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CRITICAL RANDOM GRAPHS: DIAMETER AND MIXING TIME1

BY ASAF NACHMIAS AND YUVAL PERES

University of California, Berkeley and Microsoft Research

Let C1 denote the largest connected component of the critical Erdős–
Rényi random graph G(n, 1

n ). We show that, typically, the diameter of C1 is

of order n1/3 and the mixing time of the lazy simple random walk on C1 is
of order n. The latter answers a question of Benjamini, Kozma and Wormald.
These results extend to clusters of size n2/3 of p-bond percolation on any
d-regular n-vertex graph where such clusters exist, provided that p(d − 1) ≤
1 + O(n−1/3).

1. Introduction. The Erdős–Rényi random graph G(n,p) is obtained from
the complete graph on n vertices by retaining each edge with probability p and
deleting it with probability 1 − p, independently of all other edges. Fountoulakis
and Reed [12] and Benjamini, Kozma and Wormald [5] proved that the mixing
time of a random walk on the largest connected component C1 of G(n, θ

n
) with

θ > 1 is of order log2(n) with high probability. The latter authors asked what the
mixing time is in the critical random graph G(n,1/n). The next theorem (a special
case of our main result, Theorem 1.2) answers their question and also determines
the diameter of C1 in this case.

Terminology. A lazy simple random walk on a graph G = (V ,E) is a Markov
chain on V with transition probabilities p(x, y) = 1

2 deg(x)
if (x, y) ∈ E and

p(x, x) = 1
2 for all x ∈ V . It has stationary distribution π given by π(x) = deg(x)

2 |E | .
The mixing time of the lazy random walk on G is

Tmix(G) = Tmix(G,1/4) = min{t :‖pt (x, ·) − π(·)‖TV ≤ 1/4, for all x ∈ V },
where ‖μ − ν‖TV = maxA⊂V |μ(A) − ν(A)| is the total variation distance.

THEOREM 1.1. Let C1 denote the largest connected component of G(n,
1+λn−1/3

n
) for λ ∈ R. Then, for any ε > 0, there exists A = A(ε,λ) < ∞ such that

for all large n:

• P(diam(C1) /∈ [A−1n1/3,An1/3]) < ε;
• P(Tmix(C1) /∈ [A−1n,An]) < ε.

Received February 2007; revised July 2007.
1Supported in part by NSF Grants DMS-02-44479 and DMS-01-04073.
AMS 2000 subject classifications. 05C80, 82B43, 60C05.
Key words and phrases. Percolation, random graphs, random walk, mixing time.

1267

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/07-AOP358
http://www.imstat.org
http://www.ams.org/msc/


1268 A. NACHMIAS AND Y. PERES

For θ > 1, the diameter of the largest component in G(n, θ
n
) is typically of order

logn; see [6, 9, 11]. For θ < 1, the diameter of the largest component in G(n, θ
n
)

is typically of order
√

logn, but there are components of smaller cardinality with
diameter of order logn; see [17]. In G(n, 1

n
), it is natural to expect that the diameter

of C1 will be of order n1/3 since a random tree on m vertices typically has diameter
of order

√
m (see, e.g., [14]) and with probability bounded below, C1 is a tree with

roughly n2/3 vertices. Indeed, if C1 is a tree, then it is easy to deduce the bounds
on the diameter and the upper bound on the mixing time. However, the probability
that C1 is a tree does not tend to 1 as n → ∞.

We state our main result in the more general setting of percolation on finite
graphs. Given a finite graph G and p ∈ (0,1), the random subgraph Gp is obtained
from bond percolation with parameter p, that is, each edge of G is (independently)
retained with probability p and erased with probability 1 − p. The next theorem
states that when G has maximum degree at most d ∈ [3, n − 1] and p ≤ 1+λn−1/3

d−1 ,
if Gp typically has components of order n2/3, then, with high probability, all such
components will have diameter of order n1/3 and mixing time of order n. The
components are unlikely to be larger than about n2/3, by part (b) of the theorem.

THEOREM 1.2. Let G be a graph on n vertices with maximum degree at most
d ∈ [3, n − 1]. For 0 < p < 1, denote by CO(Gp) the collection of connected
components of the percolation subgraph Gp . For C ∈ CO(Gp), let E(C) denote
the edge set in C and recall that Tmix(C) is the mixing time of lazy simple random

walk on C. If p ≤ 1+λn−1/3

d−1 for some fixed λ ∈ R, then for any ε > 0 and β > 0,
there exists A = A(ε,β,λ) < ∞ such that for all large n:

(a) P(∃C ∈ CO(Gp) with |C| > βn2/3 and diam(C) /∈ [A−1n1/3,An1/3]) < ε;
(b) P(∃C ∈ CO(Gp) with |E(C)| > An2/3) < ε;
(c) P(∃C ∈ CO(Gp) with |C| > βn2/3 and Tmix(C) /∈ [A−1n,An]) < ε.

Since G(n,p) is Gp , where G is the complete graph on n vertices, Theorem 1.1
is an immediate consequence of Theorem 1.2 and the following fact, first proven
in [10] (see also [1, 18, 21]): in G(n, 1+λn−1/3

n
),

lim inf
n

P(|C1| > βn2/3) → 1 as β → 0.

