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ON THE ORTHOGONAL POLYNOMIALS ASSOCIATED
WITH A LÉVY PROCESS1

BY JOSEP LLUÍS SOLÉ AND FREDERIC UTZET

Universitat Autònoma de Barcelona

Let X = {Xt , t ≥ 0} be a càdlàg Lévy process, centered, with moments
of all orders. There are two families of orthogonal polynomials associated
with X. On one hand, the Kailath–Segall formula gives the relationship be-
tween the iterated integrals and the variations of order n of X, and defines a
family of polynomials P1(x1), P2(x1, x2), . . . that are orthogonal with re-
spect to the joint law of the variations of X. On the other hand, we can
construct a sequence of orthogonal polynomials pσ

n (x) with respect to the
measure σ 2δ0(dx)+ x2 ν(dx), where σ 2 is the variance of the Gaussian part
of X and ν its Lévy measure. These polynomials are the building blocks of a
kind of chaotic representation of the square functionals of the Lévy process
proved by Nualart and Schoutens. The main objective of this work is to study
the probabilistic properties and the relationship of the two families of poly-
nomials. In particular, the Lévy processes such that the associated polynomi-
als Pn(x1, . . . , xn) depend on a fixed number of variables are characterized.
Also, we give a sequence of Lévy processes that converge in the Skorohod
topology to X, such that all variations and iterated integrals of the sequence
converge to the variations and iterated integrals of X.

1. Introduction. Let X = {Xt, t ≥ 0} be a semimartingale with X0 = 0. De-
fine the iterated integrals by the recurrence

P
(0)
t = 1, P

(1)
t = Xt, . . . ,P

(n)
t =

∫ t

0
P

(n−1)
s− dXs(1.1)

and consider the sequence of the variations of X,

X
(1)
t = Xt, X

(2)
t = [X,X]t , X

(n)
t = ∑

0<s≤t

(�Xs)
n, n ≥ 3,(1.2)

where �Xs = Xs − Xs−. The Kailath–Segall formula (see Segall and Kailath [7]
or Meyer [12]) gives the relationship between P

(n)
t and X

(n)
t :

P
(n)
t = 1

n

(
P

(n−1)
t X

(1)
t − P

(n−2)
t X

(2)
t + · · · + (−1)n+1P

(0)
t X

(n)
t

)
.(1.3)
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We deduce that P
(n)
t is a polynomial in X

(1)
t , . . . ,X

(n)
t , called the Kailath–Segall

polynomial of order n. Denote this polynomial by Pn(x1, . . . , xn), so

P
(n)
t = Pn

(
X

(1)
t , . . . ,X

(n)
t

)
.

The explicit expression of Pn(x1, . . . , xn) is

Pn(x1, . . . , xn) = (−1)n
∑ n∏

j=1

(−xj )
mj

jmj mj ! ,

where the summation is over all nonnegative integers m1, . . . ,mn such that∑n
j=1 jmj = n (see Avram and Taqqu [3]). The polynomials Pn(x1, . . . , xn),

n ≥ 1, are also a particular case of generalized Appell polynomials (see Anshele-
vich [1]). The first three of these polynomials are

P1(x1) = x1,

P2(x1, x2) = 1
2x2

1 − 1
2x2,

P3(x1, x2, x3) = 1
6x3

1 − 1
2x1x2 + 1

3x3.

If X is a martingale with predictable quadratic variation 〈X,X〉t = Ct , with
finite moments of all orders, then P (n) and X(n) also have moments of all orders
and the iterated integrals of different order are orthogonal, that is,

E
[
P

(n)
t P

(m)
t

] = 1

n!C
ntnδnm,(1.4)

where δnm = 1 if n = m and 0 otherwise, and C = E[X2
1]. The orthogonality of the

Kailath–Segall polynomials with respect to the law of (Xt ,X
(2)
t , . . .) follows. This

is true, in particular, for a centered Lévy process with moments of all orders.
Consider a centered Lévy process X with moments of all orders and let σ 2 be

the variance of its Gaussian part and ν its Lévy measure. The measure γ σ (dx) =
σ 2δ0(dx) + x2ν(dx) [we also write γ (dx) = x2ν(dx)] is finite and we can con-
struct a (finite or infinite) sequence of orthogonal polynomials pσ

n (x) [resp. pn(x)]
with respect to γ σ (resp. γ ). These determine a sequence of strongly orthogonal
martingales related to the Teugels martingales (see Nualart and Schoutens [13])
that are the building blocks of a kind of chaotic representation of the square func-
tionals of the Lévy process. Therefore, we will call {pσ

n (x), n ≥ 0} [or pn(x), when
σ = 0] the Teugels polynomials associated with X.

The main objective of this paper is to study the probabilistic properties of, and
the relationship between, the polynomials Pn(x1, . . . , xn) and pσ

n (x). When work-
ing on that problem, we found three results that we think are interesting in them-
selves. The first one is a proof that for a general semimartingale X, the Doleans
exponential E(uXt) (fixed t and ω) is analytic in a certain neighborhood of the ori-
gin and that the iterated integrals are the Taylor coefficients. This part is based on
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a paper of Lin [11], where the result for a Lévy process was implicitly proven, and
on Yablonski [19], where a generating function of the Kailath–Segall polynomials
of a Lévy process was introduced.

The second result is related to the Kailath–Segall polynomials that are express-
ible as polynomials of a fixed set of variables. A very interesting property of the
Kailath–Segall polynomials is that when you impose some restriction on the vari-
ables x1, x2, . . . , you get different well-known families of polynomials. For exam-
ple, when X is a Brownian motion, then X

(2)
t = t and X

(n)
t = 0, n ≥ 3, showing

that it is enough to consider the polynomials Pn(x, t,0, . . . ,0), and it turns out that

Pn(x, t,0, . . . ,0) = Hn(x, t),

where Hn(x, t) are the (generalized) Hermite polynomials. In a similar way, con-
sidering a compensated Poisson process, the (generalized) Charlier polynomials
Cn(x, t) are obtained. It is known that the Brownian motion and the compensated
Poisson process are the unique Lévy processes such that the Kailath–Segall poly-
nomials (that means, the iterated integrals) can be written as polynomials in x and t

(see Section 3). So, a natural question is how to characterize the Lévy processes
with a similar property for a finite number of variables. The answer is that they
are the Lévy processes such that the Lévy measure has finite support. This is not
surprising, given the paper of Sengupta and Darkar [16], where a similar result was
obtained in relation to space-time harmonic polynomials. The key to our proof is
that, under the appropriate conditions, only the application of linear functions to a
Lévy process gives rise to another Lévy process

Finally, the third result that we would like to mention is that, under the ap-
propriate hypothesis, it is possible to give a sequence of simple Lévy processes
{Xk, k ≥ 1} that converges in the Skorohod topology to X and these processes sat-
isfy the conditions of Avram [2] in order that all variations and iterated integrals
of Xk converge to the variations and iterated integral of X. This approximating
sequence is constructed using the Gauss–Jacobi mechanical quadrature formula.

2. Doleans exponential and Kailath–Segall polynomials. This section is in-
spired by the works of Lin [11] and Yablonski [19]. First, in the paper of Lin [11],
it is implicit that the iterated integrals of a Lévy process are the Taylor coeffi-
cients of the Doleans exponential at the origin, a property suggested by Meyer
[12], page 318, for a semimartingale. Second, Yablonski [19] introduced a gener-
ating function in order to study a family of polynomials associated with a Lévy
process that turn out to be the Kailath–Segall polynomials. However, that generat-
ing function is deterministic and Yablonski gives no probabilistic interpretation of
it. Here, we combine both approaches for a general semimartingale and prove that
the Yablonski generating function is the Doleans exponential of the semimartin-
gale for fixed ω, which is analytic in a neighborhood of the origin, and that the
Taylor coefficients are the iterated integrals. Therefore, we prove the general claim
of Meyer [12].
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To begin with, for the sake of easy reference, in the next remark, we collect
some results obtained by Yablonski [19].

