The Annals of Probability

2008, Vol. 36, No. 6, 21762214

DOI: 10.1214/07-AOP386

© Institute of Mathematical Statistics, 2008

SOME LOCAL APPROXIMATIONS OF
DAWSON-WATANABE SUPERPROCESSES

BY OLAV KALLENBERG

Auburn University

Let £ be a Dawson—Watanabe superprocess in R4 such that & is as.
locally finite for every ¢ > 0. Then for d > 2 and fixed ¢ > 0, the singular ran-
dom measure &; can be a.s. approximated by suitably normalized restrictions
of Lebesgue measure to the e-neighborhoods of supp&;. When d > 3, the
local distributions of &; near a hitting point can be approximated in total vari-
ation by those of a stationary and self-similar pseudo-random measure &. By
contrast, the corresponding distributions for d = 2 are locally invariant. Fur-
ther results include improvements of some classical extinction criteria and
some limiting properties of hitting probabilities. Our main proofs are based
on a detailed analysis of the historical structure of &.

1. Introduction. By a Dawson—Watanabe superprocess (or DW-process, for
short) we mean a vaguely continuous, measure-valued Markov process £ on RY
satisfying E,, exp(—§; f) = exp(—puv;) forany f € C,Jg (R?), where v is the unique
solution on Ry x R¥ to the evolution equation v = %Av — v? with initial condi-

tion vg = f. The more general process with v? replaced by %yv2 can be reduced
to the present version by a suitable scaling. The usual construction for bounded
initial measures p extends by independence to any o -finite initial measure p. By
Lemma 3.2 below, & is then a.s. locally finite for every ¢ > 0 iff up; < oo for all ¢,
where p; denotes the standard normal density p;(x) = Qmr)~4/2 exp(—|x|2 /2t)
on R4,

The DW-process has been studied intensely, along with more general super-
processes, for the last 30 years, and the literature on the subject is absolutely
staggering with respect to both volume and depth. Several excellent surveys ex-
ist, including the lecture notes and monographs [3, 7, 8, 22, 26].

For d > 2 and a fixed ¢t > 0, & is known to be a.s. singular and diffuse with a
support of Hausdorff dimension 2 (cf. Theorem 6.15 in [8]). Writing & for the
restriction of Lebesgue measure A¢ to the e-neighborhood of supp &; it was shown
by Tribe [27] that sz_détg LY cq& as. as ¢ — 0 when d > 3, where % denotes
vague convergence and ¢y > 0 is a universal constant. For d = 2 we prove in
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Theorem 7.1 that m(e)|loge|&f 5 & a.s., where the function 7 is such that logm
is bounded with strong continuity properties. In particular, this confirms that &
“distributes its mass over supp &; in a deterministic manner” (cf. [8], page 115, or
[26], page 212), as previously inferred from some deep results involving the exact
Hausdorff measure (cf. [5]).

Our proofs depend crucially on some basic hitting estimates, due to Dawson,
Iscoe and Perkins [4] for d > 3 and Le Gall [21] for d = 2. The former paper gives
g2d P, {&B; > 0} — cqup; for d = 3 as ¢ — 0, where B} denotes an open ball
around x of radius r. Likewise, combining Le Gall’s results with an analysis of the
historical structure, we show in Theorem 5.3 that 11 (¢)|log | P, {& By > 0} — up;
for d = 2, with m as before. A simple rescaling argument in Theorem 4.5 shows

that the local extinction property &; L 0ast— oo, first noted by Dawson
[2] when d =2 and & = A%, is equivalent to the seemingly stronger support

property suppé&; 4 0. (Note that the two properties are given by & B £ 0 and

1{¢B > 0} il 0, respectively, for any bounded Borel set B.)

Another main result is Theorem 8.1, where we show for d > 3 that the condi-
tional distribution of &, given that & charges a small set B, can be approximated
in total variation by the corresponding conditional distribution for a certain sta-
tionary and self-similar pseudo-random measure §. (The prefix “pseudo” indicates
that the underlying “probability” measure P is not normalized and may even be
unbounded. This anomaly is prompted by the self-similarity of &, as explained in
[28]. In our context it causes no problems, since the associated hitting probabilities
remain finite.) By contrast, we prove in Theorem 9.1 that for d = 2, the random
measure &; is asymptotically invariant near a hitting point.

The present work is part of a general program outlined in [16], where we in-
dicate how a whole class of local properties seem to be shared by three totally
different types of random objects—by simple point processes, local time random
measures, and certain measure-valued diffusion processes. The point process case
is classical and has been thoroughly explored in [11, 17]. Versions of the Lebesgue
approximation in Theorem 7.1 are known for the local time random measures of re-
generative sets and exchangeable interval partitions (cf. [18] and Proposition 6.13
in [15]), and some delicate approximations related to Theorem 8.1 below appear
in [12, 14].

As a referee points out, certain intersection local time random measures may
be added to our list of random objects with related properties. For example, a
Lebesgue approximation analogous to ours was proved in this context by Le Gall
[20] (though with convergence in L?, p > 1, rather than a.s.), and similar results
on the average density have been obtained for DW-processes and intersection local
times by Morters and Shieh [23, 24], giving further evidence of the profound di-
chotomy between the cases when d > 3 or d = 2. It is also interesting to note that
their results for the intersection local time are stated in terms of the Palm distribu-
tion associated with a suitable stationary and self-similar pseudo-random measure
(cf. [24], pages 3f), corresponding to our P in Theorem 8.2.
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We proceed with some general remarks on terminology and notation. A random
measure on R¥ is defined as a locally finite kernel & from some basic probability
space (€2, #, P) into (Rd, £d), where 89 denotes the Borel o-field on R?. Thus,
&(w, B) is a locally finite measure in B € B for fixed w € © and is measurable
in w for fixed B. A pseudo-random measure is defined in the same way, except
that the underlying measure P is now allowed to be o-finite. We may also regard
& as a measurable function from 2 to the space My of locally finite measures on
R4, equipped by the o-field generated by all evaluation maps 7p : u — B with
B € B%. The subclasses of bounded sets and measures are denoted by B9 and
My, respectively.

The vague topology in M is generated by all integration maps 7w ¢ : > uf =
[ f du with f belonging to the space C ;’( of continuous functions R — R with

bounded support. Similarly, the weak topology in My is generated by the maps
my for all f in the class Cg of bounded, continuous functions R — R. Thus,

Un — win My iff pu, f — wf forall f € C4, and similarly for p, — w in M.
For random measures &, and £ on R, the associated L'-convergence &, — &
means that &, f — £f in L! for all f in C?( or Cl‘f, respectively. Convergence

S d . . .
in distribution of random measures, denoted by &, — £, is understood to be with
respect to the vague topology, unless something else is said. Note that this is equiv-

alent to &, f % &1 forall f € C% (cf. Theorem 16.16 in [13]).

Convergence of closed random sets is defined as usual with respect to the Fell
topology (cf. [13], pages 324, 566). However, in this paper we need only the special
cases of convergence to the empty set or the whole space, which are explained
whenever they occur.

Throughout the paper we use relations such as =, <, ~ and x, where the
first three mean equality, inequality and asymptotic equality up to a constant fac-
tor, and the last one is the combination of < and >. We often write a < b to
mean a/b — 0. The double bars | - || denote the supremum norm when applied to
functions and total variation when applied to signed measures. We also write || - ||
for the supremum or total variation over the set B. For functions f;, or signed mea-

sures 4, on R4, the convergence || f,|| = O or ||u,|| — O is said to hold locally
if || fullp = O or ||unllp — O, respectively, for all B € B4, In Section 8 we also
use the notation ||, ||z — O for signed measures 1, on M? and sets B € B89 in
which case the precise meaning is explained in connection with Theorem 8.1.

In any Euclidean space R?, we write B! for the open ball of radius r > 0
centered at x € R?. The shift and scaling operators 6, and S, are given by
O,y = x + y and S,x = rx, respectively, and for measures x on RY we define
uOy and uS, by (uby)B = (6, B) and (uS,)B = (S, B), respectively. In par-
ticular, (uS,)f = u(f oS- 1) for measurable functions f on R4, Convolutions
of measures p with functions f are given by (u * f)(x) = [ f(x — u)u(du).
Product measures are written as u @ vor u' = ® --- ® u, and in particular 24
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denotes Lebesgue measure on R?. The functional notations f(x) and f, are used
interchangeably, depending on typographical convenience. Notation pertaining to
Palm measures or DW-processes is explained in the next section.

The paper is organized as follows. In Section 2 we prove some preliminary
technical results and explain the crucial ideas about DW-processes, cluster rep-
resentations and Palm measures needed in subsequent sections. In Section 3 we
characterize the locally finite DW-processes in terms of their initial measures and
derive some useful estimates of the second moments. In Section 4 we use the clas-
sical hitting estimates to give bounds on the associated multiplicities, and we es-
tablish some weak extinction criteria for d > 2. In Section 5 we identify and study
the proper normalization for the hitting probabilities to converge when d = 2. In
Section 6 we estimate the second moments of the neighborhood measures 7; as-
sociated with the clusters n; of a DW-process. In Section 7 we are ready to prove
the mentioned Lebesgue approximation for DW-processes of dimensions d > 2.
In Section 8 we prove the mentioned approximation in total variation for DW-
processes of dimension d > 3. Finally, we show in Section 9 that DW-processes of
dimension 2 are locally invariant in a number of different ways.

2. Preliminaries. In this paper DW-processes are often denoted by & = (&;),
and we write P, {§ € -} for the distribution of the process & with initial measure ft.
The same notation is used for the entire historical process. In all the mentioned
literature, & is first constructed for bounded w. To extend the definition to the o -
finite case, we may write u = Y, t, for some bounded measures (,, and choose
&1, &, ... to be independent DW-processes starting from w1, i3,.... Then & =
> n &n is alocally finite DW-process with initial measure u, provided that pup; < oo
for all ¢ > 0.