Similarly, one can deduce the same results for the j th largest component of
the random graph G(n, 1+λn−1/3

n
) for any constant j . Other examples of d-regular

graphs G where the hypothesis of Theorem 1.2 are satisfied (and for p = 1+λn−1/3

d−1 ,
there are components of size greater than βn2/3 in Gp with probability bounded
away from 0) are uniform random d-regular graphs (see [22]) and the Cartesian
square of a complete graph (see [13] and Theorem 1.3 of [7]).
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We also show that the maximal diameter over all components is typically at
most O(n1/3) and only components with cardinality of order n2/3 can achieve this
diameter. This contrasts with the subcritical case where, as noted above, there are
components with diameter of order logn, but the diameter of the largest component
is typically of order

√
logn; see [17].

THEOREM 1.3. Under the conditions of Theorem 1.2, we have that for any
ε > 0 and β > 0, there exists A = A(ε,β,λ) < ∞ such that

P
(∃C ∈ CO(Gp) with diam(C) > An1/3)

< ε.(1.1)

Furthermore, for any D1 > 0, there exists D2 > 0 such that for all M < n2/3/2,

P
(∃C ∈ CO(Gp) : |C| < M and diam(C) > D2

√
M log(n/M3/2)

)
(1.2)

≤
(

M3/2

n

)D1

.

For the random graph G(n,p) and the random d-regular graph, we can prove a
stronger tail bound on the diameter of the connected components.

PROPOSITION 1.4. Assume that G is the complete graph Kn. If p ≤ 1+λn−1/3

n
,

then there exists c = c(λ) > 0 such that

P
(∃C ∈ CO(Gp) with diam(C) > An1/3) ≤ e−cA3/2

.

The same inequality [with c = c(d,λ)] holds if G is a random uniform d-regular

graph on n vertices where d is fixed and p ≤ 1+λn−1/3

d−1 .

The rest of the paper is organized as follows. In the remainder of this section,
we discuss the intuition and idea for the proofs of this paper. In Section 2, we
present some preliminaries. For ease of exposition, we first prove Theorem 1.2
for the case λ ≤ 0 (i.e., when p ≤ 1

d−1 ) and defer the case of λ > 0 to Section 6.
Parts (a) and (b) of Theorem 1.2 are established in Section 3 under the assumption
λ ≤ 0, which allows for a very short proof. The upper bound on the mixing time
follows easily, so we present it in Section 4. The lower bound on the mixing time
is given in Section 5. In Section 6, we prove Theorem 1.2 in its full generality and
also Theorem 1.3 and Proposition 1.4. These proofs all have a common element,
Lemma 6.2, which shows that for the parameters we are considering, the diameter
of a component C is unlikely to be much larger than the square root of the number
of vertices in C.
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Proofs idea. We start by understanding the reason why, in p-bond percolation
on any d-regular graph with p ≤ 1

d−1 , the largest component will be of size no
more than n2/3. This is stated in part (b) of Theorem 1.2; here, we present a slightly
different approach for the purpose of exposition.

Fix a vertex v of the graph and let C(v) be the component of Gp contain-
ing v. Let T be the surviving population of a Galton–Watson branching process
in which the initial particle (the root) has progeny distribution Bin(d,p) and all
other particles have progeny distributions Bin(d − 1,p). Observe that since G is
d-regular, we can naturally couple such that |C(v)| ≤ |T |. It is a well-known fact
in the theory of branching processes (see [14]) that as long as p ≤ 1

d−1 , there is a
constant c > 0 such that for all M > 0, we have

P(|T | ≥ M) ≤ c√
M

.(1.3)

In fact, |T | is the first time a certain random walk with mean 0 and bounded incre-
ments visits 0 and (1.3) is also classical in the theory of random walks. By our cou-
pling, we have the same tail upper bound (1.3) for |C(v)|. Let X = |{v : |C(v)| ≥
M}| so that EX ≤ cn√

M
. Observe that if the largest component C1 has at least M

vertices, then X ≥ M . Therefore,

P(|C1| ≥ M) ≤ P(X ≥ M) ≤ EX

M
≤ cn

M3/2

and setting M = An2/3 for some large A > 0 concludes the proof.
The principle behind the proofs of this paper is that the tension between:

(a) |C(v)| is stochastically bounded by a critical branching process and
(b) |C(v)| ≥ βn2/3

forces the geometry of C(v) to resemble that of a critical Galton–Watson tree con-
ditioned to have at least βn2/3 vertices. The following heuristic argument guides
many of the proofs in this paper. Let A be a property of graphs (such as large vol-
ume or large diameter) which is inherited from a component C(v) by its bounding
tree T . An argument in the same spirit as the above then gives that for M = βn2/3,
we have

P(T ∈ A | |T | ≥ M) = o(1) �⇒ P(|C1| ≥ M and C1 ∈ A) = o(1).

Rigorous instances of this heuristic can be found in the proofs of all the theorems
of this paper.

2. Preliminaries. Given a graph G = (V ,E) and a vertex v, denote by
C(v) = C(v,Gp) the connected component of Gp which contains v. For a set
of vertices V ′ ⊂ V , we write E(V ′) for the set of edges which have both ends
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in V ′. We write dp(v,u) for the graph distance between v and u in Gp and we
define

Bp(v, k) = {u ∈ C(v) :dp(v,u) ≤ k},
∂Bp(v, k) = {u :dp(v,u) = k}.