REMARK 2.1. Given a sequence of real numbers x = (x1, x2, . . .) such that
lim supn |xn|1/n = λ < ∞, Yablonski [19] defines the generating function

F(u,x) = exp

{ ∞∑
n=1

(−1)n+1

n
unxn

}
,

which is analytic for u ∈ (−1/λ,1/λ). Yablonski proves that in the expansion

F(u, x) =
∞∑

n=0

unP n(x),(2.1)

the function P n(x) is a polynomial in x1, . . . , xn, which satisfies

P n(x1, . . . , xn)

= 1

n

(
P n−1(x1, . . . , xn−1)x1

− P n−2(x1, . . . , xn−2)x2 + · · · + (−1)n+1P 0xn

)
,

where P 0 = 1. Comparing this with (1.3), we deduce that Pn = P n.
Further, Yablonski [19] also points out the following very useful properties:

Pn(ax1, . . . , a
nxn) = anPn(x1, . . . , xn)

and

Pn(x1 + y1, . . . , xn + yn) =
n∑

k=0

Pk(x1, . . . , xk)Pn−k(y1, . . . , yn−k).(2.2)

Let X = {Xt, t ≥ 0} be a semimartingale with X0 = 0. For u ∈ R, consider the
Doleans equation

Zt = 1 + u

∫ t

0
Zs− dXs,

which has a unique solution (semimartingale) given by the Doleans exponential of
uXt ,

E(uXt) = exp
{
uXt − 1

2u2〈Xc,Xc〉t} ∏
0<s≤t

(1 + u�Xs)e
−u�Xs .(2.3)

Fixing ω and t ∈ R+, it is clear that if {Xs, s ∈ [0, t]} is continuous or has a fi-
nite number of jumps, then E(uXt) is analytic for u ∈ R. The proposition below
provides a general result in this direction.
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PROPOSITION 2.2. Fix ω ∈ 	 (out of a set of probability zero) and t ∈ R+.
There then exists u0 ≥ 1, depending on ω and t , such that the function E(uXt) is
analytic in u ∈ (−u0, u0) and

E(uXt) =
∞∑

n=0

unP
(n)
t .(2.4)

PROOF. Fix ω ∈ 	. From the expression (2.3), it follows that we only need to
prove that

∏
0<s≤t (1 + u�Xs)e

−u�Xs is analytic. Decompose this product in the
following way:∏

0<s≤t

(1 + u�Xs)e
−u�Xs

= ∏
0<s≤t

|�Xs |<1

(1 + u�Xs)e
−u�Xs

︸ ︷︷ ︸
(∗)

∏
0<s≤t

|�Xs |≥1

(1 + u�Xs)e
−u�Xs

︸ ︷︷ ︸
(∗∗)

.

The term (∗∗) is analytic, since there is only a finite number of factors. On the
other hand, for u ∈ (−1,1), the expression (∗) is positive and, taking logarithms,
we have

log(∗) = (a)

∑
0<s≤t

|�Xs |<1

∞∑
n=2

(−1)n+1

n
un(�Xs)

n

= (b)

∞∑
n=2

(−1)n+1

n
un

∑
0<s≤t

|�Xs |<1

(�Xs)
n,

where (a) follows from log(1 + y) − y = ∑∞
n=2

(−1)n+1

n
yn, the series being ab-

solutely convergent for |y| < 1 and (b) is due to Fubini’s theorem, which can be
applied since∑

0<s≤t

|�Xs |<1

∞∑
n=2

∣∣∣∣(−1)n+1

n
un(�Xs)

n

∣∣∣∣ = ∞∑
n=2

|u|n
n

∑
0<s≤t

|�Xs |<1

|�Xs |n

≤ C
∑

0<s≤t

|�Xs |<1

(�Xs)
2 ≤ C[X,X]t < ∞.

In a similar way, it is computed that

lim sup
n

∣∣∣∣∣(−1)n+1

n

∑
0<s≤t

|�Xs |<1

(�Xs)
n

∣∣∣∣∣
1/n

≤ lim sup
n

(
1

n
[X,X]t

)1/n

≤ 1.
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The analyticity of (∗) for u ∈ (−1,1) then follows.
To compute the coefficients of the expansion of E(uXt), let u1 =

(max0<s≤t |�Xs |)−1. Then, for u ∈ (−u1, u1), |u�Xs | < 1,∀s ∈ (0, t]. There-
fore, we can repeat the preceding proof to obtain∏

0<s≤t

(1 + u�Xs)e
−u�Xs

= exp

{
−1

2

∑
0<s≤t

u2(�Xs)
2 + ∑

0<s≤t

∞∑
n=3

(−1)n+1

n
unX(n)

}
,(2.5)

u ∈ (−u1, u1),

and

lim sup
n

∣∣∣∣∣(−1)n+1

n

∑
0<s≤t

(�Xs)
n

∣∣∣∣∣
1/n

≤ lim sup
n

∣∣∣∣1n 1

un−2
1

[X,X]t
∣∣∣∣1/n

≤ 1

u1
.

Since the right-hand side of (2.5) is the generating function of Yablonski, from
Remark 2.1 we deduce the expression (2.4) for u ∈ (−u1, u1). If u1 < 1, by the
principle of analytic continuation, we deduce (2.4) for u ∈ (−1,1). Finally, we
take u0 = max{1, u1}. �

REMARK 2.3. From the preceding proof, we deduce that for u ∈ (−1,1),

E(uXt) = exp
{
uXt − 1

2u2〈Xc,Xc〉t

+
∫
(0,t]×{0<|x|<1}

(
log(1 + ux) − ux

)
dJ (s, x)

}
× ∏

0<s≤t

|�Xs |≥1

(1 + u�Xs)e
−u�Xs ,

where

J (B) = #{t : (t,�Xt) ∈ B}, B ∈ B
(
(0,∞) × R0

)
,

is the jump measure of X, where R0 = R − {0} (see Jacod and Shiryaev [6],
page 69). Moreover, fixing ω ∈ 	 and t > 0, for u ∈ (−u1, u1) where u1 =
(max0<s≤t |�Xs |)−1 (which depends on ω and t),

E(uXt) = exp

{ ∞∑
n=1

(−1)n+1

n
unX

(n)
t

}

= exp
{
uXt − 1

2
u2〈Xc,Xc〉t +

∫
(0,t]×R0

(
log(1 + ux) − ux

)
dJ (s, x)

}
.
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For any semimartingale X, we have that (aX)(n) = anX(n). Further, given two
semimartingales X and Y such that [X,Y ] = 0, we have

(X + Y)(n) = X(n) + Y (n) ∀n ≥ 1.

This can be proven from the expression for the product of two Doleans exponen-
tials,

E(uXt)E(uYt ) = E(uXt + uYt + u2[X,Y ]t ),
formula (2.2) and formula (2.4). We summarize these formulas in the next propo-
sition.

PROPOSITION 2.4. Let X and Y be two semimartingales such that X0 = Y0 =
0 and [X,Y ] = 0. For a, b ∈ R, write Z = aX + bY . Then,

Pn

(
Z

(1)
t , . . . ,Z

(n)
t

)
(2.6)

=
n∑

k=0

akbn−kPk

(
X

(1)
t , . . . ,X

(k)
t

)
Pn−k

(
Y

(1)
t , . . . , Y

(n−k)
t

)
.

3. Kailath–Segall polynomials associated with a Lévy process. From now
on, consider that X = {Xt, t ≥ 0} is a Lévy process (meaning that X has stationary
and independent increments, is continuous in probability and has X0 = 0), càdlàg,
centered and with E[|X1|n] < ∞ for every n ≥ 1. Denote by σ 2 the variance of
the Gaussian part of X and by ν its Lévy measure. Since it is a martingale with
predictable quadratic variation

〈X,X〉t =
(
σ 2 +

∫
R

x2ν(dx)

)
t,

it follows that the Kailath–Segall polynomials are orthogonal.
When X is a Brownian motion W = {Wt, t ≥ 0},

X(1) = Wt, X
(2)
t = t and X(n) = 0, n ≥ 3,

and, therefore,

Pn

(
X

(1)
t , . . . ,X

(n)
t

) = Pn(Wt , t,0, . . . ,0) = Qn(Wt, t).

That is, it is enough to consider the Kailath–Segall polynomials with the variables

x1 = x, x2 = t and xn = 0, n ≥ 3,

and then

Pn(x, t,0, . . . ,0) = Qn(x, t) = Hn(x, t),

where Hn(x, t) are the Hermite polynomials defined via the generating function

exp
{
ux − 1

2u2t
} =

∞∑
n=0

unHn(x, t).
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Note that the leading coefficient of Hn(x, t) is 1/n!, and for fixed t > 0, Hn(x, t)

and Hm(x, t), n 
= m, are orthogonal with respect to the Gaussian measure N (0, t).
However, observe that Hn(x, t) is an ordinary polynomial in x and t and is defined
for all x, t ∈ R. For t = 0,

Pn(x,0,0, . . .) = Hn(x,0) = xn

n! .
If X is a compensated Poisson process of parameter b > 0 and jumps size a,

that is, Xt = a(Nt − bt), where N = {Nt, t ≥ 0} is a standard Poisson process of
intensity b, then

X
(n)
t = anNt , n ≥ 2.

