The Annals of Probability

2008, Vol. 36, No. 2, 467-529

DOI: 10.1214/07-A0P342

© Institute of Mathematical Statistics, 2008
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We define a family of stochastic Loewner evolution-type processes in fi-
nitely connected domains, which are called continuous LERW (loop-erased
random walk). A continuous LERW describes a random curve in a finitely
connected domain that starts from a prime end and ends at a certain tar-
get set, which could be an interior point, or a prime end, or a side arc. It
is defined using the usual chordal Loewner equation with the driving func-
tion being ~/2B(¢) plus a drift term. The distributions of continuous LERW
are conformally invariant. A continuous LERW preserves a family of local
martingales, which are composed of generalized Poisson kernels, normalized
by their behaviors near the target set. These local martingales resemble the
discrete martingales preserved by the corresponding LERW on the discrete
approximation of the domain. For all kinds of targets, if the domain satisfies
certain boundary conditions, we use these martingales to prove that when the
mesh of the discrete approximation is small enough, the continuous LERW
and the corresponding discrete LERW can be coupled together, such that af-
ter suitable reparametrization, with probability close to 1, the two curves are
uniformly close to each other.

1. Introduction. LERW (loop-erased random walk) (cf. [4]) is obtained by
removing loops, in the order they are created, from a simple random walk on a
graph that is stopped at some hitting time. Since the loops are erased, so an LERW
is a simple lattice path. In this paper, we will consider the loop-erasures of con-
ditional random walks. They have properties that are very similar to loop-erased
random walks, so we still call them LERW.

In [16], Schramm introduced stochastic Loewner evolution (SLE), a family
of random growth processes of closed fractal subsets in simply connected plane
domains. The evolution is described by the classical Loewner equation with the
driving term being \/k times a standard linear Brownian motion for some « > 0.
SLE behaves differently for different values of «. Schramm conjectured that SLE;
is the scaling limit of a kind of LERW on the grid approximation of the domain.
And he proved the conjecture in that paper under the assumption that the scaling
limits of LERW are conformally invariant.

Schramm’s processes turned out to be very useful. On the one hand, they are
amenable to computations; on the other hand, they are related with some statis-
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tical physics models. In a series of papers [6-8], Lawler, Schramm and Werner
used SLE to determine the Brownian motion intersection exponents in the plane.
In [10], the conjecture in [16] is completely solved, where no additional assump-
tion is added. In the same paper, SLEg is proved to be the scaling limits of UST
(uniform spanning tree) Peano curve. Smirnov proved in [18] that chordal SLEg is
the scaling limit of critical site percolation on the triangular lattice. And Schramm
and Sheffield proved in [17] that the harmonic explorer converges to chordal SLE4.
In [9], SLEg,3 is proved to have the restriction property, and so is conjectured to
be the scaling limits of self-avoiding walk. For the properties of SLE, see [5, 15]
and [19].

At the beginning, the SLE is only defined in simply connected domains, because
the definition uses the Riemann mapping theorem. In [20], a kind of SLE-type
process, which is called annulus SLE, is defined in doubly connected domains.
The definition uses the rotation symmetry and reflection symmetry of an annulus.
It is proved there that annulus SLE; is the scaling limit of the LERW in the grid
approximation of a doubly connected domain that starts from a vertex that is close
to a boundary point and stops when it hits the other boundary component.

The definitions of LERW on grid approximations of simply or doubly connected
domains could be easily extended to multiply connected domains. It is interesting
to study the scaling limits of the LERW in multiply connected domains. This may
help us to extend the SLE to multiply connected domains.

In this paper, we will define a family of SLE-type processes, which are called
continuous LERW, in finitely connected domains. They are defined using the usual
chordal Loewner equation with the driving function being V2B(t) + S(1), where
B(¢) is a standard linear Brownian motion, and the drift term S(¢) is continuously
differentiable in ¢. The drift term is carefully chosen, so that the continuous LERW
satisfy the conformal invariance, and preserve a family of local martingales gen-
erated by generalized Poisson kernels. The local martingales resemble the discrete
martingales preserved by the corresponding discrete LERW on the discrete approx-
imation of that domain. And this resemblance is used to prove the convergence of
discrete LERW to continuous LERW.

This paper is organized as follows. In Section 2, we define some notation that
will be used in this paper. In Section 3, three kinds of continuous LERW are de-
fined, which are continuous LERW “aimed” at interior points, prime ends and side
arcs. And we prove that they all satisfy the conformal invariance. In Section 4,
we present the continuous and discrete martingales preserved by continuous and
discrete LERW, respectively, and explain the similarity between these martingales.

In Section 5, we give a rigorous proof of the existence and uniqueness of the
solution to the equation that is used to define a continuous LERW. The lemmas
that are used for the proof are interesting. We first use the idea of Carathéodory
topology to define the convergence of plane domains. Then we define a metric on
the space of hulls in the upper half plane, so that the set of hulls that are contained
in a fixed hull is compact. This compactness property is frequently used in the
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remaining part of this paper. In this section, we use it to derive many uniform
constants without working on concrete functions.

In Section 6, we first consider one kind of LERW, whose targets are interior
points. The method given in [10] is used to get a coupling of the driving process
for the discrete LERW and that for the continuous LERW such that the two driving
processes are uniformly close to each other in probability. In Section 7, we first use
some regular properties of the discrete LERW curve to get a local coupling of the
LERW curve and the continuous LERW trace so that the two curves are close to
each other, before either of them leaves a hull bounded by a crosscut. Finally, we
glue all local couplings to get a global coupling of the curves. In the last section,
we study the convergence of the other two kinds of LERW. And we get the similar
results of the convergence.

2. Some notation.

2.1. Loop-erased random walk. In general, an LERW is defined on a con-
nected locally finite graph G = (V, E). We will usually consider the graphs that are
discrete approximations of some plane domains. A loop-erasure of a finite lattice
path v = (v(0), ..., v(n)) on G is defined as follows. Let ng = max{m:v(m) =
v(0)}. Define the sequence () inductively by n ;| = max{m:v(m) =v(n; + 1)}
if n; is defined and n; < n. Let x be the first j such that n; =n. Let w(j) =
v(nj) for 0 < j < x. Then w = (w(0), ..., w(x)) is called the loop-erasure of
(v(0), ..., v(n)) (see [4]), and is denoted by LE(v). It is a simple lattice path with
w(0) =v(0) and w(y) = v(n).

A subset S of V is called reachable in G if for any v € V' \ §, a (simple) random
walk on G started from v will hit S in finitely many steps almost surely. Suppose
A and B are disjoint subsets of V such that A U B is reachable in G. Suppose
vo € V \ (AU B) and there is a lattice path on G connecting vg and A without
passing through B. Then the probability that a random walk started from vg hits A
before B is positive. We now consider this random walk stopped on hitting A U B
and conditioned to hit A. It is a random finite lattice path. The loop-erasure of this
path is called the LERW on G started from x conditioned to hit A before B.

For a function f definedon V,andv e V,let Ag f(v) =)~ (f(w) — f(v)),
where w ~ v means that w and v are adjacent. If Ag f(v) =0, then we say f is
discrete harmonic at v. The proof of the following lemma is easy, and can be found
in [20].

LEMMA 2.1. Suppose A and B are disjoint subsets of V and AU B is reach-
able in G. Let x € V \ (AU B) be such that there is a lattice path connecting x
and A without passing through any vertex on B. Then there is a unique nonnegative
bounded function h on 'V suchthath=00on AUB; Agh=00n V\(AUBU{x});
and Y, ca Agh(v) = 1. Moreover, if either A or B is a finite set, then there is a
unique nonnegative bounded function g on 'V such that g=0on B; g=1o0n A;
Agg=00n V\(AUBU{x});and ), ca Agg(v) =0.
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Suppose E_j and F are disjoint subsets of V and E_; U F is reachable in G.
Let xo € N be such that there is a lattice path connecting xo and F without passing
through any vertex on E_1. Let (g(0), ..., g(x)) be the LERW on G started from
xo conditioned to hit F before E_;.So¢q(0) =xpandg(x) € F.For0 < j < x, let
Ei=E_1U{q(0),...,q(j)}. Then E; and F are disjoint. Since E; U F is bigger
than E_j U F,soitis also reachable. Note that forany 0 < j < x, (¢(j), ..., q(x))
is a lattice path connecting ¢ (j) with F' without passing through E; ;. Let & be
as in Lemma 2.1 with A=F, B=FE;_1 and x = g(j). If either E_; or F is
finite, then either E; or F is finite. Let g; be the g in Lemma 2.1 with A = F,
B=Ej and x =¢q(j). Let F be the union of F' with the set of vertices of V' that
are adjacent to F. Then we have:

PROPOSITION 2.1.  Fix any vg € V. Then (gr(vo)) (if E_jorF is finite) and
(hi(vo)) are discrete martingales up to the first time xy hits F, or Ey disconnects
vo from F in G.

PROOF. The result for (gx) in a special case is Proposition 3.2 in [20].
The proof of that proposition applies to general cases. The proof for (hy) is
similar. [J

2.2. Finitely connected domains. In this paper, a domain is a nonempty con-
nected open subset of the Riemann sphere C = C U {oo}. Here we allow that the
domam contains 0o. For n € Zx, an n-connected domain is a domain D such that
C \ D is the disjoint union of n connected compact sets, each of which contains
more than one point. A finitely connected domain is an n-connected domain for
some n € Zx(. A 0-connected domain is just C. A 1-connected domain is confor-
mally equivalent to the unit disc.

We will use dist (resp. dist*) to denote the Euclidean (resp. spherical) distance;
use diam (resp. diam*) to denote the Euclidean (resp. spherical) diameter; and use
B(zo; r) [resp. B#(Zo; r)] to denote the ball centered at zo with radius r, in the
Euclidean (resp. spherical) metric. Let 9" D denote the boundary of D in @; and
letdaD =d*DNC.

Suppose D is an n-connected domain. Then 3 D has n connected components,
each of which is the boundary of a connected component of C \ D. If f maps
D conformally into C, then D' := f(D) is also an n-connected domain. And f
induces a one-to-one correspondence f from the set of components of 3 D to the
set of components of 3% D’ such that for any component A of 8*D and z € D,
z— Aiff f(z) > f (A). There exists some f that maps D conformally onto
a plane domain that is bounded by n mutually disjoint analytic Jordan curves.
We call such f a boundary smoothing map of D. Suppose f; and f> are two
boundary smoothing maps of D, and E; = f;(D), j =1,2. Then f; o ff] maps
E1 conformally onto E3, and f> o fl_1 induces a one-to-one correspondence J
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from the set of Jordan curves that bound E| to the set of Jordan curves that bound
E> such that for any Jordan curve o that bounds Ej and z € E1, z — o iff f o0
fl_1 (z) = J (o). Since o and J (o) are both analytic, from the Schwarz reflection
principle, f> o ffl can be extended conformally across o, and maps o onto J (o).

Now consider the set of all pairs ( f, z) such that f is a boundary smoothing map
of D, and z € f(D). Two pairs (f1, z1) and (f2, z2) are equivalent if the extension
of fo0 fl_1 maps z1 to z3. Let D be the set of all equivalent classes. There is a
unique conformal structure on D such that z > [( f,2)] maps f(D) conformally
onto D for any boundary smoothing map f. Then z — [(f, f(2))] is a conformal
map from D into D independent of the choice of f. So we may view D as a
subset of 5, and call D the conformal closure of D. It is clear that a conformal
map between two finitely connected domains extends uniquely to a conformal map
between their conformal closures.

We call 9D := D \ D the conformal boundary of D. Then 9D is a union of n
disjoint analytic Jordan curves, each of which is called a side of D. Each side o
corresponds to a component A of 3* D such that for z € D, z — o in Diffz — A.
Each point on o is called a prime end of D on A. This is equivalent to the prime
ends defined in [1] and [13]. In fact, the definition in [1] describes the property
of a sequence of points in D that converges to a point on 9D, and the definition
in [12] describes a neighborhood basis bounded by crosscuts of a point on aD.
A connected subset of a side that contains more than one point is called a side arc.

Ifzo € Canda prime end wq of D satisfies that for z € D, z — zo iff z - wop in
D, then we say the point zp and the prime end wq correspond to each other, and we
do not distinguish the point zg from the prime end wg. For example, if a boundary
component of D is a Jordan curve, then each point on this curve corresponds to
a prime end. If zg € dD and for some ¢ > 0, B(zg; ¢) \ D is a simple curve y
connecting zo with {|z — zo| = ¢}, then zp corresponds to a prime end of D. But
every other point on y corresponds to two prime ends of D.

If «:(a,b) — D is acurve in D, and for some zg € "D, a(t) > zpast — a,
then there is some prime end wqg of D such that a(f) — wg in D ast — a. Such
wy is called the prime end determined by « at one end. In general, not every prime
end of D can be determined by a curve in D in this way.

2.3. Positive harmonic functions. Suppose D is a finitely connected domain,
and zg € D. The Green function G (D, zp; -) in D with the pole at zg is the contin-
uous function defined on D \ {zo} which vanishes on aD,is positive and harmonic
in D\ {zo}, and G(D, zp; z) behaves like —lnlz — z0|/(2m) near zg if zg # o0;
behaves like In |z|/(27) near oo if zg =

Suppose wy is a prime end of D. There is a continuous function P defined
on D \ {wo} which vanishes on D \ {wo}, and is harmonic and positive in D. It
is called a generalized Poisson kernel in D with the pole at wg. Such P is not
unique. But any two generalized Poisson kernels in D with the pole at wq differ
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by a positive multiple constant. Suppose zo € d D, and d D is analytic near zo; then
zo corresponds to a prime end of D, and the Poisson kernel in D with the pole at
zo in the usual sense is well defined, and is an example of a generalized Poisson
kernel in D with the pole at zp.

Suppose [ is a side arc of D. The harmonic measure function H(D, I;-) is a
bounded continuous function defined on D taking away the end points of /, which
is harmonic in D, vanishes on 9D \7, and takes constant value 1 on / except the
end points. For any z € D, H(D, I; z) is equal to the probability that the plane
Brownian motion started from z first hits d D at [.

2.4. Hulls and Loewner chains. Suppose D is an n-connected domain, and o
is a side of D. Let A(o) be the connected component of C \ D that corresponds
to . A closed subset H is called a hull of D on o if D\ H is also an n-connected
domaln and A(c)UH isa component of C \ (D \ H). Then other components of
C \ (D \ H) are the components of C \ D other than A(o).

In this paper, we define a crosscut to be an open simple curve « in D, whose
two ends approach to two points on 9 D, in the Lebesgue metric, such that D \ «
has two components, one of which is simply connected. If U is a simply connected
component of D \ «, then U U is a hull in D. If n > 1, that is, D is not simply
connected, then U is determined by «, and let H (@) := U U « be the hull bounded
by «. If n =1, then the two components of D \ « are both simply connected, so
we need some other restrictions to determine H («). For example, if we say that
H (o) is a neighborhood of some prime end wq in D, then there is no ambiguity.

Suppose o is a side of D. A Loewner chain in D on o is a function L from
[0, T) for some T € (0, +00] into the set of hulls in D on ¢ such that L(0) = &
L(t) ; L(t)if 0<t <t <T, and for any fixed b € [0, T) and any compact
subset F' of D\ L(b), the extremal length (see [1]) of the family of curves in
D\ L(t + ¢) that separates F from L(t +¢)\ L(t) tends to 0 as € — 07, uniformly
w.r.t. t € [0, b]. Suppose L(t), 0 <t < T,is a Loewner chain in D on o. For each
t €[0,T), let d; be any metric on D/\L\(t). From the definition, the d;-diameter
of L(t +¢&)\ L(t) tends to 0 as ¢ — 0. Thus there is a unique prime end w(?)

of D\ L(¢) that lies on the closure of L(z + ¢) \ L(¢) in DTL\(t) for all € > 0.
We call w(t) the prime end determined by L at time ¢. Especially, w(0) is a prime
end on 0. We say L is a Loewner chain started from w(0). It is clear that for any
bel0,T),t— L(b+1),0<t<T —b,isaloewner chain in D \ L(b) started
from w(b).

Suppose L(t), 0 <t < T, is a Loewner chain in D. Suppose u is a continu-
ous (strictly) increasing function defined on [0, 7)) with u(0) = 0. Let u(T) :=
supu([0, T)). Then L'(t) := L(ufl(t)), 0 <t <u(T), is also a Loewner chain
in D. Such L’ is called a time-change of L through u. Moreover, the prime end
determined by L’ at time u(¢) is the same as the prime end determined by L at
time 7.
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One example of a Loewner chain is constructed by a simple curve. Suppose
y:[0,T) > Disa simple curve that satisfies ¥ (0) € 9D and y() e D for 0 <
t <T.Let L(t) =y((0,2]), 0 <t < T. Then L is a Loewner chain in D started
from y (0), and y (¢) corresponds to the prime end determined by L at time t. We
say that L is the Loewner chain generated by y.

3. Continuous LERW.

3.1. Chordal Loewner equation. Let H = {z € C:Imz > 0}. Then H is a
1-connected domain whose side is R := R U {oo}. We say H is a hull in H w.r.t.
oo if H isahull in H and H is bounded (i.e., bounded away from oo). A Loewner
chain L in H w.r.t. oo is a Loewner chain in H such that each L(¢) is a hull in H
w.r.t. co. For each hull H in H w.r.t. oo, there is a unique function ¢z that maps
H\ H conformally onto H such that for some ¢ > 0,

c 1
on@=2+5+0()
Z Z

as z — 00. Such c is called the capacity of H in H w.r.t. oo, denoted by hcap(H).
The empty set is a hull in H w.r.t. oo, and ¢z = id, so hcap(@) = 0.

PROPOSITION 3.1.  Suppose 2 is an open neighborhood of xo € R in H. Sup-
pose W maps Q2 conformally into H such that for some r > 0, if z — (xo —r, X0 +
r) in 2, then W(z) — R. So W extends conformally across (xo —r, xo + r) by the
Schwarz reflection principle. Then for any ¢ > 0, there is some § > 0 such that if
a hull H in H w.rt. oo is contained in {z € H: |z — xo| < 8}, then W(H) is also a
hull in H w.r.t. oo, and

|heap(W (H)) — W' (x0)* heap(H)| < | hcap(H)|.
PROOF. Thisis Lemma 2.8 in [6]. [

For T € (0, +oc], let C ([0, T)) denote the space of real-valued continuous func-
tions on [0, T). Suppose & € C([0, T')). We solve the chordal Loewner equation:

011 (2) = vo(z) =z,

2
@i () — &)’
forO<t < T.Foreacht €0, T),let K; be the set of z € H such that the solution
©s(2) blows up before or at time ¢. We say that ¢; and K;, 0 <t < T, are chordal
Loewner maps and hulls, respectively, driven by &.
For0 <t < T, K; is abounded closed subset of H, ¢; maps H \ K; conformally
onto H, and satisfies

2t 1
o@D =+ =+ 0<—2)
Z Z

as z — 00. So K; is a hull in H w.r.t. 0o, hcap(K;) =2t and ¢k, = ¢;.
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PROPOSITION 3.2. (i) Suppose ¢ and K;, 0 <t < T, are chordal Loewner
maps and hulls, respectively, driven by &. Then t — K;, 0 <t < T, is a Loewner
chain in H w.rt. oo started from £(0). And for each t € [0, T), hcap(K;) = 2t,
Yr = YK, and

EO)=)o(Kite \ K.

e>0

(1) Suppose L(t), 0 <t < T, is a Loewner chain in H w.rt. oco. Let
v(t) = hcap(L(t))/2, 0 <t < T. Then v is a continuous increasing function
with v(0) = 0. And K; := L(v='(t)), 0 <t < v(T), are chordal Loewner hulls
driven by some & € C ([0, v(T))).

PROOF. This is almost the same as Theorem 2.6 in [6]. [

Fixbel[0,T). Letpp = ¢; ogob_1 and Kp, ; = ¢p(K; \ Kp) for b <t < T.Then
it is easy to check that Ky, p4; and ¢p p4+, 0 <t < T — b, are chordal Loewner
hulls and maps driven by ¢ > £(b+1),0 <t <T —b. Thus forany s <t € [0, T),
s (K; \ Ky) is a hull in H w.r.t. oo, and its capacity in H w.r.t. co is 2(¢ — s).

3.2. Continuous LERW aiming at an interior point. We define an almost H
domain to be a finitely connected domain in H that is bounded by R and mutually
disjoint analytic Jordan curves in H. Let Q2 be an almost H domain, and p € Q2. If
K is a hull in H w.r.t. oo such that K C Q\ {p}, let Qg = px (2 \ K). Then Qg
is also an almost H domain, and ¢k (p) € Qk.

For a > 0, let C([0, a]) be the space of all real-valued continuous functions
defined on [0, a] with norm ||£ ||, := sup{|£(¢)|:0 <t < a}. For &£ € C([0, a]), let
K f and (pf, 0 <t < a, be chordal Loewner hulls and maps, respectively, driven by
£ K5 C Q\ {p}, we write @ for Q¢ Define

3.1) I @ =G@\K;, p;)og)™".

Since Jf = G(Qf, <,otE (p); -) is positive and harmonic in Qf \ {(,0,S (p)}, and van-
ishes on R, so it extends harmonically across R. Let

X = (@:0,/0)Jf (E(0) = 859, Jf (E0)/0,J} € (1)
We begin with a theorem. The proof is postponed to Section 5 in this paper.

THEOREM 3.1. Forany A € C([0,00)) and A € R, the equation

(3.2) E(t) = A(t) +A/Ot X5 ds

has a unique maximal solution £(t) = &£4(t), 0 <t < Ty, where T4 € (0, 00]. Here
“maximal” means that the solution cannot be extended. Moreover, we have:
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(1) Forany a € (0, 00), the set {A € C([0, 00)): T4 > a} is open w.r.t. the met-
ric || - la, and A &4 is (|| - lla, || - lla) continuous on {A € C([0,00)):T4 > a}.
(ii) There is no crosscut a in H such that Uy<, -7, Kf C H(x) Cc 2\ {p}.

Suppose D is a finitely connected domain, wq is a prime end of D, and z, €
D. There is f that maps D conformally onto an almost H domain €2, such that
f(wg) =0. Let p = f(z.), B(t) be a Brownian motion, and &£(¢t), 0 <t < T, be
the maximal solution to (3.2) with A(7) = ~/2B(r) and A = 2. Let {F:} be the
filtration generated by B(¢). From Theorem 3.1(i), T is an {¥;}-stopping time, and
(§(1)) is {F}-adapted. For 0 <t < T, let

t
(3.3) u(t) = [ 0,75 € ds.

Let S=u(T), and F(t) = f‘l(Klf,l(t)), 0 <t < S. In the next subsection, we
will prove the following theorem.