For ease of exposition, we begin by proving Theorem 1.2 assuming λ ≤ 0. The
case λ > 0 is proved in Section 6. Theorem 1.2 with λ ≤ 0 will follow from the
following, more general, theorem.

THEOREM 2.1. Let G = (V ,E) be a graph and let p ∈ (0,1). Suppose that
for some constants c1, c2 > 0 and all vertices v ∈ V , the following two conditions
are satisfied for any subgraph G′ ⊂ G:

(i) E|E(Bp(v, k))| ≤ c1k;
(ii) P(|∂Bp(v, k)| > 0) ≤ c2/k.

Then:

(a) P(∃C ∈ CO(Gp) with |C| > βn2/3 and diam(C) /∈ [A−1n1/3,An1/3]) ≤
O(A−1),

(b) P(∃C ∈ CO(Gp) with |E(C)| > An2/3) ≤ O(A−1),

(c.1) P(∃C ∈ CO(Gp) with |C| > βn2/3 and Tmix(C) > An) ≤ O(A−1/2),
(c.2) P(∃C ∈ CO(Gp) with |C| > βn2/3 and Tmix(C) < A−1n) ≤ O(A−1/13),

where the constants implicit in the O-notation depend on c1, c2 and β .

PROOF OF THEOREM 1.2 FOR λ ≤ 0. We verify the assumptions of Theo-

rem 2.1 for a graph G with maximum degree at most d and p ≤ 1
d−1 ; we then take

A large enough. This is done by bounding the breadth–first search in the compo-
nent of a vertex v in Gp by a breadth first search in a random tree. Let 	 be an
infinite d-regular tree with root ρ (i.e., ρ has d children in the tree and any other
vertex has d − 1 children and one parent) and let d	(u, v) denote the distance be-
tween vertices u and v in 	. We denote by C(ρ,	p) the component of ρ in the
subgraph 	p obtained from percolation on 	; let Lk be the set of vertices in level
k of C(ρ,	p), that is,

Lk = {u ∈ C(ρ,	p) :d	(ρ,u) = k}.
Since the maximal degree in G is at most d , we can clearly couple Gp and 	p

so that the following two conditions hold:

(1) |Bp(v, k)| ≤ |E(Bp(v, k))| + 1 ≤ ∑k
j=0 |Lj |;

(2) |∂Bp(v, k)| ≤ |Lk|.
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Since

E|Lk| = d(d − 1)k−1pk ≤ 2

for all k, condition (i) of Theorem 2.1 is satisfied with c1 = 2. For condition (ii),
we use the following result, due to Lyons [19], which is related to an asymptotic
estimate of Kolmogorov [16] (see also [15] and [20] for refinements and alternative
proofs).

LEMMA 2.2 (Theorem 2.1 of [19]). Assign each edge e from level k − 1 to
level k of 	, the edge resistance re = 1−p

pk . Let Rk be the effective resistance from
the root to level k of 	. Then,

P(Lk �= ∅) ≤ 2

1 + Rk

.(2.1)

Since p ≤ 1
d−1 and the edge resistances re are monotone decreasing in p, the

effective resistance Rk from ρ to level k of 	 satisfies (see [24], Example 8.3)

Rk =
k∑

i=1

(1 − p)p−i

d(d − 1)i−1 ≥
k∑

i=1

d−2
d−1(d − 1)i

d(d − 1)i−1 ≥ (d − 2)k

d
≥ k

3

as d ≥ 3. Thus, by our coupling and Lemma 2.2, condition (ii) holds with c2 = 6.
�

3. The diameter of critical random graphs.

PROOF OF THEOREM 2.1(a). If a vertex v ∈ V satisfies diam(C(v)) > R, then
|∂Bp(v, �R/2�)| > 0, hence, by condition (ii), we have

P
(
diam(C(v)) > R

) ≤ 2c2

R
.(3.1)

If we write

X = |{v ∈ V : diam(C(v)) > R}|,
then (3.1) implies that EX ≤ 2c2n

R
. By Markov’s inequality, we have

P
(∃C ∈ CO(Gp) with |C| > M and diam(C) > R

)
(3.2)

≤ P(X > M) ≤ 2c2n

MR
.

If v ∈ V satisfies diam(C(v)) ≤ r and |C(v)| > M , then |E(Bp(v, r))| ≥ M .
Thus, by condition (i) and Markov’s inequality, we have

P
(
diam(C(v)) ≤ r and |C(v)| > M

) ≤ c1r

M
.(3.3)
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If we write

Y = ∣∣{v ∈ V : |C(v)| > M and diam(C(v)) < r}∣∣,
then (3.3) implies that EY ≤ c1rn

M
, whence, by Markov’s inequality,

P
(∃C ∈ CO(Gp) with |C| > M and diam(C) < r

)
(3.4)

≤ P(Y > M) ≤ c1rn

M2 .

Combining (3.2) and (3.4) gives

P
(∃C ∈ CO(Gp) with |C| > M and diam(C) /∈ [r,R]) ≤

(
c1r

M
+ 2c2

R

)
n

M
.