For every fixed ., the DW-process & is infinitely divisible under P, and admits a
decomposition into a Poisson “forest” of conditionally independent clusters, cor-
responding to the excursions of the contour process in the ingenious “Brownian
snake” representation of Le Gall [22]. In particular, this yields a cluster repre-
sentation of &; for every fixed ¢ > 0. More generally, the “ancestors” of & at an
earlier time s =t — h form a Cox process ¢, directed by h_lés (meaning that
¢s is conditionally Poisson with intensity h~ ', given &; cf. [13], page 226),
and the generated clusters nﬁl are conditionally independent and identically dis-
tributed apart from shifts. This is all explained in [8], pages 60ff, and some more
precise statements with detailed proofs appear in Theorem 3.11 of [5] and Corol-
lary 11.5.3 of [3]. In this paper, a generic cluster of age ¢ > 0 is denoted by 7;;
we write Pyx{n; € -} for the distribution of a ¢-cluster centered at x € R4 and put
Pulii €} = [ u(dx) Pyl € ).

For the ease of reference, we state some basic scaling properties of DW-proces-
ses and their associated clusters (cf. Theorem 6.6 in [5]).

LEMMA 2.1. Let & be a DW-process in RY starting at p and with associated
clusters n;. Then for any r,t > 0, we have:
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() &= r_zé“,ztSr is a DW-process starting from ji =r 218,
(i) n o F_znrztSr under Py.

PROOF. Part (i) may be proved by the argument in [8], page 51. A similar
scaling property is then obtained for the cluster representation of &, and (ii) follows
by the uniqueness of the associated Lévy measure (cf. Theorem 6.1 in [11]). [

Given a random measure & on R? with o-finite intensity E&, we define the
kernel of associated Palm distributions Q, by the disintegration formula

E / £, E)E(dx) = / E&(dx) f £ 005 (dp),

for any measurable function f >0 on R? x M. If £ is defined on the canonical
probability space with distribution P, we also write P* = Q,. When £ is station-
ary, we may choose the measures P0 = P* 06~ ! . to be independent of x, in which
case P* = P%o 0, ! for all x. What is said above apphes even to the Palm distribu-
tions of pseudo-random measures £ on R?, as long as EE is o -finite. (In particular,
the P* are still probability measures in this case, even if P is not.)

In the nonstationary case, the Palm distributions P* are only determined for
x € RY ae. E£. However, the function x — P* may have a version with nice
continuity properties. In Lemma 3.5 below, we show that when £ is a locally fi-
nite DW-process with initial measure w, the family of shifted Palm distributions
Pj o6 1 can be chosen to be locally continuous in total variation. The continuous

version is then unique, and the Palm distribution P/(L) becomes well defined. This is
the version with a nice probabilistic representation, given by Corollary 4.1.6 in [5]
or Theorem 11.7.1 in [3].

In this paper, Palm distributions figure prominently only in Sections 8 and 9.
The following uniform convergence criterion for shifted Palm measures will be
needed in Section 8.

LEMMA 2.2. Let & and &, be random measures on R? with locally finite in-
tensities, where & is stationary, and let Q and Q7 be versions of the associated

shifted Palm distributions. Fix a set B € B4 satisfying:

(i) E&,B— EEB >0,
(i) ||E[£,B;é,€-]1—E[EB; & €] — 0,
(ifi) sup,.,cp 107 — Q11— 0.

Then sup, | 0" — Q|| — 0.

PROOF. For measurable A C M, we define

fA(u)z(uBr‘/BMds)lAwes), we My,
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where 0710 = 0. Then
/ E&,(ds)Q"A = E / E0(ds) 1 A(En0))
B B

= Et,Bfa(En) = / El£,B; &, € dpl fa(u),

and similarly for & and Q. Since |vf| < ||v]|| for any signed measure v and mea-
surable function f into [0, 1], we get for s € B

E€B|Q" — Q| < |[EEBQ" — E&,BQ"| + HEsnBQ;? - [ Eaane;

+| [ Eaanor - Eeso|

<|E&B — Et, B| +/BEsn(dr>||Q? — 0"

+ IE[§.B; §p € -1 — E[EB; § €]

By (i)—(iii) the right-hand side tends to 0 as n — oo, uniformly in s € B, and the
assertion follows since EEB > 0. [

We conclude this section with an elementary but somewhat technical interpola-
tion principle that will be needed in Section 7.

LEMMA 2.3. Let the functions f, g > 0 on (0, 1] and constants p,c > 0 be
such that f is nondecreasing, log g(e™") is bounded and uniformly continuous
onRy,and t=P f(t)g(t) — c as t — 0 along every sequence (r'*) with r in some
dense set D C (0, 1). Then the same convergence holds along (0, 1).

PROOF. Letting w be the modulus of continuity of log g(e™"), we get
e V"MWoe™y < g™ M) < e PMg(e™), t,h>0.
Writing b, = exp w(—logr), we obtain
by le(t) <g(rt) <bg(n),  t,re(0,1).
Forany r,t € (0, 1), define n =n(r, t) by " <t <r". Then by the monotonicity
of f
PP F Db g (M <17 F(0)g(1)
<r PP b g(r").
Letting t — O for fixed r € D, we get by the hypothesis
rPhle < li?l)iélft_pf(t)g(t) <limsupt=? f(1)g(t) <r Pbyc.

t—0

It remains to note that r~?b, — 1 asr — 1 along D. [
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3. Moments and continuity. Throughout the paper we need some basic
results involving the first and second moment measures E,& and E,LSIZ of a
DW-process & in R?. Here a simple estimate for the normal densities p; will be
useful.

LEMMA 3.1. Let p;, t > 0, denote the standard normal density functions
on RY. Then for fixed d and t we have

px4+y) <panx), xeR |y|<h<t.

PROOF. If |x| >4t and |y| <h, then |y|/|x| <h/4t,and soforr =h/t <1

2 2
x4 2 (¢ + ) Z(I_M) <1+?>Z<1—%)(1+r)21,

t |x|2 |x|

which implies p;(x 4+ y) < pr+»(x) when h < ¢t. The same relation holds trivially
for |x| <4tand |y|<h<t. U

Let us now consider the intensity measures E, & of a DW-process & starting
from an arbitrary o -finite measure (.

LEMMA 3.2. Let & be a DW-process in R? with associated clusters n;, and
fix a o -finite measure (. Then for any fixed t > 0, the following two conditions are
equivalent:

(1) & is locally finite a.s. P,
(i1) E. & is locally finite.

Furthermore, (i) and (ii) hold for all t > O iff:
(ii1) up; <ooforallt >0,
in which case we have for any t > 0:

(iv) Eué = ! E, 0 has the finite, continuous density | * py,
(v) E;(§:0y) is locally continuous in total variation in x, and the same conti-
nuity holds globally when p is bounded.

PROOF. The formula E & = (u * p;) - A4, well known for bounded 1 (cf.
Lemma 2.1 in [8]), extends by monotone convergence to any o -finite measure
(though E,&; may fail to be o-finite, in general). The relation E,n, =tE,&; fol-
lows from the cluster representation of &;.

Condition (ii) clearly implies (i). Conversely, let B = B{ with 2 <tand 0 <
E & B < 0o. Using the Paley—Zygmund inequality (cf. [13], page 63) and Hint (2)
in [26], page 239, we get for any r € (0, 1)

2 2
PIL{&iB>r}Z(1 _r)Z(E/LgtB) > (1 r) ’
En&:B E (6B ~ 1+ c(E & B)"!
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for some constant ¢ > 0 depending only on d, ¢ and €. Now assume instead that
E & B = o0, and choose some bounded measures p, 1t n with £, § B > n. Ap-
plying the previous inequality to each w, gives
(1—r)?
l+c/n
Letting n — oo and then r — 0, we obtain & B = oo a.s. In particular, this shows
that (i) implies (ii).

Next assume (iii). Fixing x € R? and choosing r >t + 2|x|, we see from
Lemma 3.1 that p;(x — u) < p,(u) and hence (u * p;)(x) < up, < oo, which
shows that E,,&; has the finite density u * p,. Next we may write

Pu{&B>rn}> P, {5&B>rE, 5B}>

| pr)(x +y) = (e * p)(x)| < f |pe(x +y —u) — pi(x —u)|(du),
where the integrand tends to 0 as y — 0. Furthermore, Lemma 3.1 yields

ey |pe(x +y —u) — pi(x —uw)| < pa(x —u), Iyl <t.
Since u * pos(x) < oo, the continuity of u * p; follows by dominated convergence.
This proves (iv), which in turn implies (ii) for every ¢ > 0. Conversely, (ii) yields
(i * pp)(x) < oo for all n € N and for x € R? a.e. A¢. Fixing such an x and using
Lemma 3.1 as before, we obtain condition (iii).

To prove (v), we write for any y € R? and r > 0

I1E.(5:0y) — Enéill = / |(u s pr)(x = y) = (e * pr)(x)| dx

< /M(du)/ P — y — 1) — pe(x — )] dx,

where the integrand tends to 0 as y — 0. For bounded n, we may use (1) again and
note that [ u(du) [ pas(x —u)dx = ||t|| < oo, which justifies taking limits under
the integral sign. For general y as in (iii), fix any B € 8, and note that

IEp(&6y) — Euils S/M(du)fB pe(x — y —u) — pi(x — )] dx.

