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THE SCALING LIMITS OF PLANAR LERW
IN FINITELY CONNECTED DOMAINS

BY DAPENG ZHAN

University of California, Berkeley

We define a family of stochastic Loewner evolution-type processes in fi-
nitely connected domains, which are called continuous LERW (loop-erased
random walk). A continuous LERW describes a random curve in a finitely
connected domain that starts from a prime end and ends at a certain tar-
get set, which could be an interior point, or a prime end, or a side arc. It
is defined using the usual chordal Loewner equation with the driving func-
tion being

√
2B(t) plus a drift term. The distributions of continuous LERW

are conformally invariant. A continuous LERW preserves a family of local
martingales, which are composed of generalized Poisson kernels, normalized
by their behaviors near the target set. These local martingales resemble the
discrete martingales preserved by the corresponding LERW on the discrete
approximation of the domain. For all kinds of targets, if the domain satisfies
certain boundary conditions, we use these martingales to prove that when the
mesh of the discrete approximation is small enough, the continuous LERW
and the corresponding discrete LERW can be coupled together, such that af-
ter suitable reparametrization, with probability close to 1, the two curves are
uniformly close to each other.

1. Introduction. LERW (loop-erased random walk) (cf. [4]) is obtained by
removing loops, in the order they are created, from a simple random walk on a
graph that is stopped at some hitting time. Since the loops are erased, so an LERW
is a simple lattice path. In this paper, we will consider the loop-erasures of con-
ditional random walks. They have properties that are very similar to loop-erased
random walks, so we still call them LERW.

In [16], Schramm introduced stochastic Loewner evolution (SLE), a family
of random growth processes of closed fractal subsets in simply connected plane
domains. The evolution is described by the classical Loewner equation with the
driving term being

√
κ times a standard linear Brownian motion for some κ ≥ 0.

SLE behaves differently for different values of κ . Schramm conjectured that SLE2
is the scaling limit of a kind of LERW on the grid approximation of the domain.
And he proved the conjecture in that paper under the assumption that the scaling
limits of LERW are conformally invariant.

Schramm’s processes turned out to be very useful. On the one hand, they are
amenable to computations; on the other hand, they are related with some statis-
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tical physics models. In a series of papers [6–8], Lawler, Schramm and Werner
used SLE to determine the Brownian motion intersection exponents in the plane.
In [10], the conjecture in [16] is completely solved, where no additional assump-
tion is added. In the same paper, SLE8 is proved to be the scaling limits of UST
(uniform spanning tree) Peano curve. Smirnov proved in [18] that chordal SLE6 is
the scaling limit of critical site percolation on the triangular lattice. And Schramm
and Sheffield proved in [17] that the harmonic explorer converges to chordal SLE4.
In [9], SLE8/3 is proved to have the restriction property, and so is conjectured to
be the scaling limits of self-avoiding walk. For the properties of SLE, see [5, 15]
and [19].

At the beginning, the SLE is only defined in simply connected domains, because
the definition uses the Riemann mapping theorem. In [20], a kind of SLE-type
process, which is called annulus SLE, is defined in doubly connected domains.
The definition uses the rotation symmetry and reflection symmetry of an annulus.
It is proved there that annulus SLE2 is the scaling limit of the LERW in the grid
approximation of a doubly connected domain that starts from a vertex that is close
to a boundary point and stops when it hits the other boundary component.

The definitions of LERW on grid approximations of simply or doubly connected
domains could be easily extended to multiply connected domains. It is interesting
to study the scaling limits of the LERW in multiply connected domains. This may
help us to extend the SLE to multiply connected domains.

In this paper, we will define a family of SLE-type processes, which are called
continuous LERW, in finitely connected domains. They are defined using the usual
chordal Loewner equation with the driving function being

√
2B(t) + S(t), where

B(t) is a standard linear Brownian motion, and the drift term S(t) is continuously
differentiable in t . The drift term is carefully chosen, so that the continuous LERW
satisfy the conformal invariance, and preserve a family of local martingales gen-
erated by generalized Poisson kernels. The local martingales resemble the discrete
martingales preserved by the corresponding discrete LERW on the discrete approx-
imation of that domain. And this resemblance is used to prove the convergence of
discrete LERW to continuous LERW.

This paper is organized as follows. In Section 2, we define some notation that
will be used in this paper. In Section 3, three kinds of continuous LERW are de-
fined, which are continuous LERW “aimed” at interior points, prime ends and side
arcs. And we prove that they all satisfy the conformal invariance. In Section 4,
we present the continuous and discrete martingales preserved by continuous and
discrete LERW, respectively, and explain the similarity between these martingales.

In Section 5, we give a rigorous proof of the existence and uniqueness of the
solution to the equation that is used to define a continuous LERW. The lemmas
that are used for the proof are interesting. We first use the idea of Carathéodory
topology to define the convergence of plane domains. Then we define a metric on
the space of hulls in the upper half plane, so that the set of hulls that are contained
in a fixed hull is compact. This compactness property is frequently used in the
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remaining part of this paper. In this section, we use it to derive many uniform
constants without working on concrete functions.

In Section 6, we first consider one kind of LERW, whose targets are interior
points. The method given in [10] is used to get a coupling of the driving process
for the discrete LERW and that for the continuous LERW such that the two driving
processes are uniformly close to each other in probability. In Section 7, we first use
some regular properties of the discrete LERW curve to get a local coupling of the
LERW curve and the continuous LERW trace so that the two curves are close to
each other, before either of them leaves a hull bounded by a crosscut. Finally, we
glue all local couplings to get a global coupling of the curves. In the last section,
we study the convergence of the other two kinds of LERW. And we get the similar
results of the convergence.

2. Some notation.

2.1. Loop-erased random walk. In general, an LERW is defined on a con-
nected locally finite graph G = (V ,E). We will usually consider the graphs that are
discrete approximations of some plane domains. A loop-erasure of a finite lattice
path v = (v(0), . . . , v(n)) on G is defined as follows. Let n0 = max{m :v(m) =
v(0)}. Define the sequence (nj ) inductively by nj+1 = max{m :v(m) = v(nj + 1)}
if nj is defined and nj < n. Let χ be the first j such that nj = n. Let w(j) =
v(nj ) for 0 ≤ j ≤ χ . Then w = (w(0), . . . ,w(χ)) is called the loop-erasure of
(v(0), . . . , v(n)) (see [4]), and is denoted by LE(v). It is a simple lattice path with
w(0) = v(0) and w(χ) = v(n).

A subset S of V is called reachable in G if for any v ∈ V \S, a (simple) random
walk on G started from v will hit S in finitely many steps almost surely. Suppose
A and B are disjoint subsets of V such that A ∪ B is reachable in G. Suppose
v0 ∈ V \ (A ∪ B) and there is a lattice path on G connecting v0 and A without
passing through B . Then the probability that a random walk started from v0 hits A

before B is positive. We now consider this random walk stopped on hitting A ∪ B

and conditioned to hit A. It is a random finite lattice path. The loop-erasure of this
path is called the LERW on G started from x conditioned to hit A before B .

For a function f defined on V , and v ∈ V , let �Gf (v) = ∑
w∼v(f (w)−f (v)),

where w ∼ v means that w and v are adjacent. If �Gf (v) = 0, then we say f is
discrete harmonic at v. The proof of the following lemma is easy, and can be found
in [20].

LEMMA 2.1. Suppose A and B are disjoint subsets of V and A ∪ B is reach-
able in G. Let x ∈ V \ (A ∪ B) be such that there is a lattice path connecting x

and A without passing through any vertex on B . Then there is a unique nonnegative
bounded function h on V such that h ≡ 0 on A∪B; �Gh ≡ 0 on V \(A∪B ∪{x});
and

∑
v∈A �Gh(v) = 1. Moreover, if either A or B is a finite set, then there is a

unique nonnegative bounded function g on V such that g ≡ 0 on B; g ≡ 1 on A;
�Gg ≡ 0 on V \ (A ∪ B ∪ {x}); and

∑
v∈A �Gg(v) = 0.
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Suppose E−1 and F are disjoint subsets of V and E−1 ∪ F is reachable in G.
Let x0 ∈ N be such that there is a lattice path connecting x0 and F without passing
through any vertex on E−1. Let (q(0), . . . , q(χ)) be the LERW on G started from
x0 conditioned to hit F before E−1. So q(0) = x0 and q(χ) ∈ F . For 0 ≤ j < χ , let
Ej = E−1 ∪ {q(0), . . . , q(j)}. Then Ej and F are disjoint. Since Ej ∪ F is bigger
than E−1 ∪F , so it is also reachable. Note that for any 0 ≤ j < χ , (q(j), . . . , q(χ))

is a lattice path connecting q(j) with F without passing through Ej−1. Let hj be
as in Lemma 2.1 with A = F , B = Ej−1 and x = q(j). If either E−1 or F is
finite, then either Ej or F is finite. Let gj be the g in Lemma 2.1 with A = F ,
B = Ej−1 and x = q(j). Let F be the union of F with the set of vertices of V that
are adjacent to F . Then we have:

PROPOSITION 2.1. Fix any v0 ∈ V . Then (gk(v0)) (if E−1 or F is finite) and
(hk(v0)) are discrete martingales up to the first time xk hits F , or Ek disconnects
v0 from F in G.