Take M = βn2/3 and set r = A−1n1/3 and R = An1/3. The right-hand side of the
preceding display is then (c1β

−2 + 2c2β
−1)A−1 = O(A−1), which completes the

proof. �

PROOF OF THEOREM 2.1(b). In this proof, we will only use conditions (i)
and (ii) of the theorem for k ≤ n1/3. Fix some M > 1 and r ≤ n1/3. Observe that
for any v ∈ V , we have

{|C(v)| > M} ⊂ {|C(v)| > M and diam(C(v)) ≤ r} ∪ {diam(C(v)) > r}.
Write

X = ∣∣{v ∈ V : |C(v)| > M}∣∣.
By condition (ii), we have that (3.1) holds for R < 2n1/3 and by condition (i), we
have that (3.3) holds for r < n1/3. Thus, by taking R = r in (3.1) and (3.3), we
deduce that

EX ≤
(

2c2

r
+ c1r

M

)
n.

Let C1 denote the largest component of Gp . Observe that if |C1| ≥ M , then
|C1| ≤ X. Therefore, |C1| ≤ M + X. We take M = �n2/3� and r = �n1/3� and
obtain that E|C1| ≤ (2c1 + c2 + 2)n2/3. We then have that for any Ã > 0,

P
(∃C ∈ CO(Gp) with |C| ≥ Ãn2/3) ≤ O(Ã−1).(3.5)

Next, observe that condition (i) for k = 1 implies that the maximal degree d in
G satisfies dp ≤ c1. Consider “exploring” the levels ∂Bp(v, k) level by level. At
the end, we have discovered a spanning tree on the vertices of C(v) and since d is
the maximal degree, the number of extra edges in this component can be bounded
above by Z, a random variable distributed as Bin(d|C(v)|,p). Thus, if we condi-
tion on the vertices of C(v), then the number of edges |E(C(v))| can be stochasti-
cally bounded above by |C(v)| − 1 + Z. By a standard large deviation inequality
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(see, e.g., [3], Section A.14), we have P(Z ≥ 2c1m||C(v)| = m) ≤ e−2c1γm for
some constant γ > 0, so

P
(
|E(C(v))| ≥ An2/3 and |C(v)| < A

2c1 + 1
n2/3

)
≤ e−γAn2/3

.

Thus,

P
(
∃C ∈ CO(Gp) with |E(C)| ≥ An2/3 and |C| ≤ A

2c1 + 1
n2/3

)
≤ ne−γAn2/3

.

This, together with (3.5) gives that

P
(∃C ∈ CO(Gp) with |E(C)| ≥ An2/3) ≤ O(A−1),

concluding our proof. �

4. The upper bound on the mixing time. The following known lemma
bounds the total variation mixing time in terms of the maximal hitting time. For
variants of this lemma, see Chapter 4 of [2].

LEMMA 4.1. Let p be transition probabilities for a reversible, lazy [i.e.,
p(x, x) ≥ 1/2 for all x ∈ V ] Markov chain on a finite state space V . For x ∈ V ,
denote by τx the hitting time of x. We have

Tmix(1/4) ≤ 2 max
x,y∈V

Eyτx.

PROOF. Lemma 11 of Chapter 2 in [2] states that

π(x)Eπ(τx) =
∞∑
t=0

[pt (x, x) − π(x)],

where π is the stationary distribution. Let {λi}|V |
i=1 be the eigenvalues of the tran-

sition matrix p, with corresponding (real) eigenfunctions {ψi}|V |
i=1, normalized in

L2(π). (In particular, λ1 = 1 and ψ1 ≡ 1.) By spectral decomposition, for each
x ∈ V ,

pt (x, x) = π(x)

|V |∑
i=1

λt
iψi(x)2.

Since the chain is lazy, λi ∈ [0,1] for all i and hence pt+1(x, x) ≤ pt (x, x) for all
t ≥ 0. Therefore, for any integer m > 0,

π(x)Eπ(τx) ≥
2m∑
t=1

[pt (x, x) − π(x)] ≥ 2m[p2m(x, x) − π(x)],
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hence

Eπ(τx)

2m
≥ p2m(x, x)

π(x)
− 1.(4.1)

By Cauchy–Schwarz, we have

4‖pm(x, ·) − π‖2
TV =

(∑
y

π(y)

∣∣∣∣pm(x, y)

π(y)
− 1

∣∣∣∣
)2

≤ ∑
y

π(y)

[
pm(x, y)

π(y)
− 1

]2

,

therefore, by reversibility, we obtain

4‖pm(x, ·) − π‖2
TV ≤ ∑

y

[
pm(x, y)pm(y, x)

π(x)
− 2pm(x, y) + π(y)

]

= p2m(x, x)

π(x)
− 1.

Thus, by (4.1), we obtain

4‖pm(x, ·) − π‖2
TV ≤ Eπ(τx)

2m
≤ maxx,y∈V Ey(τx)

2m

and the right-hand side is at most 1
4 for m ≥ 2 maxx,y∈V Ey(τx), concluding our

proof. �

REMARK. Lemma 4.1 actually gives a bound on the �2-mixing time.

COROLLARY 4.2. Let G = (V ,E) be a graph. The mixing time of a lazy sim-
ple random walk on G then satisfies

Tmix(G,1/4) ≤ 8|E(G)|diam(G).