Therefore,

Pn

(
X

(1)
t , . . . ,Xn

t

) = Pn(Xt , aXt + a2bt, . . . , an−1Xt + anbt) = Qn(Xt , t)

and the polynomial Qn(x, t) can be explicitly computed in the following way:
write x = a(y − bt), then

Qn

(
a(y − bt), t

) = anCn(y, bt),

where Cn(x, t) is the Charlier polynomial with leading coefficient 1/n! defined by

e−tu(1 + u)x =
∞∑

n=0

unCn(x, t).

Again, note that Cn(x, t) is defined for every x, t ∈ R and, in particular,

Cn(x,0) = Pn(x, x, . . .) = [x]n
n! ,

where [x]n is the falling factorial, [x]n = x(x − 1) · · · (x −n+ 1), [x]0 = 1. Fixing
t > 0, the polynomials Cn(x, t), n ≥ 1, are orthogonal with respect to the Poisson
distribution of parameter t .

Moreover, it is known that the Brownian motion and the compensated Poisson
process are the unique Lévy processes such that the Kailath–Segall polynomials
can be written as polynomials in x and t . This fact follows from Feinsilver [8], who
gives a necessary condition for the iterated integral P

(n)
t to be a polynomial in Xt ,

that condition being satisfied only by the binomial, negative binomial, Gamma,
Poisson and Gaussian types (see Feinsilver [8], page 301). It is easy to check that
P

(2)
t is not a polynomial on Xt for the binomial, negative binomial and Gamma

process; see also Privault et al. [14] for a different proof.
Therefore, we can ask if there are Lévy processes such that the Kailath–Segall

polynomials depend on a fixed finite set of variables. The answer is affirmative
and the examples are very easy to find. From Proposition 2.4, we deduce, for the
process

Xt = σWt + a(Nt − bt),
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where W is a Brownian motion and N is a Poisson process of parameter b > 0,
independent of W , that the Kailath–Segall polynomials can be written as polyno-
mials in y0, y1 and t , which are the convolutions of the polynomials σH·(y0, t)

and aC·(y1, bt) described above.
More generally, a jump diffusion Lévy process

Xt = σWt + Jt ,

where J is a centered compound Poisson process with only a finite number of jump
sizes, has Kailath–Segall polynomials expressible in a fixed finite set of variables.
Specifically, let

Xt = σWt +
n∑

j=1

aj

(
Nj(t) − bj t

)
,

where W is a Brownian motion, Nj is a Poisson process of parameter bj , the
processes W,N1, . . . ,Nn are independent and a1, . . . , an are different nonzero
numbers. These kinds of processes will be called simple Lévy processes and will
play a key role. For such processes, we will see that there is a family of polynomi-
als Qm(x1, . . . , xn+2) such that, for m ≥ n + 2,

Pm

(
X

(1)
t , . . . ,X

(m)
t

) = Qm

(
X

(1)
t , . . . ,X

(n+1)
t , t

)
.

Moreover, for m ≥ n + 2, let Rm
t be the subspace of R

m given by the vectors
(x1, . . . , xm) such that there exists (y0, . . . , yn) ∈ R

n+1 with

x1 = σy0 +
n∑

j=1

aj (yj − bj t),

x2 = σ 2t +
n∑

j=1

a2
j yj ,

xk =
n∑

j=1

ak
j yj , k = 3, . . . ,m.

Then, the polynomial Pm restricted to Rm
t is a (multiple) convolution of σH·(y0, t)

and ajC·(yj , bj t), j = 1, . . . , n.

If σ = 0, then

Pm

(
X

(1)
t , . . . ,X

(m)
t

) = Qm

(
X

(1)
t , . . . ,X

(n)
t , t

)
, m ≥ n + 1,

and in the expression for Qm restricted to a similar subspace as above, there is no
Hermite polynomial part.

REMARK 3.1. To summarize the situation, Pn(x1, . . . , xn), n ≥ 1, is a fam-
ily of ordinary polynomials that can be evaluated on an arbitrary sequence
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of real numbers or random variables. However, the most interesting properties
of Pn(x1, . . . , xn) appear when we consider a centered Lévy process with fi-
nite moments of all orders and apply Pn on the sequence of the variations of
X : (X(1)

t ,X
(2)
t , . . .). Then, by the Kailath–Segall formula (1.3),

P
(n)
t = Pn

(
X

(1)
t , . . . ,X

(n)
t

)
,

and Pn(X
(1)
t , . . . ,X

(n)
t ) and Pm(X

(1)
t , . . . ,X

(m)
t ) are orthogonal if n 
= m.

From an equivalent point of view, let R
∞ = {(x1, x2, . . .), xn ∈ R} be the set of

sequences of real numbers and P
∞
t the probability on (R∞,B(R)∞) induced by

(X
(1)
t ,X

(2)
t , . . .). Writing Pn(x1, . . . , xm, . . .) = Pn(x1, . . . , xn), Pn can be consid-

ered as a polynomial defined on R
∞ and the different polynomials are orthogonal:∫

R∞
PnPm dP

∞
t = 0 if n 
= m.

In some cases, the probability P
∞
t is concentrated in a finite-dimensional subspace

of R
∞ and then the restriction of Pn to this subspace gives rise to a new family of

polynomials that depend on a finite set of variables.

So, a natural question is whether there are other examples, different from simple
Lévy processes, where the Kailath–Segall polynomials can be written as polyno-
mials in a finite number of variables. We will prove that the answer is “no.”

3.1. Polynomials of a Lévy process. The purpose of this subsection is to study
when a polynomial of a Lévy process can be a Lévy process. The result is given in
the following proposition.

PROPOSITION 3.2. Let {(Y (t),X1(t), . . . ,Xd(t)), t ≥ 0} be a d + 1-dimen-
sional Lévy process with moments of all orders and P(x1, . . . , xd, t) a polynomial.
If Y(t) = P(X1(t), . . . ,Xd(t), t), then P(x1, . . . , xd, t) has degree 1.

In order to prove this proposition, we will need the following elementary prop-
erty.

LEMMA 3.3. Let A be a d ×d nonnegative definite matrix of rang(A) = r ≤ d

and let f = (f1(t), . . . , fd(t))′ be a vector of real functions such that

f ′Af = 0.

Then:

1. if r = d , then f = 0;
2. if r < d, then there are d − r functions between f1, . . . , fd , such that the other

r depend linearly on them.
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PROOF. This is a consequence of the fact that for any matrix C conformable
with A such that C′AC = 0, we have AC = 0. �

PROOF OF PROPOSITION 3.2. The idea of the proof is that from the Itô for-
mula, the decomposition of Yt as a special semimartingale is obtained, and Jacod
and Shiryayev [6], Corollary II.4.19, give necessary and sufficient conditions in
order that a semimartingale be a Lévy process. Then, we will prove that for a poly-
nomial of degree n of a Lévy process to be a Lévy process, it is necessary that a
polynomial of order n − 1 be a Lévy process. Hence, we can reduce to the case
where the polynomial has degree 2. The proof is as follows.

First, since a polynomial in (X1(t), . . . ,Xd(t), t) can be written as a poly-
nomial in (X1(t) − E[X1(t)], . . . ,Xd(t) − E[Xd(t)], t), we can assume that the
Lévy process is centered. Also, every linear combination

∑d
j=1 λjXj (t) + μt is

a Lévy process (jointly with Y ) and we can then eliminate such linear combina-
tions from P(X1(t), . . . ,Xd(t), t); that is, we will assume that every monomial in
P(x1, . . . , xd, t) has degree ≥ 2.

1. Degree of P(x1, . . . , xd, t) = 2. In this step, we will prove that if a quadratic
form P(X1(t), . . . ,Xd(t), t) is a Lévy process, then P(x1, . . . , xd, t) ≡ 0. For now,
we write xd+1 = t. Then,

P(x1, . . . , xd+1) =
d+1∑
i=1

bix
2
i +∑

i<j

cij xixj .

First, by a linear transformation, we can assume that

P(x1, . . . , xd+1) =
d+1∑
i=1

bix
2
i .

We then have

Yt =
d∑

j=1

bjX
2
j (t) + bd+1t

2.

Taking expectations, and recalling that the Lévy process is centered, we get

Ct = bd+1t
2.