PROOF. The result for (gk) in a special case is Proposition 3.2 in [20].
The proof of that proposition applies to general cases. The proof for (hk) is
similar. �

2.2. Finitely connected domains. In this paper, a domain is a nonempty con-
nected open subset of the Riemann sphere Ĉ = C ∪ {∞}. Here we allow that the
domain contains ∞. For n ∈ Z≥0, an n-connected domain is a domain D such that
Ĉ \ D is the disjoint union of n connected compact sets, each of which contains
more than one point. A finitely connected domain is an n-connected domain for
some n ∈ Z≥0. A 0-connected domain is just Ĉ. A 1-connected domain is confor-
mally equivalent to the unit disc.

We will use dist (resp. dist#) to denote the Euclidean (resp. spherical) distance;
use diam (resp. diam#) to denote the Euclidean (resp. spherical) diameter; and use
B(z0; r) [resp. B#(z0; r)] to denote the ball centered at z0 with radius r , in the
Euclidean (resp. spherical) metric. Let ∂#D denote the boundary of D in Ĉ; and
let ∂D = ∂#D ∩ C.

Suppose D is an n-connected domain. Then ∂#D has n connected components,
each of which is the boundary of a connected component of Ĉ \ D. If f maps
D conformally into Ĉ, then D′ := f (D) is also an n-connected domain. And f

induces a one-to-one correspondence f̆ from the set of components of ∂#D to the
set of components of ∂#D′ such that for any component A of ∂#D and z ∈ D,
z → A iff f (z) → f̆ (A). There exists some f that maps D conformally onto
a plane domain that is bounded by n mutually disjoint analytic Jordan curves.
We call such f a boundary smoothing map of D. Suppose f1 and f2 are two
boundary smoothing maps of D, and Ej = fj (D), j = 1,2. Then f2 ◦ f −1

1 maps
E1 conformally onto E2, and f2 ◦ f −1

1 induces a one-to-one correspondence J
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from the set of Jordan curves that bound E1 to the set of Jordan curves that bound
E2 such that for any Jordan curve σ that bounds E1 and z ∈ E1, z → σ iff f2 ◦
f −1

1 (z) → J (σ ). Since σ and J (σ ) are both analytic, from the Schwarz reflection
principle, f2 ◦ f −1

1 can be extended conformally across σ , and maps σ onto J (σ ).
Now consider the set of all pairs (f, z) such that f is a boundary smoothing map

of D, and z ∈ f (D). Two pairs (f1, z1) and (f2, z2) are equivalent if the extension
of f2 ◦ f −1

1 maps z1 to z2. Let D̂ be the set of all equivalent classes. There is a
unique conformal structure on D̂ such that z �→ [(f, z)] maps f (D) conformally
onto D̂ for any boundary smoothing map f . Then z �→ [(f, f (z))] is a conformal
map from D into D̂ independent of the choice of f . So we may view D as a
subset of D̂, and call D̂ the conformal closure of D. It is clear that a conformal
map between two finitely connected domains extends uniquely to a conformal map
between their conformal closures.

We call ∂̂D := D̂ \ D the conformal boundary of D. Then ∂̂D is a union of n

disjoint analytic Jordan curves, each of which is called a side of D. Each side σ

corresponds to a component A of ∂#D such that for z ∈ D, z → σ in D̂ iff z → A.
Each point on σ is called a prime end of D on A. This is equivalent to the prime
ends defined in [1] and [13]. In fact, the definition in [1] describes the property
of a sequence of points in D that converges to a point on ∂̂D, and the definition
in [12] describes a neighborhood basis bounded by crosscuts of a point on ∂D̂.
A connected subset of a side that contains more than one point is called a side arc.

If z0 ∈ Ĉ and a prime end w0 of D satisfies that for z ∈ D, z → z0 iff z → w0 in
D̂, then we say the point z0 and the prime end w0 correspond to each other, and we
do not distinguish the point z0 from the prime end w0. For example, if a boundary
component of D is a Jordan curve, then each point on this curve corresponds to
a prime end. If z0 ∈ ∂D and for some ε > 0, B(z0; ε) \ D is a simple curve γ

connecting z0 with {|z − z0| = ε}, then z0 corresponds to a prime end of D. But
every other point on γ corresponds to two prime ends of D.

If α : (a, b) → D is a curve in D, and for some z0 ∈ ∂#D, α(t) → z0 as t → a,
then there is some prime end w0 of D such that α(t) → w0 in D̂ as t → a. Such
w0 is called the prime end determined by α at one end. In general, not every prime
end of D can be determined by a curve in D in this way.

2.3. Positive harmonic functions. Suppose D is a finitely connected domain,
and z0 ∈ D. The Green function G(D,z0; ·) in D with the pole at z0 is the contin-
uous function defined on D̂ \ {z0} which vanishes on ∂̂D, is positive and harmonic
in D \ {z0}, and G(D,z0; z) behaves like − ln |z − z0|/(2π) near z0 if z0 �= ∞;
behaves like ln |z|/(2π) near ∞ if z0 = ∞.

Suppose w0 is a prime end of D. There is a continuous function P defined
on D̂ \ {w0} which vanishes on D̂ \ {w0}, and is harmonic and positive in D. It
is called a generalized Poisson kernel in D with the pole at w0. Such P is not
unique. But any two generalized Poisson kernels in D with the pole at w0 differ
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by a positive multiple constant. Suppose z0 ∈ ∂D, and ∂D is analytic near z0; then
z0 corresponds to a prime end of D, and the Poisson kernel in D with the pole at
z0 in the usual sense is well defined, and is an example of a generalized Poisson
kernel in D with the pole at z0.

Suppose I is a side arc of D. The harmonic measure function H(D, I ; ·) is a
bounded continuous function defined on D̂ taking away the end points of I , which
is harmonic in D, vanishes on ∂̂D \ I , and takes constant value 1 on I except the
end points. For any z ∈ D, H(D, I ; z) is equal to the probability that the plane
Brownian motion started from z first hits ∂D at I .

2.4. Hulls and Loewner chains. Suppose D is an n-connected domain, and σ

is a side of D. Let A(σ) be the connected component of Ĉ \ D that corresponds
to σ . A closed subset H is called a hull of D on σ if D \ H is also an n-connected
domain, and A(σ) ∪ H is a component of Ĉ \ (D \ H). Then other components of
Ĉ \ (D \ H) are the components of Ĉ \ D other than A(σ).

In this paper, we define a crosscut to be an open simple curve α in D, whose
two ends approach to two points on ∂D, in the Lebesgue metric, such that D \ α

has two components, one of which is simply connected. If U is a simply connected
component of D \ α, then U ∪ α is a hull in D. If n > 1, that is, D is not simply
connected, then U is determined by α, and let H(α) := U ∪α be the hull bounded
by α. If n = 1, then the two components of D \ α are both simply connected, so
we need some other restrictions to determine H(α). For example, if we say that
H(α) is a neighborhood of some prime end w0 in D, then there is no ambiguity.

Suppose σ is a side of D. A Loewner chain in D on σ is a function L from
[0, T ) for some T ∈ (0,+∞] into the set of hulls in D on σ such that L(0) = ∅,
L(t1) � L(t2) if 0 ≤ t1 < t2 < T , and for any fixed b ∈ [0, T ) and any compact
subset F of D \ L(b), the extremal length (see [1]) of the family of curves in
D \L(t +ε) that separates F from L(t +ε)\L(t) tends to 0 as ε → 0+, uniformly
w.r.t. t ∈ [0, b]. Suppose L(t), 0 ≤ t < T , is a Loewner chain in D on σ . For each
t ∈ [0, T ), let dt be any metric on D̂ \ L(t). From the definition, the dt -diameter
of L(t + ε) \ L(t) tends to 0 as ε → 0+. Thus there is a unique prime end w(t)

of D \ L(t) that lies on the closure of L(t + ε) \ L(t) in D̂ \ L(t) for all ε > 0.
We call w(t) the prime end determined by L at time t . Especially, w(0) is a prime
end on σ . We say L is a Loewner chain started from w(0). It is clear that for any
b ∈ [0, T ), t �→ L(b + t), 0 ≤ t < T − b, is a Loewner chain in D \ L(b) started
from w(b).

Suppose L(t), 0 ≤ t < T , is a Loewner chain in D. Suppose u is a continu-
ous (strictly) increasing function defined on [0, T ) with u(0) = 0. Let u(T ) :=
supu([0, T )). Then L′(t) := L(u−1(t)), 0 ≤ t < u(T ), is also a Loewner chain
in D. Such L′ is called a time-change of L through u. Moreover, the prime end
determined by L′ at time u(t) is the same as the prime end determined by L at
time t .
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One example of a Loewner chain is constructed by a simple curve. Suppose
γ : [0, T ) → D̂ is a simple curve that satisfies γ (0) ∈ ∂̂D and γ (t) ∈ D for 0 ≤
t < T . Let L(t) = γ ((0, t]), 0 ≤ t < T . Then L is a Loewner chain in D started
from γ (0), and γ (t) corresponds to the prime end determined by L at time t . We
say that L is the Loewner chain generated by γ .

3. Continuous LERW.

3.1. Chordal Loewner equation. Let H = {z ∈ C : Im z > 0}. Then H is a
1-connected domain whose side is R̂ := R ∪ {∞}. We say H is a hull in H w.r.t.
∞ if H is a hull in H and H is bounded (i.e., bounded away from ∞). A Loewner
chain L in H w.r.t. ∞ is a Loewner chain in H such that each L(t) is a hull in H
w.r.t. ∞. For each hull H in H w.r.t. ∞, there is a unique function ϕH that maps
H \ H conformally onto H such that for some c ≥ 0,

ϕH (z) = z + c

z
+ O

(
1

z2

)
,

as z → ∞. Such c is called the capacity of H in H w.r.t. ∞, denoted by hcap(H).
The empty set is a hull in H w.r.t. ∞, and ϕ∅ = id, so hcap(∅) = 0.