THEOREM 3.2.  For j=1,2, suppose f; maps D conformally onto some al-
most H domain Q2 such that f;j(wo) =0. For j =1,2, let pj = f;(z.), Bj(t) be
a Brownian motion, and §(t), 0 <t < T}, be the maximal solution to

£i(t) = 2B (1)
3.4

t . .
+ 2/0 (9x9y/3y)(G (L2 \ K, pji)o (wf’)_l)(éj (s)) ds;

and let uj(t), 0 <t < Tj, be defined by

t X .
u () =/O 8,(G(Q \ K. pi) o (o)1) (& ()2 ds.

Let Sj=u;(T) and F;(t) = fj_l(Kjil(t)), 0<t<Sj,j=1,2.Then (F1(1),0 <
J

t < 81) and (F2(1),0 <t < S3) have the same distribution.

Thus the distribution of (F(¢),0 <t < §) does not depend on the choice of f,
and is conformally invariant. We call (F(¢),0 <t < S) a continuous LERW in D
from wy to z,, and let it be denoted by LERW (D; wog — z.). From the property of
chordal SLE; (cf. [15]) and Girsanov’s theorem [11, 14], almost surely there is a
simple curve y(¢): [0, §) — D such that y(0) =wq, y()e D for0 <t < S, and
F@)=y(0,1]) for 0 <t < §, thatis, F is the Loewner chain generated by y. We
call such y an LERW(D; wg — z.) trace.

REMARK. If D is a 1-connected domain, wy is a prime end of D and z, € D,
then an LERW (D; wg — z.) has the same distribution as a radial SLE,(D; wg —
Ze) Up to a linear time-change.
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3.3. Conformal invariance.

PROOF OF THEOREM 3.2. For j=1,2, let v; = u; Uand L; i) = gf_l(t)

Then F;(r) = f (L ), 0=<tr<S;.Let W= fr0 f1 ' Then W maps Q1
conformally onto Qo, W) =0 and W(p1) = pa. Let Ly(t) = W(L(¢)), 0 <
t < S;. It suffices to show that (L (¢),0 <t < S;) has the same distribution as
(L2(2),0 <t < 83). Let B1(¢) be the random simple curve that generates L(¢),
that is, 1(0) =0, B1(t) € 21,0 <t < Sy, and L1(¢t) = B1((0,¢]),0<t < §;. Let
Bo(t) = W(B1(t)), 0 <t < S1. Then By is a simple curve, B (0) =0, By () €
Q2 CH,0<t < S81,and Ly(t) = B»((0,¢]), 0 <t < §1. Thus Ly is a Loewner
chain in H w.r.t. oo. Let vy (t) = hcap(Ly(1))/2,0 <t < S;. Let Ty = vy (S1) and
Uy = v,, , . Then from Proposition 3.2, Lo/ (uy (1)) = é ,0<t < Ty, for some
§y € C([O Ty)).
Let {f’,l} be the filtration generated by B (t). Let

Ri(1,x) = 0y(G(Q1 \ K;". p1: ) o () 71 ().
From Theorem 3.1(i), (£1(¢)) and R;(t,x) are ?',l—adapted, and 77 is an
?’tl—stopping time. Thus for 0 <t < 71, we have
Ox R1(2,81(1))
dei(t) =vV2dB(t) + 2 =——>~ 7
i : Ri(t.& (1))

and
wy (1) = Ri(t,&1(1)).
So there is another Brownian motion él (t) such thatfor 0 <t < Sy,

V2 < dx R1(v1(2), &1 (v1(1)))
(3.5 d& (i) = dBi(t)+2 dt
Ri(v1(7), &1 (v1(2))) Ri(v1(1), &1 (v1(1)))3
Note that W maps 21 \ L{(¢) conformally onto 2, \ Lo/(¢). Let Q(t) =
65 o (Q1\ L1(0)), (1) = 9,2 (@2 \ Ly (1)) and Wy = 9,2 ) 0 W o (g5 )7
Then both €2;(#) and €2/(¢) are almost H domains, and W; maps €2(z) con-
formally onto 2,/(¢), and maps R onto itself. For ¢ € [0, S1) and ¢ € [0, §1 —

3% 5/
t), define Li(t,¢&) = (pvl(,)(Kvl(HE) \ KU @) and Ly (t,e) = (pvi(t)( v;(H—e) \

K, ,(t)) Then hcap(L(¢, €)) = 2(vi(t + &) — v((¢)), hcap(Ly (¢, &) = 2(vy (t +
&) — vy (1)), and W;(L(t,e)) = Lo (t,e). From Proposition 3.2, we have
{E1(v1 ()} = MNe=o L1(2, &) and {& (v (2))} = Ne=o L2 (2, €). Thus & (v (1)) =
W;(é1(v1(2))). From Proposition 3.1, we have vé/ ()= W,’(Sl(vl(t)))zv/1 (7).

Differentiate the equality W; o (pfi o= (piii(t) o W w.rt. . We get

2wy (wvl(,)(z))v’l(t) 205, (1)

52’

0 Wi (051 (2)) +
(pvl(t) () — & (Ul(t)) Doy (1) © W(z) — & (vy (1))
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for any z € @1 \ L1(¢). Since (piim maps 21 \ L1(¢) conformally onto €21(z), so
for any w € 1(¢), we have

2W/E 1)) (1) 2W/(w)v) (1)
Wi(w) — Wy (E1(v1 (1) w — &1 (1)

Let w — &1(v1(?)) in ©1(¢); from Taylor expansion of W, at &1 (v1(¢)), we get

0 Wr(w) =

3 Wi (&1 (v1(1))) = =3W," (&1 (v1 (1)) vy (1)
= —3W/(E1(v1(1)))/R1(v1(), &1 (v1 (1)),

Since &y (vy (1)) = W, (€1 (v1(2))), so from (3.5) and It6’s formula [11, 14], we
have

d&y (v (1)) = Wi (E1(v1 (1)) dt + W/ (&1 (v1(2))) d&1(v1(2))
+ W/ (&1 (v1 (1)) d (&1 (v1(2))) /2
_ V2W/ (& (1(1)))
Ri(vi(1), §1(v1(1)))
W/ (E1(v1(1))) 3x R1 (1 (1), &1 (v1(1)))
Ri(vi (1), &1 (v1(1)))?
W/ (&1 (v1(1))) ;
Ri(v1 (1), §1(v1(1)))?

dB (1)

+2 dt

(3.6)
+ 0, Wi (61 (v1 (1)) dt +

_ V2W/ (& (v1(1))) 4
Ri(v1(1),&1(v1(2)))
(W,’(El(vl(t)))ale(vl(l),él(vl(t)))

+2 3
Ri(v1(1), §1(v1(2)))
W/ (&1 (v1(1))) )d
- .
Ri(vi(1), &1 (v1(1)))?

B (1)

Since goii () Maps Q1 \ L{(¢) conformally onto €2{(¢), so
-1
Ri(v1(1), x) = 8y(G(Q1 \ K3 (). p1i-) o (65 ) ) ()
= 0,G(Q1(1). 65 () (p1): ) (x).

Since W; maps Q(¢) conformally onto Q/(¢), and W, ((pfi(,)(pl)) = <P§§j(,)(l92),
SO

G(Q1(1). ¢!y ()i ) = G(Q (1) 97 (p2): ) © Wi,
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Thus
Ri(w1(), 1) = 0yG (R (1), 9,21 (p2): W) W, (x);
B Ry (01 (1), x) = 858, G (R (1), 9,7 (p2): Wi () (W] (x))?

+3yG(Q (1), 9,7 (p2): Wi (0) W/ (x).
Plugging these equalities into (3.6) and letting x = & (v1(¢)), we get

AW E @)
A (2 =200, iy

23 0y G (Qy (1), §0v2,(,)(172) 52’(U2/(l)))
9yG (L (1), %2,(,)(192) 52/(112/0)))3

Since
vh (1) = W/ (&1 (v1(1)))*v] (1)
a7 __ WEw)
Ry (v1(2), &1 (v1(1)))?

/ -2
= 0,G (/1) 9,2 ) (p2): Ex (1)) 2,
and G(Q (1), ¢, 2P ) =G (@2 Ky ity P23 )0 wiiﬁm, sofor0 <1< Ty,

d&x (1) = V2d By (1) +2(3:y/3,)(G(2 \ K pai)og)(Ex(0) dt

for another Brownian motion By (¢). Since &/ (0) = Wy (&1(0)) = W(0) =0, so for
0<t<Ty,

£x(t) = V2B (1)

t
+2/(; 358y /3,)(G( \ K7, p2i ) 0 9 ) (62 (5)) ds.

We claim that &/ (¢), 0 <t < Ty, is the maximal solution to (3.8). Suppose the
claim is not true. Then it may happen that the solution &,/ extends to [0, T>/]. Note
that W (00) is a prime end on R other than W (0) = 0. We may find a crosscut « in
H such that KTzi C H(a) C Q22 \ {p2}, and W(oc0) ¢ H(x). Then W~ L(@) is also
a crosscut in H, and H(W ! (a)) = WL (H(a)) € 21 \ {p1}. So W~ 1(K“’Ez/) C
H(W~(a)) for0 <t < Ty, which 1mphes that K&' ¢ H(W~1(a)) for0 <t < Tj.
This contradicts Theorem 3.1(ii). So the claim is justified.

Since &y/(t), 0 <t < Ty [resp. &(t), 0 <t < T3], is the maximal solution to
(3.8) [resp. equation (3.2) when j = 2], and (By/(¢)) has the same distribution as
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(B2(1)), so (&»(t),0 <t < Ty) has the same distribution as (£2(¢),0 <t < T3).
From (3.7), uy = v271, and that u,/(0) =0, we see that for 0 <t < Ty,

t , , 2
uy (1) = fo 3,(G(\ K, pr: ) 00 ) (Ex(s)) ds.

Thus ((&x/(t), u(2)),0 <t < Ty) has the same distribution as ((§2(¢), u2(t)),0 <

t <T»). Since Ly (1) = K2, for 0 <1 < S = uy(Ty), and La(1) = K=,
Uy (t) Uy ()

for 0 <t < 8 = uy(1>), so (Ly(t),0 <t < S1) has the same distribution as
(L2(1),0<t<$). U

3.4. Continuous LERW with other kinds of targets. Suppose D is a finitely
connected domain, wo is a prime end of D, and I, is a side arc of D that is bounded
away from wg. Then there is f that maps D conformally onto an almost H domain
Q such that f(wg) =0.If ahull K in H w.r.t. co is bounded away from f(/,), and
K C Q,then f([,) is a side arc of 2\ K. We have the harmonic measure function
HQ\K, f(l); ).

Now we change the definition of J,g by replacing G (€2 \ K,g, p;-) by H(Q2\
K&, f(I,);+) in (3.1), and still let X; = (9,0,/0,)J{ (£(t)). Let everything else
in Section 3.2 be unchanged. Then Theorem 3.1 still holds if the condition on
« is replaced by that o is a crosscut in H such that H(w) C Q and H(x)
is bounded away from f(l,). Let u(t) be defined by (3.3). Then (F(¢) =
FTUKE ()0 <1 < §=u(T)) is called a continuous LERW in D from wy
to 1., and is denoted by LERW(D; wg — I.). It is almost surely generated by
a random simple curve, which is called an LERW(D; wy — [,) trace. The vari-
ation of Theorem 3.2 for LERW (D; wg — 1.) still holds. Thus the distribution
of LERW(D; wo — I,) does not depend on the choice of f, and is conformally
invariant.

Suppose D is a finitely connected domain, wo and w, are two different prime
ends of D. There is f that maps D conformally onto an almost H domain 2 such
that f(wg) = 0. Then p := f(w,) is a prime end of €2 other than 0. If a hull K in
H w.r.t. oo is bounded away from p, and K C €2, then p is a prime end of Q2 \ K.

A normalization function is a function A that maps a neighborhood U of p in ©
conformally onto a neighborhood V of 0 in H such that 4(p) = 0 and h(U ﬂgD) C
R. There is a unique generalized Poisson kernel P(z) in €2\ K with the pole at
p such that the principal part of P o h~!(z) at 0 is Im _71 Let P(Q\ K, p,h;z)
denote this function.

Now fix a normalizing function k. Change the definition of J,E by re-
placing G(Q \ K5, p;-) by P(Q\ K?, p,h;-) in (3.1), and still let X5 =
(0x0y/ By)Jts (§(1)). Let everything else in Section 3.2 be unchanged. Then The-
orem 3.1 still holds if the condition on « is replaced by that o is a cross-
cut in H such that H(x) C 2, and H(«) is bounded away from p = f(w,).



480 D.ZHAN

Let u(¢) be defined by (3.3). Then (F(t) = f‘l(Kf_l(t)),O <t<S=ull))
is called a continuous LERW in D from wqg to w,, normalized by h, and
is denoted by LERW(D; wg — w,). It is almost surely generated by a ran-
dom simple curve, which is called an LERW(D; wg — w,) trace normalized
by h. The variation of Theorem 3.2 for LERW(D; wy — w,) holds with sim-
ple modification: (Fi(f),0 <t < S1) and (F>(t/a*),0 <t < a*S>) have the
same distribution, where a = (h3 o hl_l)’ (0) and hj, j = 1,2, are normaliza-
tion functions. Thus the distribution of LERW (D; wg — w,) up to a linear time-
change does not depend on the choices of f and %, and is conformally invari-
ant.

REMARK. (i) If D is a 1-connected domain, and wg # w, are two prime
ends of D, then an LERW(D; wg — w,) has the same distribution as a chordal
SLE;(D; wg — w,) up to a linear time-change.

@ii) If D is a 1-connected domain, wy is a prime end of D, and I, is a side arc
of D that is bounded away from wg, then an LERW(D; wg — I,) has the same
distribution as a strip or dipolar SLE>(D; wg — [I.) (cf. [2, 21]) up to a linear
time-change.

(iii) If D is a 2-connected domain, wy is a prime end of D, and I, is a side of
D that does not contain wg, then an LERW (D; wg — I.) has the same distribution
as an annulus SLE,(D; wg — 1) (cf. [20]) up to a deterministic time-change.

4. Observables generated by martingales.

4.1. Local martingales for continuous LERW. Suppose D is a finitely con-
nected domain, z, € D, and wq is a prime end of D. Let y(¢t), 0 <t < S, be
an LERW(D; wo — z.) trace. So y is a simple curve in D with ¥ (0) = wo and
y()eDforO<t < S.For0 <t <S,let P, be the generalized Poisson kernel in
D\ y((0, t]) with the pole at y(¢), normalized by P;(z.) = 1.

THEOREM 4.1. For any fixed z € D, (P:(2)) is a local martingale.

Let 2 be an almost H domain, and p € Q. If K is a hull in H w.r.t. co such
that K C Q\ {p}, let P(K, x,-) be the generalized Poisson kernel in Qg with
the pole at x, normalized by P (K, x, ox (p)) = 1. Suppose & € C([0, T)) satisfies

Uo<r<1 Ki C 2\ {p}. We write PE(z, -, -) for P(K}, -, -), 1 € [0, T). It is standard
to check that P¢ is C1-2" differentiable, where “4” means harmonic.

LEMMA 4.1. Foranyt€[0,T)andz € 2\ Kf, we have V;(z) =0, where
Vi(2) = 01 PE (1, (1), ¢f (2)) + 20, PE(1. (1), ¢f (2)) X

+03PE(1LED), ¢ () + 2Re(as,zP$ (1.6(). 97 () 57)
¢; (2) — £(1)
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Here 01 and 0y are partial derivatives w.r.t. the first two (real) variables, and 03 ; =
(03,x —103,y)/2 is the partial derivative w.r.t. the third (complex) variable.

PROOF. Fort €[0,T) and z € 02 \ R, since (pf(z) € BQ,g \ R, so P5(¢, x,

% (2)) =0 for any x € R, which implies that 8, P¥ = 32P% =0 at (¢, x, ¢} (2)),
and

1 PE 1.0 )+ 2Re(B0PEx g ()  ———) =0.

@7 (z) — &)
Thus V, vanishes on 92 \ R for ¢ € [0, T). Let W, =V, o (¢¢)~!. Then ‘W, van-
ishes on 8&2? \ R for t € [0, T'). Note that for r € [0, T') and w € Qf

W, (w) = 31 PE (1, £(t), w) + 20, P (£, £(t), w) X§
2
2 pé & L=
+ 9y P (t,é(t),w)+2Re<83,zP (t, (1), w) w—s(z)>'

Since P¢(r, (1), -) vanishes on R\ {£(1)} and — g(z) isreal on R\ {£(?)}, so W,
vanishes on R \ {S(t)} As w — oo in H, 091, 82, 82 and 03 ; of P§ at (1, E(), w)
all tend to 0, and tends to O as well. Thus ‘W, vanishes on R \{E@®)}.

f(f)
Suppose for some ¢(¢, x) € R, Im C(’ x) is the principal part of P5(z, x, w) at x.

So there is some analytic function F (t x -) defined in some neighborhood of x
such that in that neighborhood, P5(t,x,w) = Im(F(t, x, w) + %). Then we
have

ale(t,é(th)=Im<31F(f’5(’>’w)+Lﬁ?)
92c(t,§(1))
—&(1)
(w—£E@)?)’
d2c(t, £(1))
20501, 60) Zc(f’é(f)))
w—§0)?2 " (w—§0)

R PE(,E(), w) = Im<82F(t, E(1), w) +

and

2 QP EM W) 2e(t E))
& R _
2Re<83’zp € 5, w) w—é(f)) Im( w—£() (w—é(t))3)'

Thus ‘W; equals the imaginary part of
dre(r, (1)

NF L E@0,w) + = 2
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drc(t,§(1)) . c(t, E(t))z)th
w —&(7) (w—§())
Ic(t, &(1)) n 202¢(1,§(1)) n 2¢(t, (1))
w—&(1) (w—E®)>  (w—§&@1)3
2F'(1,E@M), w) 2, (1))
w— (1) (w —§(1))3
= 0 F (£, £(t), w) + 200 F (1, £(t), w) X§
2 A1) Ay (1)
FREEEO W T T w02
for some functions A1(¢) and A, (t), where A (t) = 2c¢(t, g(t))Xf +207c(t, E(2)).
Since Jf = G(Qé, (p,é (p); ), so for x € R, 9y Jf (x) equals the value at (pf (p)
of the (usual) Poisson kernel in Q,E with the pole at x. Note that P (z, x, -) equals
some constant times the Poisson kernel in Qf with the pole at x, of which the

—1/T S0 we have
w—Xx

+ 2(82F<z, E(), w) +

+03F (1, £(1), w) +

principal part at x is Im

3yJ5 (x)/(=1/m) = PE(1, x, g5 (p)) Je(t, x) = 1/e(t, x).

Thus c(z, x) 9y J,S (x) = —1/m for any x € R, which implies that

0= c(t,£(1)) B2 yJF (E(1)) + dac(t, £y JF (E(1)) = Ax(1) By I} (E(1))/2.

So Az(t) =0, and W, equals the imaginary part of some analytic function plus

wA_lét()[) near £(¢). Since 'W; is harmonic in Q,s, and vanishes at every prime

end of Qf other than £(r), so W, = C(¢) P4(t, &(t),-) for some C(t) € R. From
P5(t,x, 05 (p)) =1 forany t € [0, T) and x € R, we get W, (¢’ (p)) = 0. So for
t € [0,T), we have C(¢) = 0, which implies that ‘W, vanishes on Qf, and so V;
vanishes on 2\ K f . O

Suppose f maps D conformally onto an almost H domain €2 such that f(wg) =
0. Let p = f(ze). Let v(¢) = hcap(f(y((0,¢])))/2, 0 <t < §. Let T = v(S),
and u be the reversal of v. Then f(y((0,u(?)])) = Kf, 0<t<T, where £ €
C ([0, T)) solves equation (3.2) with A =2 and A(t) = ﬁB(t) for some Brown-
ian motion B(¢). Since gof o f maps D\ f(y((0,u(?)])) conformally onto Qf,
(pf o f(y(u(t))) = &(t) and (ptg o f(ze) = (pf (p), so from the conformal invari-
ance, Pyo f 1o ((pf )~ lis the generalized Poisson kernel in Qf with the pole at
&(t), whose value at (pf (p) is 1, that is,

(4.1) Punyo f o (0f) ™ = PE(t E(), ).
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PROOF OF THEOREM 4.1. Let Q,(z) = P5(1, (1), wf(z)) for z € 2\ Kf.
From It6’s formula, (Q;(z)) is a semimartingale, and the drift term equals V;(z),
which vanishes on Q \ K f by Lemma 4.1. Thus (Q((z)) is a local martingale for
any fixed z € Q. From (4.1), P;(z) = Quv()(f(z)) for z € D. Since f (D) =2, and
a time-change preserves a local martingale, so (P;(z)) is a local martingale for any
fixed z € D.

Second, we consider an LERW(D; wg — 1,) trace: y(¢), 0 <t < S, where wyg
is a prime end of D, and [, is a side arc of D. Let P, be the generalized Poisson
kernel in D \ y ((0, ¢]) with the pole at y(¢), normalized by f]e onPi(z)ds(z) =1.
Here the equality means that if g maps a neighborhood U of I, in D conformally
into C such that g(/,) is an analytic arc, then fg(le) on(P; o g‘l)(z) ds(z) =1,
where n is the unit normal vector pointing inward, and ds is the length of the
curve. In fact, the value of the integral does not depend on the choice of g.

Suppose f maps D conformally onto an almost H domain €2 such that f(wg) =
0. Let J = f(l,). If K,S C 2, and is bounded away from J, let PE(t,x, )
be the generalized Poisson kernel in Qf, with the pole at x, normalized by
ftpf(J) 9nP% (1, x,7)ds(z) = 1. Then Lemma 4.1 holds in this setting, and the proof
is similar. Formula (4.1) still holds, so we have Theorem 4.1.

Third, we consider an LERW (D; wo — w,) trace: y(¢), 0 <t < S, where wg #
w, are prime ends of D. Fix g that maps a neighborhood U of w, in D conformally
onto a neighborhood V of 0 in H such that g(w,)=0and g(U ﬂf)\D) CR. Let P;
be the generalized Poisson kernel in D \ y ((0, ¢]) with the pole at y (¢), normalized
by dy(P,og~1)(0) = 1.

Suppose f maps D conformally onto an almost H domain €2 such that f(wg) =
0. Let p= f(w,). If K,‘§ C Q, and is bounded away from p, let P%(¢, x, -) be the
generalized Poisson kernel in Qf , with the pole at x, normalized by 9, (P&(t,x,)o
fo g‘l)(O) = 1. Then Lemma 4.1 holds in this setting, and the proof is similar.
Formula (4.1) still holds, so we have Theorem 4.1. [

4.2. Discrete approximations. Let D be a finitely connected domain. Suppose
0 € 9D, and there is some §p > 0 such that the half open line segment [§p, 0) is
contained in D. As z — 0 along [§p, 0), z tends to a prime end of D. We use 04
to denote this prime end.