So, bd+1 = 0. We will prove by induction over d that also b1 = · · · = bd = 0.
1.1. Let d = 1. In order to prove that X2

t cannot be a Lévy process, write Yt =
X2

t and let C2 = E[X2
1] = σ 2 +∫

R
x2ν(dx) be the variance and cumulant of order 2

of X1 and C4 = ∫
R

x4ν(dx) be the cumulant of order 4 of X1. On one side, if Y

were a Lévy process, then E[(Yt − EYt )
2] = Ct , for some C. On the other side,

from the relationship between moments and cumulants, we have

E[Y 2
t ] = E[X4

t ] = C4t + 3C2
2 t2.
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Comparing both expressions for E[Y 2
t ], we deduce that X = 0.

1.2. Consider d ≥ 2 and let Xt = (X1(t), . . . ,Xd(t))′ be given by

Xt = Bt +
∫
(0,t]×R

d
0

xÑ(ds, dx),

where Bt = (B1(t), . . . ,Bd(t))′ is a d-dimensional Brownian motion with co-
variance matrix A and N(t,x) is the jump measure of the process, where R

d
0 =

R
d − {0} and dÑ(t,x) = dN(t,x) − dt dν(x) is the compensated jump measure.
By Itô’s formula,

P(Xt ) = 2
∫ t

0

d∑
i=1

biXi(s−) dBi(s)

(3.1)

+
∫
(0,t]×R

d
0

d∑
i=1

(
2bixiXi(s−) + bix

2
i

)
dÑ(ds, dx)

+ t

(
d∑

i=1

Aiibi +
∫
Rd

(
d∑

i=1

bix
2
i

)
ν(dx)

)
.(3.2)

The right-hand side of (3.1) is a martingale and (3.2) is of bounded variation and
continuous, so the above expression is the decomposition of P(Xt ) as a special
semimartingale.

1.2.1. Assume A 
= 0. By Jacod and Shiryavev [6], Corollary II.4.19, a necessary
condition for P(Xt ) to be a Lévy process is that the quadratic variation of the
continuous martingale part should be of the form Ct (the truncation function does
not play any role in that condition). Then,〈∫ t

0

d∑
i=1

biXi(s−) dBi(s),

∫ t

0

d∑
i=1

biXi(s−) dBi(s)

〉
= Ct ∀t ≥ 0.

This implies that ∑
i,j

bibjAi,jXi(t)Xj (t) = C ∀t ≥ 0,

and from the fact Xi(0) = 0 for i = 1, . . . , d, we deduce that C = 0. We can write
this expression in a vector form,

U′
tAUt = 0,

where Ut = (b1X1(t), . . . , bdXd(t))′. By Lemma 3.3, we see that if some bi 
= 0,
then there is a linear relationship between X1, . . . ,Xd .

1.2.2. If A = 0, then∫
(0,t]×R

d
0

d∑
i=1

(
2bixiXi(s−) + b2

i x
2
i

)
dÑ(ds, dx)
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is a Lévy process. From the fact that
∫
(0,t]×R

d
0
x2
i dN(ds, dx) = [Xi,Xi]t , and as

we are assuming that (Yt ,Xt) is a Lévy process, we deduce that∫
(0,t]×R

d
0

d∑
i=1

(bixiXi(s−)) dÑ(ds, dx)

is a Lévy process and a martingale. Therefore,

E

[(∫
(0,t]×R

d
0

d∑
i=1

(bixiXi(s)) dÑ(ds, dx)

)2]

=
∫
(0,t]×R

d
0

E

[(
d∑

i=1

(bixiXi(s))

)2]
dsν(dx),

but the left-hand side has the form Ct , and the right-hand side C′t2. Hence,

d∑
i=1

bixiXi(t) = 0 ∀(x, t,ω), ν(dx) ⊗ dt ⊗ P a.e.

From the fact that ν 
= 0, it follows that there are x1, . . . , xd , not all 0, such that

d∑
i=1

bixiXi(t) = 0 ∀(t,ω), dt ⊗ P a.e.

and this implies a linear relationship between X1, . . . ,Xd .
1.2.3. From 1.2.1 and 1.2.2, we then deduce that if P 
≡ 0, there is a

linear relationship between X1, . . . ,Xd , and it follows that there is a Lévy
process (Y (t),X1(t), . . . ,Xd−1(t)) and a polynomial of degree 2 such that Yt =
P(X1(t), . . . ,Xd−1(t)). Iterating the procedure, we arrive at the case d = 1, which
is absurd (Point 1.1).

2. Degree of P(x1, . . . , xd, t) = n ≥ 3. This proof is very similar to 1.2.1 and
1.2.2. As in point 1.2, we apply Itô’s formula.

2.1. Assume that the covariance of the Gaussian part of X is not zero: A 
= 0.
The continuous martingale in P(Xt ) is.∫ t

0

d∑
i=1

∂P

∂xi

(Xs, s) dBi(t).

By Jacod–Shiryaev [6], its quadratic variation should be Ct . Write V = ( ∂P
∂x1

(Xs,

s), . . . , ∂P
∂xd

(Xs, s))
′. We then have

V′AV = 0.
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By Lemma 3.3, it follows that there are numbers g1, . . . , gd , not all null, such that

d∑
i=1

gi

∂P

∂xi

(Xs, s) = 0,

and the expression on the left-hand side is a polynomial of degree n − 1 on
X1(t), . . . ,Xd(t), t.

2.2. If A = 0, then consider the bounded variation part of P(Xt , t),

Vt =
∫ t

0

(
∂P

∂t
(Xs, s) +

∫
Rd

(
P(Xs− + x, s)

− P(Xs−, s) −
d∑

i=1

xi

∂P

∂xi

(Xs−, s)

)
ν(dx)

)
ds,

which is continuous, thus predictable. On the other hand, the Lévy–Itô expression
for a Lévy process also gives its decomposition as a special semimartingale, so, by
the unicity of the decomposition, we deduce that Vt = Ct . Then,

∂P

∂t
(Xt , t) +

∫
Rd

(
P(Xt− + x, t) − P(Xt−, t) −

d∑
i=1

xi

∂P

∂xi

(Xt−, t)

)
ν(dx) = C.

This expression is also a polynomial of degree n − 1 in X1(t), . . . ,Xd(t), t.

2.3. From 2.1 and 2.2, we deduce that for a polynomial of order n in
X1(t), . . . ,Xd(t), t, to be a Lévy process, it is necessary that a polynomial of
order n − 1 be a Lévy process. Iterating, we arrive at a contradiction with step 2.

�

REMARK 3.4. An indication that the property expressed in Proposition 3.2
may be true for more general functions is the following. Instead of a polynomial,
consider a general (sufficiently regular) function f (x1, . . . , xd). Assume that the
covariance matrix A of the Gaussian part of X is nonsingular. The necessary condi-
tion of Jacod and Shiryavev [6], Corollary II.4.19, for f (Xt ) to be a Lévy process
becomes

d∑
j=1

(
∂g

∂xj

(Xt−)

)2

= C a.s., for all t ≥ 0,

where g is a function obtained from f through linear changes of variable. Since
the support of Xt is R

d , it follows that

‖∇g(x1, . . . , xd)‖2 = C ∀(x1, . . . , xd) ∈ R
d .

This is the eikonal equation, which, in R
d , has a unique solution given by a linear

function; see Khavinson [9], Remark (ii), or Letac and Pradines [10].
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3.2. The n–dimensional variation process (X(1), . . . ,X(n)). We return to the
general Lévy process X with moments of all orders. From E[|X1|k] < ∞, for all
k ≥ 1, it follows that E[|X(n)

1 |k] < ∞, for all n, k ≥ 1 and

E
[
X

(1)
t

] = 0, E
[
X

(2)
t

] =
(
σ 2 +

∫
R

x2ν(dx)

)
t

and

E
[
X

(n)
t

] = t

∫
R

xnν(dx), n ≥ 3.

Consider the multivariate Lévy process (X
(1)
t , . . . ,X

(n)
t ). Its Lévy measure νn

(on R
n) is the image measure of ν by the application

R −→ R
n,

x �→ (x, x2, . . . , xn).

By the image measure theorem, for f : Rn → R measurable, positive or νn-in-
tegrable, ∫

Rn
f (x)νn(dx) =

∫
R

f (x, x2, . . . , xn)ν(dx).

The characteristic function of (X
(1)
t , . . . ,X

(n)
t ) is then

ϕt(z) = exp
{
−1

2 tz2
1σ

2 + itz2σ
2 + t

∫
R

(e
i
∑n

j=1 zj xj − 1 − iz1x)ν(dx)

}
,(3.3)

where z = (z1, . . . , zn). Hence, the characteristic function of a linear combination

Zt =
n∑

j=1

ajX
(j)
t + an+1t,

such that E[Zt ] = 0, is

φt(z) = exp

{
−1

2 ta2
1z2σ 2

(3.4)

+ t

∫
R

(
e
iz
∑n

j=1 aj xj − 1 − iz

n∑
j=1

ajx
j

)
ν(dx)

}
, z ∈ R.