PROPOSITION 3.1. Suppose � is an open neighborhood of x0 ∈ R in H. Sup-
pose W maps � conformally into H such that for some r > 0, if z → (x0 − r, x0 +
r) in �, then W(z) → R. So W extends conformally across (x0 − r, x0 + r) by the
Schwarz reflection principle. Then for any ε > 0, there is some δ > 0 such that if
a hull H in H w.r.t. ∞ is contained in {z ∈ H : |z − x0| < δ}, then W(H) is also a
hull in H w.r.t. ∞, and

|hcap(W(H)) − W ′(x0)
2 hcap(H)| ≤ ε|hcap(H)|.

PROOF. This is Lemma 2.8 in [6]. �

For T ∈ (0,+∞], let C([0, T )) denote the space of real-valued continuous func-
tions on [0, T ). Suppose ξ ∈ C([0, T )). We solve the chordal Loewner equation:

∂tϕt (z) = 2

ϕt(z) − ξ(t)
, ϕ0(z) = z,

for 0 ≤ t < T . For each t ∈ [0, T ), let Kt be the set of z ∈ H such that the solution
ϕs(z) blows up before or at time t . We say that ϕt and Kt , 0 ≤ t < T , are chordal
Loewner maps and hulls, respectively, driven by ξ .

For 0 ≤ t < T , Kt is a bounded closed subset of H, ϕt maps H\Kt conformally
onto H, and satisfies

ϕt(z) = z + 2t

z
+ O

(
1

z2

)
as z → ∞. So Kt is a hull in H w.r.t. ∞, hcap(Kt) = 2t and ϕKt = ϕt .
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PROPOSITION 3.2. (i) Suppose ϕt and Kt , 0 ≤ t < T , are chordal Loewner
maps and hulls, respectively, driven by ξ . Then t �→ Kt , 0 ≤ t < T , is a Loewner
chain in H w.r.t. ∞ started from ξ(0). And for each t ∈ [0, T ), hcap(Kt) = 2t ,
ϕt = ϕKt , and

{ξ(t)} = ⋂
ε>0

ϕt(Kt+ε \ Kt).

(ii) Suppose L(t), 0 ≤ t < T , is a Loewner chain in H w.r.t. ∞. Let
v(t) = hcap(L(t))/2, 0 ≤ t < T . Then v is a continuous increasing function
with v(0) = 0. And Kt := L(v−1(t)), 0 ≤ t < v(T ), are chordal Loewner hulls
driven by some ξ ∈ C([0, v(T ))).

PROOF. This is almost the same as Theorem 2.6 in [6]. �

Fix b ∈ [0, T ). Let ϕb,t = ϕt ◦ϕ−1
b and Kb,t = ϕb(Kt \Kb) for b ≤ t < T . Then

it is easy to check that Kb,b+t and ϕb,b+t , 0 ≤ t < T − b, are chordal Loewner
hulls and maps driven by t �→ ξ(b+ t), 0 ≤ t < T −b. Thus for any s < t ∈ [0, T ),
ϕs(Kt \ Ks) is a hull in H w.r.t. ∞, and its capacity in H w.r.t. ∞ is 2(t − s).

3.2. Continuous LERW aiming at an interior point. We define an almost H
domain to be a finitely connected domain in H that is bounded by R̂ and mutually
disjoint analytic Jordan curves in H. Let � be an almost H domain, and p ∈ �. If
K is a hull in H w.r.t. ∞ such that K ⊂ � \ {p}, let �K = ϕK(� \ K). Then �K

is also an almost H domain, and ϕK(p) ∈ �K .
For a ≥ 0, let C([0, a]) be the space of all real-valued continuous functions

defined on [0, a] with norm ‖ξ‖a := sup{|ξ(t)| : 0 ≤ t ≤ a}. For ξ ∈ C([0, a]), let
K

ξ
t and ϕ

ξ
t , 0 ≤ t ≤ a, be chordal Loewner hulls and maps, respectively, driven by

ξ . If K
ξ
t ⊂ � \ {p}, we write �

ξ
t for �

K
ξ
t
. Define

J
ξ
t (z) = G(� \ K

ξ
t ,p; ·) ◦ (ϕ

ξ
t )−1.(3.1)

Since J
ξ
t = G(�

ξ
t , ϕ

ξ
t (p); ·) is positive and harmonic in �

ξ
t \ {ϕξ

t (p)}, and van-
ishes on R, so it extends harmonically across R. Let

X
ξ
t = (∂x∂y/∂y)J

ξ
t (ξ(t)) = ∂x∂yJ

ξ
t (ξ(t))/∂yJ

ξ
t (ξ(t)).

We begin with a theorem. The proof is postponed to Section 5 in this paper.

THEOREM 3.1. For any A ∈ C([0,∞)) and λ ∈ R, the equation

ξ(t) = A(t) + λ

∫ t

0
Xξ

s ds(3.2)

has a unique maximal solution ξ(t) = ξA(t), 0 ≤ t < TA, where TA ∈ (0,∞]. Here
“maximal” means that the solution cannot be extended. Moreover, we have:
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(i) For any a ∈ (0,∞), the set {A ∈ C([0,∞)) :TA > a} is open w.r.t. the met-
ric ‖ · ‖a , and A �→ ξA is (‖ · ‖a,‖ · ‖a) continuous on {A ∈ C([0,∞)) :TA > a}.

(ii) There is no crosscut α in H such that
⋃

0≤t<TA
K

ξ
t ⊂ H(α) ⊂ � \ {p}.

Suppose D is a finitely connected domain, w0 is a prime end of D, and ze ∈
D. There is f that maps D conformally onto an almost H domain �, such that
f (w0) = 0. Let p = f (ze), B(t) be a Brownian motion, and ξ(t), 0 ≤ t < T , be
the maximal solution to (3.2) with A(t) = √

2B(t) and λ = 2. Let {Ft } be the
filtration generated by B(t). From Theorem 3.1(i), T is an {Ft }-stopping time, and
(ξ(t)) is {Ft }-adapted. For 0 ≤ t < T , let

u(t) =
∫ t

0
(∂yJ

ξ
s (ξ(s)))2 ds.(3.3)

Let S = u(T ), and F(t) = f −1(K
ξ

u−1(t)
), 0 ≤ t < S. In the next subsection, we

will prove the following theorem.

THEOREM 3.2. For j = 1,2, suppose fj maps D conformally onto some al-
most H domain �j such that fj (w0) = 0. For j = 1,2, let pj = fj (ze), Bj(t) be
a Brownian motion, and ξj (t), 0 ≤ t < Tj , be the maximal solution to

ξj (t) = √
2Bj(t)

(3.4)

+ 2
∫ t

0
(∂x∂y/∂y)

(
G(�j \ K

ξj
s ,pj ; ·) ◦ (ϕ

ξj
s )−1)

(ξj (s)) ds;
and let uj (t), 0 ≤ t < Tj , be defined by

uj (t) =
∫ t

0
∂y

(
G(�j \ K

ξj
s ,pj ; ·) ◦ (ϕ

ξj
s )−1)

(ξj (s))
2 ds.

Let Sj = uj (T ) and Fj (t) = f −1
j (K

ξj

u−1
j (t)

), 0 ≤ t < Sj , j = 1,2. Then (F1(t),0 ≤
t < S1) and (F2(t),0 ≤ t < S2) have the same distribution.

Thus the distribution of (F (t),0 ≤ t < S) does not depend on the choice of f ,
and is conformally invariant. We call (F (t),0 ≤ t < S) a continuous LERW in D

from w0 to ze, and let it be denoted by LERW(D;w0 → ze). From the property of
chordal SLE2 (cf. [15]) and Girsanov’s theorem [11, 14], almost surely there is a
simple curve γ (t) : [0, S) → D̂ such that γ (0) = w0, γ (t) ∈ D for 0 < t < S, and
F(t) = γ ((0, t]) for 0 ≤ t < S, that is, F is the Loewner chain generated by γ . We
call such γ an LERW(D;w0 → ze) trace.

REMARK. If D is a 1-connected domain, w0 is a prime end of D and ze ∈ D,
then an LERW(D;w0 → ze) has the same distribution as a radial SLE2(D;w0 →
ze) up to a linear time-change.
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3.3. Conformal invariance.

PROOF OF THEOREM 3.2. For j = 1,2, let vj = u−1
j and Lj(t) = K

ξj

u−1
j (t)

.

Then Fj (t) = f −1
j (Lj (t)), 0 ≤ t < Sj . Let W = f2 ◦ f −1

1 . Then W maps �1
conformally onto �2, W(0) = 0 and W(p1) = p2. Let L2′(t) = W(L1(t)), 0 ≤
t < S1. It suffices to show that (L2′(t),0 ≤ t < S1) has the same distribution as
(L2(t),0 ≤ t < S2). Let β1(t) be the random simple curve that generates L1(t),
that is, β1(0) = 0, β1(t) ∈ �1, 0 < t < S1, and L1(t) = β1((0, t]), 0 ≤ t < S1. Let
β2′(t) = W(β1(t)), 0 ≤ t < S1. Then β2′ is a simple curve, β2′(0) = 0, β2′(t) ∈
�2 ⊂ H, 0 < t < S1, and L2′(t) = β2′((0, t]), 0 ≤ t < S1. Thus L2′ is a Loewner
chain in H w.r.t. ∞. Let v2′(t) = hcap(L2′(t))/2, 0 ≤ t < S1. Let T2′ = v2′(S1) and
u2′ = v−1

2′ . Then from Proposition 3.2, L2′(u2′(t)) = K
ξ2′
t , 0 ≤ t < T2′ , for some

ξ2′ ∈ C([0, T2′)).
Let {F 1

t } be the filtration generated by B1(t). Let

R1(t, x) = ∂y

(
G(�1 \ K

ξ1
t , p1; ·) ◦ (ϕ

ξ1
t )−1)

(x).