Choosing r > 0 so large that t + 2|x — y| <r for x € B and |y| < 1, we see from
Lemma 3.1 that p;(x —y — u) < p,(u) for any such x and y. Since up, < oo
by (iii), this justifies the dominated convergence in this case, and (v) follows. [J

Assuming the DW-process £ in R? to be locally finite under P, in the sense that
condition (i) above holds for all ¢ > 0, we go on to study the second moment mea-
sures E Métz and the associated covariance measures Cov, § = E MSIZ —(E MS,)Z
on R%,

LEMMA 3.3. Let the DW-process & in R? be locally finite under P, and
denote the associated clusters by n;. Then for any t > 0 and x1,x, =% +r in R?,
we have:

(i) Cov & =17 Eun? = (usxqr) - X2 with g, =2 [} (ps * p&%) ds,
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(i) (e *qp)(x1,x2) < (* p) (&) pr(D)r >~ for d > 3,
(iii) (u*qo)(x1,x2) < (u* p)(E)(Epy2(r) +log (t/|r[?)) for d =2,
@1v) (m=*qgp)(x1,x2) ~ (u* p)(x)|log|r|| ford =2 as x1, x3 — x.

Note that the convolutions in (i) are defined, for any x, y € R4, by

(a0 (e ) = [ ndwa e —u,y =),
(ps * pE2)(x,y) = / ps ) pr—s(x — ) pi—s(y — u) du.

PROOF. (i) The expression for Cov, &, well known for bounded w (cf. [8],
page 37f), extends to the general case by monotone convergence. To see that
E u’7t2 =t Cov, &, let ¢y be the process of ancestors of & at time 0, and denote
the generated clusters by 7. Using the Poisson property of ¢y and the conditional
independence of the clusters, we get

E&? = (Ey&)* +Covu & = E, Yl @)
i,J

=[], Eucdtaxdy) Eon @ Eyno + [ Entvan Eon?
x#y
=172 (Eun)? + 17 Enf = (Epé)® +17 Epny.
(i1) By definition
t
@ atx =2 ds [ p@pis —wpeo ) du.
To estimate ¢;, we may use the parallelogram identity to get
prx)pi(x2) = 1~ exp(—(lx1 [ + |x2l?) /21)

=t~ exp(—(IX1> + 171*)/1) = pi)2(X) pr 2 (r).

Applying this to (2) and using the semigroup property of the normal densities, we
obtain

t
ql‘(xlyXZ) = /(; ds/-ps(u)p(t,s)/z(j _M)P(z—s)/z(l”)du
t —_—
= /() Pt—s5)/2(F) P(t+s)/2(X) ds
t p , )
= Pt(f)‘/. ps/z(r)dSEpt()E)/ §412=Ir /s g
0 0

o0
= P @I [ Wy

Ir|?/t

—d —Ir2 _
d ,—Irl? /2t 2-d,d)2.

< p@®r? = p(X)p(r)]r]
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The required estimate now follows by convolution with .
(ii1) Here we see as before that

o0
qr(x1,x2) < p(X) v eV dv.
Ir|2/t

For |r|? <t/2 we have

0 1
/ v eV dy < f v dv =log(t/|r ),
\ Ir|?/t

r|2/t

and for |r|? > t/2 we get

[e.¢] o
/ v_le_”dv§/ e_vdv:exp(—lrlz/t)gtp,/z(r).
| |

ri?/t rl?/t

(iv) For fixed ¢ > 0 we have

t
qr(x1,x2) E/o P(t—s)/2(F) P(t+s5)/2(X) ds

t
~ P(t—5)/2(N) P(t+s5)/2(X) ds,
1—&

since

t—e&
/0 P2 Passyp (B ds < pi(F) vl dv

Ir?/t

— pi(x)log(t/e) < o0.

Noting that p(;4)/2(X) = p;(x) — p;(x) as s — t and then x1, x; — x, we get
for fixed b > 0

t o]
@) = p) [ pprds=pio) [ vt a

b
~ pi(x) / v eV dv,
7|2/t

where the last relation holds since fboo v le Vdv < o0. Since eV — 1 as v — 0,
we obtain

1
gi(xrx) i) | v dv = pi0)log(t/Ir?)  pr (o)l log Il
r

This proves the assertion for u = §p. For general w, let ¢ > 0 be such that
q:(x1, x2) ~ cp;(x)|log|r||. We need to show that

| og |r||~! /u(du)qf(xl w2 —u) = cfu(du)pt(x —w),
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as x1, xo — x for fixed p and ¢. Then note that by (iii) and Lemma 3.1

log |r|| ™ g (x1 —u, x2 —u) < pi(F —u) < pran(x — u),

as long as |x — x| < h. Since (u * ps4+p)(x) < 00, the desired relation follows by
dominated convergence. [

Part (iv) of the last lemma yields a useful scaling property for the second mo-
ments of a DW-process in R2. This will be needed in Section 9.

LEMMA 3.4. Let the DW-process & in R? be locally finite under Py,. Consider
a measurable function f >0 on R* such that f(x, y)log(|x — y|~! V e) is inte-
grable, where x, y € R?, and suppose that either (v or supp f is bounded. Then as
& — 0 for fixed t > 0, we have

Eu(&S)° f ~ e*[logela fup;.
This holds in particular when both f and its support are bounded. The statement

remains true with & replaced by the associated clusters 1;.

PROOF. By Lemma 3.3(iv), the density g of E,ﬁg‘,2 satisfies

g(x1,x2) ~ clloglx1 — xa| (i % py) (3 (x1 + x2)), x|~ xp in R?,

for some constant ¢ > 0, and is otherwise bounded for bounded w. Furthermore,
we have

g(ex)

dx.
[logel

B2 f = [ fu/ergdu=ellogel [ 1)

Here the ratio in the last integrand tends to cup; as € — 0. If u or supp f is
bounded, then the integral tends to cup;A* f by dominated convergence. To check
the stated integrability condition when f is bounded, we may change (x1, x) into
the new coordinates x| & x», then replace x; — x> by polar coordinates (r, 8) and
note that fol rllogr|dr <oo. [

Next we prove the strong continuity under shifts for the distributions of a DW-
process and the associated Palm distributions. This result will be needed in Sec-
tions 8 and 9.

LEMMA 3.5. Let the DW-process & in R? be locally finite under Py. Then
Jor fixed t > 0, the distributions P,{§:0x € -} and P; {§6x € -} are continuous in

total variation, locally in x € R%. The continuity holds even globally when w is
bounded.
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PROOF. First let ||| < co. Let s denote the ancestral process at time s €
[0,¢], and put T = inf{s > O; ||Z]| > [|¢oll}. Then ¢o is Poisson with intensity
wu/t, and each ancestor in ¢y branches before time & € (0, t) with probability 7/¢.
Hence, the number of such branching individuals is Poisson with mean ||| A/ 12,
and so P{t > h} = exp(—||u||h/t2). Conditionally on t > h, the process ¢, is
again Poisson with intensity t_l(,u * pp) - M =E w&n/t, and & is conditionally
independent of the event {t > h}, given ¢j. Therefore,

| Pui:0r € -} — Puiés € -}
< Pu{t <h} + |1 PulEnbr € -|T > h] — PulCp € -|T > ]|

— 2 —
< (1= e Wy 4 =Y E 8,6, — Euéall,

which tends to 0 as »r — 0 and then # — 0 by Lemma 3.2(v).
For general 1, we may choose some bounded measures i, 1 4, so that u), =
U — y ) 0. Fixing any B € B9, we have

||Pu{§t9r € } - P/L{Et € }”B
< 1P, {:0r € -} — Pu,{& € -} + 2Py {&(B U6, B) > 0},

which tends to 0 as r — 0 and then n — oo, by the previous case and the simple
Lemma 4.3 below (whose proof is independent of the present result). This yields
the continuity of P, {§,0, € -}.

We turn to the Palm distributions PB{“;} € -}. By Lemma 10.6 in [11] (cf.
Lemma 11.4.2 in [3]), the measure Pg {&: € -} is the convolution of P, {§; € -} with
the Palm distribution at O of the Lévy measure P, {n; € -} = [ u(dx)Pc{n; € -}. By
the previous result and Fubini’s theorem, it is then enough to show that the latter
factor is continuous in total variation under shifts in @. By Corollary 4.1.6 in [5]
(cf. Theorem 11.7.1 in [3]), the corresponding historical path is a Brownian bridge
X on [0, ¢] from « to 0, where « has distribution (p; - )/ up;. The measure n; is
the sum of independent clusters rooted along the path of X, with birth times given
by an independent Poisson process ¢ on [0, ¢t] with rate 2/(¢ — s) at time s.

Let 7 be the first point of ¢. Since P{t < h} — 0 as h — 0 and since the event
T > h is independent of the restriction of ¢ to the interval [/, t], it suffices, for
any fixed 4 > 0, to prove the continuity in total variation for the sum of clusters
born after time /. Since X is again a Brownian bridge on [4, ¢], conditionally on «
and Xj, the mentioned sum is conditionally independent of « given X, and it is
enough to prove that P,{X}, € -} is continuous in total variation under shifts in p.

Then put s =t — h, and note that X}, is conditionally N (s«, sh) given o = Xj.
Thus, the conditional density of X, equals ps;(x — sa). Since o has density
(pr - 1)/ ups, the unconditional density of X; becomes

fux) = (up) ™! / Psh(x — su) pr(u) u(du), x eRY.
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Replacing p by the shifted measure ©6, yields the density
-1
Fu @)= (% p0 @)™ [ Dot = s+ 57)pota = rpata),

and we need to show that f,9, — f, in L' as r — 0. Since (u * p)(r) = up;
by Lemma 3.2(iv), it is enough to prove convergence of the p-integrals. Here the
L'-distance is bounded by

f dx f ()| psn(x — s+ 57) pr — 1) — psi (x — s16) pr (),

which tends to 0 as r — 0 by Lemma 1.32 in [13], since the integrand tends to O
by continuity and

/ dx / J (i) o (% — st + 57 pr (i — 1)

— (s p)(r) = ppr = / dx / W (du) pon (x — su) pr (),

by Fubini’s theorem and Lemma 3.2(iv). [

4. Hitting bounds and extinction. In this section we derive some hitting es-
timates at fixed times for a DW-process & in R¢ and the associated clusters 7;.
Those results will be useful throughout the remainder of the paper. We also dis-
cuss some extinction and related properties for DW-processes of dimension d > 2.
For the ease of reference, we begin with a well-known relationship between the
hitting probabilities of & and n,. Here and below P, {n; € -} = [ u(dx)Py{n; € -}.