Before proceeding to the main theorem of this section, we need the following
lemma which will allow us to work with characteristic functions like (3.4).

LEMMA 3.5. Let ν be a Lévy measure on (R,B(R)) and let f : R → R be a
continuous function such that f (0) = 0 and

∫
R

f 2(x)ν(dx) < ∞. If∫
R

(
eizf (x) − 1 − izf (x)

)
ν(dx) = 0 ∀z ∈ R,

then f = 0, ν-a.e.



780 J. L. SOLÉ AND F. UTZET

PROOF. Let νf be the measure image of ν by f . From the hypothesis, it fol-
lows that νf is a Lévy measure and

∫
{|x|>1} |x|νf (dx) < ∞. Consider the infinitely

divisible distribution  that has Lévy generating triplet given by σ = 0, Lévy
measure νf and γ = − ∫

{|x|>1} xνf (dx) (for this notation, see Sato [15], pages 39
and 163); its characteristic function is

exp
{∫

R

(
eizf (x) − 1 − izf (x)

)
ν(dx)

}
.

So, by hypothesis,  = δ0. Hence, νf = 0 and thus f = 0, ν-a.e. �

REMARK 3.6. Note that if a Lévy process has finite moment of order k ≥ 2,
then a polynomial of order [k/2] without independent term satisfies the conditions
on the function f of the lemma.

3.3. Kailath–Segall polynomials and finitely supported Lévy measures.

THEOREM 3.7. There exists a number k ≥ 1 and a family of polynomials
{Qn(x1, . . . , xk, t), n ≥ k}, Qn of degree n, such that

Pn

(
X

(1)
t , . . . ,X

(n)
t

) = Qn

(
X

(1)
t , . . . ,X

(k)
t , t

)
, n ≥ k,

being this k the minimum number that satisfies that condition, if and only if

1{σ 
=0} + # Supp(ν) = k,

where Supp(ν) is the support of the Lévy measure ν.

PROOF. We first prove that the condition is sufficient.
Case 1. Let σ = 0 and Supp(ν) = {a1, . . . , ak}. Consider the polynomial of

degree k + 1,

R(x) = x

k∏
j=1

(x − aj ) =
k∑

j=1

cjx
j + xk+1,

that satisfies R(x) = 0, ν-a.e.
Denote by LR the polynomial of order 1 in x1, . . . , xk+1 defined by the coeffi-

cients of R,

LR(x1, . . . , xk+1) =
k∑

j=1

cjxj + xk+1,

and let

ck+1 = −E
[
LR

(
X

(1)
1 , . . . ,X

(k+1)
1

)]
.
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Then, the characteristic function of LR(X
(1)
t , . . . ,X

(k+1)
t ) + ck+1t is [see (3.4)]

exp
{
t

∫
R

(
eizR(x) − 1 − izR(x)

)
ν(dx)

}
,

which is equal to 1 because R(x) = 0, ν-a.e. So,

X
(k+1)
t = −

k∑
j=1

cjX
(j)
t − ck+1t

and it follows that

Pk+1
(
X

(1)
t , . . . ,X

(k+1)
t

) = Qk+1
(
X

(1)
t , . . . ,X

(k)
t , t

)
for some polynomial Qk+1 of degree k + 1. Now, observe that for every n ≥ k + 1,
the linear system

a1g1 + a2
1g2 + · · · + ak

1gk = an
1

...
...

akg1 + a2
kg2 + · · · + ak

kgk = an
k

has a unique solution g1, . . . , gk since the determinant of the system is a Vander-
monde one. Hence,

k∑
j=1

gjx
j − xn = 0, ν-a.e.

Therefore,

X
(n)
t =

k∑
j=1

gjX
(j)
t + dnt,

where dn is defined is a similar way as before and thus

Pn

(
X

(1)
t , . . . ,X

(n)
t

) = Qn

(
X

(1)
t , . . . ,X

(k)
t , t

) ∀n ≥ k.

Case 2. When σ 
= 0 and Supp(ν) = {a1, . . . , ak−1}, consider the polynomial of
order k + 1 without independent and linear terms,

R(x) = x2
k−1∏
j=1

(x − aj ).

Working as in case 1, we have

X
(k+1)
t = −

k∑
j=2

cjX
(j)
t − ck+1t.



782 J. L. SOLÉ AND F. UTZET

Necessity of the condition. Assume that

Pk+1
(
X

(1)
t , . . . ,X

(k+1)
t

) = Qk+1
(
X

(1)
t , . . . ,X

(k)
t , t

)
.

In the left-hand side, by (1.3), the process X(k+1) appears to be simply just multi-
plied by 1/(k + 1), so

X
(k+1)
t = Pol

(
X

(1)
t , . . . ,X

(k)
t , t

)
,

where “Pol” means a polynomial in the specified variables. By Proposition 3.2,

X
(k+1)
t =

k∑
j=1

cjX
(j)
t + ck+1t

and there is no linear relationship between any of the X(1), . . . ,X(k). Taking ex-
pectations,

ck+1 = −c2

(
σ 2 +

∫
R

x2ν(dx)

)
−

k∑
j=3

∫
R

xjν(dx) +
∫

R

xk+1ν(dx).

Then, the characteristic function of
∑k

j=1 cjX
(j)
t − X

(k+1)
t + ck+1t is 1. Specifi-

cally,

exp

{
−1

2c2
1tz

2σ 2

+ t

∫
R

(
e
iz(

∑k
j=1 cj xj−xk+1) − 1 − iz

(
k∑

j=1

cjx
j − xk+1

))
ν(dx)

}
= 1.

If σ > 0, then c1 = 0 and, by Lemma 3.5,

xk+1 −
k∑

j=2

cjx
j = 0, ν-a.e.

If σ = 0, then

xk+1 −
k∑

j=1

cjx
j = 0, ν-a.e.

For the second case (the first one is very similar), if the polynomial xk+1 −∑k
j=1cjx

j has only r < k real, nonzero, distinct roots, then Supp(ν) = {a1, . . . , ar}
and, by the sufficiency proofs above,

X
(r+1)
t =

r∑
j=1

cjX
(j)
t + cr+1t,

which contradicts the assumption that there is no linear relationship between the
X(1), . . . ,X(r+1). So, #Supp(ν) = k. �
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4. Teugels polynomials associated with a Lévy process. In this section, we
will work under Nualart–Schoutens [13] conditions on the Lévy measure ν, even
though some definitions only need the condition that the Lévy process has finite
moments of all orders, and that can be weakened to use only finite moments up
to a convenient order. The Nualart–Schoutens [13] conditions can be expressed as
the existence of λ > 0 such that∫

(−1,1)c
eλ|x|ν(dx) < ∞.(4.1)

This implies that∫
{|x|>1}

|x|ν(dx) < ∞ and
∫

R

|x|nν(dx) < ∞ ∀n ≥ 2,

so Xt has moments of all orders, and the characteristic function of Xt is analytic.
Consider the measures

γ (dx) = x2ν(dx) and, if σ > 0, γ σ (dx) = σ 2δ0(dx) + x2ν(dx).

Since ν has moments of all orders ≥ 2, it follows that γ and γ σ are finite measures
with finite moments of all orders, and the probabilities γ /γ (R) and γ σ /γ σ (R)

have characteristic functions that are analytic in certain neighborhoods of the ori-
gin because, if we take ρ = λ/2, then∫

(−1,1)c
eρ|x|x2ν(dx) ≤ 2

ρ2

∫
(−1,1)c

e2ρ|x|ν(dx) < ∞

and also
∫
(−1,1) e

ρ|x|x2ν(dx) < ∞. This implies that the characteristic functions of
γ /γ (R) and γ σ /γ σ (R) are determined by their moments (see Chow and Teicher
[5], Propositions 8.4.4 and 8.4.6).

We can construct a (finite or infinite) sequence pn(x), n ≥ 0, of orthogonal
monic polynomials with respect to γ and another sequence of monic polynomi-
als pσ

n (x) orthogonal with respect to γ σ . By convention, it is always the case that
p0(x) = pσ

0 (x) = 1.

EXAMPLES.