From Theorem 3.1(i), (ξ1(t)) and R1(t, x) are F 1
t -adapted, and T1 is an

F 1
t -stopping time. Thus for 0 ≤ t < T1, we have

dξ1(t) = √
2dB1(t) + 2

∂xR1(t, ξ1(t))

R1(t, ξ1(t))
dt

and

u′
1(t) = R1(t, ξ1(t))

2.

So there is another Brownian motion B̆1(t) such that for 0 ≤ t < S1,

dξ1(v1(t)) =
√

2

R1(v1(t), ξ1(v1(t)))
dB̆1(t) + 2

∂xR1(v1(t), ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))3 dt.(3.5)

Note that W maps �1 \ L1(t) conformally onto �2 \ L2′(t). Let �1(t) =
ϕ

ξ1
v1(t)

(�1 \ L1(t)), �2′(t) = ϕ
ξ2′
v2′ (t)(�2 \ L2′(t)) and Wt = ϕ

ξ2′
v2′ (t) ◦ W ◦ (ϕ

ξ1
v1(t)

)−1.
Then both �1(t) and �2′(t) are almost H domains, and Wt maps �1(t) con-
formally onto �2′(t), and maps R̂ onto itself. For t ∈ [0, S1) and ε ∈ [0, S1 −
t), define L1(t, ε) = ϕ

ξ1
v1(t)

(K
ξ1
v1(t+ε) \ K

ξ1
v1(t)

) and L2′(t, ε) = ϕ
ξ2′
v2′ (t)(K

ξ2′
v2′ (t+ε) \

K
ξ2′
v2′ (t)). Then hcap(L1(t, ε)) = 2(v1(t + ε) − v1(t)), hcap(L2′(t, ε) = 2(v2′(t +

ε) − v2′(t))), and Wt(L1(t, ε)) = L2′(t, ε). From Proposition 3.2, we have
{ξ1(v1(t))} = ⋂

ε>0 L1(t, ε) and {ξ2′(v2′(t))} = ⋂
ε>0 L2′(t, ε). Thus ξ2′(v2′(t)) =

Wt(ξ1(v1(t))). From Proposition 3.1, we have v′
2′(t) = W ′

t (ξ1(v1(t)))
2v′

1(t).

Differentiate the equality Wt ◦ ϕ
ξ1
v1(t)

= ϕ
ξ2′
v2′ (t) ◦ W w.r.t. t . We get

∂tWt

(
ϕ

ξ1
v1(t)

(z)
) + 2W ′

t (ϕ
ξ1
v1(t)

(z))v′
1(t)

ϕ
ξ1
v1(t)

(z) − ξ1(v1(t))
= 2v′

2′(t)

ϕ
ξ2′
v2′ (t) ◦ W(z) − ξ2′(v2′(t))
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for any z ∈ �1 \ L1(t). Since ϕ
ξ1
v1(t)

maps �1 \ L1(t) conformally onto �1(t), so
for any w ∈ �1(t), we have

∂tWt(w) = 2W ′
t (ξ1(v1(t)))

2v′
1(t)

Wt(w) − Wt(ξ1(v1(t)))
− 2W ′

t (w)v′
1(t)

w − ξ1(v1(t))
.

Let w → ξ1(v1(t)) in �1(t); from Taylor expansion of Wt at ξ1(v1(t)), we get

∂tWt(ξ1(v1(t))) = −3W ′′
t (ξ1(v1(t)))v

′
1(t)

= −3W ′′
t (ξ1(v1(t)))/R1(v1(t), ξ1(v1(t)))

2.

Since ξ2′(v2′(t)) = Wt(ξ1(v1(t))), so from (3.5) and Itô’s formula [11, 14], we
have

dξ2′(v2′(t)) = ∂tWt(ξ1(v1(t))) dt + W ′
t (ξ1(v1(t))) dξ1(v1(t))

+ W ′′
t (ξ1(v1(t))) d〈ξ1(v1(t))〉/2

=
√

2W ′
t (ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))
dB̆1(t)

+ 2
W ′

t (ξ1(v1(t))) ∂xR1(v1(t), ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))3 dt

(3.6)

+ ∂tWt(ξ1(v1(t))) dt + W ′′
t (ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))2 dt

=
√

2W ′
t (ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))
dB̆1(t)

+ 2
(

W ′
t (ξ1(v1(t))) ∂xR1(v1(t), ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))3

− W ′′
t (ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))2

)
dt.

Since ϕ
ξ1
v1(t)

maps �1 \ L1(t) conformally onto �1(t), so

R1(v1(t), x) = ∂y

(
G

(
�1 \ K

ξ1
v1(t)

, p1; ·) ◦ (
ϕ

ξ1
v1(t)

)−1)
(x)

= ∂yG
(
�1(t), ϕ

ξ1
v1(t)

(p1); ·)(x).

Since Wt maps �1(t) conformally onto �2′(t), and Wt(ϕ
ξ1
v1(t)

(p1)) = ϕ
ξ2′
v2′ (t)(p2),

so

G
(
�1(t), ϕ

ξ1
v1(t)

(p1); ·) = G
(
�2′(t), ϕ

ξ2′
v2′ (t)(p2); ·) ◦ Wt.
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Thus

R1(v1(t), x) = ∂yG
(
�2′(t), ϕ

ξ2′
v2′ (t)(p2);Wt(x)

)
W ′

t (x);
∂xR1(v1(t), x) = ∂x∂yG

(
�2′(t), ϕ

ξ2′
v2′ (t)(p2);Wt(x)

)
(W ′

t (x))2

+ ∂yG
(
�2′(t), ϕ

ξ2′
v2′ (t)(p2);Wt(x)

)
W ′′

t (x).

Plugging these equalities into (3.6) and letting x = ξ1(v1(t)), we get

dξ2′(v2′(t)) =
√

2W ′
t (ξ1(v1(t)))

R1(v1(t), ξ1(v1(t)))
dB̆1(t)

+ 2
∂x∂yG(�2′(t), ϕ

ξ2′
v2′ (t)(p2); ξ2′(v2′(t)))

∂yG(�2′(t), ϕ
ξ2′
v2′ (t)(p2); ξ2′(v2′(t)))3

dt.

Since

v′
2′(t) = W ′

t (ξ1(v1(t)))
2v′

1(t)

= W ′
t (ξ1(v1(t)))

2

R1(v1(t), ξ1(v1(t)))2(3.7)

= ∂yG
(
�2′(t), ϕ

ξ2′
v2′ (t)(p2); ξ2′(v2′(t))

)−2
,

and G(�2′(t), ϕ
ξ2′
v2′ (t)(p2); ·) = G(�2 \ K

ξ2′
v2′ (t), p2; ·) ◦ ϕ

ξ2′
v2′ (t), so for 0 ≤ t < T2′ ,

dξ2′(t) = √
2dB2′(t) + 2(∂x∂y/∂y)

(
G(�2 \ K

ξ2′
t , p2; ·) ◦ ϕ

ξ2′
t

)
(ξ2′(t)) dt

for another Brownian motion B2′(t). Since ξ2′(0) = W0(ξ1(0)) = W(0) = 0, so for
0 ≤ t < T2′ ,

ξ2′(t) = √
2B2′(t)

(3.8)

+ 2
∫ t

0
(∂x∂y/∂y)

(
G(�2 \ K

ξ2′
s , p2; ·) ◦ ϕ

ξ2′
s

)
(ξ2′(s)) ds.

We claim that ξ2′(t), 0 ≤ t < T2′ , is the maximal solution to (3.8). Suppose the
claim is not true. Then it may happen that the solution ξ2′ extends to [0, T2′ ]. Note
that W(∞) is a prime end on R̂ other than W(0) = 0. We may find a crosscut α in
H such that K

ξ2′
T2′ ⊂ H(α) ⊂ �2 \ {p2}, and W(∞) /∈ H(α). Then W−1(α) is also

a crosscut in H, and H(W−1(α)) = W−1(H(α)) ⊂ �1 \ {p1}. So W−1(K
ξ2′
t ) ⊂

H(W−1(α)) for 0 ≤ t < T2′ , which implies that K
ξ1
t ⊂ H(W−1(α)) for 0 ≤ t < T1.

This contradicts Theorem 3.1(ii). So the claim is justified.
Since ξ2′(t), 0 ≤ t < T2′ [resp. ξ2(t), 0 ≤ t < T2], is the maximal solution to

(3.8) [resp. equation (3.2) when j = 2], and (B2′(t)) has the same distribution as
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(B2(t)), so (ξ2′(t),0 ≤ t < T2′) has the same distribution as (ξ2(t),0 ≤ t < T2).
From (3.7), u2′ = v−1

2′ , and that u2′(0) = 0, we see that for 0 ≤ t < T2′ ,

u2′(t) =
∫ t

0
∂y

(
G(�2 \ K

ξ2′
s , p2; ·) ◦ ϕ

ξ2′
s

)
(ξ2′(s))

2
ds.

