Ap = 2πp/2/�(p/2), the surface area of the unit ball. Hence

max
u∈U

Hn(u) ≤ max
u∈Up,n

Hn(u) + δnDn = H ∗
n + δnDn,

where Up,n is the finite set in question. To show (14) we demonstrate

P {H ∗
n < −ε} → 1 and P {δnDn ≤ ε} → 1.

We need to choose δn so that the second requirement holds, and then check
whether P {H ∗

n ≥ −ε} ≤ Cp,nr
n is sufficient to meet the first requirement. What

is demanded is that logCp,n + n log r → −∞, and this is seen to correspond to
{p log(1/δn)}/n → 0.

(a) For the bounded components part we have Dn ≤ Mp1/2 as with Lemma 4.1,
and may take δn = ε/(Mp1/2). In this case, therefore, the n−1p logp → 0 con-
dition suffices for (14) to hold. (b) For this situation we take δn = p/

√
n,

guaranteeing by Lemma 4.1 that P {δnDn ≤ ε} → 1. Some analysis shows that
(p/n) log(1/δn) = n−1/2xn log(1/xn), with xn = p/

√
n, which tends to zero. �

PROOF OF LEMMA 4.3. Write λ̂ = ‖̂λ‖u, where the random u has unit length.
One may argue as in Owen (2001), Chapter 11.2, to reach

‖̂λ‖{
utSnu − (

Dn/
√

n
)√

nutX̄n

} ≤ √
nutX̄n.

Here there is a positive δ such that the event utSnu ≥ δ has probability tending to
1, while Dnu

tX̄n →pr 0. The result follows. �
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PROOF OF LEMMA 4.4. For the components of the p × p matrix εn = Sn −
�n, a bounding operation gives

P {|εn,j,k| ≥ ε} ≤ E|√nεn,j,k|q
(
√

nε)q
≤ c(q)v

q/2
n,j,k

nq/2εq
,

for a constant c(q), by results of von Bahr (1965). Here vn,j,k = E(Xn,i,jXn,i,k)
2 −

(�n,j,k)
2 is the variance of Xn,i,jXn,i,k . This may be further bounded by

vn,j,k ≤ (E|Xn,i,j |4)1/2(E|Xn,i,k|4)1/2 ≤ (E|Xn,i,j |q)2/q(E|Xn,i,k|q)2/q

for q ≥ 4. This leads to

P {Ln ≥ ε} ≤ ∑
j,k

c(q)
E|Xn,i,j |qE|Xn,i,k|q

nq/2εq
,

which is then seen to imply the lemma. �

PROOF OF LEMMA 4.5. We work with the explicit expression for λ∗, which
leads to a representation in the form of S

−1/2
n Wn, with Wn = S

−1/2
n

√
nX̄n. Here

‖Wn‖ is precisely (T ∗
n )1/2, hence of size Opr(p

1/2), while ‖S−1/2
n u‖ = Opr(1) for

all unit vector u. This proves the lemma. �

PROOF OF PROPOSITION 4.3. The central point to note is that the em-
pirical likelihood (8) is invariant with respect to the transformation that maps
data Zi to AnZi , where An is any nonsingular nonrandom p × p matrix. If
ELn(Anμ | An) is the empirical likelihood computed on the basis of Z′

i = AnZi ,
for the parameter μ̃ = Anμ, then An cancels out of the defining equation∑n

i=1 wi(AnZi − Anμ) = 0, showing that ELn(μ̃ | An) is the same as ELn(μ)

in (8), that is, independent of An (and with the same maximizing wi ’s). The same
is true for the quadratic approximation Tn = n(Z̄n − μn)

tS−1
n (Z̄n − μn) of (10).

We may in particular employ An = �
−1/2
n , where the resulting AnZi have vari-

ance matrix Ip . The proof of the lemma now follows using arguments similar to
those needed for Theorem 4.1 but under the additional simplifying assumptions
that �n = Ip . �
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