For § > 0, let §Z> = {(j + ik)d : j, k € Z}  C. We also view 8Z? as a graph
whose vertices are (j +ik)d, j, k € Z, and two vertices are adjacent iff the distance
between them is §. We define a graph D? that approximates D in 872 as follows.
The vertex set V(ES) is the union of interior vertex set V1(l33) and boundary
vertex set Va(D‘S), where V1(D5) = 872N D, and Va(b‘s) is the set of ordered
pairs (z1, z2) such that z; € Vl(b‘s), 72 € 3D, and there is z3 € §Z that is adja-
cent to zj in 872, such that [z1,z2) C [z1,23) N D. Two vertices wy and w» in
V(E‘S) are adjacent iff either wi, wy € VI(B‘S), wi and w, are adjacent in 872,
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and [wy, w2] C D;orfor j=1or2,w; e VI(DS) and wi—; = (wj, z3) € Va(b‘s)
for some z3 € dD.

Every interior vertex of D? has exactly four adjacent vertices, and every bound-
ary vertex w = (71, z2) has exactly one adjacent vertex, which is the interior ver-
tex z1. So D3 is locally finite. If (z1, z2) is a boundary vertex, then it determlnes
a boundary point, which is z», and a prime end of D, which is the limit in D as
Z — z2 along [z1, z2). If there is no ambiguity, we do not distinguish a boundary
vertex from the boundary point or prime end it determines. Suppose § € (0, 3p].
Then § is an interior vertex of D%, and (6, 0) is a boundary vertex of D?. A ran-
dom walk on D? started from an interior vertex wo up to the first time it leaves
D agrees with a random walk on 872 started from wq up to the first time it uses
an edge that intersects 9 D. Let D® be the connected component of D? that con-
tains 8. Let V;(D?) := V(D?) N V;(D%) and V3(D?) := V(D?®) N V,3(D?) be the
set of interior and boundary vertices, respectively, of D°.

Fix z, € D\ {o0}. Let wg be the vertex in 8Z? that is closest to z. If such vertex
is not unique, we choose the one that maximizes Re z + 7 Im z to break the tie. Sup-
pose & € (0, §p] is small enough. Then there is a lattice path on D? that connects
8 with w®, which does not pass through any boundary vertex. So w? is an interior
vertex of D%. Let F = { wg} and E_; = Vy(D?%). From the recurrence of the ran-
dom walks on Z2, we know that E U F is reachable in D°. Let (gs0), ..., q5(xs))
be the LERW on D? started from 8 conditioned to hit F before E_;. So qs(0) =4
and gs(xs) = u)g Let gs(—1) = 0. Extend gs to [—1, xs] such that g5 is linear on
[k — 1, k] for each k € Zo, 51. Then g5 is a simple curve in D U {0} that connects
0 and w?.

Since F contains only one point, we may define g as in Proposition 2.1. Then
for any fixed vertex vy on DY, (gx(vo)) is a martingale up to the time g5 (k) is next
to wﬁ or Ey := E_1U{gs(0), ..., gs(k)} disconnects vy from z.. Note that g; van-
ishes on Ej \ {gs(k)}, is discrete harmonic at every interior vertex of D? except
qs0),...,qs(k), and gx(w®) = 1. For 0 <k < xs — 1, let Dy = D \ ¢s([—1, k]).
Then gs(k) corresponds to a prime end of D;. When § is small, the function g
approximates the generalized Poisson kernel Py in Dy with the pole at gs(k), nor-
malized by Py (z.) = 1. Note the resemblance of the discrete martingales preserved
by (discrete) LERW and the local martingales preserved by continuous LERW.
Suppose yp(t), 0 <t < Sp, i1s an LERW(D; 04 — z,) trace. In the last several sec-
tions, we will prove the following theorem. Note that we do not require that the
boundary of D is good.

THEOREM 4.2. (i) Suppose U is a neighborhood of 0 in D. Then for any
& > 0, there is 8o > 0 such that if § < &g, then there are a coupling of qs and vy,
and a continuous increasing function u that maps (—1, xs) onto (0, So) such that

Plsup{lgs (i~ (1)) — yo0)|: Ty (yo) <7 < So} <] > 1 &,
where Ty (yo) is the first time that yg leaves U.



SCALING LIMITS OF PLANAR LERW 485

(ii) If the prime end O is degenerate (see [13]), then (1) holds with “Ty (yp) <t”
replaced by “0 < t.”

Now suppose w, € dD \ {0} satisfies w, € 8.7% for some 8, > 0, and 3D is
flat near w,, which means that there is r > 0 such that DN {z € C: |z — w,| <
r}=(w,+al)N{zeC:|z — w,| <r} for some a € {£1, +i}. For § > 0, let
w‘g =w, +iad.

Let M be the set of § > 0 such that w, € §Z2. If § € M is small enough, then
(wﬁ, we) is a boundary vertex of D?, which determines the boundary point and
prime end w,, and there is a lattice path on D? that connects § with w, with-
out passing through any other boundary vertex. Here we do not distinguish w,
from the boundary vertex (wﬁ, w,). Let F = {w,} and E_; = V3(D?) \ F. Then
E U F = Vy(D?) is reachable in D®. Let (g5(0), ..., gs(xs)) be the LERW on D®
started from & conditioned to hit F before E_1. So g5(0) = § and gs(xs) = w,. Let
qs(—1) = 0. Extend g5 to be defined on [—1, xs] such that g5 is linear on [k — 1, k]
for each k € Zjg, 1. Then g5 is a simple curve in D U {0, w,} that connects 0 and
We.

Let Ay be as in Proposition 2.1. Then for any fixed vertex vy on D%, (hi(vo))
is a martingale up to the time when g5 (k) = wf or Ex =E_1U{gs5(0),...,q9s5k)}
disconnects vg from w,. Let Dy = D \ gs([—1, k]). Then gs(k) is a prime end
of Dy. Note that Ay vanishes on gs(—1),...,¢gs(k — 1) and all boundary vertices
of D?, is discrete harmonic at all interior vertices of D’ except gs(0), ..., gs(k),
and hk(w‘g) = 1. So when § is small, § - hx is close to the generalized Poisson
kernel Py in Dj with the pole at gs(k) normalized by op Pr(w.) = 1. Suppose
(), 0 <t < S,is an LERW(D; 0+ — w,) trace. Then Theorem 4.2 still holds
for g5 and yy defined here if we replace “§ < §p” by “§ € M and § < §p.”

Now suppose [, is a side arc of D that is bounded away from 0. Let / 2 be the
set of boundary vertices of D® which determine prime ends that lie on . If 8 is
small enough, 72 is nonempty, and there is a lattice path on D? that connects § with
I e‘s without passing through any boundary vertex not in / 2 Thenwelet F =1 e‘s and
E_i = Vy(D% \ F. Let (g5(0), ..., g5(xs)) be the LERW on D? started from &
conditioned to hit F before E_;. So gs(0) = § and gs(xs) € L.

Let hy be as in Proposition 2.1. Then for any fixed vertex vg on D%, (hy(vg)) is
a martingale up to the time g;(k) is close to I, or Ey := E_1 U {g5(0), ..., gs(k)}
disconnects vg from I,. Note that sy vanishes on gs(—1),...,¢gs(k — 1) and all
boundary vertices of D?, hy is discrete harmonic at every interior vertex of D?
except ¢5(0), ..., gs(k), and Y _ ;s Ahr(v) = 1. So when § is small, the function
hy seems to be close to the generzﬁized Poisson kernel Py in Dy with the pole at
gs(k) normalized by flg onPr(z)ds(z) = 1.

If I, is a whole side of D, then Theorem 4.2 still holds for g5 and y defined
here. If I, is not a whole side, for the purpose of convergence, we may need
some additional boundary conditions. Suppose the two ends of /, correspond to

w}, w? € D, near which 3 D is flat, and w!, w? € §,Z? for some 8§, > 0. Let M
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be the set of § > 0 such that w;, wf € 87Z7. Then Theorem 4.2 still holds for gs
and yg defined here if we replace “§ < 6o by “§ € M and § < §p.”

5. Existence and uniqueness. In this section we will prove Theorem 3.1. The
proof is somehow similar to that of the existence and uniqueness of the solution of
an ordinary differential equation.

5.1. Convergence of domains.

DEFINITION 5.1. Suppose D, is a sequence of domains and D is a domain.

We say that (D,) converges to D, denoted by D, Carg D, if for every z € D,
dist*(z, "D, — dist#(z , 9" D). This is equivalent to the followings:

(i) every compact subset of D is contained in all but finitely many D,,’s; and
(i1) for every point zg € "D, dist#(z(), 0*D,) — 0 as n — oo.

A sequence of domains may converge to two different domains. For example, let

D, =C\ ((—oo, n]). Then D, Cira)l H, and D, Cira)‘ —H as well. But two different

limit domains of the same domain sequence must be disjoint from each other, be-
cause if they have nonempty intersection, then one contains some boundary point
of the other, which implies a contradiction.

If only condition (i) in the definition is satisfied, then for any z € D, dist#(z,
Cara Cara Cara

0*D) < liminfdist*(z, 8*D,,). Thus D, " D — D.If D, — D, E, — E,
and zo € DN E. Let F,, (resp. F) be the connected component of D, N E,, (resp.
D N E) that contains zg. Then for any z € F, dist#(z, " F,) = dist#(z, a*D,) A
dist*(z, 3*E,) for each n, and dist*(z, 8% F) = dist*(z, 3* D) A dist*(z, 3¥E),
which implies Fj, % F. Thus if D, C'—m; D, E, Cira; E, D, C E, for each n,
and D N E # &, then we have D C E.

ASuppose D, Cig D, and for each n, f,, is a C-valued function on Dy, and f is
a C-valued function on D. We say that f,, converges to f locally uniformly in D,

or fy L f in D, if for each compact subset F' of D, f, converges to f in the
spherical metric uniformly on F. If every f;, is analytic (resp. harmonic), then f
is also analytic (resp. harmonic).

LEMMA 5.1. Suppose D, Cara D, f, maps D, conformally onto some do-
main E, for each n, and f, LY f in D. Then either f is constant on D, or f
maps D conformally onto some domain E. And in the latter case, E,, Cera E and

—1 Lu 1 -

f, — fTinE.

This lemma is similar to Theorem 1.8, the Carathéodory kernel theorem, in
[13], and the proof is also similar. When applying this lemma, we will usually first
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exclude the possibility that f is constant, and then obtain the convergence of the
image domains and the inverse functions.

5.2. Topology on the space of hulls. 1f H is a nonempty hull in H w.r.t. oo,
then H NR is nonempty. Let ay = inf(H NR) and by = sup(H NR). Let

>u =(C\(HU{Z:ZGH}U[6!H,Z)H]).

By the reflection principle, ¢y extends to X, and maps Xy conformally onto
C\[cH,dy] for some cy < dy € R. Moreover, ¢ is increasing on (—oo, ay) and
(byg, 4+00), and maps them onto (—oo, cy) and (dy, +00), respectively. So (p,}l
extends conformally to C\ [cy, dy]. And [cy, dy] is the smallest in the sense that
if (p;II extends conformally to C \ I for some closed interval 7, then [cy, dy] C 1.
If H= o, we do not define ay, by, cy, dy, but still use the notation [ag, bx]
and [cg, dy] to denote empty sets. Then X5 = C, so it is true that ¢z maps X
conformally onto C\ [¢g, dg].

If y is a crosscut in H, we define H(y) to be y unions the bounded component
of H\ y. Then H(y) is a hull in H w.r.t. co. We call it the hull bounded by y. If
A C H(y), then we say y encloses A. If A C H(y) and ANy = @, then we say
y strictly encloses A. For simplicity, we write x,, instead of xy(,) when x is one
of the following symbols: a, b, ¢,d, X, ¢.

Since a(H \H(y)) = (R\ (ay,by)) Uy is a simple curve, so ¢, extends to a
homeomorphism of H \ H(y), and maps y onto [c,,d,]. So ¢y (y) has a continu-
ous extension to HHUR, and maps (¢, , d),) onto y. From the results about Poisson
kernel, we have

dy —1 Ime;'(x)
w;l(z)—z:/ Y dx,
¢y T—X T

for any z € ¥,,. From the behavior of ¢, near co, we have ffiy Img,, ") /mdx =

hcap(H (y)). If H is a general nonempty hull in H w.r.t. co, then <p;11 may not
have continuous extension to [cy, dy]. We may use a sequence of hulls bounded
by crosscuts to approximate H. Then we conclude that there is a positive measure
wg supported by [cy,dy] with total mass |ugy| = hcap(H) such that for any
7€X H,

1 dn —1
5.1) ot @—z= [ dun),
cy -
EXAMPLE. Suppose xg € Rand rg > 0. Leta ={z € H:|z — xo| =ro}. Then
o is a crosscut in H, H (a) = {z e H:|z — xo| < ro} and [ay, be] = [x0 — 10, X0 +
rol. It is clear that ¢, (z) =z + == . Thus hcap(H () = rO and [cy, dy] = [x0 —
2rg, xo + 2ro].
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LEMMA 5.2. If H is a nonempty hull in H w.rt. oo, then go;ll (x) > x for
any x € (—00,cy); (p;ll(x) < x for any x € (dg,+00); ¢ (x) < x for any x €
(—00,ag); e (x) > x for any x € (bg, +00). So if H is any hull in H w.r.t. oo,
then lag, by ClcH,dg].

PROOF. This follows from (5.1) and that ¢ g maps (—oo, ag) and (bg, +00)
onto (—oo, cy) and (dy, +00), respectively. [

If Hy C Hj are two hulls in H w.r.t. oo, we call H; a sub-hull of H,. Then
Hy/H\ :=¢pu,(Hy \ Hy) is also a hull in H w.r.t. co. We call H,/H; a quotient-
hull of H,. Itis clear that ¢, = ¢p,/H, © ¢g,. Thus hcap(H,) = hcap(H,/ Hy) +
hcap(H1), and so hcap(Hy), hcap(Hz/H1) < hcap(H>).

LEMMA 5.3. If H C Hy are two hulls in H w.rt. oo, then [ch,,dn,] C
[CH27 ng] and [CHz/Hl’ ng/Hl] C [CHga de]

PrROOF. If Hy = & or Hy = H,, then Hy/H| = H, or Hy/H| = &, so it
is trivial. Now suppose @ & H; & Hy. Then Hy/H) # @. Since go,_,;/Hl (2) =
@H, © ‘/’1921 (z) for z € H, (p;121 maps C\ [ch,,dn,] onto X p,, and ¢y, extends con-
formally to Xy, D Xp,, 80 (p;lzl JH, extends conformally to C\ [cp,, dp,]. From the
minimum property of [cy,/n,, dH,/H, 1, we have [cp, /1y, dHy 0] C lcn,, dm, ).

If x € (—o0,ap,), then ¢p,(x) € (—00,cH,) C (=00, CHy/H,)-

Since ¢;121/H1 (x) > x on (=00, CH,/H,)» SO Qg (X) = (p;lzl/Hl o@u,(X) > @H,(x)
on (—09, ag,). Thus

CH, = SUp@H, ((_Ooa aHl)) > sup OH, ((—OO, aHz))
> Sup @, ((—00, am,)) = CH,.

Similarly, we have dy, <dp,. Thus [cy,,dn,] C [ch,, dn,]. U

COROLLARY 5.1. If Hy C Hy C Hy are hulls in H wrt oo,
then hcap(H,/Hy) < hcap(H3) and [cp,/H,, Ay 1) C [cHy, dy). We call Hy [ Hy
a sub-quotient-hull of H3.

Let H be a nonempty hull in H w.r.t. co. Let #(H) denote the set of all sub-
hulls of H. Let Fsq(H) denote the set of all sub-quotient-hulls of H. If « is a
crosscut in H, we write #(«) for #(H («)), and Hsq(a) for Hsq(H (ar)). Choose
d>0.Leta={ze€C:|z—(cyg+dn)/2| =|dy —cn|/2+d}. Then « is a Jordan
curve that encloses [cy, dy], and d is the distance between « and [cy, dy]. Sup-
pose K € #Hyq(H). Then [ck,dk] C [cn,dy]. If z lies on or outside a, from (5.1),

lox' (2) — z| < |uk|/d = heap(K)/d < hcap(H)/d.
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If z € C\ [ck,dk] lies inside «, then gogl(z) lies inside (plzl(oe). Choose w € «;
then

log' (@) —zl < |z —wl + lw — o' (W] + |k (W) — o' ()]
< diam(a) + heap(H)/d + diam(px ' (@)
<2|dy —cpy| +4d 4+ 3hcap(H)/d.

Let d = /hcap(H) and My = 2|dy — cy| + 7+/hcap(H). Then for any z € C \
[ck,dk], Iwgl(z) —z| < Mpg. Since (pgl maps C\ [ck, dg] onto X, so for any
2 € 3k, lpk (2) — 2l < My. Since C\ [ck,dk] D C\ [en,dnl, so {px' (2) —
7: K € #Hsq(H)} is uniformly bounded in C\ [cy, dy] by My, and so is a normal
family.

Let #€ denote the set of all hulls in H w.r.t. co. Choose a sequence of compact
subsets (F}) of H such that F,, C int F,,1| for each n € N, and |, F, = H. We
may define a distant function dg on # such that

1
doe(y. 1) = 3 0 (14 sup (0! @ = ol @)

n=1 zeFy

H . H .
We use —> to denote the convergence w.r.t. dg. It is clear that H, — H iff

90;1,,1 L (p,_{l in H. So the topology does not depend on the choice of (F},).

From Lemma 5.1, if H, 2, H, then H\ H, Carg H\ H and ¢p, L @H In

Cara

H\ H. However, H\ H, — H \ H does not imply H, % H. For example, let

Cara

H, ={zeH:|z—2n| <n}forn e N. Then H\ H, — H=H\ @, but ¢, (2) =

Cara

z+n%/(z—2n) A 7 =9z(z). And H, *, H does not imply Xy, —> X . For

example, let H, = {z e H:|Rez| <1,Imz < 1/n} forn € N. Then H, A &, but
Cara

ZHn —>(C\[—1, 1]#«::2@
Suppose H, — H., K, ~> K and K,, C H, for each n. Then H\ H, = H\

Cara

H,H\ K, — H\ K and H\ H, C H\ K,, for each . Since (H\ H) N (H\ K) =
H\(HUK)#9,soH\ HCH\K.Thus K C H.Let L, = H,/K,, for each n
and L =K /H.Then ¢; ' = ¢k, o ¢! and o' = ok 0 ¢};'. Since ¢}, L ot
in H, and ¢, = g in H\ K DH\ H = o5 (H), s0 ¢;' = ¢} in H. Thus

Lo 25 L, thatis, Hy /K, 25 H/K.

LEMMA 5.4 (Compactness). H(H) and FHsq(H) are compact. Moreover, we
have:
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(1) Suppose (K,) is a sequence in H(H), then it has a subsequence (L) that
converges to some K € H(H) w.r.t. dg, and (pL_nl 1—u> (plzl inC\ [cu.dul, 21, \

c Lu, .
lan, br] — Tk \ lay, by), and g1, —> ¢k in Sk \ [an, by].

(ii) Suppose (K,) is a sequence in H,(H); then it has a subsequence (L)

that converges to some K € Hs,(H) w.r.t. dg, and (pznl 1—u> gp,_(l inC\ [cy,dy],

C lu. .
1, \lcn. du]l == Sx \ [cu.dy), and 1, —> @k in Sk \ [cx. dy).

PROOF. (i) Since {<p,_<n1 (z) — z : n € N} is uniformly bounded in C \ [cy, dy],

so (K,) has a subsequence (L) such that goL_nl (z) — z converges to some function
f locally uniformly in C\ [cy,dy]. Then | f(z)| < M for any z € C\ [cy, dy].
Let ¢(z) = f(2) + 2 for z € C\ [, dy]. Then ¢! =% g in C\ [epr, diy].
There are z1,22 € C\ [cy,dy] with |71 — z2| > 2M. Then |g(z1) — g(z2)| >
lz1 — z2| — |g(z1) — z1] — |g(z2) — 22| > 2M — M — M = 0. So g is not con-
stant. From Lemma 5.1, g is a conformal map. Since for each n, H D (pznl (H) =
H\L,D>DH\H,soHD>g(M)D>DH\ H. Let K =H\ g(H). Then K € #(H),
and g maps H conformally onto H \ K. Since <pznl (z) —z=0(/z) as 7 > oo,
s0 g(z) —z=0(1/z) as z — oo. Thus g(z) = (plzl(z) for z €e C\ [cy,dyg]. So
o' 1% il in C\ [cx, dy]. Especially, ;' =% ¢! in H. So K is a subse-
quential limit of (K}). Thus #(H) is compact.

For L € #(H),let X} := X \[an,bul, 7 :== X1 \[cy,dn]. Then X7 C !,
and

(52) X} =MH\L)U{zeC:ZeH\L}U(—o0,ay)U (by,+00),
(53) Z?=(MH\L)U{zeC:ZeH\ L}U(—o00,cy)U (dy,+00),

because (C\ £7)NR C [ar, br] C [aw, by C [cx, dp]. So from H\ L, <23 H\

K, we have Ein C—apg E{( for j =1,2. From Lemma 5.1, (pL_nl((C \ [ca,du]) Cirg

¢k (C\ [en, dl) and g1, =5 gk in 9" (C\ [cn,dn]). Note that g (C \
[cy,dy]) D 2, where the inclusion follows from Lemma 5.2. Thus oL, 1—u> 0K
in Z%(.

Since |¢7,(z) —z| <M foralln e Nand z € ¥, and Ein C Xp,, so every
subsequence of (¢, ) has a subsequence that converges to some analytic function

h locally uniformly in E}(. Since ¢y, LY Qg in E%( C XL, so h agrees with
@k on E%(. Since they are both analytic, so & agrees with pg on X }< Since all

subsequential limits of ¢, in E}( are the same function ¢k, so ¢, LY @k in
Tk = Tk \lan, byl
(ii) Suppose K, = K,%/K,% with K,i C K,% C H. From (i), (K,) has a subse-

quence (L, = L%/Li) such that Lf; i K/ for some K’/ € #(H), j=1,2.
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Since L,11 C L,zl for each n, so K! c K2. Let K = KZ/KI. Then K € Fs,(H),
and L, = L2/L} N K?/K' =K. So K is a subsequential limit of (K,). Thus
Hsq(H) is compact.