Thus ((ξ2′(t), u2′(t)),0 ≤ t < T2′) has the same distribution as ((ξ2(t), u2(t)),0 ≤
t < T2). Since L2′(t) = K

ξ2′
u−1

2′ (t)
for 0 ≤ t < S1 = u2′(T2′), and L2(t) = K

ξ2

u−1
2 (t)

for 0 ≤ t < S2 = u2(T2), so (L2′(t),0 ≤ t < S1) has the same distribution as
(L2(t),0 ≤ t < S2). �

3.4. Continuous LERW with other kinds of targets. Suppose D is a finitely
connected domain, w0 is a prime end of D, and Ie is a side arc of D that is bounded
away from w0. Then there is f that maps D conformally onto an almost H domain
� such that f (w0) = 0. If a hull K in H w.r.t. ∞ is bounded away from f (Ie), and
K ⊂ �, then f (Ie) is a side arc of � \ K . We have the harmonic measure function
H(� \ K,f (Ie); ·).

Now we change the definition of J
ξ
t by replacing G(� \ K

ξ
t ,p; ·) by H(� \

K
ξ
t , f (Ie); ·) in (3.1), and still let X

ξ
t = (∂x∂y/∂y)J

ξ
t (ξ(t)). Let everything else

in Section 3.2 be unchanged. Then Theorem 3.1 still holds if the condition on
α is replaced by that α is a crosscut in H such that H(α) ⊂ � and H(α)

is bounded away from f (Ie). Let u(t) be defined by (3.3). Then (F (t) =
f −1(K

ξ

u−1(t)
),0 ≤ t < S = u(T )) is called a continuous LERW in D from w0

to Ie, and is denoted by LERW(D;w0 → Ie). It is almost surely generated by
a random simple curve, which is called an LERW(D;w0 → Ie) trace. The vari-
ation of Theorem 3.2 for LERW(D;w0 → Ie) still holds. Thus the distribution
of LERW(D;w0 → Ie) does not depend on the choice of f , and is conformally
invariant.

Suppose D is a finitely connected domain, w0 and we are two different prime
ends of D. There is f that maps D conformally onto an almost H domain � such
that f (w0) = 0. Then p := f (we) is a prime end of � other than 0. If a hull K in
H w.r.t. ∞ is bounded away from p, and K ⊂ �, then p is a prime end of � \ K .

A normalization function is a function h that maps a neighborhood U of p in �̂

conformally onto a neighborhood V of 0 in H such that h(p) = 0 and h(U ∩ ∂̂D) ⊂
R. There is a unique generalized Poisson kernel P(z) in � \ K with the pole at
p such that the principal part of P ◦ h−1(z) at 0 is Im −1

z
. Let P(� \ K,p,h; z)

denote this function.
Now fix a normalizing function h. Change the definition of J

ξ
t by re-

placing G(� \ K
ξ
t ,p; ·) by P(� \ K

ξ
t ,p,h; ·) in (3.1), and still let X

ξ
t =

(∂x∂y/∂y)J
ξ
t (ξ(t)). Let everything else in Section 3.2 be unchanged. Then The-

orem 3.1 still holds if the condition on α is replaced by that α is a cross-
cut in H such that H(α) ⊂ �, and H(α) is bounded away from p = f (we).
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Let u(t) be defined by (3.3). Then (F (t) = f −1(K
ξ

u−1(t)
),0 ≤ t < S = u(T ))

is called a continuous LERW in D from w0 to we, normalized by h, and
is denoted by LERW(D;w0 → we). It is almost surely generated by a ran-
dom simple curve, which is called an LERW(D;w0 → we) trace normalized
by h. The variation of Theorem 3.2 for LERW(D;w0 → we) holds with sim-
ple modification: (F1(t),0 ≤ t < S1) and (F2(t/a

2),0 ≤ t < a2S2) have the
same distribution, where a = (h2 ◦ h−1

1 )′(0) and hj , j = 1,2, are normaliza-
tion functions. Thus the distribution of LERW(D;w0 → we) up to a linear time-
change does not depend on the choices of f and h, and is conformally invari-
ant.

REMARK. (i) If D is a 1-connected domain, and w0 �= we are two prime
ends of D, then an LERW(D;w0 → we) has the same distribution as a chordal
SLE2(D;w0 → we) up to a linear time-change.

(ii) If D is a 1-connected domain, w0 is a prime end of D, and Ie is a side arc
of D that is bounded away from w0, then an LERW(D;w0 → Ie) has the same
distribution as a strip or dipolar SLE2(D;w0 → Ie) (cf. [2, 21]) up to a linear
time-change.

(iii) If D is a 2-connected domain, w0 is a prime end of D, and Ie is a side of
D that does not contain w0, then an LERW(D;w0 → Ie) has the same distribution
as an annulus SLE2(D;w0 → Ie) (cf. [20]) up to a deterministic time-change.

4. Observables generated by martingales.

4.1. Local martingales for continuous LERW. Suppose D is a finitely con-
nected domain, ze ∈ D, and w0 is a prime end of D. Let γ (t), 0 ≤ t < S, be
an LERW(D;w0 → ze) trace. So γ is a simple curve in D̂ with γ (0) = w0 and
γ (t) ∈ D for 0 < t < S. For 0 ≤ t < S, let Pt be the generalized Poisson kernel in
D \ γ ((0, t]) with the pole at γ (t), normalized by Pt(ze) = 1.

THEOREM 4.1. For any fixed z ∈ D, (Pt (z)) is a local martingale.

Let � be an almost H domain, and p ∈ �. If K is a hull in H w.r.t. ∞ such
that K ⊂ � \ {p}, let P(K,x, ·) be the generalized Poisson kernel in �K with
the pole at x, normalized by P(K,x,ϕK(p)) = 1. Suppose ξ ∈ C([0, T )) satisfies⋃

0≤t<T K
ξ
t ⊂ �\{p}. We write P ξ (t, ·, ·) for P(K

ξ
t , ·, ·), t ∈ [0, T ). It is standard

to check that P ξ is C1,2,h differentiable, where “h” means harmonic.

LEMMA 4.1. For any t ∈ [0, T ) and z ∈ � \ K
ξ
t , we have Vt (z) = 0, where

Vt (z) = ∂1P
ξ (t, ξ(t), ϕ

ξ
t (z)) + 2∂2P

ξ (t, ξ(t), ϕ
ξ
t (z))X

ξ
t

+ ∂2
2P ξ (t, ξ(t), ϕ

ξ
t (z)) + 2 Re

(
∂3,zP

ξ (t, ξ(t), ϕ
ξ
t (z)) · 2

ϕ
ξ
t (z) − ξ(t)

)
.
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Here ∂1 and ∂2 are partial derivatives w.r.t. the first two (real) variables, and ∂3,z =
(∂3,x − i∂3,y)/2 is the partial derivative w.r.t. the third (complex) variable.

PROOF. For t ∈ [0, T ) and z ∈ ∂� \ R, since ϕ
ξ
t (z) ∈ ∂�

ξ
t \ R, so P ξ (t, x,

ϕ
ξ
t (z)) = 0 for any x ∈ R, which implies that ∂2P

ξ = ∂2
2P ξ = 0 at (t, x, ϕ

ξ
t (z)),

and

∂1P
ξ (t, x,ϕ

ξ
t (z)) + 2 Re

(
∂3,zP

ξ (t, x, ϕ
ξ
t (z)) · 2

ϕ
ξ
t (z) − ξ(t)

)
= 0.

Thus Vt vanishes on ∂� \ R for t ∈ [0, T ). Let Wt = Vt ◦ (ϕ
ξ
t )−1. Then Wt van-

ishes on ∂�
ξ
t \ R for t ∈ [0, T ). Note that for t ∈ [0, T ) and w ∈ �

ξ
t ,

Wt (w) = ∂1P
ξ (t, ξ(t),w) + 2∂2P

ξ (t, ξ(t),w)X
ξ
t

+ ∂2
2P ξ (t, ξ(t),w) + 2 Re

(
∂3,zP

ξ (t, ξ(t),w) · 2

w − ξ(t)

)
.

Since P ξ (t, ξ(t), ·) vanishes on R \ {ξ(t)} and 2
w−ξ(t)

is real on R \ {ξ(t)}, so Wt

vanishes on R \ {ξ(t)}. As w → ∞ in H, ∂1, ∂2, ∂2
2 and ∂3,z of P ξ at (t, ξ(t),w)

all tend to 0, and 2
w−ξ(t)

tends to 0 as well. Thus Wt vanishes on R̂ \ {ξ(t)}.
Suppose for some c(t, x) ∈ R, Im c(t,x)

w−x
is the principal part of P ξ (t, x,w) at x.

So there is some analytic function F(t, x, ·) defined in some neighborhood of x

such that in that neighborhood, P ξ (t, x,w) = Im(F (t, x,w) + c(t,x)
w−x

). Then we
have

∂1P
ξ (t, ξ(t),w) = Im

(
∂1F(t, ξ(t),w) + ∂1c(t, ξ(t))

w − ξ(t)

)
,

∂2P
ξ (t, ξ(t),w) = Im

(
∂2F(t, ξ(t),w) + ∂2c(t, ξ(t))

w − ξ(t)

+ c(t, ξ(t))

(w − ξ(t))2

)
,

∂2
2P ξ (t, ξ(t),w) = Im

(
∂2

2F(t, ξ(t),w) + ∂2
2c(t, ξ(t))

w − ξ(t)

+ 2∂2c(t, ξ(t))

(w − ξ(t))2 + 2c(t, ξ(t))

(w − ξ(t))3

)
and

2 Re
(
∂3,zP

ξ (t, ξ(t),w) · 2

w − ξ(t)

)
= Im

(
2F ′(t, ξ(t),w)

w − ξ(t)
− 2c(t, ξ(t))

(w − ξ(t))3

)
.