1. Brownian motion. X = W . Then ν = 0. The polynomials are p1(x) = x,
pn(x) = 0, n ≥ 2.

2. Standard Poisson process. X = Nt − t . Then σ = 0 and ν = δ1, p1(x) = x − 1,
pn(x) = 0, n ≥ 2.

3. Simple Lévy process with 2 jump sizes, with σ = 0,

Xt = a1
(
N1(t) − b1t

)+ a2
(
N2(t) − b2t

)
.
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Then ν = b1δa1 + b2δa2 and

p1(x) = x − b1a
3
1 + b2a

3
2

b1a
2
1 + b2a

2
2

,

p2(x) = (x − a1)(x − a2),

pn(x) = 0, n ≥ 3.

4. Gamma process. (Schoutens [17]) Let {Gt, t ≥ 0} be a Gamma process, that is,
a Lévy process such that Gt has distribution Gamma with mean t and scale pa-
rameter equal to 1. Consider Xt = Gt − t. Then, σ = 0 and the Lévy measure is
ν(dx) = 1{x>0} e−x

x
dx, which has infinite support. The sequence of orthogonal

polynomials is infinite and they are the Laguerre polynomials L
(1)
n (x).

As Schoutens [17] shows, it is straightforward to obtain pσ
n (x) from pn(x)

through a family of kernels polynomials. However, in Corollary 4.3, we will see a
useful relationship between pσ

n+1(x) and pn(x).
In order to compute pn(x), write

�n =

∣∣∣∣∣∣∣∣∣
m2 m3 · · · mn+2
m3 m4 · · · mn+3
...

...

mn+2 mn+3 · · · m2n+2

∣∣∣∣∣∣∣∣∣ ,(4.2)

where mk = ∫
R

xk−2γ (dx) = ∫
R

xkν(dx), k ≥ 2, and

Dn(x) =

∣∣∣∣∣∣∣∣∣∣∣

m2 m3 · · · mn+2
m3 m4 · · · mn+3
...

...

mn+1 mn+2 · · · m2n+1
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
.(4.3)

There are two cases.

1. If the support of γ is infinite, then, for every n, �n 
= 0 and

pn(x) = (�n−1)
−1Dn(x)(4.4)

defines an infinite sequence of orthogonal polynomials. This follows from well-
known facts about orthogonal polynomials; see Chihara [4], pages 51 and 52,
and Theorem 1.3.3.

2. If ν = ∑n
k=1 bj δaj

, then there are just n nonzero (γ -a.e.) orthogonal polynomi-
als p0, . . . , pn−1. The expression of the (monic) polynomial pn is very easily
computed, as follows:

pn(x) =(∗)

n∏
j=1

(x − aj ) = �−1
n

∣∣∣∣∣∣∣∣∣
1 a1 · · · an

1
...

...

1 an · · · an
n

1 x · · · xn

∣∣∣∣∣∣∣∣∣ ,(4.5)
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where

�n =
∣∣∣∣∣∣∣
1 a1 · · · an−1

1
...

...

1 an · · · an−1
n

∣∣∣∣∣∣∣
and (∗) is due to the fact that this polynomial has degree n and is identically
zero γ -a.e., so it is orthogonal to the first n orthogonal polynomials. For m > n,
the polynomial pm(x) is also identically zero γ -a.e. and not unique.

3. When σ > 0 and ν = ∑n
k=1 bj δaj

, there are also only n + 2 determinate poly-
nomials pσ

k (x), the last one being

pσ
n+1(x) = x

n∏
j=1

(x − aj ).(4.6)

This expression is also deduced from the fact that this polynomial satisfies
pσ

n+1 ≡ 0, γ σ -a.e.

The orthogonal polynomials pσ
n (x), or pn(x) when σ = 0, determine a se-

quence of strongly orthogonal normal martingales related to the Teugels martin-
gales (see Nualart and Schoutens [13]) and that is why we call them the Teugels
polynomials associated with X. In Section 4.3, we provide an explicit expression
for those martingales.

REMARK 4.1. We have changed the notation of Nualart and Schoutens [13]
and Schoutens [17] because they write pn(x) for the orthogonal polynomial of
degree n − 1, and here it denotes the polynomial of degree n.

The next theorem is a modification of the Gauss–Jacobi mechanical quadrature
formula (see Szegö [18], Theorems 3.4.1 and 3.4.2).

THEOREM 4.2. Assume that the Lévy measure ν has infinite support and let
n ≥ 1 be such that pn(0) 
= 0. There are then different nonzero numbers a1, . . . , an

and strictly positive numbers b1, . . . , bn such that the (Lévy) measure with finite
support,

νn =
n∑

k=1

bkδak
,

satisfies ∫
R

xkν(dx) =
∫

R

xkνn(dx), k = 2, . . . ,2n + 1.(4.7)

Moreover, let γn(dx) = x2νn(dx) and γ σ
n (dx) = σ 2δ0(dx) + x2νn(dx). Then,

γ and γn (resp. γ σ and γ σ
n ) have the same orthogonal polynomials up to order n.
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By the Gauss–Jacobi formula (Szegö [18], Theorem 3.4.1), the numbers
a1, . . . , an are the n different nonzero real roots of pn(x), and b1, . . . , bn are the
unique solution of the compatible system

m2 = a2
1b1 + a2

2b2 + · · · + a2
nbn

...
...

m2n+1 = a2n+1
1 b1 + a2n+1

2 b2 + · · · + a2n+1
n bn,

where mk = ∫
R

xkν(dx), k ≥ 2. The numbers b1, . . . , bn, called the Christof-
fel numbers, are all strictly positive (Szegö [18], Theorem 3.4.2). From (4.7),
it follows that the finite measures γ and γn have the same moments of order
0,1, . . . ,2n − 1, denoted by m2, . . . ,m2n+1. Hence, from the expressions (4.2),
(4.3) and (4.4), we deduce that they have the same Teugels polynomials up to or-
der n.

COROLLARY 4.3. Let ν be a Lévy measure such that pn(0) 
= 0. There are
then λn and λn−1 such that pσ

n+1(x) = xpn(x) − λnp
σ
n (x) − λn−1p

σ
n−1(x).

PROOF. The polynomials pσ
n+1(x) and xpn(x) are monic and have degree

n + 1. The polynomial xpn(x) − pσ
n+1(x) can then be written as

xpn(x) − pσ
n+1(x) =

n∑
j=0

λjp
σ
j (x),

where

λj = K−1
j

∫
R

(
xpn(x) − pσ

n+1(x)
)
pσ

j (x)γ σ (dx)

= K−1
j

∫
R

xpn(x)pσ
j (x)γ σ (dx)

and

Kj =
∫

R

(pσ
j (x))2γ σ (dx).

Consider the discrete measures γn and γ σ
n of the preceding theorem. Then:

1. the measures γ σ and γ σ
n have the same moments up to order 2n − 1 and, for

j = 0, . . . , n − 2,

λj = K−1
j

∫
R

xpn(x)pσ
j (x)γ σ

n (dx).

2. denoting by p̃j (x) [resp. p̃σ
j (x)] the Teugels polynomials of γn (resp. γ σ

n ),
we have

p̃j (x) = pj (x) and p̃σ
j (x) = pσ

j (x), j = 1, . . . , n,
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and [(4.6)]

p̃σ
n+1(x) = xp̃n(x) = xpn(x) = 0, γ σ

n -a.e.,

so it follows that, for j = 0, . . . , n − 2,

λj = K−1
j

∫
R

xpn(x)pσ
j (x)γ σ

n (dx)

= K−1
j

∫
R

p̃σ
n+1(x)p̃σ

j (x)γ σ
n (dx) = 0. �

4.1. An approximating sequence of simple Lévy processes. An interesting
consequence of Theorem 4.2 is that it provides a way to construct a sequence
of simple Lévy processes that converges in the Skorohod topology to X, satisfy-
ing the conditions of Avram [2] in order that all variations and iterated integrals
of the sequence converge to the variations and iterated integral of the limit. From
the separation of zeros theorem of pn (see [4]), if pn(0) = 0, then pn+1(0) 
= 0.
There is then a sequence m1 < m2 < · · · ↗ ∞ such that pmk

(0) 
= 0,∀k. Let
Xk = {Xk(t), t ∈ R} be a centered Levy process with diffusion coefficient σ and
Lévy measure νmk

given in Theorem 4.2. That is, the law of Xk is

Xk(t) =Law σWt +
mk∑
j=1

aj

(
Nj(t) − bj t

)
.

Denote by P
(n)
k and X

(n)
k the iterated integral and the variation of order n of Xk ,

respectively, and by P (n) and X(n) the iterated integral and variation of X, respec-
tively.