Since {wznl (z) — z:n € N} is uniformly bounded in C \ [cy, dg], so every sub-
sequence of (gognl) has a subsequence which converges to some s locally uni-
formly in C\ [cy, dy]. Then h agrees with go,_(l on H. Since they are both analytic

in C\ [cy,dy], so h agrees with w,}l on C\ [cy,dy]. Thus (goan) LY ¢I}l in
C\lcu,dul. _
For L € #Hsq(H), we define »/, j=1,2, as in (i). Then (5.3) still holds
because [a;, by ] C [cr,dr] C [cy,dg], but (5.2) does not because [a;,br] C
.. . Lu. . 2
[an, by] may not be true. A similar argument gives that ¢;, —> ¢k in X =
Yk \lcy,dyg]l. O

5.3. Lipschitz conditions. Suppose & € C([0, a]) for some a > 0, and KE €
#(@). Then for each r € [0,al, ¢f = ¢, and K; € H(@). For0<1 <1, <a,
t

let K5 , = K;/K;. Then K. , € H#sy(a) and Vgt = 05 o (@i) T, @

—1 —
Kféwz
gof] o ((pfz)_l. Since £(11) € K,El,,z, SO

S(tl) € [aKlgl,rz, bKIi,lz] C [CKZEI,IZ’ thgllz] C [CCY’ dOl]

This holds for any #; € [0,a). Since £ is continuous, so we also have £(a) €
[ca, dul.

LEMMA 5.5. Suppose ag and a1 are crosscuts in H, and «y is strictly enclosed
by ay. Then there are §,C > 0 such that if £,n € C([0,al), | —nlla <6, and
Kg C H(ap), then K.! C H(a1), and for any z € H\ H (1),

9% (2) — @1 (2)| < Call¢ = nlla.

PROOF. Suppose ¢,n € C([0,a]) and Kg C H(ap). Choose a crosscut o 5
in H that strictly encloses «g, and is strictly enclosed by «. Then @gps and oy
are disjoint compact subsets of X, which contains Xk \ [aq,, by, ] for any K €
H (ap). From the compactness of # (), there is d > 0, such that the distance
between ¢k (c.5) and @x (op) is at least d for any K € #(ap). For t € [0, a], since
K,; e H(ap), so the distance between <p,§ (ag5) and wf (a1) is at least d. Since
Kﬁ is enclosed by «g s, so Kﬁa = gof(K,f \ Kf) is enclosed by gof (ag5), which

implies that ¢(¢) € K f « 1s enclosed by (pf (ap.5). Thus the distance between ¢ (t)
and <p,§(z) isatleastd forany z e H\ H(«1) and ¢ € [0, a]. Fixz e H\ H (1) and
6 € (0,d/3]. Then |<pf(z) —¢(t)] = d for any ¢t € [0, a]. Suppose || — nllq < 8.
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Note that (pg (2)=z= <pg (). Let [0, b) be the maximal subinterval of [0, a) on
which ¢/ (z) is defined and |} (z) — ¢! (z)| < d/3. Then for any ¢ € [0, b),

ol (@) = 1] = lef (2) = £ = lof (2) = ¢/ D] = 1) = ()] = d/3,

Thus (pg (z) is also defined. From the chordal Loewner equation, for ¢ € [0, b],

2

7 - —5 ds
s (2) —¢(s) @s (2) —n(s)

2(8(s) —n(s)

t
wﬂm—#QNSA

5/0 7 — 7R ‘ds
@5 @) — L@@ — n(s)
n ¢
+/f; 26010 = @) VS
0 T(ps (2) = ¢(s)) (s (2) — n(s))

(5.4) _dﬂ;—wa ﬁ/W¢@>¢ﬂ@ws

66t
(5.5) =i+ ﬂfWN)wﬁws

Solving inequality (5.5), we get
105 (2) — o (@) < 8/ — 1) < 8(3/ — 1),
b b

Let h = hcap(H («p)). Then a = hcap(Kg)/2 < h/2. Choose § = min{d/3,

zh‘jjf ). Then o5 (2) — ¢ (2)| < d/6. So we have b = a, which implies that
/a2

(p," (z) is defined on [0, a], that is, z ¢ K. Since this is true for any z € H\ H(ay),
so K. C H(ay). Finally, let C = (exp(fi—é’) —1)/(h/2). Solving inequality (5.4) for
t € [0, a], we get

2
|95 (@) = @l ()] < (Y = D¢ = nlla < Calls =7l
for any z € H \ H(«y), where the second “<” holds because a < h/2. [

LEMMA 5.6. Suppose o and p are crosscuts in H, and [cy, dy] is strictly
enclosed by p. Then there are 5, C > 0 such that if £, n € C([0, a]), I —nlla <6,

and Kﬁ C H(a), then K. is enclosed by ((pf;)_l(,o) and for any w e H\ H (p),
lw— gl o (¢~ (w)] < Callt = 7lla-

PROOF. Suppose ¢,n € C([0,a]) and Kg C H(a). Choose pg that strictly
encloses [cy, dyo ], and is strictly enclosed by p. Then for any te [0 a), ;(t) € K
is enclosed by go (,oo) Note that Kt a € Hsg(a) and ¢ 5 = got o ((pa) 1 Frorn

the compactness of Hsq(ar) and an argument that is 51m11ar to the first paragraph
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of the last proof, we see that there is d > 0 depending only on « and p such
that |¢f o (¢5) " (w) — £(1)| = d for any ¢ € [0,a] and w € H\ H(p). Fix w €
H\ H(p). Applying the argument of the proof of the last lemma to z = ((pg)_1 (w),
we have 8, C > 0 depending only on « and p such that if || — 5|, < &, then ¢ (z)
is well defined, and

lw— @l o (95) ™ (W) = |9} (2) — 92D < Callt = 7lla

That ¢! (z) is well defined implies that (¢5)~!(w) = z ¢ K. Since this holds for
any w e H\ H(p), so K. is enclosed by ((pg)_1 (p). O

Now suppose €2 is an almost H domain, and p € Q2. Suppose « is a crosscut
in H such that H(x) C Q \ {p}. From the compactness of #(«), there is h >
0 depending only on 2, p, @, such that if K € #(«), then dist(pg ({p} U 02\
R),R) > h. Let p; and p; be crosscuts in H with height smaller than h/2 such that
p1 strictly encloses o3, and p; strictly encloses [cy, dy]. Then for any K € #(«),

H(pk' (0) C 2k \ {ok (p)}.

LEMMA 5.7. There are §, C > 0 such that if ¢, n € C([0,al), | —nlla <9,
and Kg C H(w), then for any z € p1,

(5.6) 178 (z) — J1(2)| < Call¢ — nlla-

PROOF. Choose a crosscut o1 in H that strictly encloses « such that H («y) C
Q\ {p}. Suppose ¢,n € C([0,a]) and Kg C H(a). From Lemma 5.5, there is
8o > 0 depending only on « and a7 such that if || — n]ls < 8o, then K] C H (o).

From Lemma 5.6, there are §1, C; > 0 depending only on «, p1, p2, such that if
I — nlla < 81, then K/ is enclosed by (gog)_l (p2), and for any z € p1 U p2,

(5.7) 1z — ¢l o (05) " (2)] < Crallg — nlla-

Let F = {z e H:dist(z, H(p1)) <h/4}. From the compactness of # (a), there
is D > 0 depending only on €2, p, o1, F, such that if K,g € #(ay), then for any
Z€F,

(5.8) IVJE(2)| < D.

Let ho = hcap(H(«)). Then a = hcap(Kg)/Z < ho/2. Let § = min{dp, &1,
h/(2C1ho)}. Suppose || — n]lq < 8. Then for any z € p; U po,

1z — ¢l o(p8) "1 (2)| < Crad < C1ho8/2 <h/4,

which implies that [z, @d o (@g)_l(z)] CF.
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Define G5 = G(Q\ K°, p; ) if K¥ c @\ {p}. For j = 1,2, let

Nj = sup{|J{ (2) = JJ @)} = sup{IG§ o (¢9) ™' (2) = Gl o ()™ @I}:

ZEPj ZEPj
Ni= sup {|G5(R)— Gl = sup{|GSo(p)) ™ () — Glo (9 @I}
Cy—1(p. Z€p;
z2€(pa) ™" (p))

There is g € (0, 1) depending only on p; and p such that for any z € p;, the
probability that a plane Brownian motion started from z hits p; before R is less
than ¢g. Since both Jéf and J; are harmonic in H (p1), have continuations to H (p1),
and vanish on R, so Jag — J;] also has these properties. Since pp C H(p1), so

5.9 Ny <gNj.

Since K} and K are enclosed by (¢5)~'(p2), so G4 and GJ are harmonic in
Q\ {p}\ H(((pa{)_1 (p2)). Since they both behave like —In(z — p)/(27) + O(1)
near p, SO Gf, — G/ has a harmonic extension in € \ H(((pé)_l(pz)). Since
Gfl — G vanishes at every boundary point of Q\ H (((pf, )1 (p2)) including oo, ex-

cepton (¢q) ™" (p2), and (¢2) ™' (p1) € 2\ H((¢)™" (p2)), 50 from the maximum
principle for harmonic functions,

(5.10) N| <N},

Fix j € {1,2}. From [z, ¢/ o (95)~'(z)] C F for z € pj, K € #(a1), and (5.7)
and (5.8), we have

INj — Nj| < sup{|Gl o (9N~ (2) = Gl o (95) ™ (D)1}

ZEPj

= sup {|J)(2) = ] (¢l o (@5) "' @)}

ZEPj

< sup |[VJT(w)] sup{lz — ¢ o (¢5) " ()]}

weF Z€p;
= DCiall¢ —nlla
From (5.9), (5.10) and the above inequality, we have
N1 < Ni+ DCialg —nlla < Ny + DCrallg = 1nlla
< N2+2DCial§ —nlla <gN1+2DCrallf —nlla;
which implies that N; < Call¢ — nlla, where C = 2DC1/(1 — g). So we
get (5.6). U

LEMMA 5.8. There are &, C > 0 such that if ,n € C([0,al), | —nlla <9,
and K C H(@), then | X — Xl < Cl|& = 1la-
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PROOF. Suppose ¢, n € C([0, a]) and Kg C H(a). Choose a crosscut o in H
that strictly encloses « such that H(«a1) C 2\ {p}. Let p be a crosscut in H with
height smaller than h/2 that strictly encloses [cy, dy]. From Lemmas 5.5 and 5.7,
there are 8g, Co > 0 depending only on 2, p, &, a1, p, such that if || — 5|, < do,
then K. C H (o) and for any z € p, |J§(z) — JJ(2)| < Coallc — nlla. Let dy =
dist([cy, dy], p)/2 > 0, and § = Sy A dp.

Suppose || — nlla < &. Then Kg, K. € H(ay). From the compactness of
H(ay), there are m, My, M>, M3 > 0 depending only on 2, p, «, @1, p, such that
for any x € [cy — do, dy + dol,

m <0, JE(x), 0,01 (x) <My and [8{719,J5 ()], 10/ 710, I (x)| < M;,
for j =2,3.Let Ci = M3/m + M3/m?. So for any x € [cy — do, dy + do],
10, (8xdy /) J5 (x)]

= [(939y/3y — ((Bxdy - 9:9y)/ 3y - 8y))) g (0)| =< C.
Since dist([c, — do, dy + do], p) > dp, so for any x € [cy, — do, dy + do],

(5.11)

il

. 2] 2j!
195719, (I = I )] = =5 sup|J§ (2) = 1)) = =5 Coallg =l
dy z€p d;
for j =1, 2, from which follows that

(3 Dy /3y) TS (x) — (x By /3y) I (x)]
= 18,3y JE (X) 3y J T (x) — 3Dy J T (x) Dy JE (X)] /13y TS (x)Dy I ()|
< 18,8y JE (x) By I (x) — B Dy IS (x) By IS (x)|/m?
612 18 By JE (1) By JE (x) — 8,8y I (x) By JE (x)|/m?
< Ma|dy(JE — TN/ m? + M119,9,(JF — TD)(x)|/m?
< @My /dy +4M1/d3)Coalle = nlla/m* < C2lIE = nllas
if we let Cy = (Ma/do +2M; /d3)Cohcap(H (o)) /m?.

Since Kg € H(w), so £(a) € [cy,dy]. From |n(a) — ¢(a)| <6 < dp, we have
n(a) € [cq — do, dy + dp]. Let C = C| + C;. From (5.11) and (5.12), we have

|Xe — X0l = 1(3x3y/3y) 5 (£ (@) — (8x8y/8y) I, (n(@))]
< 1(3xdy/3y) I3 (£ (@) — (Bx8y/8y) I (1(a))]
+1(3:8y/3y) 5 (n(@)) — (3xdy/3y) ] (n(a))]
= Cilg(a@) =n@)] + C2liE = nlla = ClIE = nlla- O

PROOF OF THEOREM 3.1. Let&p(¢) = A(0), t € [0, 00). We may have ag > 0
such that K§3 C Q\ {p}. Choose crosscuts ag and o1 in H such that Kgg is enclosed
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by ag, ag is strictly enclosed by a1, and H(«1) C 2\ {p}. From Lemma 5.5, there
is 81 > O such that for any ¢ € [0, ap], if n € C([0, t]) satisfies ||n —&p||; < 81, then
K t" C H(oy). Let 8, C > 0 be the constants given by Lemma 5.8 with o = «.
Let § =81 A (62/2). Then for any ¢ € (0, apl, if n; € C([0, ¢]) and ||n; —&oll; <9,
j=1,2,then

(5.13) X! = X2 < Clim = mall;.

Define a sequence of functions (&, (¢)) by induction:

(5.14) Ens1 (1) = A1) + A f X8 ds,

as long as X , 0 <s <1, are defined. From Lemma 6.3, we see that Xf is con-

tinuous, and so the integral makes sense. We may choose a € (0, ap] such that
[MCa < 1/2 and ||&] — &ollqa < 8/2. Forn =1, we have ||&, — &lla < (1 —1/2™)8
and ||&;, — &,—-1lla < 8/2". Suppose this is true for some n € N. Then from (5.13)
and (5.14), we have

t t
En i1 (1) — E0(1)] < m/o X6 — X5 ds < m/o Cllén — Entlla ds

< MCallgy — En-illa < €0 — En-1lla/2 < 8/2"F,

for 7 € [0, a]. Thus [|&,+1 — &alla < 8/2"*", and [1§,+1 — Eolls < 8/2" " + 11§, —
ollp < (1 — 172718, From induction, we have ||£,11 — &lla < 8/2"F! for any
n € N. Thus (&,) restricted to [0, a] is a Cauchy sequence in C([0, a]). Let {5 =
lim;,— o0 &x1j0,4] € C([0, a]). Let n — oo in (5.14); we see that &4, solves (3.2) for
t €]0,al.

Let 4 be the set of all couples (§,T) such that T > 0 and & solves (3.2) for
t € [0, T]. We have proved that 4 is nonempty. We claim that if (§, T) € 4, then
there is (&,,T,) € 4 such that T, > T and &,(t) = é(t) for t € [0, T]. To prove

this claim, let Q (pT(Q \ K 7) and p= goT(p) If Ks cQ \ {p}, let JE G(fZ\
Kf, p;)o (go,) I and X'g = (0y0y/0y )Jt (E(t)) From the first part of the proof,
the solution to

(5.15) §(t)=$(T)+A(T+t)—A(T)—i—k/()t des

exists on [0, ] for some a > 0. Let T, =T + a > T. Define &(t) = &(¢) for
tel0,Tland &,.(t) =&(t —T) fort € [T, T,]. Itis clear that &, € C ([0, T,]). Since
& agrees withé; on [0 T], so &, solves (3.2) for ¢ EU[O, T].Forte[0,T,—T], we

have <pT+t gof o ¢ and K%th = K5 U (¢5) "1 (K?). Since ¢5 maps p to j, and
Q\KT_H ontoQ\Kt,so
= GE\KE, 510 () = G\ K5y pi ) o (65) 0 () !

= G(Q \ KT+[’ pa ) ((pT+[) ! = Ji:‘l
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So )?S Xge

Tat Thus fort € [0,7T, — T,

54T+mr=&o=sav+Aaw4>—A03+k/iﬁds

—A(T+t)+xf des+/\/ XTH

T+t
=A(T+t)+k/ X5 ds.
0

So &, solves (3.2) fort € [T, T,]. Thus (&, T,) € 4. So the claim is justified.

Suppose (&1, T1), (62, T2) € 8. For j = 1,2, since §;(0) = A(0) = §p(0), so
there is S; € (0, Tj A ap] such that ||§; — olls; <34. Choose S3 € (0, S; A S3] such
that CI?»|53 <1 From (3.2) and (5.13), we have 161 —&20l5; < IAICS31181 — &2l 555
so [1&1 — &1ls; =0, which means that & (f) =&,(¢) for 0 <t < S3.

Let To = T1 A T. We claim that &;(¢) = &,(¢) for r € [0, Tg]. Let T € [0, Tp] be
the maximum such that & (r) = &,(¢) fort € [0, T']. Suppose T < Ty. Let 51 (1) =
&E(T +1), 52(t) =&(T +1t) fort € [0, Ty — T]. Then %‘1 and 52 both solve (5.15)
for t € [0, Ty — T]. From the last paragraph, there is S3 € (0, Ty — T'] such that
£1(1) = & (¢) for 0 <t < S3, which implies that & (t) = &(¢) for 0 <z < T + S3.
This contradicts the maximum property of 7. So T = Ty, and &(¢) = &,(¢) for
t €10, Tp].

Let T4 = sup{T :(&,T) € 4}. Define £4 on [0, T4) as follows. For any ¢ €
[0, T4), choose (§,T) € 8 such that t < T, and let £4(¢) = £(¢). From the last
paragraph, &4 is well defined, and solves (3.2) for ¢ € [0, T4). The uniqueness of
&4 also follows from the last paragraph. There is no solution to (3.2) defined on
[0, T4]. Otherwise, there exists some solution on [0, T4 + ¢] for some & > 0, which
contradicts the definition of T4.

(1) Suppose Ay € C([0, 00)), a € (0,00), and Ty, > a. Then KEAO c Q\ {p}.

Choose a crosscut « in H such that KSAO C H(x) C 2\ {p}. Let 8y, Co > 0 be
the 8, C given by Lemma 5.8 with £ =&4,. Let C = exp(Cy|Ala) and § = 8o/ C.
Suppose A € C([0,00)) and ||A — Aplls < 8. Then |£4(0) — £4,(0)] = |A(0) —
Ap(0)| <6 < 8p.Letb € [0, a ATx) be the maximal such that [£4(2) —£4,(¢)] < do

for ¢ € [0, b). From the properties of g and Cop, for 0 <t < b,
&
(5.16) X7 — X, < Collé — Ea,lr-

So XfA is bounded on [0, b). From (3.2), lim,_, ,- £4(¢) exists. If T4 = b, we define
EA(T) =lim,_, ;- £4(1), then &4 solves (3.2) for ¢ € [0, T'], which is a contradic-
tion. Thus T4 > b. From (3.2) and (5.16), we have that for any 0 <t < b,

t
1Ea(t) = Ea (DI = |A = Aolla + CoIKI/O 15a(s) — &g (s)ds.



498 D.ZHAN

Solving this inequality, we have that for any 0 <t < b,
|Ea(1) — &4y ()] < exp(ColA[H)IA — Aolla < CllA — Aolla-

So [£a(b) —&4,(D)| < C||A — Aglla < CS = §p. From the definition of b, we have
b=a.Thus Ty >a and |4 — &alla < C|A — Aglla if [|A — Aplla < 8. So {Ts >
a}isopen w.r.t. || - ||z, and A+ &4 18 (|| - [la, || - Ilo) continuous on {T4 > a}.

(i1) Suppose « is a crosscut in H such that (Jy<; -7 K,E C H(ax) C Q\ {p}. Then
T <hcap(H())/2 < +o00. From the compactness of #(«), Xf is bounded on
[0, T). So from (3.2), £(t) — x for some x € R as t — T. Define &£(T) = x. Then

EeC(0,T), K? C H(x) C 2\ {p}, and so J,E is defined for ¢ € [0, T']. Then
&(t) solves (3.2) for 0 <t < T, which is a contradiction. []

6. Convergence of the driving functions. From now on, we begin proving
Theorem 4.2. We first study the case that the target is an interior point. In this
section, we will show that the driving functions for the discrete LERW converge
to those for the continuous LERW.

6.1. Some estimates. Suppose €2 is an almost H domain and p € Q. We now
use the notation in Sections 3 and 4 in the case that the target is an interior point.
Let @ be a crosscut in H such that H(«) C 2\ {p}; and let F be a compact subset
of 2\ H(x). In the lemmas in this subsection, a uniform constant is a number
that depends only on €2, p, a, F. From the compactness of #(«) (Lemma 5.4),

there is a uniform constant h > 0 such that if Kﬁ C H(a), then for any ¢ € [0, a],
dist(¢! (92 \ R) U gf (F), R) Adist(¢f (F), ¢f (92 \R)) > h.