Thus Wt equals the imaginary part of

∂1F(t, ξ(t),w) + ∂1c(t, ξ(t))

w − ξ(t)
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+ 2
(
∂2F(t, ξ(t),w) + ∂2c(t, ξ(t))

w − ξ(t)
+ c(t, ξ(t))

(w − ξ(t))2

)
X

ξ
t

+ ∂2
2F(t, ξ(t),w) + ∂2

2c(t, ξ(t))

w − ξ(t)
+ 2∂2c(t, ξ(t))

(w − ξ(t))2 + 2c(t, ξ(t))

(w − ξ(t))3

+ 2F ′(t, ξ(t),w)

w − ξ(t)
− 2c(t, ξ(t))

(w − ξ(t))3

= ∂1F(t, ξ(t),w) + 2∂2F(t, ξ(t),w)X
ξ
t

+ ∂2
2F(t, ξ(t),w) + A1(t)

w − ξ(t)
+ A2(t)

(w − ξ(t))2

for some functions A1(t) and A2(t), where A2(t) = 2c(t, ξ(t))X
ξ
t + 2∂2c(t, ξ(t)).

Since J
ξ
t = G(�

ξ
t , ϕ

ξ
t (p); ·), so for x ∈ R, ∂yJ

ξ
t (x) equals the value at ϕ

ξ
t (p)

of the (usual) Poisson kernel in �
ξ
t with the pole at x. Note that P ξ (t, x, ·) equals

some constant times the Poisson kernel in �
ξ
t with the pole at x, of which the

principal part at x is Im −1/π
w−x

. So we have

∂yJ
ξ
t (x)/(−1/π) = P ξ (t, x,ϕ

ξ
t (p))/c(t, x) = 1/c(t, x).

Thus c(t, x) ∂yJ
ξ
t (x) = −1/π for any x ∈ R, which implies that

0 = c(t, ξ(t)) ∂x ∂yJ
ξ
t (ξ(t)) + ∂2c(t, ξ(t))∂yJ

ξ
t (ξ(t)) = A2(t) ∂yJ

ξ
t (ξ(t))/2.

So A2(t) = 0, and Wt equals the imaginary part of some analytic function plus
A1(t)

w−ξ(t)
near ξ(t). Since Wt is harmonic in �

ξ
t , and vanishes at every prime

end of �
ξ
t other than ξ(t), so Wt = C(t)P ξ (t, ξ(t), ·) for some C(t) ∈ R. From

P ξ (t, x,ϕ
ξ
t (p)) = 1 for any t ∈ [0, T ) and x ∈ R, we get Wt (ϕ

ξ
t (p)) = 0. So for

t ∈ [0, T ), we have C(t) = 0, which implies that Wt vanishes on �
ξ
t , and so Vt

vanishes on � \ K
ξ
t . �

Suppose f maps D conformally onto an almost H domain � such that f (w0) =
0. Let p = f (ze). Let v(t) = hcap(f (γ ((0, t])))/2, 0 ≤ t < S. Let T = v(S),
and u be the reversal of v. Then f (γ ((0, u(t)])) = K

ξ
t , 0 ≤ t < T , where ξ ∈

C([0, T )) solves equation (3.2) with λ = 2 and A(t) = √
2B(t) for some Brown-

ian motion B(t). Since ϕ
ξ
t ◦ f maps D \ f (γ ((0, u(t)])) conformally onto �

ξ
t ,

ϕ
ξ
t ◦ f (γ (u(t))) = ξ(t) and ϕ

ξ
t ◦ f (ze) = ϕ

ξ
t (p), so from the conformal invari-

ance, Pu(t) ◦ f −1 ◦ (ϕ
ξ
t )−1 is the generalized Poisson kernel in �

ξ
t with the pole at

ξ(t), whose value at ϕ
ξ
t (p) is 1, that is,

Pu(t) ◦ f −1 ◦ (ϕ
ξ
t )−1 = P ξ (t, ξ(t), ·).(4.1)
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PROOF OF THEOREM 4.1. Let Qt(z) = P ξ (t, ξ(t), ϕ
ξ
t (z)) for z ∈ � \ K

ξ
t .

From Itô’s formula, (Qt(z)) is a semimartingale, and the drift term equals Vt (z),
which vanishes on � \ K

ξ
t by Lemma 4.1. Thus (Qt(z)) is a local martingale for

any fixed z ∈ �. From (4.1), Pt(z) = Qv(t)(f (z)) for z ∈ D. Since f (D) = �, and
a time-change preserves a local martingale, so (Pt (z)) is a local martingale for any
fixed z ∈ D.

Second, we consider an LERW(D;w0 → Ie) trace: γ (t), 0 ≤ t < S, where w0
is a prime end of D, and Ie is a side arc of D. Let Pt be the generalized Poisson
kernel in D \ γ ((0, t]) with the pole at γ (t), normalized by

∫
Ie

∂nPt(z) ds(z) = 1.
Here the equality means that if g maps a neighborhood U of Ie in D̂ conformally
into C such that g(Ie) is an analytic arc, then

∫
g(Ie)

∂n(Pt ◦ g−1)(z) ds(z) = 1,
where n is the unit normal vector pointing inward, and ds is the length of the
curve. In fact, the value of the integral does not depend on the choice of g.

Suppose f maps D conformally onto an almost H domain � such that f (w0) =
0. Let J = f (Ie). If K

ξ
t ⊂ �, and is bounded away from J , let P ξ (t, x, ·)

be the generalized Poisson kernel in �
ξ
t , with the pole at x, normalized by∫

ϕ
ξ
t (J )

∂nP ξ (t, x, z) ds(z) = 1. Then Lemma 4.1 holds in this setting, and the proof
is similar. Formula (4.1) still holds, so we have Theorem 4.1.

Third, we consider an LERW(D;w0 → we) trace: γ (t), 0 ≤ t < S, where w0 �=
we are prime ends of D. Fix g that maps a neighborhood U of we in D̂ conformally
onto a neighborhood V of 0 in H such that g(we) = 0 and g(U ∩ ∂̂D) ⊂ R. Let Pt

be the generalized Poisson kernel in D \γ ((0, t]) with the pole at γ (t), normalized
by ∂y(Pt ◦ g−1)(0) = 1.

Suppose f maps D conformally onto an almost H domain � such that f (w0) =
0. Let p = f (we). If K

ξ
t ⊂ �, and is bounded away from p, let P ξ (t, x, ·) be the

generalized Poisson kernel in �
ξ
t , with the pole at x, normalized by ∂y(P

ξ (t, x, ·)◦
f ◦ g−1)(0) = 1. Then Lemma 4.1 holds in this setting, and the proof is similar.
Formula (4.1) still holds, so we have Theorem 4.1. �

4.2. Discrete approximations. Let D be a finitely connected domain. Suppose
0 ∈ ∂D, and there is some δD > 0 such that the half open line segment [δD,0) is
contained in D. As z → 0 along [δD,0), z tends to a prime end of D. We use 0+
to denote this prime end.

For δ > 0, let δZ2 = {(j + ik)δ : j, k ∈ Z} ⊂ C. We also view δZ2 as a graph
whose vertices are (j + ik)δ, j, k ∈ Z, and two vertices are adjacent iff the distance
between them is δ. We define a graph D̆δ that approximates D in δZ2 as follows.
The vertex set V (D̆δ) is the union of interior vertex set VI (D̆

δ) and boundary
vertex set V∂(D̆

δ), where VI (D̆
δ) := δZ2 ∩ D, and V∂(D̆

δ) is the set of ordered
pairs 〈z1, z2〉 such that z1 ∈ VI (D̆

δ), z2 ∈ ∂D, and there is z3 ∈ δZ2 that is adja-
cent to z1 in δZ2, such that [z1, z2) ⊂ [z1, z3) ∩ D. Two vertices w1 and w2 in
V (D̆δ) are adjacent iff either w1,w2 ∈ VI (D̆

δ), w1 and w2 are adjacent in δZ2,
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and [w1,w2] ⊂ D; or for j = 1 or 2, wj ∈ VI (D̆
δ) and w3−j = 〈wj , z3〉 ∈ V∂(D̆

δ)

for some z3 ∈ ∂D.
Every interior vertex of D̆δ has exactly four adjacent vertices, and every bound-

ary vertex w = 〈z1, z2〉 has exactly one adjacent vertex, which is the interior ver-
tex z1. So D̆δ is locally finite. If 〈z1, z2〉 is a boundary vertex, then it determines
a boundary point, which is z2, and a prime end of D, which is the limit in D̂ as
z → z2 along [z1, z2). If there is no ambiguity, we do not distinguish a boundary
vertex from the boundary point or prime end it determines. Suppose δ ∈ (0, δD].
Then δ is an interior vertex of D̆δ , and 〈δ,0〉 is a boundary vertex of D̆δ . A ran-
dom walk on D̆δ started from an interior vertex w0 up to the first time it leaves
D agrees with a random walk on δZ2 started from w0 up to the first time it uses
an edge that intersects ∂D. Let Dδ be the connected component of D̆δ that con-
tains δ. Let VI (D