LEMMA 4.1. Let the DW-process £ in RY with associated clusters n; be lo-
cally finite under P, and fix any B € Be. Then

P.{nB >0} = —zlog(1 — P,{&B > 0}),
P {&B >0} =1—exp(—t~'Py{nB > 0}).

In particular, P,{§;B > 0} ~ t_lP,L{n,B > 0} as either side tends to 0.

PROOF. Under P, we have § =) ; nﬁ, where the 77; are conditionally inde-
pendent clusters of age ¢ rooted at the points of a Poisson process with inten-
sity w/t. For a cluster rooted at x, the hitting probability is b, = Px{n;B > 0}.
Hence (e.g., by Proposition 12.3 in [13]), the number of clusters hitting B is Pois-
son distributed with mean ub/t, and so P, {§; B = 0} = exp(—ub/t), which yields
the asserted formulas. [

Next we extend some classical hitting estimates for DW-processes of dimension
d > 2. By Lemma 4.1 it is enough to consider the corresponding clusters 7;, and
by shifting it suffices to consider balls centered at the origin.
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LEMMA 4.2. Let the n; be clusters of a DW-process in R?, and consider a
o -finite measure . on RY.

(1) Ford>3,lett, =t + g2, Then for 0 < & < /t, we have
upy <t '~ Pu{n:Bf > 0} < upy (e
(ii) For d =2, we may choose 0 <l — 1 <|loge|™"/? and put t, = tly) /i> 5O
that uniformly for x e R* and 0 < & < %\/f

mpr <t~ log(t/e?) Pu{n: BS > 0} < upr(e)-

PROOF. (i) For bounded u we have by Theorem 3.1 in [4] (cf. Theo-
rem II1.5.11 and Exercise II1.5.2 in [26])

Mpr < EZ_dPu{EtBS >0} < MUPDz(e)s

and the asserted relations follow by Lemma 4.1. The result extends by linearity to
any o -finite measure .

(ii) It is enough to take r = 1, since by Lemma 2.1(ii) we then obtain for general
t>0

Pelni B > 0) = PolnBS > 0) = Po{m BV} > 0]

|10g(8/\/;)’_lpz(g/ﬁ)(x/~/;)
t(log(t/&%) ™ priey (%),

and similarly for the lower bound.
For t =1 we have by Theorem 2 in [21]

A

A

p1(x) < |loge|Pc{n By > 0}
< (1+ x> > [logel} x| p1(Jx| — o).

In particular, this gives the required lower bound. Next, Lemma 3.1 yields
p1(Jx] — &) < p1+£(x), and by elementary estimates we get for |loge| > e

2log|loge
14+ 1{x)> > |logel}|x|* < exp(wde).

loge|

Hence, by combination, we get for ¢ bounded by some constant ¢ > 0

|x|2( 1 4log|loge]

1 P B >0} < {——
[log e| Py{n1 By > 0} < exp T te oge|

> >} < pige)(x),

where

1 4log |1 -1
l(s):( _ °g|°g8|) . O0<e<c.

1+e¢ |loge|
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As & — 0, we note that

4log|1
0<l(e)— 1 < e cogllogel 00 172

|loge|

Whenc < ¢ < %, we have instead

|loge| Pe{m B§ >0} < (14 [x[*)pi(jx| — &)

A

~

< exp(alx|?) p1ie (),

for any fixed a > 0. Choosing a small enough, we get again a bound of the form
Di(s)» for a suitable choice of I(¢) > 1. [J

The following simple result is often useful to extend results for bounded initial
measures i to the general case.

LEMMA 4.3. Let the DW-process & in R? be locally finite under P, and
suppose that (v > p, | 0. Then Py, {§B > 0} — 0 as n — oo for fixed t > 0 and
B e 8.

PROOF. We may assume that B = By for some r > 0. Using Lemmas 3.2, 4.1
and 4.2, along with a projection argument when d = 1, we get for small enough
& > 0 and for suitable ¢, > 0

P{&B >0} < '/;PM{";}B)f > 0}dx < /};(M * Pi(e)) (x) dx < 00.

The assertion now follows by dominated convergence. [J

Next we need to estimate the probability that a small ball in R¢ is hit by more
than one subcluster of our DW-process &. This result will play a crucial role
throughout the remainder of the paper.

LEMMA 4.4. Let the DW-process & in R¢ be locally finite under P,,. For any
t>h>0ande¢e >0, let KZ be the number of h-clusters hitting BS at time t. Then:

(1) ford =3 and as g2« h <t,we have witht, =1t + &2

2(d-2) (hlfd/Z

Eﬂxﬁ(/c,f —-D<e upr + (,upr(s))z),

(i) for d =2 we may choose 0 < tp o — tghllogel_l/z, such that as
eLh<t

Eykf(kf — 1) < |loge|>(log(t/ M) up: + (4pih.e))’)-
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PROOF. (i) Let ¢ be the Cox process of ancestors to & at time s =t — h, and
write n}; for the associated h-clusters. Using Lemma 4.2(i), the conditional inde-
pendence of the clusters and the fact that £, {SZ =h"’E M;& outside the diagonal,
we get with py (x) = Px{n,B§ > 0}

E.xf(cs —1) = E, > 1, B§ A nj,B§ > 0}
i#]

_ / f Py 0Py g (dx dy)
xXF#y

A

£20-2) / / Piiey () e () En&2(dx dy).

By Lemma 3.2, Fubini’s theorem and the semigroup property of (p;), we get

f Phiey (V) Euks (dx) = f Piiey (0 (i py) () dx

= / pu(du)(phe) * ps)(U) = APt (e)-

Next, we get by Lemma 3.3(i), Fubini’s theorem, the properties of (p;) and the
relations t <t, <2t —s

[ [ pher@ i) Cov,us(dx )
=2// Ph(s)(x)Ph(e)(y)ddefM(du)/o dr
X /pr(v - u)ps—r(x - U)Ps—r(y - U)dv
=2 [ utaw) [ dr [ pota=v)(pro-r @) dv
< [ty [ =P pr « puc-np)wdr
=/M(du)_/0l (t _r)_d/zp(t(s)—i-r)/Z(M)dr

t
< [ i) [ r=dr < upin'=~.

The assertion follows by combination of these estimates.

(ii)) Here we may proceed as before, with the following changes: Using
Lemma 4.2(ii) instead of (i), we see that the factor £2(¢=2) should be replaced
by |log(e9/\/ﬁ)|*2 < |10g8|*2. In the last computation, we have now f}f r~ldr =
log(z/h). Since h, = hlg/ﬁ with0 </, —1< |log8|_1/2, we may choose 5 . =
t 4 (he — h) in the second term on the right. As for the estimates leading up to the
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first term, we note that the bound #, . + s < 2¢ remains valid for sufficiently small
e/h. U

Using the bounds in Lemma 4.2, we may improve some known extinction cri-
teria for DW-processes of dimension d > 2.

THEOREM 4.5. Let & be a locally finite DW-process in R%, d > 2, with arbi-
trary initial distribution. Then these conditions are equivalent as t — 00:

Q) & %0,
(1) suppé; —d> g,
P
(111) r‘EOPz — 0, d>3,
(log)~op; >0, d=2.

Already Dawson [2] noted that &; LY 0 for a DW-process in R? with & = A2
The equivalence of (i) and (ii1) was proved for d = 2 by Bramson, Cox and Greven

[1] (see also [19]). Condition (ii) means that 1{§ B > 0} £ 0 for all B € $2. The
corresponding a.s. convergence fails for d = 2 and & = A%, for example, by the
ergodic theorem in [9] (cf. Theorem 2.25 of [8]). However, for d = 1 such an a.s.
result was obtained by Iscoe [10].

PROOF. First let d = 2. Using Lemmas 2.1(i), 4.1 and 4.2(ii), along with the
properties of p;, we get for any measure x and constants r, ¢, ¢ > 0 with te? = 1

PM{%—IB('; >0} = PszuSl/S {5821‘368 > 0}
< 2181 /e pigrey | log(re)| !
< *loge| ™ u(pr o Se) < (log2t) ™ upar,

since 1 </, <2 for sufficiently small ¢ > 0. Combining with the corresponding
lower bound gives

(logt) ™ upy A1 < Pu{§ By > 0} < (log20) ™ upay AL,
and so for a general initial distribution

E[(logt)'&p: A 11 < P{&Bjy > 0} < E[(log21) ' &ypa A 1].

Ast — 00, we obtain 1{&; B, > 0} £ 0 iff (logt)*lgop, £ 0, and the equivalence
of (ii) and (iii) follows since r was arbitrary.
For d > 3, we may use Lemma 4.2(i) instead to write

P& By > 0} = Py, (€2, By > 0}

< &2 US1/ePire) (re) ™2 <t upar = pp,
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and similarly for the lower bound. Hence, for a general initial distribution,

E[&p: A 1] < P{& B > 0} < E[&opar A 1],
which shows again that (ii) and (iii) are equivalent. Since clearly (ii) implies (i), it
remains to prove that (i) implies (iii).
Then put B = Bol, and suppose that & is locally finite under P,. Noting that
Var, & B < E; & B for d > 3 by Hint (2) in [26], page 239, we see as in the proof
of Lemma 3.2 that

o2
PM{£>F}Z (1 r) 1> VE(O, 1),
EustB 1+C(E[L‘§IB) 1

where the constant ¢ > 0 depends only on d. Hence, if & B £o along some
sequence t, — oo, we get E & B — 0 along the same sequence. Noting that
E. & B > up;—1 by Lemma 3.1, we obtain up,, 1 — 0.