LEMMA 6.1. There are uniform constants C1,Cy > 0 such that if Kf: C
H(a), then for any t; <t, € [0,a]land z € F,
prfz(z) - wfl @D = Cilta —11;
2(t, —11)
¢ () — &)

soi (2) — <pr (z) —

=Gl - tll(ltz — 1+ sup {|§(7) — S(n)l})-

telty,n]

PROOF. Suppose Kfl C H(a). Then |(pf (z) —&(@)| = h for any ¢ € [0, a] and

z € F. Since gofz(z) - gofl(z) = ff mdn ) |<pf2(z) — (pz(z)l <Cilta — 11|
7 (2
for any t{ <1 €[0,a] and z € F, where C1 =2/h > 0. Thus for 1 <1, € [0, a]

andz e F,

2 - 2 < 2 (16 (2) — o ()] + [E(12) — 1))
0 () —E()  ¢f () —E@)l — 2T :

<2C) /0|ty — 11| +2/W2|E(12) — E(11)].
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Let C;:=2(C; Vv 1)/h* > 0. Thenfort; <t, € [0,a]l and z € F,
2(t — 1) ‘
o1, (2) —£(11)

15) 2 2
[ oo wmoma)®
n\g/(2) —&@) @, (@) —&)
1)) 2 2
ffn

@) —E(1) ¢ () —En)
SCzllz—tll(ltz—t1|+ sup {lé“(t)—é(h)l})-

telry,n]

05 (2) — 65 (2) —

dt

O

LEMMA 6.2. For each ny € {0, 1}, na, n3 € Zx, there is a uniform constant
C > 0 depending on ny, ny, n3, such that ing C H(w), then for any t € [0, a],
x € [cy,dy], and 7 € F, we have

87185283 P¥ (1, x, 97 (2))] < C.

PROOF. For K € H(x), x € R and z € Qg, let P(K, x, z) be as in Section 4.
Since 02k is analytic, so P(K, x, -) extends harmonically across 02k . For K €
H(a) and x, y € R, let (K, x, -) be defined on Qx \ {x} such that Oy(K,x,-)
is harmonic in Qg ; vanishes on R \ {x}; behaves like Im z%x + O(1) near x for
some c € R; Q,(K, x,z) =—2Re(d;;P(K,x,2) - %) forz € 02k \R and z =
¢k (p). From the compactness of H (), for any n,, n3 € Z>o, there is a uniform
constant C > 0 depending on n3, n3, such that for any K € H(«), x, y € [cy, dy],
and z € F, we have

195205 P(K. x, g ()], 85204 0y (K., x, 9x (2))] < C.

Note P5(t,x,z2) = P(Kf,x,z) and 9; P5(1,x,z7) = Qg(,)(Kf,x,z), SO we are
done. [

LEMMA 6.3. There is a uniform constant C > 0 such thatifo, C H(a), then
forany 1,1 €10, al, |X;| < C and |X; — X;| < C(lt —1'| + |£(t) — £(t")]),

PROOF. Suppose Kf: C H(a). Let Jé(t,x) = Jf(x). Note that Xf =
(822’1/82,Z)J5(t,x). Since £(t) € [cq,dy] for t € [0,a], so it suffices to prove
that there is a uniform constant C > O such that for any ¢ € [0,a] and x €
[car do], 107195%(03 ,/82..)J5(1,x)| < C for ny,ny € {0,1}. We need to show
that |93, ;J §(t,x)| is bounded from below by a positive uniform constant, and
|81"' 8;”2;1] §(¢,x)| is bounded from above by a positive uniform constant. The
proof is similar to that of the above lemma. [J
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LEMMA 6.4. There is a uniform constant C > 0 such that ing C H(w), then
forany t) <tp €0,a] and z € F, we have

181 PE (12, £(12), 95, (2)) — 81 PE (11, £(11), 95, ()] < C (1t — 1] + 16 (22) — E(11)).
PROOEF. This follows from Lemma 4.1, and the above three lemmas. [

LEMMA 6.5. There is a uniform constant d| > 0 such that ing C H(a), then
forany t| < ty € [0, a] that satisfy |t — t1| < d1, and for any z € F, we have

PE(12, £(12). 01,(2)) — PE(11, £(11). 95, (2))
= HPE (11, £(), 5, (2)) - [(6(2) — §(11)) — (2 — 1)) X} ]
+1/203 P (11, (1), 91, (2)) - [((r2) — §(11)” — 212 — 11)]
+ O(A*) + O(AB) + O(AB*) + O(B?),
where A = |ty — t1|, B :=sup; ey, 1, {E(s) — &I}, and O(X) is some number

whose absolute value is bounded by C|X| for some uniform constant C > 0.

PROOF. We may choose a compact subset F’ of 2\ H (p) such that F is con-
tained in the interior of F’. So from the compactness of #(«), there is a uniform
constant dy > 0 such that for any K € H («), dist(px (F), d¢x (F')) > dy. Sup-
pose KE C H(x). From Lemma 6.1, there is a uniform constant d; > O such that
if 5,7 € [0, a] satisfy |s — ¢| < d,, then for any z € F, [(pf(z), (pts(z)] C (pf(F/).

Fixze Fandt) <t €[0,a] with |t —t1| <d;.Let P = Pt (12, &(12), gD,i(Z)),

Py = PE(11,6(n), 95, (2)), Py = PE(t1, &(), 95, (2)), Py = PE(t1,E(1), 95 (2)).
Then

PE(t2, £(12), ¢5,(2)) — PE (11, £(11), 95, (2)) = (Py — P2) + (P2 — P3) + (P3 — Py).

Now Py — Py = [;2 81 P¥(1,£(12), ¢;.(2))dt. Fixany ¢ € [11, 12]. Applying Lem-

mas 6.1 and 6.2 to F', since £(t), £(12) € [cq, dg] and [¢} (2), 95, (2)] C @5 (F), 50
we have

01 PE (2, £(12), 01, (2)) — 01 PE(1,£(1), 95 (2)) = O(A) + O(B).

Applying Lemma 6.4 to F', we have

01 PE(t.£(1). 9] (2)) — 91 PE(11.6(1). 97, (2)) = O(A) + O(B).

So we get

Py — Py =01 P% (11, £(11), wfl @) (12 — 1) + O(A%) + O(AB).



SCALING LIMITS OF PLANAR LERW 501

Applying Lemma 6.2 to F’, since <p,52 (2) wfl (F"), so we have
Py — Py =02 PE (11, 6(11), 91, (2)) (E(02) — £(11))
+1/203 PE(11, £(11), 05, (2)) (E(02) — E(11))” + O(B).
Applying Lemmas 6.1 and 6.2 to F’, since [go,gl (2), (p,i @)1 cC <,o,§1 (F"), so we have
3 PE (11, £(1), 95, (2)) — 0 PE (11, £(11), 95, (2)) = O(A),
for j =1,2. Thus
Py — Py= 0, P% (11, £(11), 95, (2)) (E(12) — £(11))
+1/203 PE (11, £(11), 95, (2)) (E(12) — E(11))*
+ O(AB) + O(AB% + O(B).
Applying Lemmas 6.1 and 6.2 to F’, since [(p,é1 (2), (pf2 @)1 cC <,0,§1 (F"), so we have
Py — Py =2Re(5 . PE (11, £(11), 95, (2)) (95, (2) — 95 (2))) + O(A%)
_2An—n)

= 2Re(d3 P (11, £(1), 05, (2) —
¢ (2) — &)

The conclusion follows from Lemma 4.1 and the equalities for P; — P41, j =
1,2,3. O

)4+ O(AB) 4+ O(A?).

6.2. Convergence. We use the notation in Section 4.2. We may choose cross-
cuts pj, j =0,1,2, in D such that H(pg) is a neighborhood of 0; in D,
H(po) C H(p1) C H(p2) C D\ {z¢, 00}, and

do :=min{dist(0, po), dist(pg, p1), dist(p1, p2), dist(p2, z¢)} > 0.

Now suppose § < dp. Then wg ¢ H(py) as |w‘2 — Z¢| < 8, any edge of D® can
intersect at most one of p;’s, and (0, §] C H(pp). Thus the LERW curve gs must
cross all of these p;’s. Let Fp be a compact subset of D \ {oo} \ H(p2) with
nonempty interior. Suppose f maps D conformally onto an almost H domain €2
such that f(04) =0. Let p = f(ze), Fo = f(Fp) and aj = f(p;), j =0,1,2.
Then Fg is a compact subset of €2 with nonempty interior; o ;’s are crosscuts in
IH; o strictly encloses O; oj 4 strictly encloses «; and {p}, Fo C 2\ H(a2).

In this subsection, a uniform constant is a number that depends only on D,
Zes POs P1, P2, Fp, f, and some other variables we will specify. We use O(X)
to denote a number whose absolute value is bounded by C|X| for some positive
uniform constant C. We use 0s5(X) to denote a number whose absolute value is
bounded by C(8)|X| for some positive uniform constant C(§) depending on &,
such that C(§) — 0 as § — 0.
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Let L® denote the set of finite simple lattice paths X = (X(—1), X(0),...,
X(s)), s €N, on D%, such that X(—1) =0, X(0) =6, X(k) € D for 0 <k <,
and p_o(X(k — 1), X (k)] C H(p1). Let Set(X) = {X(0), ..., X (s)}, Tip(X) =
X(s), Dx = D\ Ui_o(X(k—1), X(k)]; Px be the generalized Poisson kernel
in Dy with the pole at Tip(X), normalized by Px(z.) = 1; and gx be defined
on V(D?) such that gx =0 on Vy(D%) U Set(X) \ {Tip(X)}, Apsgx =0 on
Vi (D?) \ Set(X), and gx (w?) = 1.

LEMMA 6.6. Suppose G = (V, E) is a connected locally finite graph. Sup-
pose A, B C V are such that B is finite and A U B is reachable. Suppose h is
a nonnegative bounded function on V such that h vanishes on A, and is discrete
harmonic on 'V \ (AU B). Then we have ), c s Ach(w) ==, cp Agh(w).

ProOOF. For wg € B, let Hy, be the bounded function on V, which is dis-
crete harmonic in V \ (A U B), vanishes on A U B \ {wg}, and equals 1 at wy.
Then the lemma holds if & = H,,,. Since h(w) = ZwoeB h(wo) Hy,,(w), so we are
done. [

PROPOSITION 6.1. Forany € > 0, there is 6o > 0 such that if 0 < § < &, then
forany X € L, andany w € V(D‘S)O(D\H(pg)), we have |gx (w) — Px (w)| < e.

SKETCH OF THE PROOF. Suppose the proposition is not true. Then we can
find g9 > 0, a sequence of lattice paths X, € L% with §, — 0, and a sequence of
points w,, € Vo (D \ H(p2)), such that |gx, (w,) — Px, (w,)| > &o foralln € N.
For simplicity of notation, we write g, for gx,, P, for Px, and D, for Dy, . Let

Kn = F(UZ (Xa(j = 1). Xa())]). Then K, € #(a1). Write g, for g, and 2,
for Qk, . Let x, = ¢, 0 f (Tip(X,)). Then x,, € [cq,, dgy, ). Let O = Pyo flog, L.
Then Q, is the generalized Poisson kernel in €2, with the pole at x,, normalized
by O, (¢, (p)) = 1. From the compactness of #€(c1), by passing to a subsequence,

we may assume that K, i) Ko € #H(ay) and x, — x0 € [cqoy, do,]. Write ¢ for
Q, and ¢ for gk, . Let Q¢ be the generalized Poisson kernel in £2¢ with the pole
at xo, normalized by Qo(¢o(p)) =1.Let Do = f*1 (2\ Ko) and Py = Qgogpo f.
Then Py is the generalized Poisson kernel in Dy with the pole at f 1o ®y ! (x0),

normalized by Py(z.) = 1. Moreover, D, Cir;l Dy, and P, l—u> Py in Dy.

We extend g, to CE"g, that is defined on the union of lattice squares of 57>
at whose four vertices g, is defined. Applying Harnack’s inequality to the positive
discrete harmonic function g,, we find that (CE"g,,) is locally uniformly contin-
uous in Dy. By the Arzela—Ascoli theorem, there is a subsequence of (CE"g,),
which converges locally uniformly to some gp in Dg \ {oo}. We may assume that
the subsequence is (CE"g,) itself. By applying Harnack’s inequality to the dis-
crete partial derivatives of g,, we may assume that the continuation of all discrete
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partial derivatives of g, also converge to the corresponding partial derivatives of
go- Then we conclude that gg is a positive harmonic function in Dg \ {0c0}.

We may find a sequence of crosscuts (yk) in Dg such that (H (yk )) is a nesting
neighborhood basis of the prime end f —lo ®y ! (x0) in Do, which is the pole of Py.
Fix k € N, for each n € N, we find a crosscut y,{‘ in D, that bounds a neighborhood
H(y,f) of Tip(X}), such that y,f converges to yk in some sense as n — oo. For
each k > 2, we may construct some “hook” in the area of Dy between yk_l and
y**1 that holds the boundary of D and disconnects y**! from y*~1. We use these
hooks to prove that the values of g, outside H (y**!) are uniformly bounded, and
gn(w) > 0asn — ocoand w — 9D, in V(D%)N (D, \ H(y,f“)) in the spherical
metric. Thus go(z) > 0 as z — C \ Dg in Dg \ H(yk“) in the spherical metric.
Since (H(yk)) is a neighborhood basis of f_l o (po_l(xo) in Dy, so if oo ¢ D, then
go must be a generalized Poisson kernel in Dy with the pole at f -l ®y l()co).
Since go(z.) = lim,, CE"gn(wg) = limgn(wg) = 1= Py(z.), so go = Py in Dy.
The sequence (w,) has a subsequence (wy,) that converges to some wy € D or
tends to C \ D in the spherical metric. In both cases, we can get a contradiction.

If co € D, we only need to prove that go is also harmonic at co. From
Lemma 6.6, we have

> A pon gn(w) = 0.
weSet(X,)U(V (D%n)NI D)

Choose a Jordan curve o in D composed of line segments parallel to the x or y
axis, such that D is enclosed by o. Let U (o) denote the intersection of D with
the domain bounded by J. Let G, be a subgraph of D® spanned by edges in D%
that is incident to at least one vertex in U (o). Let A = Set(X,,) U (V(D%) N aD),
and let B be the set of vertices of G in D \ U (o). Then from Lemma 6.6, we have

> (gn(w) — gn(w)) =— > A psu gn(w) =0,
(w,w)ePy weSet(X,)U(V (D¥)NJ D)
where £ = {(w, w'):w € V(D*)NU (o), w' € Vi (D*)\ U(c), w ~ w'}. Since
the discrete partial derivative of g, converges to the continuous partial derivative
of go, so as n — oo,

S (gn(w) — ga(w)) — / 9ng0(2) ds ().

(w,w")ePl

Thus [ dngo(z) ds(z) =0, so go is harmonic at co.
The reader may see Section 5 in [20] for the detailed proof of a similar proposi-
tion. [J

Let the LERW curve g5 on [—1, xs] be defined as in Section 4.2. For —1 <t <

Xs. let vs(t) = heap(f 0 g5((0,11))/2. Let Ts = vs(xs) and us = vy . Let Bs(t) =
f(gs(us(2))), 0 <t <T;s. Since f(04) =0, so s extends continuously to [0, Ts]
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such that B5(0) = 0. From Proposition 3.2, there is some &5 € C ([0, Ts]) such that
Bs((0,1]) = Kfa for 0 <t < Ts. For n € Zxp, let ¥, be the o-algebra generated by
{n < x5} and gs(j), 0 < j < n. Let nyo be the first n such that (gs(n — 1), gs(n)]
intersects po. Then n is an ¥, -stopping time and U" o(gs(k — 1), qg (kj)]1is con-
tained in H (p1) because § < dlSt(,Oo p1). Let T‘S =vs(No). SO KT5 C H(axy).

@
Then T <hcap(H (a1))/2, s0 T} = O(1).

Fix any n € Z—1,,-1]. Then (gs5(n), gs(n 4+ 1)] can be disconnected from
p1 by an annulus A = {§ < |z — gs(n)| < dp}. Let T be the set of all cross-
cuts y in D \ U;_olgs(k — 1), gs(k)] that is contained in A, and disconnects
(gs(n),gs(n+1)] from py in D\ Up_olgsk — 1), qg(k)]. Then the extremal

length of I" is at most 271/ In(dp/3). If y € I, then <pva(n) o f(y) is a crosscut

in H, Whlch disconnects ¢, o £ ((gs(n), g5 (n + D) = g3 ) (K22 ) \ K2 )
from <,0v(S (n)(oel) in H. Since K 58 m C H (ap), and «y is strictly enclosed by a7, so

from the compactness of # (), the area of H ((pi‘: o) (a1)) is bounded from above
by a uniform constant Co > 0. By the conformal invariance, the extremal length of
f (") is at most 2/ In(dp/8). So there is y € f(I") whose length is smaller than
1(8) :=2(Comr/1In(dy/8))"/?. Then [(8) = 0s(1). Since ¢§8(n)(KUB(n )\ Kvs(n)) is
enclosed by y, S0 its dlameter is not bigger than /(§). Thus there is xg € R such
that (pvs(n)(Kva(nH) \ Kv (n)) ClzeH:|z—x0| <)} Thus vs(n+1) —vs(n) <
heap({z € H: |z — xo| < 1(8)})/2 = 1(8)?/2 and &5(1) € [xo — 21(8), xo + 21(5)]
for any t € [vs(n), vs(n + 1)], which implies that |£s5(s) — &5(¢)| < 41(5) for any
s, t €vs(n), vs(n + 1]

Now fix a small d > 0. Define a nondecreasing sequence () ;>0 inductively.
Letnp =0. Let n 4 be the first n > n; such that n = neo, or vs(n) —vs(n;) > d?,
or [§5(n) — &s(n ;)| = d, whichever comes first. Then n;’s are stopping times w.r.t.
{F,}, and are all bounded by 1. From the result of the last paragraph, we may let
8 > 0 be smaller than some positive uniform constant depending on d, such that
vs(nj41) —vs(nj) <2d* and |&5(vs(s)) — &5 (vs(n;))| < 2d forany s € [nj, n 1],
0<j<oo. Let ?j/=f‘”nj, 0 < j <o00.For0<n <ng, let g§ be the subpath of
gs up to time n; then gy € L% Let (gn) be the (g,) in Proposition 2.1 for the
LERW g¢s. Then g, = g,n, where g, is as in Proposition 6.1. For simplicity, we
write P, for qu.

From Proposition 2.1, for any w € V(D% N Fp, (gnj (w))j>0 is a martin-
gale w.r.t. {f/} SO E[gnj+1(w)|3~' = gn;(w) for any j € Z>o. From Propo-
sition 6.1, we have E[P, Mt (w)|}'/] = Py; (w) 4+ os(1). From Harnack’s in-
equality, the absolute values of the gradients of P,;, on Fp are bounded by
a positive uniform constant. Since for any z € Fp, there is w € V(D?) N
Fp with |z — w| < 05(1), so for any z € Fp, E[P;,,(2)IF/] = Py;(2) +

0s(1). Note that P, o f~! = ngs(vg(n),Sg(vg(n)),goii(n)(-)). So for any z €
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Fo= f(Fp),
E[Psa(vs(i’lj—i-l)» Es(vs(nj+1)), ‘ng(nﬁl)(z))'}vj]

6.1)
= P% (Ua(nj),Sa(va(nj)),wfj(nj)(z)) + 05(1).

PROPOSITION 6.2. There are a uniform constant d, > 0, and a uniform con-
stant 6(d) > 0 depending on d, such that if d < d» and § < 5(d), then for all

vs(1j41)

E[(Eé(vs(njﬂ)) —&s(vs(n;))) —/ Xf‘s dt‘?f] = 0(d%);

5(1 ;)
E[(&(vs(nj41)) — Sa(va(ﬂj)))2 —2(vs(nj+1) — vs(n)))|F/] = o(d?).
PROOFE. Note that K 55 C H(ay). Let di > 0 be the uniform constant given
0‘0
by Lemma 6.5 with « = a1. Let dr = (d1/2)1/2. Suppose d < d>. Fix j € Z>. Let
a=vs(n;),b=vs(njt1). Then0 < b—a < 2d* <2d? =d;, and |&s(s) —£5(1)| <
4d for any s, t € [a, b]. Fix z € Fq. From Lemma 6.5, we have
P (b, &(b). ¢ () — P¥ (a. &s(a)., 95 (2))
=9 P%(a,&5(a), 93 () ((Es(b) — &s(a)) — (b — @) X)
+5 82 3P (a,&5(a), 93 (2))((Es(b) — Ea(a))z —2(b —a)) + O(d>).

Take the conditional expectation of this equality with respect to & j/ . From (6.1),
we have

P (a,Es(a), 5 ()E[(5(b) — &5(a)) — (b — a) X5 | F/]
+ 303 P (a, £ (a), 95 ()E[(£5(b) — & (@) = 2(b — a)| F]]
= 0(d”) + 05(1).

Since 05(1) — 0 uniformly as § — 0, so there is a positive uniform function §(d)
depending only on d such that if § < §(d), then |os(1)| < d?. From Lemma 6.3,

we have X% — X5 = O(d) for any € [a, b]. Thus for § < §(d),
b
P (0. 65(@) 0 CE| (65(b) — &5@) — [ X a5 |

+ 303 P9 (a, £5(a), 05 (B[ (£ (b) — £ (a))” = 2(b — a)| F{] = O(d>).

Note that this is true for any z € Fg. We may choose z] # 72 € Fq and solve
the linear equations to get the estlmates of the two conditional expectations. We

already know that 82 P% (a, &s(a), (p ’(z)) = O(1) for j =1, 2. So the proof will
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be completed if we prove that there is a uniform positive constant Cp such that
there are 71, 72 € Fg that satisfy

192 P% (a, €5 (), 952 (21)) - 93 P* (a, £s(a), 95 (22))
— P (a,&(a), 5 (22)) - 83 P9 (a, &s(a), 95 (21))] = Co.

This follows from the compactness of # (o), and the fact that for every K €
H(ay) and x € [cy,, dy, ], there are z1, 22 € Fq such that

N P(K,x, 0k (2133 P(K, X, 9k (22))

— % P(K,x, 0k (22)93 P(K, x, px (21)) #0.
Here, if (6.2) does not hold for some K € #(c1) and x € [cy,, do, ], then there is
C =C(K, x, Fg) such that 8§P(K,x, 72)=C0P(K,x,z) for z € pg (Fq). Since
¢k (Fgq) contains an interior point, and 8%P(K,x, ), j = 1,2, are harmonic in
Qk, SO 822P(K, x,2) =CohP(K,x, z) for z € Qg, which cannot be true because
x is a pole ofBgP(K,x, -yoforder j+1for j=1,2. O

(6.2)

Let ns(¢) = &s(1) — 2fot Xfa ds,0<t < Tofo = V5(Neo). From Lemma 6.3, we
have ;" X8 ds = 0(d?) for 0 <1 < T} Thus
E[(n5(vs(nj11)) — ns(us(n ;)| F/] = 0(d*);
2
E[(n5 (s (nj 1)) — ns(0s(n))" = 2(vs(nj41) — v5(n)))|F/] = O ().
The following theorem can be deduced by using the Skorokhod embedding the-
orem. It is very similar to Theorem 3.7 in [10], so we omit the proof.

THEOREM 6.1. For every € > 0, there is a uniform constant 5o > 0 depending
on ¢ such that if § < &g, then there is a coupling of the processes ns(t) and a
Brownian motion B(t) such that

Plsup{|ns(1) — V2B(1)|:t € [0, Tg 1} <] > 1 —e.

Note that for 7 € [0, T2 ], £ (¢) solves the equation

Yo

t
(6.3) E5(1) = ns(1) +2 /0 X5ds.

Suppose B(t) is a Brownian motion, and £y(¢), 0 <t < Ty, is the maximal solution
to

(6.4) £0(1) =~2B(t) +2 /0 l x50 ds.
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Then there is a.s. a simple curve Bg such that By(0) = 0, Bo(t) € H for 0 <
t < Tp, and K,SO = Bp((0,¢]) for 0 <t < T, and there is a continuous increas-
ing function ug such that yy(¢) := f‘l(ﬂo(ugl(t))), 0<t <8 =ug(Ty)), is an
LERW(D; 04+ — z.) trace.

If « is a crosscut in H, and S defined on [0, T) is a curve in H, let To(B)
be the ﬁrst t such that B8(t) € «, if such ¢ exists; otherwise let T, (8) = T. Since
Bs ([0, T, ozo 1) intersects o, s0 Ty, (Bs) < T(S

THEOREM 6.2. Suppose « is a crosscut in H that strictly encloses 0, and
H(x) C Q\ {p}. If oo € D, we also assume that f(co) ¢ H(w). For every ¢ > 0,
there is 8o > 0 such that if 5 < &g, then there is a coupling of the processes Es(t)
and &y(t) such that

(6.5 P[sup{l&s(t) —&o()]:1 €0, Tu(Bs) vV Tu(B)]} <] > 1 —e.