δ) := V (Dδ) ∩ VI (D̆
δ) and V∂(D

δ) := V (Dδ) ∩ V∂(D̆
δ) be the

set of interior and boundary vertices, respectively, of Dδ .
Fix ze ∈ D \ {∞}. Let wδ

e be the vertex in δZ2 that is closest to ze. If such vertex
is not unique, we choose the one that maximizes Re z+π Im z to break the tie. Sup-
pose δ ∈ (0, δD] is small enough. Then there is a lattice path on D̆δ that connects
δ with wδ

e , which does not pass through any boundary vertex. So wδ
e is an interior

vertex of Dδ . Let F = {wδ
e} and E−1 = V∂(D

δ). From the recurrence of the ran-
dom walks on Z2, we know that E ∪F is reachable in Dδ . Let (qδ(0), . . . , qδ(χδ))

be the LERW on Dδ started from δ conditioned to hit F before E−1. So qδ(0) = δ

and qδ(χδ) = wδ
e . Let qδ(−1) = 0. Extend qδ to [−1, χδ] such that qδ is linear on

[k − 1, k] for each k ∈ Z[0,χδ]. Then qδ is a simple curve in D ∪ {0} that connects
0 and wδ

e .
Since F contains only one point, we may define gk as in Proposition 2.1. Then

for any fixed vertex v0 on Dδ , (gk(v0)) is a martingale up to the time qδ(k) is next
to wδ

e or Ek := E−1 ∪ {qδ(0), . . . , qδ(k)} disconnects v0 from ze. Note that gk van-
ishes on Ek \ {qδ(k)}, is discrete harmonic at every interior vertex of Dδ except
qδ(0), . . . , qδ(k), and gk(w

δ
e) = 1. For 0 ≤ k ≤ χδ − 1, let Dk = D \ qδ([−1, k]).

Then qδ(k) corresponds to a prime end of Dk . When δ is small, the function gk

approximates the generalized Poisson kernel Pk in Dk with the pole at qδ(k), nor-
malized by Pk(ze) = 1. Note the resemblance of the discrete martingales preserved
by (discrete) LERW and the local martingales preserved by continuous LERW.
Suppose γ0(t), 0 ≤ t < S0, is an LERW(D;0+ → ze) trace. In the last several sec-
tions, we will prove the following theorem. Note that we do not require that the
boundary of D is good.

THEOREM 4.2. (i) Suppose U is a neighborhood of 0+ in D. Then for any
ε > 0, there is δ0 > 0 such that if δ < δ0, then there are a coupling of qδ and γ0,
and a continuous increasing function ŭ that maps (−1, χδ) onto (0, S0) such that

P[sup{|qδ(ŭ
−1(t)) − γ0(t)| :TU(γ0) ≤ t < S0} < ε] > 1 − ε,

where TU(γ0) is the first time that γ0 leaves U .
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(ii) If the prime end 0+ is degenerate (see [13]), then (i) holds with “TU(γ0) ≤ t”
replaced by “0 < t .”

Now suppose we ∈ ∂D \ {0} satisfies we ∈ δeZ2 for some δe > 0, and ∂D is
flat near we, which means that there is r > 0 such that D ∩ {z ∈ C : |z − we| <

r} = (we + aH) ∩ {z ∈ C : |z − we| < r} for some a ∈ {±1,±i}. For δ > 0, let
wδ

e = we + iaδ.
Let M be the set of δ > 0 such that we ∈ δZ2. If δ ∈ M is small enough, then

〈wδ
e,we〉 is a boundary vertex of D̆δ , which determines the boundary point and

prime end we, and there is a lattice path on Dδ that connects δ with we with-
out passing through any other boundary vertex. Here we do not distinguish we

from the boundary vertex 〈wδ
e,we〉. Let F = {we} and E−1 = V∂(D

δ) \ F . Then
E ∪ F = V∂(D

δ) is reachable in Dδ . Let (qδ(0), . . . , qδ(χδ)) be the LERW on Dδ

started from δ conditioned to hit F before E−1. So qδ(0) = δ and qδ(χδ) = we. Let
qδ(−1) = 0. Extend qδ to be defined on [−1, χδ] such that qδ is linear on [k −1, k]
for each k ∈ Z[0,χδ]. Then qδ is a simple curve in D ∪ {0,we} that connects 0 and
we.

Let hk be as in Proposition 2.1. Then for any fixed vertex v0 on Dδ , (hk(v0))

is a martingale up to the time when qδ(k) = wδ
e or Ek = E−1 ∪ {qδ(0), . . . , qδ(k)}

disconnects v0 from we. Let Dk = D \ qδ([−1, k]). Then qδ(k) is a prime end
of Dk . Note that hk vanishes on qδ(−1), . . . , qδ(k − 1) and all boundary vertices
of Dδ , is discrete harmonic at all interior vertices of Dδ except qδ(0), . . . , qδ(k),
and hk(w

δ
e) = 1. So when δ is small, δ · hk is close to the generalized Poisson

kernel Pk in Dk with the pole at qδ(k) normalized by ∂nPk(we) = 1. Suppose
γ0(t), 0 ≤ t < S, is an LERW(D;0+ → we) trace. Then Theorem 4.2 still holds
for qδ and γ0 defined here if we replace “δ < δ0” by “δ ∈ M and δ < δ0.”

Now suppose Ie is a side arc of D that is bounded away from 0+. Let I δ
e be the

set of boundary vertices of Dδ which determine prime ends that lie on Ie. If δ is
small enough, I δ

e is nonempty, and there is a lattice path on Dδ that connects δ with
I δ
e without passing through any boundary vertex not in I δ

e . Then we let F = I δ
e and

E−1 = V∂(D
δ) \ F . Let (qδ(0), . . . , qδ(χδ)) be the LERW on Dδ started from δ

conditioned to hit F before E−1. So qδ(0) = δ and qδ(χδ) ∈ Ie.
Let hk be as in Proposition 2.1. Then for any fixed vertex v0 on Dδ , (hk(v0)) is

a martingale up to the time qδ(k) is close to Ie or Ek := E−1 ∪ {qδ(0), . . . , qδ(k)}
disconnects v0 from Ie. Note that hk vanishes on qδ(−1), . . . , qδ(k − 1) and all
boundary vertices of Dδ , hk is discrete harmonic at every interior vertex of Dδ

except qδ(0), . . . , qδ(k), and
∑

v∈I δ
e
�hk(v) = 1. So when δ is small, the function

hk seems to be close to the generalized Poisson kernel Pk in Dk with the pole at
qδ(k) normalized by

∫
Ie

∂nPk(z) ds(z) = 1.
If Ie is a whole side of D, then Theorem 4.2 still holds for qδ and γ0 defined

here. If Ie is not a whole side, for the purpose of convergence, we may need
some additional boundary conditions. Suppose the two ends of Ie correspond to
w1

e ,w
2
e ∈ ∂D, near which ∂D is flat, and w1

e ,w
2
e ∈ δeZ2 for some δe > 0. Let M
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be the set of δ > 0 such that w1
e ,w

2
e ∈ δZ2. Then Theorem 4.2 still holds for qδ

and γ0 defined here if we replace “δ < δ0” by “δ ∈ M and δ < δ0.”

5. Existence and uniqueness. In this section we will prove Theorem 3.1. The
proof is somehow similar to that of the existence and uniqueness of the solution of
an ordinary differential equation.

5.1. Convergence of domains.

DEFINITION 5.1. Suppose Dn is a sequence of domains and D is a domain.

We say that (Dn) converges to D, denoted by Dn
Cara−→ D, if for every z ∈ D,

dist#(z, ∂#Dn) → dist#(z, ∂#D). This is equivalent to the followings:

(i) every compact subset of D is contained in all but finitely many Dn’s; and
(ii) for every point z0 ∈ ∂#D, dist#(z0, ∂

#Dn) → 0 as n → ∞.

A sequence of domains may converge to two different domains. For example, let

Dn = C \ ((−∞, n]). Then Dn
Cara−→ H, and Dn

Cara−→ −H as well. But two different
limit domains of the same domain sequence must be disjoint from each other, be-
cause if they have nonempty intersection, then one contains some boundary point
of the other, which implies a contradiction.

If only condition (i) in the definition is satisfied, then for any z ∈ D, dist#(z,

∂#D) ≤ lim inf dist#(z, ∂#Dn). Thus Dn ∩ D
Cara−→ D. If Dn

Cara−→ D, En
Cara−→ E,

and z0 ∈ D ∩ E. Let Fn (resp. F ) be the connected component of Dn ∩ En (resp.
D ∩ E) that contains z0. Then for any z ∈ F , dist#(z, ∂#Fn) = dist#(z, ∂#Dn) ∧
dist#(z, ∂#En) for each n, and dist#(z, ∂#F) = dist#(z, ∂#D) ∧ dist#(z, ∂#E),

which implies Fn
Cara−→ F . Thus if Dn

Cara−→ D, En
Cara−→ E, Dn ⊂ En for each n,

and D ∩ E �= ∅, then we have D ⊂ E.

Suppose Dn
Cara−→ D, and for each n, fn is a Ĉ-valued function on Dn, and f is

a Ĉ-valued function on D. We say that fn converges to f locally uniformly in D,

or fn
l.u.−→ f in D, if for each compact subset F of D, fn converges to f in the

spherical metric uniformly on F . If every fn is analytic (resp. harmonic), then f

is also analytic (resp. harmonic).

LEMMA 5.1. Suppose Dn
Cara−→ D, fn maps Dn conformally onto some do-

main En for each n, and fn
l.u.−→ f in D. Then either f is constant on D, or f

maps D conformally onto some domain E. And in the latter case, En
Cara−→ E and

f −1
n

l.u.−→ f −1 in E.