For general &y, (i) implies & B —P> 0. Hence, for any t, — oo we have & B — 0
a.s. along some subsequence (#,/). Since this remains conditionally true given &,
we see as before that &y p; — 0 a.s. along the shifted sequence (¢, — 1). Since the

sequence (#, — 1) was arbitrary, &g p; £ 0 follows by Lemma 4.2 in [13]. [
In the stationary case, we can also estimate the rate of clustering. For a sta-

tionary random measure ¢ on R, the associated sample intensity ¢ is defined by
¢ - A% = E[¢|4], where { denotes the invariant o-field.

PROPOSITION 4.6. Let § be a DW-process in R?, starting from a stationary
random measure &y # 0 with sample intensity §y < oo a.s. Then P{; By > 0} — 0

ast — oo iffr’/t — 0.

PROOF. Letting 6% =1 and r?/t — 0, we get as in the previous proof
P& Bj > 0} < &%|log(re)| ™ i(pa o Se)

< (log(t/r*) ™ upa.
Hence, for a general initial distribution
P{& B}, > 0} < E[(log(1/r*)) ™' opa A 1],

which tends to 0 as r2 < t — 00, since £ py — & < 00 a.s. by Corollary 10.19
in [13].
Conversely, truncating re at %, we get as before

P{& By > 0} > E[[log(re A %)|_1é&0[9t A1,
and so P{& B > 0} — 0 implies
-1z - P
[log(re A %)| léo < |log(re A %)| léopt — 0.

Since P{& > 0} > 0, we get | log(re A %)| — 00 and therefore 2/t — 0. O
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5. Hitting asymptotics. For a DW-process & of dimension d > 3, we know
from Theorem 3.1 of Dawson, Iscoe and Perkins [4] (cf. Remark II1.5.12 in [26])
that, as € — 0 for fixed 7 > 0, x € R? and bounded “w,

3) e27 P& BE > 0} — ca(u* p)(x),

where ¢z > 0 is a constant depending only on d, and the convergence is uniform
for x € R? and for bounded ¢! and || wu||. Here we prove a similar result for d = 2,
with ¢4 replaced by a suitable normalizing function m.

Writing pj (x) = Px{nnB§ > 0}, where n;, denotes an h-cluster associated with
a DW-process in R¢, we define our normalizing function for d = 2 by

m(e) = |loge|A? p¢ = |loge| P2 {m BE > 0, e>0.
The following technical result will play a crucial role below, especially in Sec-

tion 7.

LEMMA 5.1. The function t — logm(exp(—e")) is bounded and uniformly
continuous on [1, 00).

PROOF. The boundedness of logm is clear from Lemma 4.2(ii). For any
h € (0, 1], let ¢ be the process of ancestors to & at time s = 1 — k&, and denote
the generated h-clusters by n;l. Then for 0 <r < 1 and 0 < ¢ < h we get the
following chain of relations, to be explained and justified below:

m(e)|loge| ! ~r~ P2 (€ B > 0}

~rVE 2 ) 1{n,Bf > 0y =r""E,2¢,p],
i

= P BE > 0) = Py BV > 0)
=m(s/v/h)|log(e/v/h)|~" ~m(e/vh) loge| .

Here the first two steps are suggested by Lemmas 4.1 and 4.4(ii), respectively, the
third step holds by the conditional independence of the clusters, the fourth step
holds by the Cox property of ¢, the fifth step holds by Lemma 2.1(ii), the sixth
step holds by the definition of m and the last step is suggested by the relation
e h.

To estimate the approximation errors, we see from Lemmas 4.1 and 4.2(ii) that

Im(e) — r~|loge|P,;2{&1 BS > 0}
=r~loge||P,,2(m B§ > 0} — P,,2{&1 B§ > 0}
<r~!loge|(P,;2(m B > 0})°

_ _ 2 _
<r 1|10g8| l(rkzpl(g)) =rl|loge| I
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Next, Lemma 4.4(ii) yields

r_1|loge|

E,.2 Y 1nj,B; >0} — P,,2{&B§ > 0}‘
i

=r~"loge|E, 2 (kf — 14

- |logh|rA?p1 4+ (rA%pin.e))* _ |logh|+r

—~

r|loge] |loge|
Finally, we note that
logel | _lloghl
llog(e/vm)| |7 |loge]
by the boundedness of m. Combining these estimates and letting » — 0, we obtain
|logh|
|loge|

m(e/~h)

lm(e) —m(s/vVh)| <

—~

Taking e = e~ and ¢/~/h = ¢~* witht — s < 1 gives

m(e™")

m(e™s)

‘ ‘m(e")
log < -

m(e=%)

< (t =)/t <|log(t/s)I,

which extends immediately to arbitrary s,¢ > 1. Replacing s and ¢ by ¢* and e’
gives

1‘ <Im(e™) —m(e™)|

| logm(exp(—e")) —logm(exp(—e*))| < |t —s|,
which implies the asserted uniform continuity. [J
We proceed to approximate the hitting probabilities pj by suitably normalized

Dirac functions. Even this result will play a crucial role in the sequel, both here
and in Section 7.

LEMMA 5.2.  Write pj(x) = Px{npB§ > 0}, where the ny, are clusters of a

DW-process in R?, and fix a bounded, uniformly continuous function f >0 onR?.
Then:

1) fordz3andas0<82<<h—>0,wehave
Ih= e (pj ) = ca fll = 0,
(ii) ford=2and as 0 <& <h — O with |logh| < |loge|, we have
Ih~" logel(pf, = f) —m(e) £ — O.
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Both results hold uniformly over any class of uniformly bounded and equicontinu-
ous functions f >0 on R?,

PROOF. (i) Using (3) and Lemmas 2.1(ii), 4.1 and 4.2(i), we get by dominated
convergence

4) 2 pt = hd/zkdpf/ﬁ ~ cgh/? (e/ﬁ)d_z)»dpl =cqe?%h.

Similarly, Lemma 4.2(ii) yields for fixed » > 0 and a standard normal random
vector y in R?

2—dqi —1 e
e h x)dx < /
g PRV A= ul>r/h

= P{ly|l}/* > r/v/h}y— 0.

By (4) it is enough to show that ||p; * f — f|| — 0 as h, 82/h — 0, where
pn="r;/ A4 pj,- Writing w ¢ for the modulus of continuity of f, we get

Die)(u) du
)

15} f = 1l =sup /ﬁi(u)(f(x — W) — f(x))du

s/ﬁz(u)wfaundu

sws(r)+ 2| f] | ppw)du,

u|>r

which tends to 0 as &, 2/ h — 0 and then r — 0, by (5) and the uniform continuity
of f.
(i) By Lemmas 2.1(ii) and 5.1 we have
A pE = hkzpf/ﬂ = hm(e/ﬂ)ﬂog(s/«/ﬁ)rl ~ hm(¢)|loge| ™"

We also see that, with 7, as in Lemma 4.2(i1),

h~ ' loge| | pi(x)dx g/ Prey (@) du — 0.

lul>r/v/h

The proof may now be completed as in case of (i). The last assertion is clear from
the estimates in the preceding proofs. [

x|>r

We may now prove the mentioned convergence of suitably normalized hitting
probabilities, a result that is often needed in subsequent sections. The case d > 3
is included for convenience of reference.

THEOREM 5.3. Let & be a DW-process in R. Then for any t > 0 and
bounded ., we have as ¢ — 0:
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(i) e*“Pul& BE > 0} — ca(uu* p)|| = 0 ford =3,
(ii) [I[loge|Pufé B > 0} —m(e)(u * p)ll — 0 ford =2,
and similarly for the clusters n; with p; replaced by tp;. The results hold locally

whenever & is locally finite under P,.

PROOF. (i) For bounded p, this is just the uniform version of (3). In general,
we may write u = '+ u” for bounded w’ and let & = &’ +&” be the corresponding
decomposition of £. Then

P& By > 0} < P, {&/B; > 0} + P, {&/ By > 0}
= Pyi& By > 0} + Py {& By > 0},
and so by Lemmas 4.1 and 4.2(i)
| P {& By > 0} — Py {&B; > 0}| < P{&B; >0}
< 19721 % pyiey) (x).

For any r > 0 and for &y > 0 small enough, there exists by Lemma 3.1 a " > 0
such that

Py —x) <pr(w),  |x|<r, e<eop, uek?
which implies (1" * py(e))(x) < u” p, for the same x and ¢. Hence,
16>~ Py (& B > O} — ca(u  po)ll;

<1679 Py{& BE > 0} — ca(' * po)ll + 1" prs

which tends to 0 as ¢ — 0 and then u’ 1 w, by the result for bounded @ and
dominated convergence.

(i1) First suppose that w is bounded. Let ¢, h — 0 with |logh| <« |loge|, and
write ¢ for the ancestral process at time s =t — k. Then we get, uniformly on R2,

P& B > 0} ~ Ey (S pj) = h™ Ey(6s + pj)
= h™ (wx ps x pj) ~ m(e)|loge] ! (u x py)
~m(e)|loge| ™ (1% py).
To justify the first approximation, we see from Lemma 4.4(ii) that
|loge|ll Pui&: By > 0} — E (& * pj)l

2
_ Noghlliw pill + i * ol _ lloghl
- |loge| ~ |loge]

For the second approximation, Lemma 5.2(ii) yields
1A~ log el (i ps * pf) —m(e) (e * py)|
< Ik~ logel(ps * j) — m(e)psll = O,
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since the functions ps = p;_j, are uniformly bounded and equicontinuous for small
h > 0. The third approximation holds since m is bounded and

| ps — w* pell < lleellll ps — pell = 0.

This completes the proof for bounded 1. The extension to the general case may be
accomplished by the same argument as for (i).