If & or &y is not defined on [0, T, (Bs) V Ty (Bo)], we set the value of sup to be
—+00.

PROOF. Let p; and aj = f(p;) be as in the beginning of this subsection such
that « is strictly enclosed by «g. From Lemma 5.5, there is 1 > 0 such that if
Kg C H(x) and || — n]lq4 < 81, then K] is strictly enclosed by «g. Since Ks‘S

intersects «g, so if &5 and &y are coupled, then on the event that |£5(¢) — &0 (?)| < 81
for0 <7 <T?  wehave Bo((0, ao]) = K‘EO ¢ H(a), which implies that Ty (85) V

op’
Ty (Bo) < To‘fo. We may assume ¢ < 6. Then we suffice to prove this theorem with
(6.5) replaced by

(6.6) Plsup{|&s(t) — & ()|t €[0, TS 1} <&] > 1 —e.

Since KE C H(wy), so from Lemmas 5.5 and 5.8, there are §,, C1 > 0 such

that for any 7 € [0, T2 1, if [|& — &5l < 82, then K% C H (a2), and

’ ao
(6.7) X5 — X5 < C1||& — &l

Let Cp = eclhl/(2C1), where /i1 = hcap(H (a1)). From Theorem 6.1, there is
8o > 0 such that if § < &g, then there is a coupling of ns with /2B such that
the probability that |ns(t) — V2B )| <(enéd)/Cyfort el0,T 8 11is greater than
1 —&. Let &% denote this event. Assume &° occurs.

Now £&3(0) =0 =&5(0). Let [0, b) be maximal subinterval of [0, 0[0) N[0, Tp),
on which |&y(7) — &5(¢)| < & A 2. Then from (6.3), (6.4) and (6.7), we have

T

t
60— &sll < |15 = V2Bl 7y +21 [ 160 = llsds,
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for any ¢ € [0, b]. Solving this inequality, since b < To‘fo < hy/2 and &% occurs, so

160 = &sllp < (" = 1/@CDns = V2Bl 3 < Collns = V2B 73 <enés.

Thus Kfo C H(ap) for 0 <t < b. From Theorem 3.1(ii), we have b < Ty. Since
1€ — &l < & A 82, 50 b =T . Thus £(z) is defined on [0, T} ], and |£5(r) —

s Lo

&o(t)| < e fort € [0, TO‘EO] if €% occurs. So we have (6.6). O

7. Convergence of the curves.

7.1. Local convergence. We use the notation in Section 4.2. First we introduce
a well-known lemma about random walks on 8Z2.

LEMMA 7.1. Suppose w € 87* and K C C is a connected set that satis-
fies diam(K) > R [resp. diam*(K) > R]. Then the probability that a random
walk on 877 started from w will exit B(w; R) [resp. B*(w: R)] before using
an edge of 877 that intersects K is at most Co((8 + dist(w, K))/R)C1 [resp.
Co((6 + dist#(w, K))/R)Cl]for some absolute constants Cq, C1 > 0.

For w € V(D?%), let X, be a random walk on D? started from w, stopped when
it hits V,(D%) U {w?}. Let Y,, be X,, conditioned to hit w’. Then g5 = LE(Ys).
Lemma 7.1 will be applied because if w € D, X,, is not different from a random
walk on 87?2 started from w stopped when it uses an edge that intersects 9D or
hits w?.

DEFINITION 7.1. Let z € C, r,e > 0. A (z,r, &€)-quasi-loop in a path w is
a pair a,b € w such that a,b € B(z;r), |a — b| < ¢, and the subarc of w with
endpoints a and b is not contained in B(z; 2r). Let £L5(z, 7, €¢) denote the event
that gs has a (z, r, €)-quasi-loop.

LEMMA 7.2. Suppose r > 0 and B(zg; 5r) C D. Then P[Ls(z0,1,&)] — O,
as € — 0, uniformly in §.

PROOF. We will use the idea in the proof of Lemma 3.4 in [16]. However,
that proof does not apply here immediately, because we are dealing with the loop-
erasure of a conditional random walk, and Wilson’s algorithm does not apply to a
conditional UST.

We will argue on the reversal path. Let X! be a random walk on D9 started
from w, stopped when it hits dD. Let Y be X conditioned to hit the boundary
vertex (8, 0). Let g5 = LE(Y:Z 5). Then g5 has the same distribution as the reversal

of gs. Let £L5(zo, 7, €) denote the event that g5 has a (zo, 7, £)-quasi-loop. Then
P[L(z0, 7, 8)] =P[L5(z0, 1, €)]. It suffices to show that lim,_.o P[L(z0, 7, &)] =
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0, uniformly in § € (0, §1] for some absolute constant §; > 0 because if § > §,
then £5(z0, 7, €) does not happen when ¢ < §;.

Let By =B(z0; kr), k=1,2,3,4,5. Letfp =0 and j = 0. If #; is defined, then
define s;11 to be the first time s > ¢; such that Y’a(s) € By, if such s exists;

otherwise, let M = j and stop here. If 5, is deﬁned then define #; ¢ to be the
first time 7 > 511 such that ¥/ ;(r) ¢ B>. Let j = j + 1 and iterate the definition.

Then we get a sequence 51 <t < --- < sy < ty. Such M is a random number.
Finally, for each s > 0, let (Y 5)5 be the subpath of Y" wp UP to time s.

For j € N, let % ; be the event that j < M and LE((Y’,S)’J) has a (zg, r, €)-quasi-
loop. Then Y is empty, and it is clear that for any m € N

(7.1) Lyzorec Y ciM=m+130J Y.
j=1 Jj=1

We first estimate P[M > j + 1|(Y;8)tf]. For w € V(D?), let Q(w) or Q%(w)

be the probability that X leaves D through [4, 0]; let Q(w) or Q‘f(w) be the
probability that X7 avoids B; and leaves D through [§, O]. Then the probability
that Y}, does not hit By is equal to Q1 (w)/Q(w). From the Markov property of Y,
we have

PIM > j + 1[(Y])" ] =1 = Q1(¥}5 1))/ Q¥ 1)),

Let FF = {2r < |z — zo| < 3r}. Then F is a compact subset of D \ B;, and if
d<r,thenY ;} 5(tj) € F. We claim that there are absolute constants &y € (0, r)

and C, > 0 such that Q{(w)/Q(w) > C, for any w € V(D?) N F, if § < &.
If the claim is not true, then we can find 8, — 0, w, € V(D%) N F, and
w, — wo € F, such that 0" (w,,)/ Q% (w,) — 0. Let I% = Q% (-)/ Q% (w,) and
o = (Q% () — Q?”(-)) /Q‘S"(wn). Let P be the generalized Poisson kernels in
D with the pole at 0, normalized by P(wq) = 1. Then I% converges to P lo-
cally uniformly in D. Since J® vanishes on the boundary vertices of D°® includ-
ing 0, agrees with [ %n on the vertices in B 1, and is discrete harmonic in D \ B,
SO J,‘f converges to a continuous function H locally uniformly in D \ By, where
H vanishes on 0D, agrees with P on dBj, and is harmonic in D \ B;. Then
H < P in D \ B;. From J% (w,) — 1, we have H(wg) = 1 = P(wg). From the
maximum principle of harmonic functions, we have P(w) — H(w) = 0 for any
w € D \ By, which is impossible. So the claim is justified. Suppose 8 < 8o. Then
PM=>j+ 1|(Y122)ff] <1 — C,. By induction, we find that

(7.2) PIM>m+1]<(1—C)™.

We now estimate P[Y;1|=Y;, (Y;}S)’f]. Let @; be the set of components of
intersection of B, with LE((Y;) 5)%/+1) that do not contain Y;J 5(sj+1). Observe that
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if Y ; does not occur, then for Y j 1 to occur, there mustbe a K € @ such that ¥

comes at some time ¢ € [s;41,;41] within distance ¢ of K N B; but Y’s(t) ¢ K
forall 7 € [sj11,2j41]. Butif Yr (t) is close to K for some 7 € [s;41, tJ+1] then
Lemma 7.1 can be applied, to estimate the probability that Y” w? (t) will not hit K

before time 7; .

Suppose § < 81 := §g A dist(0, Bs); then § ¢ Bs, so Q is discrete harmonic
inside Bs, and Q(w) > O for any w € V(D%) N Bs. Applying Harnack’s inequality
to Q, we get an absolute constant C; > 1 such that Q(w1) < C;Q(w») for any
wi, wy € V(D% N By. Let T3 be the first time that a path leaves B3 or hits K.
Then for any w € V(D%) N B3, X!, (t)and Y] (¢t),t=0,1,..., T3, are contained
in B4 because § < &9 < r. Note that for any path (wg, wy, ..., w,) on D? that is
contained in By,

PLY, () =w;, 1 <j<n]/PIX,, ())=w; 1 <j<n]l=Q(wy)/0(wo) <Ci.

Therefore, conditioned on Y" 5(s j+1), for each given K € @, the probability
that Y 5( Sj+1,tj+1]) gets to within distance ¢ of K but does not hit K is at most

C3((8 + g)/ r)€4 for some absolute constant Cz, C4 > 0. Note that if § > &, then
the above event cannot happen, so the probability is at most C3(2¢/r)%*. Observe
that |@ |, the cardinality of @, is at most j. Let C5 = C3 (2/r)¢. Then

PIY 41 |=Y,] < jCse™
This gives

m m—1 m—1
P[U %} =Y P[Yjr1N=Y;1< Y P[Yjr1l=Y;]
j=1

j=1 j=1
Z C5eCt < m2CseCt,

Combining this with (7.1) and (7.2), we find that
PLL(z0,7, )] < (1 = C)" +m*Cse“.
Since C, > 0, the lemma follows by taking m = |~ ¢4/, say. O
DEFINITION 7.2. Let F C C,and r, & > 0. An (F, r, €)-quasi-loop in a path w

isapaira,b € w such thata € F, |a — b| < ¢, and the subarc of w with endpoints
a and b is not contained in B(a; r).

COROLLARY 7.1. Suppose F is a compact subset of D \ {oo}, and r > 0.
Then the probability that qs contains an (F, r, €)-quasi-loop tends to 0 as ¢ — 0,
uniformly in §.
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PROOF. Let L5(F,r, ¢) denote this event. We may find rg € (0,r/3) and fi-
nitely many points z1, ..., z, € F, such that B(z;; 5r9) C D for each j € Zy 1,
and F C U;?ZI B(zj:ro/2). Itis easy to check that if € < ro/2, then Ls(F, r, &) C
U?:] £L5(zj, 10, €). The conclusion follows from Lemma 7.2. [

COROLLARY 7.2. Suppose F is a compact subset of Q\ {f(c0)}, and r > 0.
Then the probability that Bs contains an (F, r, €)-quasi-loop tends to 0 as ¢ — 0,
uniformly in §.

PROOF. This follows from the last corollary, and the facts that f maps D con-
formally onto €2, f (resp. f~!) is uniformly continuous on each compact subset
of D\ {oco} (resp. 2\ {f(0c0)}), and that S5 is a time-change of f ogs. [

For a domain £ and ¢ > 0, let afE ={z € E:dist#(z, C \ E) < ¢}. For any
& > 0 there are £1, &2 > 0 such that £ (8 D) C 0¥Q and f~'(0% Q) C 9¥D. In the
following lemmas, let Fp (resp. Fo) be a compact subset of D \ {z,, oo} [resp.

Q\{p, f(c0)}].

LEMMA 7.3. The probability that Ys or qs visits BfD after visiting Fp tends
toOase, 6 — 0.

PROOF. Since g5 is the loop-erasure of Y5, so we only need to consider Y.
By the Markov property of Y, we need to prove that the probability that Y,, visits
8fD tends to 0 as ¢,8 — 0, uniformly in w € Fp. For w € V(D?), let O(w) be
the probability that X, visits w’. Let Ps(w) be the probability that Yy, hits 37 D.
Then Q(w) P;(w) equals the probability that X, first hits BfD and then wg, which
is not bigger than sup{Q(w) : w € afD}.

Choose zg € Fp. Let wg be the vertex of D° closest to zg. As 8§ — 0,
Q(~)/Q(w8) converges to G(D, z.;-)/G(D, z.; zo) uniformly on any subset of
D bounded away from z,.. Thus sup{Q(w) :w € 8f(D)}/inf{Q(w) we Fpy—0
as 8,6 > 0.S0 P.(w) > 0as e, — 0, uniformon w € Fp. U

COROLLARY 7.3. The probability that Bs visits 8fQ after Fq tends to 0 as
g,86—>0.

LEMMA 7.4. Forany & > 0, there are M, 5o > 0 such that if § < &g, then with
probability greater than 1 — ¢, g5 stays in B(0; M) after visiting Fp.

PROOF. This follows from Lemma 7.1 and the idea in the proof of
Lemma 7.3. [J

LEMMA 7.5. Let TI(?‘Q be the first time that Bs visits Fq. For any ¢ > 0, there
are &g, 69 > 0 such that for § < &g, with probability greater than 1 — ¢, Bs satisfies
that if |Bs(11) — Bs(t2)| < eo for some t1, 1y > Tf_, then diam(Bs([t1, 12])) < &.
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PROOF. From Lemma 7.4, there are M, §; > 0 such that if § < §;, then with
probability greater than 1 — &/3, g5 stays in B(0; M) after visiting f~!(Fg), so
Bs stays in f(D N B(0; M)) after T;?Q. Let 8{3 denote this event. From Corol-
lary 7.3, there are &3, &1 > O such that if § < 8, then with probability greater
than 1 — ¢/3, Bs(t) € F := Q\ ajlsz for t > a. Let 85 denote this event. Let
Fo=F\ f(DN{|z| > M}). Then Fy is a compact subset of Q \ {f(c0)}, so
from Corollary 7.2, there is &y > 0 such that with probability greater than 1 — ¢/3,
Bs does not contain an (Fp, £/3, g9)-quasi-loop. Let 8%3 denote this event. Let
80 =251 A8, and & = &% N &5 N &S. Suppose § < §. Then P[€%] > 1 —¢. As-
sume &% occurs. Suppose t1, 1p > Tl‘fb and |Bs(t1) — Bs(t2)| < &p. Since 8{3 and 85

occur, so Bs(t1) € Fy. Since é‘g occurs, so s does not contain an (Fy, /3, 9)-
quasi-loop. Thus Bs([#1, 12]1) C B(Bs(t1); €/3), whose diameter is less than . [

THEOREM 7.1. Let a be a crosscut in H that strictly encloses 0, such that
H(x) C 2\ {p, f(c0)}. For every ¢ > 0, there is §o > 0 depending on o and ¢,
such that if § < &g, then there is a coupling of the processes Bs(t) and By(t) such
that

(7.3)  P[sup{|Bs(t) — Bo()|:1 € [0, Tu(Bs) vV Ta(B)I} <] > 1 —e&.

PROOF. Let g be a crosscut in H that strictly encloses « such that H (cg) C
Q\ {p, f(o0)}. Let dp = dist(c, ) > 0. Since Bo((0, Ty, (Bo)]) intersects o, so
if Bs and Bo are coupled, then on the event that |Bs(¢) — Bo(t)| < dp for 0 <r <
Ty (Bo), we have Bs((0, To,y (Bo)]1) & H (), which implies that T, (Bs) v To,(Bo) <
Twy (Bo). We may assume ¢ < dp. Then we suffice to prove this theorem with (7.3)
replaced by

(7.4) P[sup{|Bs(t) — Bo(t)]:1 € [0, Ty (B0)1} < &] > 1 —e.

Choose a crosscut o1 in H that strictly encloses o, such that H(«1) C 2\
{p, f(0c0)}. Suppose the theorem is not true; then there exist &g > 0 and a sequence
8, — 0, such that for each §,, there is no coupling of 85, with By such that (7.4)
holds with § = §,,. From Theorem 6.2, and by passing to a subsequence, we may
assume that for each n, there is a coupling of &s, and &p such that

(7.5) P[sup{|&s, (1) — &o(1)]:1 € [0, Ty, (o)1} = 1/2"] < 1/2".

We may assume that all &, and & are defined in the same probability space, and
(7.5) is satisfied. By discarding a null event, we have

(7.6) 185, — S0l 7, Bs) = O
Fix any t € [0, Ty, (Bo)]. Suppose F is any compact subset of H \ Bo((0, t]).
From |[|&5, — &o(?)]|; — O, we see that %Sa,, — (pf‘) uniformly on F, and F C H \

Cara

Bs, ((0, t]) for all but finitely many . Thus (H\ Bs, ((0, t])) N (H\ Bo((0, t])) —
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H\ Bo((0, £1). From Lemma 5.1, (") ™! 2% () =1 in H = ¢ (H\ Bo((0, 11)).

Cara

Thus we have H \ Bs, ((0, t]) — H \ Bo((0, ¢]) for any ¢ € [0, Ty, (Bo)]-

We may assume that B(0; ¢g) N H C H(ag). Since By is a continuous curve
started from 0, so there is b > 0 such that with probability greater than 1 — g¢/5,
Bo is defined on [0, b], and By([0, b]) C B(0; g9/4). Let 8? denote this event. If 8?
occurs, then b < Ty, (Bo). For each n € N, let ] denote the event that j, is defined
on [0, b] and B, ([0, b]) C B(0; &9/3). From (7.6) and Lemma 5.5, we have 8? -
liminf &}'. So there is N1 € N such that P[€]'] > 1 —&o/5 if n > Nj.

Leta=0b/2.1f 8? occurs, then By ((0, a]) C H(xy) C 2\ {p, f(c0)}. So there
is a nonempty compact subset F; of Q \ {p, f(co)} such that P[é’g] >1—¢9/5,
where 820 is the subevent of 8? on which By((0, a]) N F| # <. Choose another
compact subset F, of 2\ {p, f(0c0)} such that F| is contained in the interior of F>.
Let &) denote the event that fs, is defined on [0, a], and B5,((0,a]) N F> # @.

Cara

If 88 occurs, then a < Ty, (Bo), so H \ Bs,((0,a]) — H \ Bo((0,a]), and so
dist(zo, Bs, ((0, al)) — 0 for any zo € Bo((0, a]). Thus 85) C liminf ). So there
is N € N such that P[€)] > 1 — g9/5 if n > N». Note that if &) occurs, then
a> Tg’z', where Tg’z’ is the first time that B, visits F>.

From Theorem 6.2 and Lemma 7.5, there are £; € (0, &9) and N3 € N such that if
n > N3, then with probability at least 1 — &¢/5, &s, is defined on [0, Ty, (Bo)], and
if |Bs, (t2) — Bs, (t1)| < &1 for some 11, 1p > T(S;, then diam(B;s, ([t1, £21)) < €0/3.
Let &7 denote this event.

Since Bp is continuous on [a, Ty, (Bo)], dist(Bo(la, Ty, (Bo)]),R) > 0 and
Toy(Bo) < Ty, (Bo), so thereis A, h > 0 such that with probability at least 1 —&o/5,
the followings hold: Ty, (Bo) — Ty, (Bo) > A, Im Bo(¢) > h for any ¢ € [a, Ty, (Bo)],
and if 11,1 € [a, Ty, (Bo)] and |t — 1] < A, then |Bo(t1) — Bo(t2)| < €1/3. Let &4
denote this event.

Let A =hcap(H («1))/2. Then Ty, (Bo) < A. Choose N € N such that A/N <
(A ADb)/2, and define tx =a + (Ty,(Bo) —a)k/N,k=0,1,...,N. Then tp = a,
tn = Ty, (Bo) and 11 < b, tn—1 > Toy(Bo). Fix k € Zj1,ny. Since Bo(tx) € H \

Cara

Bo((0, tx—11) and H\ Bs, ((0, x—11) = H\ Bo((0, tx—11), so there is M} € N such
that Bo(t) ¢ Bs, ((0, tk—1]) when n > M,:. Since Bo(tr) is a boundary point of

Cara

H\ Bo((0, #x]) and H \ Bs, ((0, %x]) — H \ Bo((0, #]), so there is M,E € N such
that when n > M,f, there is z, € 9(H\ Bs, ((0, 1)) with |z, — Bo(tk)| < (e1/3) Ah.
If event &4 occurs, and n > M,l \Y, M,g, then z, ¢ R and z,, ¢ B((0, tx—1]), which
implies that z, = B, (sx) for some sx € (tx—1, tx]. Thus if &4 occurs and n >
M = \/,]CVZI(Mll \Y, M,?), then we have sy € (tx—1, %], k=1,2,..., N, such that
1Bs, (sx) — Bo(t)| < e1/3.

Let L = \/3:1 NjVv M and &" = ﬂ?zl 8;’ N 8? N &4. Suppose n > L. Then
P[E"] > 1 — g9. Assume &" occurs. Fix t € [0, Ty, (Bo)]. If t < b, then B, (¢),
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Bo(t) € B(0; g9/3) because 8? and &' both occurand n > N1, s0 |Bs, (1) — Bo(t)| <
€0. Now suppose t > b. Then ¢ € [b, Ty, (Bo)] C [t1,tn—-1] C [s1,sn]. Thus ¢ €
[sk, k1] forsome k € Zpy y—1;. Sincen > M, ty, tiy1 € [a, Ty, (Bo) 1, [tk — trt1] <
A, and &4 occurs, so

1Bs, (sk) — Bs, (Sk+1)| =< |Bs, (sx) — Bo(ti)| + |Bo(tx) — Bo(tx+1)1
+ 1Bo(tk+1) — Bs, (Sk+1)|
<e1/3+¢€1/3+¢1/3=¢;.

. S .
Since n > N; and &7 occurs, S0 Sk, Sk+1 > a > TF’Z’. Since n > N3, &5 occurs, and

t € [Sk, Sk+11, 80 |Bs, (1) — Bs, (sk)| < €0/3. Since t € [sk, Sk+1]1 C [tk—1, k1], SO
|t — x| < A. Since &4 occurs, so |Bo(t) — Bo(tx)| < €1/3. Thus

1Bs,, (1) — Bo()| < |Bs, (£) — Bs, (si)| + |Bs, (sk) — Bo(tk)| + |Bo(tx) — Bo(®)]
<eo/3+e1/3+¢e1/3 <e0/3+¢c0/3+¢€0/3=eo.

Thus with probability greater than 1 — &g, |Bs, (t) — Bo(t)| < g0 for 0 <t < Ty, (Bo),
which contradicts the choice of (6,). [

7.2. Global convergence. We restrict Bs to [0, Ts). Then lim;_.7; Bs(t) =
f (wg). Recall that By is defined on [0, Ty), where [0, Ty) is the maximal in-
terval on which the solution to (6.4) exists. Let 8 denote the set of continu-
ous curves 8:10, T(B8)) — QUR, for some T (B) € (0, oo], with §(0) =0 and
B() e Qfort e (0,T(B)). So T is a function taking values in (0, oo] on B that
describes the length of lifetime. Then By and S5 are B-valued random variables,
and T (Bs) = Ts, T (Bo) = To.