PROOF. For any two vertices x and y, let dG(x, y) denote the graph distance in
G between x and y. We bound Ey(τx) by Ey(τx)+Ex(τy), which is also known as
the commute time between x and y. Let R(x ↔ y) denote the effective resistance
from x to y when each edge has unit resistance. The commute time identity of
[8] (see also [25]) implies that for lazy simple random walk on a connected graph
G = (V ,E),

Ey(τx) + Ex(τy) = 4|E(G)|R(x ↔ y).

Since R(x ↔ y) ≤ dG(x, y), Lemma 4.1 concludes the proof. �

We are now ready to prove the mixing time upper bound.
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PROOF OF THEOREM 2.1(c.1). If a cluster C ∈ CO(Gp) satisfies Tmix(C) >

An, then |E(C)|diam(C) > (A/8)n, by Corollary 4.2, so either |E(C)| >

(A/8)1/2n2/3 or diam(C) > (A/8)1/2n1/3. By part (b) of Theorem 2.1, we have

P
(∃C ∈ CO(Gp) : |E(C)| ≥ (A/8)1/2n2/3) ≤ O(A−1/2)

and by part (a) of Theorem 2.1 we have

P
(∃C ∈ CO(Gp) : diam(C) > (A/8)1/2n1/3) ≤ O(A−1/2).

Adding the probabilities in the last two displays proves the proposition. �

5. The lower bound on the mixing time. We will use the Nash-Williams
inequality [23] (see also [24]). Recall that a set of edges � is a cut-set separating
a vertex v from a set of vertices U if any path from v to U must intersect �.

LEMMA 5.1 (Nash-Williams [23]). If {�j }Jj=1 are disjoint cut-sets separat-
ing v from U in a graph with unit conductance for each edge, then the effective
resistance from v to U satisfies

R(v ↔ U) ≥
J∑

j=1

1

|�j | .

We will also use the following lemma, due to Tetali [25].

LEMMA 5.2 (Tetali [25]). Let p be transition probabilities for a reversible
Markov chain. Let μ :V → R be a function such that μ(x)p(x, y) = μ(y)p(y, x)

for all x, y, and let cx,y = μ(x)p(x, y) be the edge conductances. Then, for this
Markov chain,

Ev(τz) = 1
2

∑
u∈V

μ(u)[R(v ↔ z) + R(z ↔ u) − R(u ↔ v)].

COROLLARY 5.3. For a lazy random walk on a finite graph where each edge
has unit resistance, we have

Ev(τz) = ∑
u∈V

deg(u)[R(v ↔ z) + R(z ↔ u) − R(u ↔ v)].

PROOF. Take μ(x) = 2deg(x) so that μ(x)p(x, y) = 1 . �

The following structural argument is inspired by Barlow and Kumagai [4]. For
a graph G = (V ,E), write dG(x, y) for the graph distance between x and y. For
any vertex v, let

B(v, r) = BG(v, r) = {u ∈ v :dG(u, v) ≤ r},
∂B(v, r) = ∂BG(v, r) = {u ∈ v :dG(u, v) = r}.

To motivate the following definitions, think of the edges of B(v, r) as a road
network that connects v to ∂B(v, r).
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FIG. 1. A lane.

• An edge e between ∂B(v, j − 1) and ∂B(v, j) is called a lane for (v, r) if it
there is a path with initial edge e from ∂B(v, j − 1) to ∂B(v, r) that does not
return to ∂B(v, j − 1).

• we say that a level j (with 0 < j < r) has L lanes for (v, r) if there are at least
L edges between ∂B(v, j − 1) and ∂B(v, j) which are lanes for (v, r).

• Let k < r . A vertex v is called L-lane rich for (k, r) if more than half of the
levels j ∈ [k/2, k] have L lanes for (v, r).

LEMMA 5.4. Let G = (V ,E) be a graph and let v ∈ V . Suppose that
|B(v,h)| ≥ m, that v is not L-lane rich for (k, r), that |E(B(v, r))| <

|E(G)|
3 and

that h < k
4L

. Then,

Tmix(G) ≥ mk

12L
.

PROOF. As v is not L-lane rich for (k, r), there are at least k/4 levels between
k/2 and k which have less than L lanes for (v, r). In each such level j , the lanes for
(v, r) form a cut-set of size less than L separating any u ∈ B(v,h) from ∂B(v, r).
Thus, for any u ∈ B(v,h), the Nash-Williams inequality, Lemma 5.1, yields

R
(
u ↔ ∂B(v, r)

) ≥ k

4L
.(5.1)

By the triangle inequality for effective resistance (see, e.g., [25]), each of the
summands of Lemma 5.3 is nonnegative. Denote by τ [r] the hitting time of
∂B(v, r) by the lazy simple random walk. By gluing ∂B(v, r) into a single ver-
tex z, Corollary 5.3 gives

Evτ [r] ≥ ∑
u∈B(v,h)

[
R

(
v ↔ ∂B(v, r)

) + R
(
u ↔ ∂B(v, r)

) − R(u ↔ v)
];

by (5.1) and the fact that R(u ↔ v) ≤ dG(u, v), we infer that

Evτ [r] ≥ |B(v,h)|
(

k

2L
− h

)
≥ k

4L
|B(v,h)|,
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where the last inequality is due to our assumption on h. Since |B(v,h)| ≥ m,