To prove the indicated version of (i) for the clusters n;, we see from Lemmas
4.1 and 4.2(i) that

2= P,{n; B¢ > 0})°

172 (1 priey) (1)

For bounded p, this clearly tends to 0 as ¢ — 0, uniformly in x. In general,
Lemmas 3.1 and 3.2(iv) show that the right-hand side tends to O, uniformly for
bounded x. This proves the cluster version of (i), and the proof in case of (ii) is
similar. [J

e 417 P, (0, BE > 0} — P, (& B > 0}

A

A

6. Neighborhood measures. For any measure x on R¢ and constant & > 0,
we define the associated neighborhood measure u° as the restriction of Lebesgue
measure A4 to the e-neighborhood of supp s, so that u® has Lebesgue density
H{u B¢ > 0}. In this section, we study the neighborhood measures of clusters 17, as-
sociated with a DW-process in R¢. This will prepare for the proof of the Lebesgue
approximation of DW-processes in Section 7. We begin with some estimates of
first and second moments.

LEMMA 6.1. Let ny be the unit cluster of a DW-process in RY. Then as ¢ — 0,
we have:

(i) 1624 Eont — ca(p1 - A — 0 for d > 3,
(ii) Il|loge|Eonf —m(e)(p1-2*)| — 0 ford =2,
(i) EolnlI> < (Eollntl)? < &2¥=2 ford > 3,
(iv) Eollntl® < (Eolln$I)?* < |loge|~2 for d = 2.

PROOF. (i) Fubini’s theorem yields Eon| = p{ - 24, and so for d > 3
(6) 16> Egn§ — ca(p1 - XDl = 2>~ pf — capil.

Here the integrand on the right tends to 0 as ¢ — 0 by Theorem 5.3(i), and by
Lemma 4.2(i) it is bounded by Cypy + cap1 — (Cq + cg) p1 for some constant
Cy > 0, where 1’ = 1 + &2. Since both sides have the same integral Cy + c4, the
integral in (6) tends to 0 by Theorem 1.21 in [13].

(i1) Use a similar argument based on Theorem 5.3(ii) and Lemma 4.2(ii).

(iii)) For a DW-process &, let {; be the process of ancestors of & at time
s =1 — h, where ¢2 < h < 1, and denote the generated /i-clusters by n;l. For any



APPROXIMATION OF SUPERPROCESSES 2199

x1,x0 € R4, write x; =x £ 7. Using Lemmas 3.3(i)—(ii) and 4.2(i), the conditional
independence of the subclusters, the Cox property of {; and the semigroup prop-
erty of p;, we obtain with h’ =h + &> and I’ = 1 + &2

Es, Y 1{n}BE, AnjBE, > 0}
i#j

=/ PR = )P} 2 = 1) Ey s di)
uyF#uy

/<\82(d_2) // Ph/(xl f— ul)ph/(xZ — I,{Z)Egogsz(dul duz)

= @D ((p®? + g) * pE7) (x1, x2)

< 2D (P2 4 g1 (x1, x2)

<&24=D L (®) pr(r) ).

Next we may combine the previously mentioned properties with Lemmas
3.2(iv) and 4.2(i), Cauchy’s inequality, the parallelogram identity, and the special
form of the densities p;, to obtain

By 310, B, A B, > 0) = [ Pt B, A B, > 0) g6 (du)
i

IA

p! / (5 (1 — ) Pl (2 — )/ By (dun)

A

e!7? /(Ph’(xl —u)ppr(x2 — M))l/zps(u)du

A

el f (i 12 (& — ) pi ;2 () 2 ps () du

gd=2pd/2

A

(pr * ps)(X) pp (r)

= e12n2 py (%) pi (r).

Since &; is the sum of « independent unit clusters, where « is Poisson under Ps,

with mean 1, the previous estimates remain valid for the subclusters of 1 of age 4.
Since n{ has Lebesgue density 1{n; B > 0}, Fubini’s theorem yields

Eolnil> = [ [ Potoi B, AmBS, > 0hdxidx,

< //dxl dx; ESOZI{U;ZBil /\niBﬁz > 0}
i,j

< [ [P pr)ir P 4 022 1)) py (R d

p2d=2) | (d=2pd/2.

A
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where, in the last step, we used the fact that
2-d RSy
/pl(r)|r| ~4dr < / ve V2 dv < oo.
0
Taking /1 = €2, we get by (i) and Jensen’s inequality
20D < | EonfI* < Eollnf|1* < €272 + 2072 < 2072,

(iv) Suppose that 2 < h—0. Using Lemmas 3.3(iii) and 4.2(ii), we get as
before

Es, Y 1{n},BE, A1jBE >0} < (log(h/e*) 2 (p* + q1)(x1, x2)
i#j

< |loge| 2 pr(¥) p1(r) log(r] ™" Ve),
Esy Y Unj,BE AnjBE, >0} < hlloge|™ py(X) py (r),
i

where 1’ — 1 =k’ — h < h|loge|~!/?. Noting that

[ meyrogtritverar < [

rie

1 |1og|r||dr+/p1(r)dr < 00,
<
we get by combination
EollniIP < [ [ (Togelpi)Tog(lr~! v e) + hllogel ™ py(r) py(E) di dr
< |loge| =2 + h|loge| L.
Choosing / = |loge|~! > &2 and combining with (ii) gives
|loge| ™ < [| Eonf|I* < Eolln{|I* < |loge| . O

This leads to some moment estimates for a Poisson “forest” of clusters. Recall
that pj (x) = Px{nnB§ > 0} and write (;,)° = n;° for convenience.

LEMMA 6.2. Letthe 77}'1 be conditionally independent h-clusters in R%, rooted
at the points of a Poisson process & with E§ = . Fix any measurable function
f >0onRY and let h > & — 0. Then:

(i) E,Xinif = (u*ps) -2 ford>2,
(i) Var, Y, nif £ <h?e? @2 12|l for d > 3,
(i) Var, Y, mif f <h*|loge| 2| fIPllwll for d = 2.

PROOF. (i) By Fubini’s theorem and the definitions of n; and pj, we have

Exnzszxfl{nth > 0} f () du = (pS % (),
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and so by independence
(7 E[Zniff‘é} =/€(dX)Exnf,f=é‘(pZ +.).
Hence, by Fubini’s theorem
Eu ) ny f=Eu§(ph )= 1(pf* )= ((x pj) - 1) f.
i
(i) By Lemma 2.1(ii) we have
d Vi
il = [ B > 0bdx £ [ 1{m B YR > 0}
h
= hd/zf {1 BV > 0} dx = h?/2 V),
and so by Lemma 6.1(iii)

h
Var, (05 f) < Ex(E f)? < ENE 121 £12 = ke E Y 121 112

2(d-2 _
h (/RN 12 = 2 9DR2| £ 12,

Hence, by independence

E, Var[Z nﬁff‘éf]

A

E, / £(dx) Var, (1], f)

2R £ ).

A

Since Adpfl < ed=2p by Lemma 4.2(i) and Var, (§f) = ufz, we get from (7)
Vary, E {Z niff’é} = Var, £(pf, ) = u(pf, * )?
i

< IF 121l 3 po)? < e =22 £ el

Combining those estimates yields
Var,, Z nef = E, Var|:z nﬁff’é:| + Var,, E|:Z n}ff’é:|
i i i
< IR FIP .

(iii) Since h > ¢, we get by Lemma 6.1(iv)

Var, (7 ) < h*[log(e/v/B)| 211 £1> < 2| loge| 72| £11%,

2201
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and so

E, Var| Y nif £l | <h?l1ogel 21 £IP Il
L i i

Next Lemma 4.2(ii) yields 22 p;, <h| logel_1 , S0 as before

Var, E| Y njf fle | <h*loge I 17l
L i |

The stated estimate now follows by combination. [
We also need to estimate the overlap between subclusters.

LEMMA 6.3. Let & be a DW-process in R?, and for fixed t > 0, let 772 denote
the subclusters in & of age h > 0. Fixa u € M. Then:

() ford >3 and as e <h — 0,

Z r];’le _ 5;8
i

(i) ford=2andase <h — 0,

Doy —&
i

E, = (Sz/ﬁ)d_z’

Ey < |loghl|loge| ™.

PROOF. (i) Let «} (x) denote the number of subclusters of age 4 hitting Bf at
time ¢. Then Lemma 4.4(i) yields, with ¢’ =t + g2,

Z’?;f_étg = Eu/
i

= /EM(Ki(X) — 1), dx
XA (0 Gk p) + (e x pr)?)
< DR+ ).

—~

Ey

> 1{n},BE > 0} — 1{£ B > 0} dx
i

A

(i1) Using Lemma 4.4(ii), we get instead

Doy —&

1

E, < |loge|2A%(log(t/ h) (% pr) + (u * pi)?)

< |loge|~2(|logh| ]+t ul?,

for a suitable choice of ' >¢. O
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7. Lebesgue approximation. Given a DW-process £ in R, we prove for any
d > 2 and for fixed t > 0 that & can be approximated, both a.s. and in L!, by
suitably normalized versions of the neighborhood measures &7, as defined in Sec-
tion 6. For d > 3, this result is essentially due to Tribe [27]. Write ¢; = 1/c4 and
m = 1/m for convenience, where ¢4 and m are such as in Section 5.

THEOREM 7.1. Let the DW-process & in R? be locally finite under Py, and
fixat >0.Then under P,, we have as ¢ — 0:
@) Edsz_di;‘f 5 & a.s.andin L ford > 3,
(ii) m(e)|logel&f 5 & a.s.and in Llfor d=2.

This remains true in the weak sense when  is bounded. The weak versions hold
even for the clusters n; when ||| = 1.