Let A denote the set of crosscuts « in H that strictly enclose 0, and such that
H(x) C 2\ {p, f(c0)}. For a1, oy € A, we write o] < ap or ap > «ap if «ay is
strictly enclosed by . For any f € 8 and o € 4, let T, (8) be the biggest T €
(0, T(B)] such that B(r) ¢ o for 0 <t < T'. It is clear that Ty, < Ty, if a1 < 3.
Define T = Aysq To- If B does not leave H (o) immediately after hitting o,
then T, (B) < T, (B).

Suppose « € A. For By, B2 € B, let A(B1, B) be 0if 1 = B> and 1 otherwise,
where 81 = f, means that 7 (81) = T(B2) and B1(t) = B2(t) for 0 <t < T(B1),
and define

dy (B1, B2) = A(B1, B2) Asupl{|B1(t) — Ba ()] :1 € [0, Tu (B1) V T (B2},

where the value of the sup is set to be oo if either 81(¢) or B»>(¢) is not defined at
some ¢ in the interval of the formula. Then 0 < dof < 1. Now define

dy (B1, B2)

n
=inf{ > " dy (Ve—1.v%) 170 = B1. Yo = B2, Yk € B,k € Ly y_1}, 0 GN}-
k=1
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Then d,, is a pseudo-metric on B, and dy < d&/. Fora € A, f1 € B and r > 0, let
B, (B1;r) ={B € B:dy(B, B1) <r}. Let T, denote the topology generated by d,,.
It is clear that if ) < a3 , then d < d, , s0 dy, < dg,, from which follows that

o’
Toy C Tay- Let T,F = Ny Tar-

LEMMA 7.6. Suppose a; < ap € A and dy = 1 A dist(ay, @) > 0. Suppose
B1, B2 € B, and dy,(B1, B2) < do. Then dy (B, B2) < du, (B1, B2).

PROOF. Choose d € (dw,(B1, B2),dp). Then there are yo,y1,...,yn € B
such that yo = Bi, y» = B2 and 3, dg, (vj-1,¥;) < di. For each j € Zji ny,
since d¥ (yj—1,yj) <di <1, s0

Ao, (Vi—1,vj) =sup{ly;—1(1) —y;(D]:0 <t < To, (yj—1) V Ta, (¥))}.
Let to = Ty, (B1) V Ty, (B2). Assume, for example, that 1o = T, (B1) = Ty, (0)-
We claim that 79 < Ty, (y;) for any 0 < j < n. Since 1y = Ty, (y0) < Ts, (Y0), if
the claim is not true, then there is k € Zy ;) such that 7o > Ty, (yx) and 19 < Ty, (v;)
forO<j<k—1.Lett; =Ty (y).Sot; €0, Ty, (yj)], 0 < j < k. Then we have

k

k

do > d > Zd&g(yj—l, Vi) = Z IATyj—1(t) =y @) = 1A Jyo(t) — ye(t)].
j=1 j=1

Since 1y is the first # such that 81 (¢) € o1, and t; < 1, so yp(t1) = B1(#1) is enclosed

by oq. Since )/k(ll) € ap and ] < a2, SO |)/()(l1) — yk(t1)| > diSt(Oq,O{z). This

implies that 1 A |yo(#1) — yx(t1)| > dp, which is a contradiction. So the claim is

justified.
Thus for any 7 € [0, 1o], we have ¢ € [0, Ty, (y;)] forany 0 < j <n, so

1B1() — B2 < D lyj—1(0) —y; (DI < D _dy, (vj-1. ;) <di.
j=1 j=1
Since this is true for any ¢ € [0, 9] = [0, Ty, (B1) V Ty, (B2)] and dy € (dw, (B1,
B2), do), so dy, (B1, B2) < du, (1, B2). O

LEMMA 7.7. {Ta‘t < Ty} € Ta‘ffor any a1, o) € A.

PROOF. Fix any o/ € +4 such that o] > «y. There is o] € A with o] > o] >
a1. Suppose B; € {T;T < Ty,}. Then there is a > 0 such that a < Ta’l(ﬂl) A
Ty,(B1) and Bi(a) ¢ H(a1). Let dy = 1 A dist(B1(a), H(a1)) A dist(a], af) A
dist(B1([0,a]),a2) > 0. Suppose B € Ba;/(lgl; dg). From Lemma 7.6,
a’(;/l (B2, B1) < dp. Since dy < 1, s0 |B2(t) — B1(t)| <dy for0 <t < Ta; (B1). Since
a< Tai (B1), 50 |B2(t) — B1(t)| < dp for any ¢ € [0, a]. Since B1([0, a]) is strictly
enclosed by a», and dy < dist(B81([0, a]), @2), so B2([0, a]) is also strictly en-
closed by a2, which implies that a < Ty, (B2). Since |B2(a) — Bi(a)| < dp and
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do < dist(B1(a), H(ay)), so Ba(a) ¢ H(w1), which implies that T;}‘(,Bz) < a. Thus
T-(B2) < Tay(B2), that is, B € {T,} < Ty,}. So B,y (B1; do) C {T,} < Ty,). Thus
{T,} < Tw,} € Ty Since af >y is chosen arbitrarily, so (T} < To,} € 7,7 O

LEMMA 7.8.  Suppose a1, a € A and B € 7,7 Then BN {T,| < Ty} € Tq,.

PrROOF. Fix B € BN {T(;q < Ty, }. Then there is a > 0 such that a < Ty, (B1)
and B1(a) ¢ H(a1). We may choose o} > o and &, < a2 such that 1 (a) ¢ H ()
and B1([0, a]) is strictly enclosed by aé. Since B € TO,T C Taﬁ’ so there is dy > 0
such that B“i (B1;do) C B. Let di =1 A dy A dist(B1(a), H(a))) A dist(e), a2).
Suppose B2 € By, (B1;d1). From Lemma 7.6, a’(j, (B2, B1) < dy. Since d < 1,

2

so |Ba(t) — B1(t)] <dy for 0 <t < Taé(ﬂl). Since a < Ta/z(ﬁl)’ S0 |Ba(t) —
B1(1)| < d; for 0 <t <a. Since di <dist(B1(a), H(c})), so fa(a) ¢ H(x}). Thus
TO/1 (B2) Vv Tai (B1) < a.So we have

dy; (B2, B1) < dg (B2, B1) < sup{IBa(t) — B1(D)]:0 <t <a} <di <do.

Thus B, € Bw/1 (B1;do) C B. Since B1([0, a]) is strictly enclosed by a), o) < a2,
and |By(t) — B1(1)]| < di < dist(oc’z, ap) for 0 <t < a, so B([0, a)) is strictly en-
closed by aa. Thus T,/ (82) < Ty (B2) <a < To,(B2), thatis, B € {T,} <Ty).So
By, (B1;d1) C BN{T,| < Ty,}. Thus BN(T,} < Ty} € Toy. O

COROLLARY 7.4. (T.\ < Ty} € Ty, for any a1, a3 € 4.

Let us and 1 be the distribution of 85 and By, respectively. From Theorem 7.1,
for any o € A, us — o weakly w.r.t. dy, as § — 0. Suppose A is a nonempty
finite subset of A. Let dq = \/,c4 do and T4 be the topology generated by d4. So
Ta=VaeaTa.For preBandr > 0,let B4(B1;7r) :={BeB:da(B,.p1) <r}=
NacaBB1: 7). Let BT :={\/yea TS < T}, that is, the set of § € 8B that are not
contained in (J,c4 H ().

LEMMA 7.9. (JB:{, dy) is separable.

PROOF. For r € Q., let C, denote the set of continuous curves y : [0, r] —
Q UR with y(0) =0 and y(t) € Q for t € (0,r]. Then G, is a subset of
C([0,r],C). Let d, be the restriction of | - |, to C., that is, d.(y1,y2) =
sup{|y1(t) —y2(¢)|:0 <t < r}. Then (C;, d) is a subspace of (C([0, r], C), || - [I),
sois separable. Let {y, , : n € N} bedense in (C,, d,). Foreachr € Q-¢andn € N,
we choose B,., € B such that T'(B,.,) > r and B,.,,(t) = ¥, (¢) for 0 <t <r. Then
{Br.n:r € Q-0,n € N} is countable.

Suppose B1 € B, and dy > 0. There is ro € Q¢ such that \/,ca T, (B1) <
ro < T(B1). For each «a € A, there is t, € (0, rg) such that 8;(z,) ¢ H(x). Let
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di = Naea dist(B1(ty), H(a)) A dy > 0. From the denseness of {y;, , : n € N} in
(Cry. dyy). we have ng € N such that |Bry.uy (1) — B1(D)] = [Vrguno (1) — BL(1)] < di
for 0 <t <ro. Fix a € A. Since |By.n,(ta) — B1(te)| < di < dist(B1(ty), H (),
SO Bro.no(ta) € H(a). Thus Ty, (Bryn) <70 < T (Bry.ng)- Since this is true for any
a € A, 50 Bryn, € B Since

do(Bro.ngs B1) < dg (Bro.ng> B1) < sup{|Bro.ng (1) — B1(1)1:0 <1 <ro} <di <dy
for any o € A, 50 da(Bry.ng> B1) < do. Thus {B,,} N BF is densein (B1,ds). O

THEOREM 7.2. s — o weakly w.rt. da, as § — 0.

PROOF. Suppose A = {ay,...,a,}. The case n = 1 follows from The-
orem 7.1. Now suppose n > 2. We suffice to show that for any G € Ty,
liminfs_o s (G) = no(G).

We may find polygonal paths a? € A, 1 < j <n, such that oz(; > o for each

J, and such that for j # k, any line segment on Ol? is not parallel to any line
segment on a,?. Fix j € Z1 - List the vertices on a? in the counterclockwise
order as zg,z?,...,zm We may find z) > 0>z}, and z{ € Q, 1 <k <m-—1,

and let a U (zk 1,zk] U (zm l,zm) such that A > oz/ > a [z,i_l,z,i]
is parallel to [zk_l,zk] for 1 <k <m, and [zl Zl] N [zk,zk] o] for 1<l <
k <m. For r € [0, 1], let zx(r) = z,? + r(zk — zk) 0<k=<m,andlet oj(r) =
Ukmz_ll (2k=11), 2k (MU (Z—1(r), Zm(r)). Then o (r) € A for all r € [0, 1], and
aj(s) <aj(r)if0<s <r <1.Andforanys € [0, 1),if a;(s) < a € 4, then there
isr € (s, 1) such that j (r) < . Thus for any g e B, we have that r — Ty, @ (B)
is increasing on [0, 1], and for any s € [0, 1), T (s) = lim, Ta i(r)> SO there are
at most countably many r € [0, 1] such that T (r)(,B) > Tq; ) (B). So there is

j € (0, 1) such that uo({T > T(,l](r y)) =0. Forj =1,...,k,let a] =a;(rj),
then aj < a , and ,uo({T >T 2}) =

Suppose j #k € Z[l,n]- Smce any line segment on ajz-

is not parallel to any
line segment on a,%, $O Sk = ajz- N a,% is a finite set. If for some j # k and
BeB, T z(,B) =T 2(,3) < T(B), then B must pass through S; ;. From The-
orem 3. 1(11) we have T 2(;30), T z(ﬂo) < T(Bo). Thus (T, z(ﬂo) =T z(ﬂo)} C

{Bo passes through S; 1 }. From the property of chordal SLEZ, for any zg € €2, the
probability that B passes through 20 is 0, which implies P[ By passes through S x| =
0, so uo({T, 2 =T 2}) =

For j GZ[M],letl =Z1,n1\{j} and B; —{\/ke[ T < Tz}—ﬂkel {Tk <
T2}, which belongs to 7> from Corollary 7.4. Then Bl, ..., By are mutually
] ./
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disjoint. Let N = 8 \ U;f’zl Bj. Then

N Jri=Tau U (Ta=Ta

1<j=n % I<j<k=n
Thus wo(N) =0. Fix j € Z{1 n)- IfBEJO, ,thenBEJ 2, so BNB; €T, o2 If Be
Ty forsome k € I, then B € 7 "+ . From Lemma 7.8, we have B N {T <T 2} €

T 2 Thus BN B; —Bﬁ{TJr < Tz}ﬂB eT 2 Let 7; denote the collectlon of
O
sets B C 8 such that BN B; € T, a2 Then T7; 1s a topology. We have proved that
T C Tj forany k € Zy ). Thus JA =V Joa; CTj.
Suppose G € T4. Let G; =G N Bj, 1 < j <n. For each j € Zy ), since G €
TAaCT;j,s0G;=GNB; €T, o2 Since s — o w.rt. d, 2, so liminfs o us (G ;) >

1o(G ). Since G is the dlSJOlnt union of G N N and GJ, 1 <j<n,and uo(GN
N) =0, so

mmﬁm«b>§)mmMﬂG)>2)m@)-ud®
j=1

Since this is true for any G € T4, so we have us — po weakly wrt. dga,
asd— 0. O

We may find a sequence {&,:n € N} in 4 such that for any o € «, there is
n € N such that &, > «. For n € N, let T, = \/" . Then for any B € B,
vaW—wMﬂmﬁmmmMWmﬂwdmvlﬂm
T (Bo) = Tp. From the property of chordal SLE,, By does not visit f(oco) a.s.,
so /oo T (Bo) =T as.

THEOREM 7.3. Foranyn € N and ¢ > 0, there is 5o > 0 such that if § < &g,
then there is a coupling of Bs and Bo such that with probability greater than 1 — ¢,
1Bs(1) — Bo()| < & for 1 € [0, T,(Bo)].

PROOF. For each 1 < j <n, choose a; > &j. Let A ={«ay,...,a,}. From
Theorem 3.1(ii), we have By € Bf. As § — 0, wl — z,, so f(wd) — p ¢
Ugea H (). There is §; > 0, such that if § < §;, then f(wf) ¢ Ugen H(a), so
Bs € SBX. Thus o and s are supported by O‘BX when é < §;. From Theorem 7.2,
us — o weakly as § — 0, w.r.t. d4. From Lemma 7.9, (;BX, dy) is separable. So
from the coupling theorem in [3], there is 8¢ € (0, §1) such that if § < §¢, there is a
coupling of Bs and B¢ such that

(1.7) P[a’A(ﬂg,ﬁo) < /\dist(aj,&j)/\l/\e:|> 1 —e.

j=1
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Assume da(Bs, Bo) < /\;?:1 dist(etj, ;) A1 Ae. Then foreach j € {1,...,n},
we have do,j (Bs, Bo) < dist(aj, ;) A1 A e, which implies dgj (Bs,Bo) <1 Ae
from Lemma 7.6, so |Bs(t) — Bo(t)| <1 AeforO<t < T&j (Bs) Vv T(;,j (Bo). Since
Tw(Bo) = \V'j_1 Ta; (Bo), so |Bs(t) — Po(1)| < e for t € [0, T, (Bo)]. Tl

THEOREM 7.4. (i) Forany o € A, n € N and & > 0, there is 69 > 0 such that
if § < 8o, then there is a coupling of Bs and By such that with probability greater
than 1 — ¢, | f~1(Bs(1)) — f~1(Bo(1))| < & for t € [T (Bo). Tn(Bo)].

(1) Suppose 04 is degenerate. Then for any n € N and ¢ > 0, there is 69 > 0
such that if 6 < ¢, then there is a coupling of Bs and By such that with probability
greater than 1 — e, | f~' (Bs (1) — f = (Bo()| < & for t € (0, T (Bo)].

PROOF. (i) Since Bo([Tx(Bo), T (Bo)]) is a compact subset of 2 \ {f(0c0)},
on which f~! is continuous in Euclidean metric, so there is g9 > 0 such that
P[&] > 1 — &/2, where & is the event that | f~!(z2) — f~!(z1)| < € for any
71 € Bo(ITx(Bo), T (Bo)]) and zo € Q with |zo — z1| < &9. From Theorem 7.3
there is §o > O such that if § < &g, then Bs and Bo can be coupled such that
with probability greater than 1 — /2, |Bs(¢t) — Bo(¢)| < &g for t € [0, T,,(Bo)].
Let 83 denote this event. Let & = & N 83 Suppose 8 < 8y. Then P[&%] >
1 — &. Assume &° occurs. Then for 7 € [T (Bo), T, (Bo)], |Bs(t) — Bo(t)| < o,
so | f71(Bs) — f (Bo))] <.

(ii) Suppose 0 is degenerate. From [13], £ ~! extends continuously to € U {0}.
Since Bo([0, T,(Bop)]) is a compact subset of (2 \ {f(c0)}) U {0}, so the above
argument still works here. [

Let 7o = f ' o Bo and 75 = f~! o Bs. Then jj is a time-change of yp, and 7 is
a time-change of g;.

THEOREM 7.5.  lim;_, 5, yo(¢) = lim;— 7, Yo(t) = z. almost surely.

PROOF. Let L be the set of spherical subsequential limits of yy(¢) as t — Tp.
We first claim that L N 3% D = @ a.s. If the claim is not true, then there is gy > 0
such that P[L N 3% D # &1 > gg. Since Yo ([T1(Bo), T2(Bo)]) C D \ {z., 00}, so for
every ¢ > 0 there is a compact subset F of D\ {z., oo} such that P[Ey] > 1 —¢&¢/3,
where & is the event that yo([T1(Bo), T2(Bo)]) intersects Fi. Let F, be a com-
pact subset of D \ {z., o0} such that F; is contained in the interior of F>. Let
do = dist(Fy, 0F») > 0. From Lemma 7.3, there are 1, §; > 0 such that if § < §,
then the probability that ys visits SZD after F, is smaller than &9/3. Since
Pl ([T2(Bo), Tp)) N aj]/zD # @] > ¢o and To = \/;2 | T,(Bo) ass., so there is
no € N such that P[&;] > &9, where & is the event that yo([72(Bo), Tr,(Bo)]) N
82 /2D # . Note that 71 = T,. From Theorem 7.4(i), there are 6, < §; and
a coupling of ys, with y such that with probability greater than 1 — &¢/3,
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lys, (1) — vo()| < (e1/4) AN do for t € [T1(Bo), Tny(Bo)]. Let & denote this event.
Since 8, < &1, so the probability that y5, does not visit Bfl D after F, is greater

than 1 — gp/3. Let &3 denote this event. Let & = ﬂi':o €;. Then P[€] > 0. So &
is nonempty. Assume & occurs. Since &y occurs, so there is fy € [T1(Bo), T>(Bo)]
such that yo(#p) € F1. Since &, occurs, so |ys, (to) — yo(to)| < do, which implies
that ys, (fo) € F>. Since &; occurs, there is 11 € [T2(Bo), T, (Bo)] such that yy (1) €
8?1 /2D. Since &, occurs, SO dist#()752(tl), Yo(t1)) < 2dist(ys, (t1) — yo(t1)) < é&1/2,
which implies that ys,(11) € 9f D. Since 1o < T>(Bo) < 11, s0 s, visits 9f D
after F,, which means that &; cannot occur. So we get a contradiction. Thus
LN¥*D =0 as.

Second, we claim that diam#(L) = 0 a.s. If the claim is not true, then from
the last paragraph we have P[diam*(L) > 0, L C D] > 0. Then there are zg €
D \ {oco} and rg, &9 > 0 such that B(zg; 4r9) C D and the probability that L N
B(zo;r0/2) # @ and L \ B(zg; 4r9) # < is greater than gy. Let & denote this
event. From Corollary 7.1, there is &; > 0 such that with probability greater
than 1 — ¢9/2, ys does not contain a (B(zo; o), ro, £1)-quasi-loop. For n € N,
let 8(’)1 denote the event that there are t; < 19 < tp < T,,(Bo) with y(t1), Yo(f2) €
B(z0;r0/2), [v0(t1) — yo(12)| < &1/3, and yo(10) ¢ B(zo; 3ro). If & occurs, then
since Tp = \/3‘;1 T,(Bo) a.s., and Bo(t) has subsequential limits, as t — T, inside
B(zo; r0/2) and outside B(zo; 4rp), so some &j, n € N, must occur. Thus & C

o &) . Since P[&y] > &¢, and (8,9) is increasing, so there is ng € N such that
P[é’go] > g9. Choose a € +4 such that f_l(H(oz)) N B(zg; 4rg) = . From Theo-
rem 7.4, there are 5o > 0 and a coupling of ys, and yy such that with probability
greater than 1 — &0/2, [ys, () — yo()| < (ro/2) A (e1/3) for t € [Ty (Bo), Ty (Bo)]-
Let & denote this event. Let & denote the event that ys, does not contain a
(B(zo; ro), ro, €1)-quasi-loop. Then P[&>] > 1 — g¢9/2 from the choice of 1. Let
& = 86’0 N & N &. Then P[€] > 0. So & is nonempty. Assume & occurs. Since
86’0 occurs, so there are 1| < fo < ta < T, (Bo) With yp(t1), Yo(t2) € B(z0;10/2),
lvo(t1) — yo(2)| < €1/3, and yo(10) & B(zo; 3ro). For j = 1,2, since y(t;) €
B(zo; r0/2), so Bo(t;) ¢ H(a), which implies that #; > T, (Bp). Since &; occurs,
80 |V, (1) — Yo(tj)] < (ro/2) A(e1/3), j = 1,2, and |ys,(t0) — yo(t0)| < ro, which
implies that ys, (t1) € B(zo; r0), [Vs, (t1) — Vs, (2)| < 1 and ys, (t0) & B(z0; 2ro), so
[Vs0(t0) — Vs, (t1)| = ro. So we find a (B(zo; r0), o, €1)-quasi-loop on ys,, which
contradicts &. So P[diam” (L) > 0] = 0.