Evτ [r] ≥ mk

4L
.(5.2)

Fix some integer t > 0. If all vertices x ∈ B(v, r − 1) satisfy Px(τ [r] ≤ t) ≥ 1
3 ,

then τ [r]/t is stochastically dominated by a geometric(1/3) random variable,
whence Ev(τ [r]) ≤ 3t . By this and (5.2), we conclude that for t = mk

12L
, there exists

some x ∈ B(v, r − 1) such that Px(τ [r] ≤ t) ≤ 1
3 . Therefore, for this t , we have

pt (x,B(v, r)) ≥ 2
3 and as |E(B(v, r))| < |E(G)|/3, we have π(B(v, r)) ≤ 1/3.

We thus have that ‖pt (x, ·) − π(·)‖TV > 1
4 and therefore

Tmix(G) ≥ mk

12L
. �

We return to the setting of Theorem 2.1 and write Bp(v, r) for BC(v)(v, r).
Define:

• A1(v,h,m) = {|Bp(v,h)| < m};
• A2(v,L, k, r) = {v is L-lane rich for (k, r) in C(v)};
• A3(v,α, r) = {|E(Bp(v, r))| ≥ αr2}.

PROPOSITION 5.5. Suppose that conditions (i) and (ii) of Theorem 2.1 hold

for all k ≤ n1/3. If h < n1/3

4 , then

P
(|C(v)| > βn2/3 and A1(v,h,m)

) ≤ 4mc2
2

h3 + 4c1h

βn2/3 .

PROOF. If |Bp(v,h)| < m, then there exists a level j ∈ [h/2, h] such that
|∂Bp(v, j)| ≤ 2m

h
. Fix the smallest such j . If, in addition, diam(C(v)) > 4h, then

FIG. 2.
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∂Bp(v,2h) �= ∅, so at least one of the at most 2m
h

vertices w in ∂Bp(v, j) must
be the beginning of a path in C(v) that does not return to level j and reaches at
least 2h − j ≥ h levels higher; given w, the existence of such a path has probabil-
ity at most c2/h by condition (ii). Applying (ii) again, together with the Markov
property at level j , we deduce that

P
(
diam(C(v)) > 4h and |Bp(v,h)| < m

) ≤ P
(
∂Bp

(
v,

h

2

)
�= ∅

)
· 2m

h
· c2

h

≤ c2

h/2
· 2m

h
· c2

h
= 4mc2

2

h3 .

Since (3.3) holds for r < n1/3, by condition (i) and 4h < n1/3, combining it with
the last display gives

P
(|C(v)| > βn2/3 and |Bp(v,h)| < m

) ≤ 4mc2
2

h3 + 4c1h

βn2/3 . �

PROPOSITION 5.6. Under the conditions of Theorem 2.1, if k ≤ r/2 and r <

n1/3, then

P(A2(v,L, k, r)) ≤ 8c1c2

Lr
.

PROOF. For each edge between ∂Bp(v, j − 1) and ∂Bp(v, j), where j ≤
k, the probability that it begins a path to ∂Bp(v, r) that does not go through
∂Bp(v, j − 1) is at most c2

r−j
, by condition (ii). This, with condition (i), implies

that the expected number of lanes for (v, r) in E(Bp(v, k)) is at most c1c2k
r−j

. If

v is L-lane rich for (k, r), then there are at least Lk
4 lanes in E(Bp(v, k)). Thus,

Markov’s inequality gives

P(A2(v,L, k, r)) ≤ 4c1c2k

(r − j)Lk
≤ 8c1c2

Lr
,

by our assumption on k. �

PROPOSITION 5.7. Under the conditions of Theorem 2.1, if r < n1/3, then

P(A3(v,α, r)) ≤ c1

αr
.

PROOF. This follows by Markov’s inequality from condition (i). �

We are now ready to prove the mixing time lower bound.
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PROOF OF THEOREM 2.1(c.2). We abbreviate A1(v,h,m), A2(v,L, k, r)

and A3(v,α, r) by A1,A2 and A3, respectively. Fix D > 0, to be chosen later,
and define the following parameters:

L = β−3D2, α = β−3D2

20
, h = β5D−3

4
n1/3,

k = 5Lh, r = 10Lh, m = h3βD−1n−1/3.

By Propositions 5.5, 5.6 and 5.7, we have that

P
(|C(v)| > βn2/3 and (A1 ∪ A2 ∪ A3)

)
≤ 4mc2

2

h3 + 4c1h

βn2/3 + 8c1c2

Lr
+ c1

αr
(5.3)

≤ (4c2
2 + c1β

3D−2 + 4c1c2 + 8c1)βD−1n−1/3.

Let

X = ∣∣{v : |C(v)| > βn2/3 and (A1 ∪ A2 ∪ A3)}
∣∣.