PROOF. We use a new approach, explamed in detail only for d > 3. (i) Let
d>3,and fixany t >0, u € My and fecd %- Write nh for the subclusters of &

of age h. Since the ancestors of & at time s =¢ — h form a Cox process directed
by &/ h, Lemma 6.2(i) yields

E, [Zj i £

and so by Lemma 6.2(ii)

] =h'E(pf + f),

2

f h Ss(ph*f)

=E, Var|:z nie f
i

]

< 2 DR2 FIPE &/ Rl
2 Dnl FIP Nl
Combining with Lemma 6.3(i) gives
ELlEE f—h7 e (ph * 1)
<Eu&f - Zn f‘+E Zn f=h""&pfx f)

seQ(d’z)hl’d/zllfll +e 202 1)
— d-2
2Wh+ (/D T)IL.
Taking h = ¢ =r" for a fixed r € (0, 1) and writing s, =t — r"*, we obtain

E Y r"C Ol f—r e, (ol x I < D (" 4 R £ < oo,
n

n



2204 O. KALLENBERG

which implies
(8) D" f e (phw )] >0 as. Py
Now we write
|e79EF £ — cabi f1 < €2 UES £ — hT E(pf )] + caléo f — &
+ & N>R (b * £) — cafIl.

Using (8), Lemma 5.2(i) and the a.s. weak continuity of & (cf. Proposition 2.15
in [8]), we see that the right-hand side tends a.s. to 0 as n — oo, which implies
ez_dsff —cq&: f a.s. as ¢ — 0 along the sequence (r") for any fixed r € (0, 1).
Since this holds simultaneously, outside a fixed null set, for all rational r € (0, 1),
the a.s. convergence extends by Lemma 2.3 to the entire interval (0, 1).

Now let u € My be arbitrary with up; < oo for all £ > 0. Write = ' +
for bounded i/, and let & =&’ + £” be the corresponding decomposition of & into
independent components with initial measures ©' and u”. Fixing an r > 1 with
supp f C Bg_l and using the result for bounded 1, we get a.s. on {& B; = 0}

27l f =7 [ — cakl [ = cabi f.
As i’ 1, we get by Lemma 4.3
PM{SINB{) =0} = PM//{:‘;‘}BS =0}—1,

and the a.s. convergence extends to . Applying this result to a countable,
convergence-determining class of functions f (cf. Lemma 3.2.1 in [3]), we ob-
tain the required a.s. vague convergence. If 1 is bounded, then &; has a.s. bounded
support (cf. Corollary 6.8 in [8]), and the a.s. convergence remains valid in the
weak sense.

To prove the convergence in L', we note that for any f € C Id(

e f =621 / P& BE > 0} f(x)dx
)
- / ca( % p) @) F(x) dx = caEyéy f,

by Theorem 5.3(i). Combining this with the a.s. convergence under P, and
using Proposition 4.12 in [13], we obtain Eﬂlez_dgff — cq& f] — 0. For
bounded i, (9) extends to any f € C,‘j by dominated convergence based on Lem-
mas 4.1 and 4.2(i), together with the fact that 24 (1w pr) = ||l < oo by Fubini’s
theorem.

(i1) Let d = 2, and fix any ¢, n and f as before. Using Lemma 6.2(iii), we see
as in part (i) that

2

E Y nif f—h7 &) x )| <hlloge 2| FIPlIwll.
i
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Combining with Lemma 6.3(ii), we now get for fixed u and f
Euls; f —h™"&(ph + )l <h'|loge|™" + | logh|lloge| .
Choosing Vh = |log$|_1 =r" forafixed r € (0, 1), we get

00 [loge|ELl&f f —h™ ' (ph * f)I < h'/?+ |loghl|loge|™!
= r" 4+ 2n|logr|r" <r"?.

Now we write
i (e)| logel&f f — & f| < |logell&f f —h™ & (pf )| + & f — & f]
+ [IE 1A~ 7o) log el (pf + £) — FII.

Letting Vh = |log$|_l = r" with n — o0, we see from (10), Lemma 5.2(i1) and
the weak continuity of & that the right-hand side tends to 0 a.s. Writing & = e /s
and putting &’ = &, we conclude that

(11) e V)sTIE f > & as. Py,

as s — 0 along (r") for any r € (0, 1). Since the function 7 — logm(exp(—e’))
is bounded and uniformly continuous on Ry by Lemma 5.1, (11) remains true
along (0, 1) by Lemma 2.3. Hence, m(¢)|loge|&] f — & f a.s. P, for fixed f and

bounded p, which extends as before to mi(e)|loge|&f = & a.s., even when u is
unbounded.

To prove the corresponding L'-convergence, let f € C % and conclude from
Theorem 5.3(ii) that

m(e)|loge|E &/ f = ﬂ(S)IIOgSI/PM{EzBﬁ >0} f(x)dx

- / (% p) () f () dx = Epi& f.

For bounded u, this extends by dominated convergence to any f € C,‘f. The as-
sertion now follows as before by combination with the corresponding a.s. conver-
gence.

To extend (i) and (ii) to the individual clusters n;, let ¢y denote the process of
ancestors of &; at time 0, and note that

Po{n: € -} = Psyl& € -lllGoll =11,

where Psy{l|¢oll =1} = t~le=V1 > 0. The a.s. convergence then follows from the
corresponding statement for & . To obtain the weak L'-convergence in this case,
we note that for f € C g and d > 3 or d =2, respectively,

> Eont f =D (pf £) — catr (pr f) = caEomt f,
i(e)|loge|Eonf f =mi(e)|loge|ad(pf f) — tA%(p, f) = Eon: f,
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by dominated convergence based on Lemma 4.2 and Theorem 5.3. [

For the intensity measures in Theorem 7.1, we have even convergence in total
variation.

COROLLARY 7.2. Let & be a DW-process in R¢. Then for any t > 0 and
bounded ., we have as ¢ — 0:

() e ELEf — caEp&i| — 0 ford =3,
(i) ||[loge|EL & —m(e)E & || — O ford =2.

The results remain true for the clusters n;, and they also hold locally for & when-
ever & is locally finite under P,,.

PROOF. The two conditions are equivalent to the statements
[ 167 Pt B = 0) = catu ool dx — 0,

[1NogelP.té B > 0) = m(e) u x po)|dx 0,

which are L!-versions of Theorem 5.3 and follow as before by dominated conver-
gence. [

8. Strong approximation for d > 3. Here we prove that the distribution of a
DW-process of dimension d > 3 admits a local approximation, in the sense of total
variation, by a stationary and self-similar pseudo-random measure &. A related but
weaker result is mentioned without proof in [5], page 119, with reference to some
unpublished work with Iscoe.

For any B € B4 we write || - ||p for the total variation on the set Hp =
{u; uB > 0}, equipped with the o-field #p generated by the restriction map

melp-p.

THEOREM 8.1.  For d = 3, let the DW-process § in R? be locally finite un-
der P,. Then there exists a pseudo-random measure & on RY such that:

(i) as e — O for fixed Be B and t > 0,
16> Pu{e %8, Se € -} — upi PE € g — O,

and similarly for the clusters n; with p; replaced by tpy,
(ii) for any r > 0 and a € R¢,

P{ES, O, €y =ri2Pr?E € ).
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PROOF. Fix anyt > h >0 and B € {(Aid, and consider any J#fp-measurable
function f > 0 on My with f < 1y,. Consider the process ¢ of ancestors of
& at time s =t — h, and let n; denote the associated h-clusters. As A — 0 and

r =¢/vh — 0, we have the following chain of relations, explained in further
detail below:

E,f(e7%S:) = Euf(8‘22n258> E, Zf(s‘2 L Se)

_ / E, f(e 72018 E s (dx)
:h‘lfu(dy)fps(x — ) Ex f(e 204 Se) dx

(12)
~h up, / Ey f(e2nSe) dx

=1 p [ By f (e 72mS, g d

= (e/r)"2up; / Eof(2mS,) dx.

Here the third relation holds by the conditional independence of the clusters, the
fourth relation holds since E,{; = h_lEMSS =h~"(u * ps) - A%, and the sixth
relation holds by Lemma 2.1.

To justify the first approximation in (12), define «;, as in Lemma 4.4 and fix a
¢ > 0 with B C Bg. Then the mentioned lemma yields

f(8_22n258> Zﬂs Se)

(13) &2 E 15 e > 1]

< 82—d(08)2(d—2) (hl—d/Z

2—d
e E,

1upr + (upiee))’) <r®=2 — 0.

The second approximation in (12) amounts to replacing ps(x — y) by p;(y) in
the inner integral. To estimate the resulting error, we note that by Lemma 4.2(i)

g2~ dp

! / u(dy) f (ps(y = x) — peO)Ex £~ 2nnSe) dx

(14) < /M(dy)/ |ps(y — X) — pr(V) | Phce) (x) dx

= f 1w(dy)E|ps(y — yhil®) — pi)l,

where h, = h + &2 and y denotes a standard normal random vector in R?. As
e2<h—0,we get ps(y — yhé/z) — p(y) a.s. by the joint continuity of (x, t)
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p:(x). Since also
Eps(y — YR = (ps * Phiee)) () = Prieey(¥) = pi(¥),

the last expectation in (14) tends to 0 by Lemma 1.32 in [13]. Finally, since
Elps(y = vhL?) = piW] < prceey(0) + pe(9) < par (),

where upo; < 00, the right-hand side of (14) tends to 0 by dominated convergence.

This proves that, as ¢ < r — 0 for fixed u € My, B € B andt > 0,
(15)

— 0.
B

P65, €)= upy [ P, €

In particular, the first term on the left is uniformly Cauchy convergent on Hp
as ¢ — 0. Hence, both terms converge as ¢ — 0 and r — 0, respectively, to a
common limit of the form wp;¢p, where the set function ¢ on Hp is independent
of i and ¢. Thus,

(16) 24 P, {e72€S: € -} — upiwgllz — 0,

where the uniformity of the convergence ensures that ¢p is a bounded measure on
(Hp, #B).

Comparing the statements (16) for different sets B, we see that the ¢p are all
restrictions of a common set function ¢ on | Jg #p5. We need to prove that ¢ can
be extended to a measure ¢ on Jg Hp = {10 € Mg;  # 0} = M;, endowed with
the o-field # = \/p Hp generated by all projection maps p — wuB. Choosing
P =@ and letting & denote the identity map on M’ 4> we may then write (16) in the
form (i).