Thus almost surely L is a single point in D, which means that lim,_, 7, o (¢)
exists in the spherical metric and lies in D. Now we claim that lim,_, 7, y0(7) ¢
10([0, To)) a.s. If the claim is not true, then there exist zg € D and rg > 0 such
that with a positive probability, we have lim;_, 1, Yo (¢) € y0([0, Tp)) N B(zo; r0/2)
and ([0, Tp))) & B(zo; 4rp), so we can use an argument that is similar to the last
paragraph to find a contradiction. Note that almost surely 5 does not visit co.
Thus almost surely we may extend yp to be a simple continuous curve defined
on [0, Tp] such that yo(Tp) € D \ {00}. If P[yo(Tp) # z.] > O, then there is ng € N
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such that the probability that yo ([0, Tp]) is enclosed by f -1 (ctn,) is positive, which
contradicts Theorem 3.1(ii). Thus P[y(Tp) = z.] = 1. Since yy is a time-change
of yo, so lim;, 5 yo(¢) = lim; 1, Yo (¢) = ze a.s. [

PROOF OF THEOREM 4.2. (i) Choose r > 0 such that B := B(z.;r) C D.
From Corollary 7.1, there is &g € (0, €) such that the probability that ys5 does not
contain a (B, €/6, gg9)-quasi-loop is greater than 1 — ¢/3. Let 83 denote this event.
There is §; such that if § < §1, then |w;S — Ze| < r A (g9/3). From Theorem 7.5,
we have lim;_, 7, yo(f) = z, a.s. Since Ty = \/;—; Tn(Bo) a.s., so there is ng € N
such that with probability greater than 1 — ¢/3, the diameter of yo([75,(Bo), To))
is less than go/3. Let & denote this event. Choose « € +4 such that ]“1 (H(a)) C
U. Then T,(Bo) < Ty (yp). From Theorem 7.4(i), there is 69 < §; such that if
8 < do, then there is a coupling of ys and yp such that with probability greater
than 1 —¢/3, |ys5,(t) — yo(t)| < &o/3 for t € [Ty (o), Ty (Bo)]. Let & denote this
event. Let §° = 88 N & N &. Suppose & < §y. Then P[&%] > 1 — &. Assume &°
occurs. Let T, = Ty, (Bo). Then |ys(t) — yo(t)| < e0/3 < ¢/3 for Ty (yp) <t < Te.
And 175(T) — wi| < 175(T) — 70(T)| + 170(T2) — zel + |ze — wl| < &o. Since
vs(Ts) = w‘j € B and y; does not contain a (B, £/6, &g9)-quasi-loop, so the diameter
of ys([Te, Ts)) is less than € /3. Choose u that maps [Ty (y0), Ts) onto [Ty (y0), To)
such that u(t) =t for Ty (yp) <t < T,; then |ys @) — 10(t)| < & for Ty (yo) <
t < Tp. Since ys and yg are time-changes of gs and yy, respectively, so the proof
of (i) is finished.

(ii) If 04 is degenerate, then we use Theorem 7.4(ii) in the above proof. [J

8. Other kinds of targets.

8.1. When the target is a prime end. Now we consider the case that the target
is a prime end. We use the notation and boundary conditions given in Section 4.2
for the discrete LERW aimed at a prime end w,. Suppose f maps D conformally
onto an almost H domain €2 such that f(04) =0.

We will go through the propositions in Sections 6 and 7, and explain how they
can be modified to prove Theorem 4.2 in this case. We only consider D° for § € M,
so the words “§ < *” should be replaced by “6 € M and § < *,” and the words
“8 — 0” should be replaced by “6 — 0 along M.”

Let Xf and P%(t,x,-) be notation in the case that the target is a prime end
defined in Sections 3.4 and 4.1. Then all lemmas in Section 6.1 still hold. For
Proposition 6.1, redefine Py to be the generalized Poisson kernel in Dx with the
pole at Tip(X), normalized by d, Px(w.) = 1; let hx be defined on V(D?) that
satisfies hx = 0 on Vy(D?%) U Set(X) \ {Tip(X)}, Apshx =0on Vi (D% \ Set(X),
and A pshx(w,.) = 1. Proposition 6.1 should be restated as Proposition 8.1 below,
which together with Proposition 2.1 implies Proposition 6.2, and then all theorems
in Section 6.2.
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PROPOSITION 8.1. For any ¢ > 0, there is 69 > 0 such that if § € M and
8 < 8o, then for any X € L%, and any w € V(D% N (D \ H(p2)), we have |5 -
hx(w) — Px(w)| <e.

PROOF. Fix zg € D\ H(p) and let wg be a vertex on D? that is closest to
zo0. For 8§ € M and X € L%, let gg((w) = hX(w)/hX(wg). Then from Proposi-
tion 6.1, gg)( converges to the generalized Poisson kernel Pg in Dy with the pole
at Tip(X), normalized by P)? (zo) = 1, uniformly on D \ H(p3) for any crosscut
p3 in D such that H(p1) C H(p3) and p1 N p3 = &. Since dD is flat near w,,
and gg( vanishes on d D near w,, SO gg)( can be naturally extended to be a discrete
harmonic function on 8Z2 N B(w,; ry) for some ry > 0. We may also extend P,?
to be a harmonic function defined in B(w,; ro) by the Schwarz reflection prin-
ciple. Then we can prove that the discrete partial derivatives of gg)( approximate
the corresponding partial derivatives of P}(} locally uniformly in B(w,; ro). Espe-
cially, we have (gg)((w‘g) — gOX(we))/(S — anPg(we) as 6 — 0, because w‘g is the
unique adjacent vertex of w, in D?. Note that A s gg)( (w,) = g%(wﬁ) — gg)((we).
From the definition of g%, we have Apshx(w,)/(8 - hx(wd)) — dnPp(we) as
6 — 0. Since Apshx(w,)=1,s0 1/( - hx(wg)) — 8,,P§(we) as § — 0. Thus
8- hx(w) = gx(w) - 8§ - hx(w)) converges to Py (w)/dnPy(we) = Px(w) uni-
formly on D\ H(pp). O

In Section 7, redefine X, to be a random walk on D? started from w, stopped
when it hits Vj (D‘S), and Y,, to be that X, conditioned to hit Va(D‘S) at w,. Then
gs is the loop-erasure of Ys. Lemma 7.2 still holds. For the proof, we argue on
Yy, instead of the reversal path. Then Corollary 7.1 and Corollary 7.2 immediately
follow. Let Fp (resp. Fg) be a compact subset of D \ {oo} [resp. 2\ {f(0c0)}].
Lemma 7.4 still holds. Lemma 7.3, Corollary 7.3 and Lemma 7.5 should be re-
stated as Lemma 8.1, Corollary 8.1 and Lemma 8.2, respectively, whose proofs
are similar. Then we have Theorem 7.1.

LEMMA 8.1. Suppose U, is a neighborhood of w, in D. Then the probability
that Ys or gs visits (D\ U,) N afD after visiting Fp tendstoOase — Q0and§ — 0
along M.

COROLLARY 8.1. Suppose U, is a neighborhood of f(w.) in Q2. Then the
probability that Bs visits (2\ U,) N an after visiting Fq tends to 0 as ¢ — 0 and
6 — 0 along M.

LEMMA 8.2.  Suppose U, is a neighborhood of f(w,) in Q2. Let T,?Q (resp. Te‘s)
be the first time By hits Fq (resp. U,). For any & > 0, there are &g, 8¢ > 0 such that
for & < 8o, with probability greater than 1 — ¢, Bs satisfies that if | Bs(t1) — Bs (t2)| <

&g for some t,tr € [TI‘EQ, Te‘g], then diam(B;s ([t1, 12])) < &.
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In Section 7.2, keep 8B unchanged, but redefine + to be the set of crosscuts « in
H such that « strictly encloses 0, H («) C 2\ {f(00)}, and H («) is bounded away
from f(we). Then Theorems 7.2, 7.3 and 7.4 still hold. Using Lemma 8.3 below,
we can prove Theorem 7.5 with z, replaced by w,, and finally Theorem 4.2.

LEMMA 8.3. Forr > 0, the probability that g5 visits D \ B(w,; r) after D N
B(w,; ¢) tends to 0 as ¢ — 0 and 6 — 0 along M.

PROOF. Let Y, be that X, conditioned to leave D through [§, 0]. Let g5 =
LE(Y) ) Then gj has the same distribution as the reversal of gs. Let Py be the

probablhty that Y w? visits D N B(w,; ¢) after D \ B(w,; r). We suffice to prove

that Py tends to O ase— 0and § — 0 along M.

We may assume that ¢ < r < r./2, where r, > 0 satisfies B(w,;r.) N D =
(we 4+ aH) N B(we; re) for some a € {1, +i}. Let Q(w) be the probabil-
ity that X,, leaves D through [4,0]. Let Px be the probability that Xwa Vis-
its D N B(w,; ¢) after D \ B(w,; r), and leaves D through [§, 0]. Then Py =
PX/Q(w‘S) Let Q,(w) be the probability that X,, reaches D \ B(w,; r). Then
Px < Q,(w‘s) sup{Q(w) : w € B(w,; &) N D}. Choose zg € D and rg > 0 such that
B :=B(z0; r0) C D. Let Qp(w) be the probability that X,, visits B before dD.
Then Q(w?) > Qp(w?)inf{Q(w): w € B}. Thus

_ Qr(w)) sup{Q(w):w € B(w,: ) N D}
- QB(w‘S) inf{Q(w):w € B}

Let wg be a vertex of D closest to zg. As § — 0 along M, Q(-)/Q(wg) con-
verges to the generalized Poisson kernel P in D with the pole at 0., normalized
by P(zp) = 1, uniformly on any subset of D that is bounded away from 0. Thus

(8.2) sup{Q(w):w € B(w,e; &) N D}/ inf{Q(w):w e B} -0

as ¢ —> 0 and § — 0 along M.

As § — 0 along M, Qp converges to H(D \ B,dB;-) in D\ B. Let U =
DNB(we;r) and p ={|z — w.| =r} N D. As § — 0 along M, Q, converges to
H(U, p;-) in U. Since dD is flat near w,, so Q, and Qp extend to be a discrete
harmonic function on 8Z2 N (D U B(w,; r)). So the discrete partial derivatives of
QOp and Q, converge to the continuous partial derivatives of H(D \ B, dB; -) and
H(U, p; -), respectively, in DUB(w,; r). Thus QB(wg)/cS — onH(D\ B, 0B; w,)
and Qr(wg)/é — dnH (U, p; we) as 6 — 0 along M. So we have

(8.3) 0r(w)/ QW) — WwHU, p; we)/0nH (D \ B, IB; w,)
as 6 — 0 along M. The conclusion follows from (8.1), (8.2) and (8.3). [

8.1) Py

In the proof of Lemma 8.3, we consider the LERW curve g3, which has the same
distribution as the reversal of g;. If 9 D is flat near O, then we have the convergence
of g5 to a continuous LERW(D; w, — 0) trace. From the conformal invariance
of continuous LERW, we have the reversibility of continuous LERW.
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COROLLARY 8.2. Suppose wi # wj are two prime ends of D. For j =1, 2,
suppose y;j(t), 0 <t < S;, is an LERW(D; w; — w3_;) trace. Then there is a
random continuous decreasing function u, that maps (0, Sy) onto (0, S2) such that
(y10 ur_l(t), 0 <t < 85) has the same distribution as (y2(t),0 <t < S»).

8.2. When the target is a side arc. Now we consider the case that the target
is a side arc. We use the notation and boundary conditions given in Section 4.2
for the discrete LERW aimed at a side arc /,. Let f map D conformally onto an
almost H domain €2 such that f(04) =0.

We will modify the propositions in Sections 6 and 7 to prove Theorem 4.2 in
this case. Recall that if I, is not a whole side, then we only consider D? ford e M,
so the words “6 < * should be replaced by “6 € M and § < *,” and the words
“8 — 07 should be replaced by “5§ — 0 along M.’ If I, is a whole side, we may
consider D° for any small §. For consistency, let M = (0, 00) in this case.

Let X,E and P& (¢, x, ) be notation in the case that the target is a side arc defined
in Sections 3.4 and 4.1. Then all lemmas in Section 6.1 still hold. For Proposi-
tion 6.1, redefine Py to be the generalized Poisson kernel in Dy with the pole at
Tip(X), normalized by [ I, 9nPx(2)ds(z) = 1; let hx be defined on V(D?) that
satisfies 1y =0 on Vy(D®) USet(X) \ {Tip(X)}, A pshx =0 on V;(D%) \ Set(X),
and ), ;s Apshx(w) = 1. Then Proposition 6.1 should be restated as Proposi-
tion 8.2, which together with Proposition 2.1 implies Proposition 6.2, and then all
theorems in Section 6.2.

PROPOSITION 8.2. For any ¢ > 0, there is 69 > 0 such that if § € M and
8 < 8¢, then for any X € L9, and any w € V(D%)N (D\ H(p2)),we have |hx(w) —
Px(w)| <é€.

PROOF. Let zgp, wg, hg)( and Pg be as in the proof of Proposition 8.1.
Then we have the convergence of h(})( to Pg. Now we suffice to prove that
S wers ApshS (w) — I dnPR(z)ds(z) as § — 0 along M.

We first consider the case that I, is a whole side. Then we may choose a polyg-
onal Jordan curve o in D that disconnects I, from other sides of D, such that o is
disjoint from p,, and every line segment on o is parallel to either the x or y axis.
Let U (o) denote the doubly connected domain bounded by I, and o. Since P)(} is
bounded and harmonic in U (o), so we have

(8.4) /1 80 PL(2) ds(z) = — / on P(2) ds(2),

where n is the inward unit normal vector on the boundary of U (o).
Suppose § is smaller than the Euclidean distance from o to p; and any side of
D. Let G be the subgraph of D® spanned by the set of edges in D? that is incident
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to at least one vertex in U (¢). Let A be the set of vertices of G on I, and let B be
the set of vertices of G in D \ U (¢). From Lemma 6.6, we have

(8.5) Yo Apsh§wy=— Y (@) —r @),

well (w,w)ePs

where 2, = {(w, w):w e V(D®)NU (o), w' € Vi(D*)\U(o), w ~w'}.
Since the discrete partial derivatives of h(}( converge to the corresponding partial
derivatives of Pg uniformly on o, so as § — 0, we have

> )~ b)) > [ PR ds ).

(w,w")ePs

This together with (8.4) and (8.5) finishes the proof of the first case.

The second case is that I, is not a whole side. We assume that 9 D is flat near the
two ends zé and zg of 1. We may choose a polygonal crosscut o in D composed
of line segments parallel to x or y axis, such that its two ends approach to zi
and zg, respectively, and o disconnects I, from dD \ I,. Since Pg is bounded
and harmonic in H (¢), so fl(’ anPg(z) ds(z)=— /[, anP)?(z) ds(z), where n is the
inward unit normal vector on the boundary of H (o). An argument similar to the
last paragraph gives

Yo Apsh§wy=— Y (% @w) —r @),

weld (w,w)ePs

where 2, = {(w, w):w e V(DN H(o),w' € Vi(D®)\ H(c),w~ w'}. So we
suffice to show that

(8.6) > (W w) — hf ")) — / PR (z)ds(z)

(w,w)ePy

as § — 0 along M. To prove this, we use the flat boundary conditions at wel, and wg
to extend hgf and P)(} harmonically across 0 D near w ; and wg Since o is compact
in the extended domain: D unions two balls centered at w! and w2, respectively,
so we get the uniform convergence of the discrete partial derivatives of hg’( to the
corresponding partial derivatives of P)? on o. Then we are done. [

In Section 7, redefine X, to be a random walk on D? started from w, stopped
when it hits Va(Da), and Y, to be that X, conditioned to hit Vjy (D‘S) at [ f Then
gs is the loop-erasure of Ys. Lemma 7.2 still holds, and Corollaries 7.1 and 7.2
immediately follow from this lemma. Let Fp (resp. Fq) be a compact subset of D\
{oo} [resp. 2\ { f (c0)}]. Lemma 7.4 still holds, and Lemma 8.1, Corollary 8.1, and
Lemma 8.2 hold with w, replaced by I.. Using this, we can obtain Theorem 7.1.

In Section 7.2, keep 8B unchanged, but redefine 4 to be the set of crosscuts «
in H that strictly encloses 0, such that H(«) C 2\ {f(c0)} and H («) is bounded
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away from f(I,). Then we have Theorems 7.2, 7.3 and 7.4. Let 5 = f ' o Bs and
70 = f~! o Bo. Using Lemma 8.4 and Theorem 8.1 below, we can prove Theo-
rem 4.2 in this case.

LEMMA 8.4. Let TgD be the first time that ys visits Fp. Fora > 0, let 9,D =
{z € D:dist(z, D) < a}. Forany € € (0, 1), there are &g, 8o > 0 such that if 5 € M
and § < 8o, then with probability greater than 1 — ¢, if ys(ty) € 3¢, D for some
to > T}, then 75(t) € B(75(t0), €) for t = fo.

PROOF. Since ;s is a time-change of gs, which is the loop-erasure of Y5, so we
suffice to prove this lemma with Y replacing ys. We first consider the case that I, is
not a whole side. Choose r > O such that D ﬂB(we ,3r) = (wl +a’H) ﬂB(we ,3r)
for j = 1,2, where al,a’ e {£1, £i}, and B(w 3r) is disjoint from B(w 3r).

Let B/ = B(we; ryand o/ = DNJB/, j=1,2. Let Q(w) be the probability that
X, hits 0D at If . Let Q,(w) be the probability that X, visits B; U B, before
leaving D. Then Q and Q, converge to H(D, I,;-) and H(D \ (BlUB?),cluU
o2, respectively, uniformly on Fp. Thus Q,(w)/Q(w) - 0asr — 0 and § —
0 along M, uniformly in w € Fp. Note that O, (w)/Q(w) is the probability that
Y,, visits B! U B%. From the Markov property of Y, the probability that Y; visits
B! U B? after Fp tends to 0 as r — 0 and § — 0 along M. So we may choose
r, 8. > 0 such that P[SS] <¢e/3if§ € M and § < §,., where 83 is the event that Y
visits B! U B? after Fp. ) .

For j =1, 2, every point on [wl —2a'r, w) +2a'r] corresponds to a prime end
of D. Since wi and wZ are end points of I,, so I, N (wl — 2a’r,w} +2a/r] =
[w), w) + 2¢/alr] for some ¢/ € {£1}, j=1,2. For j = 1,2, let 7z =w] —
clalr; then 7/ is the end point of o/ that does not lie on /... For j =1, 2, choose
Gj #* 6’2 € o/ such that 91 is closer to z/ than 92, and let pk denote the open arc
on o/ bounded by z/ and Gk , k=1,2. We may find two closed simple curves 101
and ,0(2) in D such that fork =1, 2, le and 9,(2 are end points of ,o,?, ,0,9 Nol = {9,! 1,
j=1,2; p? N pg =g;and p; ;= ,0? U ,011 U ,012 disconnects I, from any side of D
that does not contain Ie, and so p1 is a crosscut in D, and H (p1) is a neighborhood
of I,. Let pp = ,02 U ,o2 U ,o2 Then p; is also a crosscut in D, and H(,oz) C H(py).

ForJ =1,2, letp3 _crf\,o2 Let p3 = ,<)2U/)3LJ,03 and p; 5 _,01 U(we,Q 1U
(w 92] Then p3 and p; 5 are also crosscuts in D, H(p3) C H(p15), and d :=
dist(p3, p1.5) > 0. From Lemma 7.1, there are §, &1 > O suchthatif § € M, § < §1,
and w € d¢, D, then the probability that X, leaves B(w; (d1/2) A (g/3)) is less than
g/6. For w € H(p3), if Xy, hits Vy(D?) \ 13, then X,, must intersect both p3 and
p1.5, S0 Xy, must leave B(w; d1/2) before it hits d D. Thus if § € M, § < §; and
w € H(p3)Nde D, then Q(w) >1—¢/6>1/2. Since Yy, is X, conditioned to hit
I ea so the probability that Y,, leaves B(w; £/3) before it hits d D is at most 2 times
the probability that X,, leaves B(w; /3) before it hits 0 D, and so is less than /3
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when § < §;. From the Markov property of Yy, if 6 € M and § < §;, then with
probability greater than 1 — /3, Y satisfies that if Ys(t;) € H(p3) N 0¢, D, then
Ys(t) e B(Ys(t1); ¢) fort > 1. Let 8{3 denote this event.

Let U, = H(p2) \ p2- Then U, is a neighborhood of I, in D. From Lemma 8.1,
there are 8>, & > 0 such that if § € M and 6 < &7, then with probability greater
than 1 — ¢/3, Ys does not visit dg, D \ U, after T,?D. Let 8§ denote this event.

Let 8o =8, A 81 A 82, 80 =1 A2, and & = &2 N &3\ €. Suppose § € M and
8 < 8y. Then P[€%] > 1 — &. Assume &° occurs. Suppose Ys(t9) € 0g, D for some
to > Tl‘fb. Since § < §, and 85 occurs, so Ys(fg) € U,. Since § < §, and 83 does
not occur, so Ys(f9) € H(p2) \ (B! U B?) € H(p3). Since 8 < §; and 8{3 occurs,
and Ys(to) € H(p3) N 3, D, s0 Y5(t) € B(YS (t0); &) for t > 1.

The case that /, is a whole side is easier. We may choose a Jordan curve p in D
that disconnects /, from other sides of D. Let U, denote the domain bounded by I,
and p. From the argument used in the first part of the proof, we have §1, &1 > 0 such
that if 6 € M and § < §1, then with probability greater than 1 — /3, Ys satisfies
that if Y5(#1) € U,, then Ys(t) € B(Ys(t1); ¢) for t > 1. Let 8{3 denote this event.
From Lemma 8.1, there are §;, &» > 0 such that if § € M and § < &>, then with
probability greater than 1 — ¢/3, Y5 does not visit dg, D \ U, after TF(S“D‘ Let 853

denote this event. Let o = 8] A 82, 0 = &1 A& and €% = 8{3 N 83 Assume § € M

and § < 8¢, then P[%] > 1 — ¢. If &% occurs and Ys(to) € 0g, D for some 79 > T‘SD,
then Y5(t) € B(Ys(to), ) fort > 1ry. O

THEOREM 8.1. Almost surely lim;_, 5, yo(t) = lim;_. 7, Yo(t) exists and lies
ondD.

PROOF. Let L be the set of subsequential limits of yy(¢) as t — Tp, in the
spherical metric. From Lemma 7.4, Theorem 7.4, and the idea in the first para-
graph of the proof of Theorem 7.5, we have co ¢ L a.s. So L is the set of subse-
quential limits of y(¢) as t — Tp, in the Euclidean metric. From Theorem 3.1(ii),
we have L N 0D # @ a.s. From Theorem 7.4, Lemma 8.4, and the idea in the sec-
ond paragraph of the proof of Theorem 7.5, we have diam(L) = 0 a.s. So we are
done. [

From the property of discrete LERW and the conformal invariance of continu-
ous LERW, we then have the following corollary.

COROLLARY 8.3. Suppose y(t),0<t < S, is an LERW(D; wg — 1,) trace;
then almost surely l/il?lt_>sj/(l), the limit of y (¢) in 5, ast — S, exists and lies on
1., and the distribution of lim;_, sy (t) is the same as the distribution of the limit
point in D of the Brownian excursion in D started from wq conditioned to hit I,.
And if J, is a subarc of 1., then after a time-change, y (t) conditioned on the event
that l/ir\n,_>g)/(t) € J, has the same distribution as an LERW (D; wg — J.) trace.
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QUESTION. Can we prove Theorem 7.5, Corollary 8.2 and Corollary 8.3 di-
rectly from the definition of continuous LERW?
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