Then, by (5.3), we have EX ≤ (4c2
2 + c1β

3D−2 + 4c1c2 + 8c1)βD−1n2/3. Denote
by A the event that there exists a component C ∈ CO(Gp), such that |C| > βn2/3

and all of the vertices v ∈ C satisfy either A1, A2 or A3. Observe that if A holds,
then X > βn2/3. Thus, by Markov’s inequality,

P(A) ≤ (4c2
2 + c1β

3D−2 + 4c1c2 + 8c1)D
−1.(5.4)

If A does not hold, then all components C with |C| > βn2/3 have a vertex
v ∈ C such that |Bp(v,h)| ≥ m, the vertex v is not L-lane rich for (k, r) and
|E(Bp(v, r))| < αr2. It is easy to verify that βn2/3 ≥ αr2/3 and that h < k

4L
. Thus,

Lemma 5.4 gives that, with probability at least 1 − P(A), all components C ∈
CO(Gp) with |C| > βn2/3 satisfy

Tmix(C) ≥ mk

12L
≥ β21

1000D13 n.

Setting D = (
Aβ21

1000 )1/13, so that A = 1000D13β−21, concludes the proof. �

6. The diameter inside the scaling window. The following theorem is essen-
tially Theorem 2.1 under weaker conditions that hold for all p ≤ 1+λn−1/3

d−1 when
λ ∈ R is fixed.

THEOREM 6.1. Let G = (V ,E) be a graph and p ∈ [0,1]. Assume that the
following holds for any subgraph G′ ⊂ G:

(i′) E|E(Bp(v, k))| ≤ c1k for k ≤ n1/3;
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(ii′) P(|∂Bp(v, k)| > 0) ≤ c2/k for k ≤ n1/3.

The conclusions of Theorem 2.1 then hold and conclusions (1.1) and (1.2) of The-
orem 1.3 also hold.

PROOF OF THEOREM 1.2 FOR λ ∈ R AND THEOREM 1.3. We verify the as-
sumptions of Theorem 6.1 by bounding the breadth-first search in the component
of a vertex v in Gp by a breadth-first search in a random tree, as we did in the case
λ ≤ 0. We have

E|Lk| = d(d − 1)k−1pk ≤ 2(1 + λn−1/3)k ≤ 2eλ

for k ≤ n1/3 and thus, by the coupling from before, condition (i′) holds with c1 =
2eλ. In the notation of Lemma 2.2, we have

Rk =
k∑

i=1

(1 − p)p−i

d(d − 1)i−1

≥
k∑

i=1

d−2−λn−1/3

d−1 (d − 1)i

d(d − 1)i−1(1 + λn−1/3)i

≥
(

d − 2 − λn−1/3

d

)
k

(1 + λn−1/3)k
≥ k

4eλ

for n large enough (as d ≥ 3 and k ≤ n1/3). Thus, condition (ii) holds with c2 =
8eλ. �

The following lemmas will be essential for the proof of Theorem 6.1.

LEMMA 6.2. Assume the conditions of Theorem 6.1. Let M and R be two
positive integers satisfying

R > 16c2Mn−1/3.

Then,

P
(|C(v)| ≤ M and diam(C(v)) > 2R

) ≤ c2

(
2

R
∨ n−1/3

)
2−R2/((64c2+2)M).

PROOF. Set h = M/R. We may assume 2R < M as, otherwise, the required
probability is 0. We say that level j of the exploration tree from v is thin if it
contains at most 8h vertices. Define j1 as the first thin level greater than R/2 and,
for i > 1, define

ji := min{j > ji−1 + 16c2h : |∂Bp(v, j)| ≤ 8h},(6.1)

that is, ji is the first thin level greater than ji−1 + 16c2h.
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We call a vertex w ∈ ∂Bp(v, j) good if there is a path from w to ∂Bp(v, j +
16c2h) that intersects Bp(v, j) only in w; we call level j in the exploration
process from v good if it contains at least one good vertex. For each vertex
w ∈ ∂Bp(v, j), the conditional probability that it is good, given Bp(v, j), is
at most 1

16h
, by condition (ii′) (and the inequality 16c2h < n1/3, which fol-

lows from our assumption on R and M). Therefore, for every j , we have
that

P
(
level j is good | Bp(v, j), level j is thin

) ≤ 1
2 .

By the previous display, we deduce that, with ji defined in (6.1), we have

P
(
level ji is good for all i ≤ k − 1|Bp(v, �R/2�)) ≤ 2−(k−1).(6.2)

If |C(v)| ≤ M and diam(C(v)) > 2R, then levels j1, . . . , jk−1 are good with

k − 1 ≥ R

(64c2 + 2)h
.(6.3)

To see this, let � be the number of thin levels j such that R
2 ≤ j ≤ R. Since

|C(v)| ≤ M , we must have that � ≥ R
4 . From these � ≥ R/4 levels, we obtain, in

(6.1), at least R
4(16c2h+1)

> R
(64c2+2)h

(as h ≥ 2) thin levels separated from each
other by more than 16c2h levels.

If |C(v)| ≤ M and diam(C(v)) > 2R, then |{∂Bp(v, �R/2�)}| > 0. By condi-
tion (ii′) of Theorem 6.1, we have

P
(|∂Bp(v, �R/2�)| > 0

) ≤ c2

(
2

R
∨ n−1/3

)
.(6.4)

Thus, if |C(v)| ≤ M and diam(C(v)) > 2R, then the event in the left-hand side
of (6.2) also holds, where k satisfies (6.3). Therefore,

P
(|C(v)| ≤ M and diam(C(v)) > 2R

)
≤ c2

(
2

R
∨ n−1/3

)
2−R2/((64c2+2)M). �

LEMMA 6.3. Assume the conditions of Theorem 6.1. Let M and R be two
positive integers satisfying R > 32c2Mn−1/3 and R >

√
4(64c2 + 2)M. Then,

P
(∃C ∈ CO(Gp) with |C| ≤ M and diam(C) > 2R

)
≤ 4c2

(
2

R
∨ n−1/3

)
2−R2/(2(64c2+2)M)

M
n.