To construct ¢, it is enough for every fixed B € B9 to form the restriction ¢p of
¢ to Hp with the trace o-field Hg N #, since the measure ¢ = supg ¢p has then
the required properties. Writing S = My and S, = M(By)), for all n satisfying
By D B, we introduce the restriction maps 7, : S — S, and 7, : S — Sk, n > k.
Put ¢, =¢ pi(HpN>) and form the bounded measures ¥, = ¢, o7, Lon S,. Since
Ypo T, ,1 = Y for all n > k, and since measures in M, are measurably determined
by their restrictions to the balls B, there exists by Corollary 6.15 in [13] a measure
Yron S with ¢, =y om, ! for all n. Since the 1, are restricted to Hg, so is v,
and we see that ¢ = v has the desired properties.

To show that (i) remains true for the clusters n; with p; replaced by ¢p;, we may
apply the first four relations in (12)—as justified by (13)—with A =t and s =0,
to get as ¢ — O for fixed B € B9

lte*™ Py {e™%&1 S €} — &> Pyl niSe € Mg — O.

The required convergence now follows from (i).
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To prove (ii), we may use the shift and semigroup properties of the operators S,
and the shift invariance of 19 to get, forany r,e >0 and a € R,

sz—dfpx{s—%lsgsrea € -}dx=rd_2(r8)2_d/Px{rz(re)_zerg € }dx.

Letting ¢ — 0 for fixed r and applying the cluster version of (i) to each side, we
obtain (ii) on (Hp, #p) for every B € B9, and the general result follows by a
monotone class argument. [

The previous convergence extends to the associated Palm distributions, which
will be useful in the next section.

THEOREM 8.2.  For d > 3, let the DW-process & in R? be locally finite un-
der Py, and let § be such as in Theorem 8.1. Then E§ = A4, and we may introduce

the associated Palm distributions PB and PY. Letting ¢ — O for fixed B € B4 and
t > 0, we have

I1P{e™&S. €} — P°{E €}l — O,

and similarly with & replaced by n;.

PROOF. Noting that E & = 1 Eun = (u*p;)- A4 and using the continuity
in Lemma 3.2(iv), we get as ¢ — 0 for fixed B € B4

(17) e E&(eB)=t""e " E,n(eB) — upA?B.

Using Lemma 3.3(i) above and Hint (2) in [26], page 239, we obtain

t
Var, & B < E,LSTBS/ (%572 A1) ds
0

&2 t
< edup,kdBé (/ ds 4 &4 /zs_d/zds) <e2up,.
0 €
Combining with (17) and Theorem 5.3(1), we get

(e72E, & BE)? + Var, (¢ 72£Bf)

E,l(e726:B5)* |6 B > 0] = P 6B = 0]
ust B

(18) d—2 2 d-2
- (e up)=+ e " upy

- ed=2up,

<1.

Next we see from Theorem 8.1(i) that, for Bé CBe c‘l';’d,

(19) | Pule™% Se € |& BS > 0] — P[€ € -|EB} > 01| g — 0.
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By (18) the random variables £ ~2&; B are uniformly integrable, conditionally on
& B > 0. Hence, by a uniform version of Lemma 4.11 in [13], we may extend (19)
to

IE,le726 Bg; e %6 S, € 1&BG > 01 — E[E By § € 1§ By > 01l — 0.
Combining this with Theorem 8.1(i) yields
200 lle* " Eule %6 B e 5 Se € 1 — up EIEBys € € llp — 0.
Since Bé C B, we see from (17) and (20) that

21 t_le_dE,m,BS = 8_dEM§,BS — /,Lp,EéBé = MptAdBé.

Hence, by stationarity EE =4, which justifies the definition of PO. From (21)
and Theorem 8.1(i) we obtain

Eyle™*n:Bg|n: B§ > 01 — E[§ By By > 01,
I1Pule™2n:Se € -IneBg > 0] — PIE € [EBg > 01l 5 — 0.
By Lemma 4.11 of [13], now used in the opposite direction, we conclude that the

variables sfznth are uniformly integrable, conditionally on n, Bj > 0. Hence, by
the uniform version of the same lemma

22) e E (e B e i Se € -] — tup E[EBL; E € 1|l p — 0.

The asserted convergence now follows by Lemma 2.2, adapted to the case of
a pseudo-random limiting measure € with P{EB > 0} < oco. Here conditions (i)
and (ii) hold by (20) and (22), and Lemma 3.5 yields (iii) for the shifted Palm
distributions of & and 7, based on an arbitrary initial measure . [

9. Local invariance for d = 2. In two dimensions, the DW-process exhibits
a completely different local behavior. Here we show that the measures &, at fixed
times ¢ > O are then locally invariant in a number of different ways. It is interesting
to compare with the diffusive clustering discussed by Klenke [19].

THEOREM 9.1. Let the DW-process & in R? be locally finite under P, and
define p; =& Bj/m and P = Pul-lof > Ol. Then as ¢ — O for fixed t > 0, we
have:

() &Se/pf > A% under P,
(i) E[&Sef — pfk2f|/EM,ot — Oforall f € C%,
(iii) supp(&; Se) L R2 under P

All statements remain true for the clusters n; when ||| = 1.
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Here (iii) means that Pﬁ{éthB > 0} — 1 for all open sets B. From (i) we see

d ey L
that supp(&;S.) — R? holds even under PS . Statement (ii) is substantial, since the
variables p; are uniformly integrable under Pj. However, it is not strong enough

to imply (iii), and it is not clear whether (ii) can be strengthened to &S, /p; £> 22
under Plf.

PROOF. We consider only &, the proof for 1, being similar.
(i) Here Lemma 3.4 yields

(23) Eu (&Sef — pfa2f)? < e*logelup:,  feCr.

Using Cauchy’s inequality and Lemma 4.2(ii), we get for fixed f € C%( and r €
0, 1)

1/2
Eupl®1&Se f/0f — 22| < (Ep(&Sef — pa2 ) Pufps > 0})"
(24) < (e*loge|up|loge| ™ up)'/?
= e’ up; <Eup]°.

Now define

[ =suwp fotw,  fr@= inf forduw,  x eR? >0,

lul<r

and note that

Eup[® inf ESy (1&Sef/pf —2*fIA1)
|x|<re

< /| _ Eu 0B, [6Sf/of ~ 221

Se 6y
< E o gz O f f’
|x|<r & B¢ ex
< Euprg EtSé‘fr—'_ _ )\‘zf+ + E re gtSé‘fr_ _ )\‘zfr_
= S0 (| B [ e T (2
& B, & B,

FEu ol A (=02 = A4+,
Dividing by E, p;¢ and applying (24) to fE, wegetase — 0

limsup £, (1S f/pf =22 f1 A 1)
E—>

< sup [P)— Py lc+22((A=n 2 = +r)72f),

|x|<re



2212 O. KALLENBERG

for any neighborhood C of 0. Here both terms on the right tend to 0 as r — 0,
the former by Lemma 3.5 and the latter by the continuity of f and dominated
convergence. Hence,

S,ng/,of—d>k2f under PP, feC,%(,

and (i) follows by Theorem 16.16 in [13].
(iii) Letting ¢ — 0 for fixed x € R? and r > 0, we get by Theorem 5.3(ii) and
Lemmas 3.2(iv) and 5.1

Pul&iBg > 0F  m(re) |loge| (ux pr)(ex)
Pu{& By >0} m(e) [log(re)l  pp

Keeping x and r fixed and choosing ¢ > 0 with By C B, we get in particular
P& B > 0[5 B;® > 0] — 1,andsoas e — 0

— 1.

P& BZ} > 0l&B§ > 0]
_ Pul& B > 0F  Pu({&Bg > 0JA{& By > 0)
~ Pu{&B§ >0} P, {&B§ > 0}

The assertion follows since x and r were arbitrary.
(ii) Forany f € C 2 we get by (23), (iii), Lemma 4.2(ii) and Jensen’s inequality

(ES1ESef — pEa2 fI)? < ES(ESef — pf A2 f)?

_ EuSf - PER2 f)?
Pu{pf > 0}

< 84|10g8|2.

Similarly, we see from Lemmas 3.2 and 4.2(ii) that

E pS E.upl‘g
“w

2
= —— =< ¢”|loge|.
! P/L{ptg>0}

The result follows by combination of these estimates. [J

We may finally use the results of Section 8 to show that the local invariance
fails for d > 3. The argument also shows that the main results of Section 8 have no
counterparts for d = 2.

PROPOSITION 9.2. For d > 3, let the DW-process & in R¢ be locally finite
under Py, and fix any t > 0. Letting € — 0 and then h — 0, we have:

(i) Pul&S:B!=0l&BS > 01— 1 forall x e RY,
(i) PO{&ScBI =0} — 1 forall x #0 in R?.
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PROOF. For any bounded initial measure 1 on R, we have A% (supp&;) =0
a.s., for example, by Theorem 7.1(1). Using Fubini’s theorem (to ensure measura-
bility) and Theorem 8.1(i), we get for any B € B¢

0= gQ*dPM{)Ld(eB Nsupp &) > 0}
— up: P{29(B Nsupp&) > 0},

which implies A9 (supp€) = 0 a.e. P. By the stationarity of £ and the shift invari-
ance of the function A4 (supp ), the same property holds a.s. under PO.

Next, Fubini’s theorem yields PO{x € suppé} =0 for x € R? ae. A4. In par-
ticular, we may choose an x # 0 with x ¢ supp& a.e. PO, By rotational symmetry
and scaling invariance, this remains true for every x # 0. Since suppé& is closed,
Theorem 8.2 yields

Jim Tim sup PSB! > 0} = hm PYUEB! > 0) =

e—0

proving (ii). Assertion (i) holds by a similar argument based on Theorem 8.1(i).
O
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