THEOREM 4.4. Let X be a Lévy process that satisfies the condition (4.1) and
such that ν has infinite support. With the above notation, for every n,

lim
k

P
(n)
k = P (n) and lim

k
X

(n)
k = X(n)

(both convergences in the Skorohod sense).

PROOF. By Avram [2], it suffices to prove that

lim
k

(Xk, [Xk,Xk]) = (X, [X,X]) in the Skorohod sense.

Since all of the process involved are Lévy process, by Jacod and Shiryaev [6],
Corollary VII.3.6, it is sufficient to prove that

lim
k

(Xk(1), [Xk,Xk]1) = (X(1), [X,X]1) in distribution,

and by the Cramer–Wold device, this is equivalent to proving that for every u, v ∈
R,

lim
k

(
uXk(1) + v[Xk,Xk]1

) = uX(1) + v[X,X]1 in distribution.
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From (3.4), the characteristic function of uX(1) + v[X,X]1 is

ψ(z) = exp
{
−1

2u2z2σ 2 + izv

(
σ 2 +

∫
R

x2ν(dx)

)
+ t

∫
R

(
eiz(ux+vx2) − 1 − iz(ux + vx2)

)
ν(dx)

}
.

From the fact that the characteristic function of X1 is analytic, it follows that
ψ(z) also is. So, it suffices to show that all cumulants of uXk(1) + v[Xk,Xk]1
converge to the corresponding cumulants of uX(1) + v[X,X]1 and this is clear
from the construction of νmk

. �

4.2. The relationship between Kailath–Segall polynomials and Teugels polyno-
mials.

4.2.1. Preliminary results. This subsection is purely algebraic; later, we will
give a probabilistic interpretation of the results. First, it is convenient to introduce
a new notation. Given a polynomial of order n,

P(x) = c0 + c1x + · · · + cnx
n,

we denote by L(P )(x1, . . . , xn+1) the polynomial of degree 1 in x1, . . . , xn+1 as-
sociated with the coefficients of P :

L(P )(x1, . . . , xn+1) = c0x1 + · · · + cnxn+1.(4.8)

Of course, we can recover P(x) from L(P )(x1, . . . , xn+1):

P(x) = L(P )(1, x, . . . , xn).

Second, we need to consider some finite-dimensional vector spaces. Let a =
(a1, . . . , an), where a1, . . . , an are different nonzero numbers. Write

Sa
n+1 =

{
(x1, . . . , xn+1) ∈ R

n+1 :x1 =
n∑

j=1

ajyj ,

x2 =
n∑

j=1

a2
j yj , . . . , xn+1 =

n∑
j=1

an+1
j yj ,

for some (y1, . . . , yn) ∈ R
n

}
.

Sa
n+1 is subspace of dimension n of R

n+1, and there is the projection

R
n+1 −→ Sa

n+1,

(x1, . . . , xn+1) → (x1, . . . , xn, un+1),
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where un+1 is computed as follows. By the Vandermonde determinant property,
we can find (y1, . . . , yn) ∈ R

n such that

x1 =
n∑

j=1

ajyj , x2 =
n∑

j=1

a2
j yj , . . . , xn =

n∑
j=1

an
j yj .(4.9)

We then write

un+1 =
n∑

j=1

an+1
j yj .

LEMMA 4.5. With the above notation,

un+1 = −L(P )(x1, . . . , xn,0),

where

P(x) =
n∏

j=1

(x − aj ).

PROOF. From the expression of P(x) given in (4.5),

L(P )(x1, . . . , xn+1) = �−1
n

∣∣∣∣∣∣∣∣∣
1 a1 · · · an

1
...

...

1 an · · · an
n

x1 x2 · · · xn+1

∣∣∣∣∣∣∣∣∣ .
Hence,

L(P )(x1, . . . , xn, un+1) = L(P )

(
n∑

j=1

ajyj , . . . ,

n∑
j=1

an+1
j yj

)
= 0.

The polynomial P(x) is monic, so

un+1 = −L(P )(x1, . . . , xn,0). �

Define the polynomial of degree n + 1,

J a
n+1(x1, . . . , xn) = Pn+1(x1, . . . , xn, un+1) = ∑ n∏

j=1

1

hj !a
hj

j [yj ]hj
,

where the summation is over all nonnegative integers h1, . . . , hn such that∑n
j=1 hj = n + 1, [x]n is the falling factorial and y1, . . . , yn are given in (4.9).

This strange expression is the multiple convolution of Charlier polynomials
aC·(yj ,0), j = 1, . . . , n. Note that when working with the polynomials, the vari-
able t does not play the role of time and can be used freely according to our needs.
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PROPOSITION 4.6. For every (x1, . . . , xn+1) ∈ R
n+1,

Pn+1(x1, . . . , xn+1) − J a
n+1(x1, . . . , xn) = (−1)n

n + 1
L(P )(x1, . . . , xn+1),

where

P(x) =
n∏

j=1

(x − aj ).

Equivalently,

Pn+1(1, x, . . . , xn) − J a
n+1(1, x, . . . , xn−1) = (−1)n

n + 1
P(x).

PROOF. Simply note that Pn+1 is linear in xn+1, with coefficient (−1)n/(n +
1) [see (1.3)], and apply Lemma 4.5. �

Note that this proposition is true if we replace Pn+1 by another polynomial
linear in the variable xn+1, but we will see that with Pn+1, it has an interesting
probabilistic interpretation.

In the same way, take σ > 0 and write

Sσ,a
n+2 =

{
(x1, . . . , xn+2) ∈ R

n+2 :x1 = σy0 +
n∑

j=1

ajyj ,

x2 =
n∑

j=1

a2
j yj , . . . , xn+2 =

n∑
j=1

an+1
j yj ,

for some (y0, y1, . . . , yn) ∈ R
n+1

}
.

Consider the projection

R
n+2 −→ Sσ,a

n+2,

(x1, . . . , xn+2) → (x1, . . . , xn+1, u
σ
n+2),

where

uσ
n+2 =

n∑
j=1

an+2
j yj ,

y1, . . . , yn being the solution of x2 = ∑n
j=1 a2

j yj , . . . , xn+1 = ∑n
j=1 an+1

j yj . With
the same proof as Lemma 4.5, we have that L(P )(x2, . . . , xn+1, u

σ
n+2) = 0, where

P(x) = ∏n
j=1(x − aj ). Also, note that

L(xP )(x1, . . . , xn+2) = L(P )(x2, . . . , xn+2).
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Define the polynomial

J
σ,a
n+2(x1, . . . , xn+1) = Pn+2(x1, . . . , xn+1, u

σ
n+2),

which has an expression similar to J a
n+1 with the addition of a Hermite polynomial

H·(y0,0). We then have the following.

PROPOSITION 4.7. For every (x1, . . . , xn+2) ∈ R
n+2,

Pn+2(x1, . . . , xn+2) − J
σ,a
n+2(x1, . . . , xn+1) = (−1)n+1

n + 2
L(xP )(x1, . . . , xn+2),

where

P(x) =
n∏

j=1

(x − aj ).

Equivalently,

Pn+2(1, x, . . . , xn+1) − J
σ,a
n+2(1, x, . . . , xn) = (−1)n+1

n + 2
xP (x).

4.2.2. Teugels polynomials. The propositions of the previous subsection can
be transferred when we have a Lévy measure ν and the corresponding Teugels
polynomials pn(x) and pσ

n (x). We use Corollary 4.3 to identify these polynomials.

COROLLARY 4.8. Fix n ≥ 1 such that pn(0) 
= 0 and let a1, . . . , an be the
roots of pn(x). Then,

Pn+1(x1, . . . , xn+1) − J a
n+1(x1, . . . , xn) = (−1)n

n + 1
L(pn)(x1, . . . , xn+1)

and

Pn+2(x1, . . . , xn+2) − J
σ,a
n+2(x1, . . . , xn+1)

= (−1)n+1

n + 2

(
L(pσ

n+1)(x1, . . . , xn+2)

+ λnL(pσ
n )(x1, . . . , xn+1) + λn−1L(pσ

n−1)(x1, . . . , xn)
)
.

Equivalently,

Pn+1(1, x, . . . , xn) − J a
n+1(1, x, . . . , xn−1) = (−1)n

n + 1
pn(x)

and

Pn+2(1, x, . . . , xn+1) − J
σ,a
n+2(1, x, . . . , xn)

= (−1)n+1

n + 2

(
pσ

n+1(x) + λnp
σ
n (x) + λn−1p

σ
n−1(x)

)
.
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4.3. Main result. The Teugels martingales {Y (n), n ≥ 1} (see Nualart and
Schoutens [13]) are defined by Y

(n)
t = X

(n)
t − E[X(n)

t ], n ≥ 1. Specifically,

Y
(1)
t = Xt, Y

(2)
t = X

(2)
t − t

(
σ 2 +

∫
R

x2ν(dx)

)
and

Y
(n)
t = X

(n)
t − t

∫
R

xnν(dx), n ≥ 3.