PROOF. Let Xm be the random variable

Xm =
∣∣∣∣{v ∈ V :

m

2
≤ |C(v)| ≤ m and diam(C(v)) > 2R

}∣∣∣∣.
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By Lemma 6.2 and our assumptions on M and R, for every 1 ≤ k ≤ �log2(M)�,
we have

EX2k ≤ nc2

(
2

R
∨ n−1/3

)
2−R2/((64c2+2)2k).

Let A denote the event

A = {∃C ∈ CO(Gp) with |C| ≤ M and diam(C) > 2R}.
A then implies that X2k ≥ 2k−1 for at least one k satisfying 1 ≤ k ≤ �log2(M)�.
By applying Markov’s inequality, we obtain

P(A) ≤ nc2

(
2

R
∨ n−1/3

) �log2 M�∑
k=1

2−R2/((64c2+2)2k)−k+1.

It is straightforward to check that since R >
√

4(64c2 + 2)M , the kth summand in
the above sum is at most 1/2 of the next summand, whence

P(A) ≤ 4c2

(
2

R
∨ n−1/3

)
2−R2/(2(64c2+2)M)

M
n. �

PROOF OF THEOREM 6.1. In the proofs of part (b) and part (c.2) of Theo-
rem 2.1, we only used the weaker conditions (i′) and (ii′) of Theorem 6.1 [rather
than (i) and (ii)], so no additional work is required there. Also, (3.4) holds for
r < n1/3, so taking r = A−1n1/3 gives the lower bound on the diameter implied in
part (a) of the theorem. By Corollary 4.2, part (c.1) is an immediate corollary of
the upper bound on the diameter (1.1) and part (b) of Theorem 2.1. Thus, all that
is left to prove is (1.1) and (1.2).

PROOF OF (1.1). Take large A and set R = �An1/3� and M = �An2/3

32c2
�. Note

that the assumptions of Lemma 6.3 are satisfied. Thus, part (b) of the theorem and
Lemma 6.3 with these chosen R and M gives that

P
(∃C ∈ CO(Gp) with diam(C) > An1/3) ≤ O(A−1),

which finishes the proof of (1.1).

PROOF OF (1.2). Take M ≤ n2/3/2 and R = 2D
√

M log(n/M3/2) for some
large D and substitute into Lemma 6.3 to prove (1.2). �

PROOF OF PROPOSITION 1.4. It is proved in [21] and [22] that under the
assumptions of the proposition,

P
(∃C ∈ CO(Gp) with |C| > Bn2/3) ≤ e−γB3

(6.5)
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for some γ > 0 that depends on λ (and on d for the case of the random d-regular
graph). For large enough A, take R = �An1/3� and M = A1/2n2/3; then, by
Lemma 6.3,

P
(∃C ∈ CO(Gp) with |C| ≤ M and diam(C) > 2R

)
≤ 4c2n

2/3 2−R2/(2(64c2+2)M)

M
≤ 2−δA3/2

,

where δ > 0 is an absolute constant. In conjunction with (6.5) for B = A1/2, this
gives

P
(∃C ∈ CO(Gp) with diam(C) > An1/3) ≤ e−cA3/2

,

for some c > 0. �

7. Concluding remarks.

1. Theorems 2.1 and 6.1 naturally lead to the following question: for which graphs
G and retention probabilities p are conditions (i′), (ii′) of Theorem 6.1 sat-
isfied, yet there is a substantial probability of having connected components
of size n2/3? In particular, it seems interesting to prove that these conditions
hold for the Hamming cube {0,1}n or the d-dimensional discrete torus [n]d for
large d and some p.

2. A far more challenging problem is finding a good definition for the critical
probability for percolation on finite transitive graphs. Among other properties,
we expect that at this critical probability, the size of the largest component is not
concentrated and that the second largest component has maximal expectation.
We also expect to find a scaling window around this critical probability in which
the above properties still hold, while outside this window, the properties cease
to hold.

The following is a suggestion for such a definition. Let χ(p) = Ep|C(v)|.
We suggest that the critical probability pc ∈ [0,1] should be the maximizer of

χ ′(p)

χ(p)
.

Intuitively (and keeping in mind Russo’s formula), this pc is the one at which
adding a random edge to Gp has the maximal impact on the size of the compo-
nent containing v (with relation to its size).

QUESTION 1. Do the properties mentioned above hold for this suggested pc?

QUESTION 2. For “mean-field” graphs, such as the Hamming cube or the
d-dimensional discrete torus for large d , does this definition coincide with the
previous definition of Borgs, Chayes, van der Hofstad, Slade and Spencer [7], who
require χ(pc) = λ|V |1/3 (where |V | is the number of vertices in the graph and λ

is some small constant)?
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