(Nualart and Schoutens [13] write X
(2)
t = ∑

s≤t (�Xs)
2, instead of [X,X], as we

have done; however, both definitions give the same Y (2).) By an orthogonaliza-
tion procedure, they obtain a family {H(n), n ≥ 1} of normal martingales, pair-
wise strongly orthogonal, that, under the hypothesis (4.1), generate all of L2(	)

by sums of iterated integrals. In order to strongly orthogonalize {Y (n), n ≥ 1}, if
σ > 0, they show that you can look for the sequence of orthogonal polynomials
pσ

n (x) and take

H
(n+1)
t = L(pσ

n )
(
Y

(1)
t , . . . , Y

(n+1)
t

)
,

and the same expression with pn replacing pσ
n if σ = 0.

THEOREM 4.9. Let X be a centered Lévy process with moments of all orders
and fix n ≥ 1 such that the Teugels polynomial of order n, pn(x), does not have a
zero root. Let a1, . . . , an be the roots of pn(x). If σ = 0, then

Pn+1
(
X

(1)
t , . . . ,X

(n+1)
t

)
(4.10)

= (−1)n

n + 1
H

(n+1)
t + J a

n+1
(
X

(1)
t , . . . ,X

(n)
t

)+ (−1)n

n + 1
Cnt,

where

Cn =
∫

R

x
(
pn(x) − pn(0)

)
ν(dx)

and J a
n+1(X

(1)
t , . . . ,X

(n)
t )+ (−1)n

n+1 Cnt is orthogonal to P1(X
(1)
t ), . . . ,Pn(X

(1)
1 , . . . ,

X
(n)
t ).

If σ > 0, then

Pn+2
(
X

(1)
t , . . . ,X

(n+2)
t

) = (−1)n+1

n + 2

(
H

(n+2)
t + λnH

(n+1)
t + λn−1H

(n)
t

)
+ J

σ,a
n+2

(
X

(1)
t , . . . ,X

(n+1)
t

)+ (−1)n+1

n + 2
Dn+1t,

where λn and λn−1 are given in Corollary 4.3 and

Dn+1 = σ 2pn(0) +
∫

R

x2pn(x)ν(dx).
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Moreover, J
σ,a
n+2(X

(1)
t , . . . ,X

(n+1)
t )+ (−1)n+1

n+2 Dn+1t is orthogonal to P1(X
(1)
t ), . . . ,

Pn−1(X
(1)
1 , . . . ,X

(n−1)
t ).

PROOF. Since the proof for σ > 0 is very similar to the case σ = 0, we con-
sider only the latter one. Formula 4.10 follows from Corollary 4.8 and

H
(n+1)
t = L(pn)

(
Y

(1)
t , . . . , Y

(n+1)
t

)
= L(pn)

(
X

(1)
t , . . . ,X

(n+1)
t

)− t

∫
R

x
(
pn(x) − pn(0)

)
ν(dx).

To prove the orthogonality between J a
n+1(X

(1)
t , . . . ,X

(n)
t )+ (−1)n

n+1 Cnt and Pj (X
(1)
1 ,

. . . ,X
(j)
t ) for j = 1, . . . , n, observe that, by definition of J a

n+1 and Lemma 4.5,

J a
n+1

(
X

(1)
t , . . . ,X

(n)
t

)+ (−1)n

n + 1
Cnt = Pn+1

(
X

(1)
1 , . . . ,X

(n)
t , V

(n+1)
t

)
,

where

V
(n+1)
t = −L(pn)

(
X

(1)
t , . . . ,X

(n)
t ,0

)+ Cnt.

The idea of the proof is to construct a simple Lévy process Zt such that, for r ≤ n,

E
[
Pr

(
X

(1)
1 , . . . ,X

(r)
t

)
Pn+1

(
X

(1)
t , . . . ,X

(n)
t , V

(n+1)
t

)]
(4.11)

= E
[
Pr

(
Z

(1)
1 , . . . ,Z

(r)
t

)
Pn+1

(
Z

(1)
1 , . . . ,Z

(n+1)
t

)]
and by the orthogonality of the iterated integrals of different order, the expectation
on the right is zero.

With this objective, consider the Lévy process (X
(1)
t , . . . ,X

(n)
t , V

(n+1)
t ) that has

characteristic function [see (3.3)]

ϕX(z) = exp
{
t

∫
R

(
e
i(
∑n+1

j=1 zj xj−zn+1xpn(x)) − 1 − ix
(
z1 − zn+1pn(x)

))
ν(dx)

}
,

where z = (z1, . . . , zn+1).
On the other hand, let b1, . . . , bn the Christoffel numbers corresponding to ν

given in Theorem 4.2. Define (on the same probability space or another)

Zt =
n∑

j=1

aj

(
Nn(t) − bj t

)
,

where N1, . . . ,Nn are independent Poisson processes with respective intensities
b1, . . . , bn. The characteristic function of (Z

(1)
t , . . . ,Z

(n+1)
t ) is [see (3.3)]

ϕZ(z) = exp
{
t

∫
R

(
e
i(
∑n+1

j=1 zj xj ) − 1 − ixz1
)
νn(dx)

}
,
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where νn = ∑n
j=1 bj δaj

. By Theorem 4.2, ν and νn have the same moments up
to order 2n + 1, both ν and νn have the same first n Teugels polynomials and
pn(x) ≡ 0, νn-a.e. Let j1, . . . , jn+1 be nonnegative integers such that

∑n+1
k=1 kjk ≤

2n + 1. Therefore, the (joint) cumulant of order j1 in the first component, order
j2 in the second component and so on, of the vectors (X

(1)
t , . . . ,X

(n)
t , V

(n+1)
t )

and (Z
(1)
t , . . . ,Z

(n+1)
t ) are the same. So, a polynomial up to degree 2n + 1 of

(X
(1)
t , . . . ,X

(n)
t , V

(n+1)
t ) and the same polynomial of (Z

(1)
t , . . . ,Z

(n+1)
t ) have the

same expectation. In particular, for r ≤ n, we have the identity (4.11). �

EXAMPLE. A very simple example will help to interpret Theorem 4.9. Con-
sider a Lévy process X with σ = 0 and Lévy measure ν, and let a be the root of its
Teugels polynomial of order 1, p1(x). Assume a 
= 0 and let b be the solution of∫

R

x2ν(dx) = ba2.

Let Zt = a(Nt − bt), where Nt is a Poisson process of intensity b. Zt is then a
simple Lévy process that has Lévy measure ν1 = bδa. By Gauss–Jacobi Theo-
rem 4.2, ν and ν1 have the same moments of order 2 and 3. So, Xt and Zt have the
same cumulants of order 2 and 3, and, since both are centered, they have the same
moments of those orders. Then, on one hand, J a

2 (X
(1)
t ) = P2(Xt , aXt), so

J a
2 (Xt) − 1

2 t

∫
R

x2ν(dx) = P2

(
Xt, aXt + t

∫
R

x2ν(dx)

)
.

On the other hand,

P2
(
Z

(1)
t ,Z

(2)
t

) = P2(Zt , aZt + ba2t).

We then have

E

[
P1(Xt)

(
J a

2 (Xt) − 1
2 t

∫
R

x2ν(dx)

)]
= E

[
P1

(
Z

(1)
t

)
P2

(
Z

(1)
t ,Z

(2)
t

)]
because P1(Xt)(J

a
2 (Xt) − 1

2 t
∫
R

x2ν(dx)) is a product of a polynomial of degree
1 and a polynomial of order 2, in Xt , which is centered, so the expectation of that
product depends only on the moments of order 2 and 3. So, Theorem 4.9 says that
we have a decomposition

P2
(
X

(1)
t ,X

(2)
t

) = J a
2 (Xt) − 1

2 t

∫
R

x2ν(dx) − 1
2H

(2)
t ,

such that:

1. J a
2 (Xt) − 1

2 t
∫
R

x2ν(dx) is orthogonal to P1(X
(1)
t );

2. J a
2 (Xt)− 1

2 t
∫
R

x2ν(dx) = P2(X
(1)
t , V

(2)
t ), where (X

(1)
t , V

(2)
t ) is a Lévy process

that has the same moments (up to order 3) as the variations (Z
(1)
t ,Z

(2)
t ) of the

simple Lévy process Zt .
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