This lemma is similar to Theorem 1.8, the Carathéodory kernel theorem, in
[13], and the proof is also similar. When applying this lemma, we will usually first
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exclude the possibility that f is constant, and then obtain the convergence of the
image domains and the inverse functions.

5.2. Topology on the space of hulls. If H is a nonempty hull in H w.r.t. ∞,
then H ∩ R is nonempty. Let aH = inf(H ∩ R) and bH = sup(H ∩ R). Let

�H = C \ (H ∪ {z : z ∈ H } ∪ [aH ,bH ]).
By the reflection principle, ϕH extends to �H , and maps �H conformally onto
C\[cH , dH ] for some cH < dH ∈ R. Moreover, ϕH is increasing on (−∞, aH ) and
(bH ,+∞), and maps them onto (−∞, cH ) and (dH ,+∞), respectively. So ϕ−1

H

extends conformally to C\ [cH , dH ]. And [cH , dH ] is the smallest in the sense that
if ϕ−1

H extends conformally to C \ I for some closed interval I , then [cH , dH ] ⊂ I .
If H = ∅, we do not define aH ,bH , cH , dH , but still use the notation [a∅, b∅]
and [c∅, d∅] to denote empty sets. Then �∅ = C, so it is true that ϕ∅ maps �∅
conformally onto C \ [c∅, d∅].

If γ is a crosscut in H, we define H(γ ) to be γ unions the bounded component
of H \ γ . Then H(γ ) is a hull in H w.r.t. ∞. We call it the hull bounded by γ . If
A ⊂ H(γ ), then we say γ encloses A. If A ⊂ H(γ ) and A ∩ γ = ∅, then we say
γ strictly encloses A. For simplicity, we write xγ instead of xH(γ ) when x is one
of the following symbols: a, b, c, d,�,ϕ.

Since ∂̂(H \ H(γ )) = (R̂ \ (aγ , bγ )) ∪ γ is a simple curve, so ϕγ extends to a
homeomorphism of H \ H(γ ), and maps γ onto [cγ , dγ ]. So ϕ−1

H(γ ) has a continu-
ous extension to H ∪ R, and maps (cγ , dγ ) onto γ . From the results about Poisson
kernel, we have

ϕ−1
γ (z) − z =

∫ dγ

cγ

−1

z − x

Imϕ−1
γ (x)

π
dx,

for any z ∈ �γ . From the behavior of ϕγ near ∞, we have
∫ dγ
cγ Imϕ−1

γ (x)/π dx =
hcap(H(γ )). If H is a general nonempty hull in H w.r.t. ∞, then ϕ−1

H may not
have continuous extension to [cH , dH ]. We may use a sequence of hulls bounded
by crosscuts to approximate H . Then we conclude that there is a positive measure
μH supported by [cH , dH ] with total mass |μH | = hcap(H) such that for any
z ∈ �H ,

ϕ−1
H (z) − z =

∫ dH

cH

−1

z − x
dμH(x).(5.1)

EXAMPLE. Suppose x0 ∈ R and r0 > 0. Let α = {z ∈ H : |z − x0| = r0}. Then
α is a crosscut in H, H(α) = {z ∈ H : |z − x0| ≤ r0} and [aα, bα] = [x0 − r0, x0 +
r0]. It is clear that ϕα(z) = z + r2

0
z−x0

. Thus hcap(H(α)) = r2
0 and [cα, dα] = [x0 −

2r0, x0 + 2r0].
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LEMMA 5.2. If H is a nonempty hull in H w.r.t. ∞, then ϕ−1
H (x) > x for

any x ∈ (−∞, cH ); ϕ−1
H (x) < x for any x ∈ (dH ,+∞); ϕH (x) < x for any x ∈

(−∞, aH ); ϕH (x) > x for any x ∈ (bH ,+∞). So if H is any hull in H w.r.t. ∞,
then [aH ,bH ] ⊂ [cH , dH ].

PROOF. This follows from (5.1) and that ϕH maps (−∞, aH ) and (bH ,+∞)

onto (−∞, cH ) and (dH ,+∞), respectively. �

If H1 ⊂ H2 are two hulls in H w.r.t. ∞, we call H1 a sub-hull of H2. Then
H2/H1 := ϕH1(H2 \ H1) is also a hull in H w.r.t. ∞. We call H2/H1 a quotient-
hull of H2. It is clear that ϕH2 = ϕH2/H1 ◦ ϕH1 . Thus hcap(H2) = hcap(H2/H1) +
hcap(H1), and so hcap(H1),hcap(H2/H1) ≤ hcap(H2).

LEMMA 5.3. If H1 ⊂ H2 are two hulls in H w.r.t. ∞, then [cH1, dH1] ⊂
[cH2, dH2] and [cH2/H1, dH2/H1] ⊂ [cH2, dH2].

PROOF. If H1 = ∅ or H1 = H2, then H2/H1 = H2 or H2/H1 = ∅, so it
is trivial. Now suppose ∅ � H1 � H2. Then H2/H1 �= ∅. Since ϕ−1

H2/H1
(z) =

ϕH1 ◦ ϕ−1
H2

(z) for z ∈ H, ϕ−1
H2

maps C \ [cH2, dH2] onto �H2 , and ϕH1 extends con-

formally to �H1 ⊃ �H2 , so ϕ−1
H2/H1

extends conformally to C\[cH2, dH2]. From the
minimum property of [cH2/H1, dH2/H1], we have [cH2/H1, dH2/H1] ⊂ [cH2, dH2].

If x ∈ (−∞, aH2), then ϕH2(x) ∈ (−∞, cH2) ⊂ (−∞, cH2/H1).
Since ϕ−1

H2/H1
(x) > x on (−∞, cH2/H1), so ϕH1(x) = ϕ−1

H2/H1
◦ ϕH2(x) > ϕH2(x)

on (−∞, aH2). Thus

cH1 = supϕH1((−∞, aH1)) ≥ supϕH1((−∞, aH2))

≥ supϕH2((−∞, aH2)) = cH2 .

Similarly, we have dH1 ≤ dH2 . Thus [cH1, dH1] ⊂ [cH2, dH2]. �

COROLLARY 5.1. If H1 ⊂ H2 ⊂ H3 are hulls in H w.r.t. ∞,
then hcap(H2/H1) ≤ hcap(H3) and [cH2/H1, dH2/H1] ⊂ [cH3, dH3]. We call H2/H1
a sub-quotient-hull of H3.

Let H be a nonempty hull in H w.r.t. ∞. Let H(H) denote the set of all sub-
hulls of H . Let Hsq(H) denote the set of all sub-quotient-hulls of H . If α is a
crosscut in H, we write H(α) for H(H(α)), and Hsq(α) for Hsq(H(α)). Choose
d > 0. Let α = {z ∈ C : |z− (cH + dH )/2| = |dH − cH |/2 + d}. Then α is a Jordan
curve that encloses [cH , dH ], and d is the distance between α and [cH , dH ]. Sup-
pose K ∈ Hsq(H). Then [cK, dK ] ⊂ [cH , dH ]. If z lies on or outside α, from (5.1),

|ϕ−1
K (z) − z| ≤ |μK |/d = hcap(K)/d ≤ hcap(H)/d.
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If z ∈ C \ [cK, dK ] lies inside α, then ϕ−1
K (z) lies inside ϕ−1

K (α). Choose w ∈ α;
then

|ϕ−1
K (z) − z| ≤ |z − w| + |w − ϕ−1

K (w)| + |ϕ−1
K (w) − ϕ−1

K (z)|
≤ diam(α) + hcap(H)/d + diam(ϕ−1

K (α))

≤ 2|dH − cH | + 4d + 3 hcap(H)/d.

Let d = √
hcap(H) and MH = 2|dH − cH | + 7

√
hcap(H). Then for any z ∈ C \

[cK, dK ], |ϕ−1
K (z) − z| ≤ MH . Since ϕ−1

K maps C \ [cK, dK ] onto �K , so for any
z ∈ �K , |ϕK(z) − z| ≤ MH . Since C \ [cK, dK ] ⊃ C \ [cH , dH ], so {ϕ−1

K (z) −
z :K ∈ Hsq(H)} is uniformly bounded in C \ [cH , dH ] by MH , and so is a normal
family.

Let H denote the set of all hulls in H w.r.t. ∞. Choose a sequence of compact
subsets (Fn) of H such that Fn ⊂ intFn+1 for each n ∈ N, and

⋃
n Fn = H. We

may define a distant function dH on H such that

dH (H1,H2) =
∞∑

n=1

1

2n

(
1 ∧ sup

z∈Fn

{|ϕ−1
H1

(z) − ϕ−1
H2

(z)|}
)
.

We use
H−→ to denote the convergence w.r.t. dH . It is clear that Hn

H−→ H iff

ϕ−1
Hn

l.u.−→ ϕ−1
H in H. So the topology does not depend on the choice of (Fn).

From Lemma 5.1, if Hn
H−→ H , then H \ Hn

Cara−→ H \ H and ϕHn

l.u.−→ ϕH in

H \ H . However, H \ Hn
Cara−→ H \ H does not imply Hn

H→ H . For example, let

Hn = {z ∈ H : |z − 2n| ≤ n} for n ∈ N. Then H \Hn
Cara−→ H = H \ ∅, but ϕHn(z) =

z + n2/(z − 2n) �→ z = ϕ∅(z). And Hn
H−→ H does not imply �Hn

Cara−→ �H . For

example, let Hn = {z ∈ H : |Re z| ≤ 1, Im z ≤ 1/n} for n ∈ N. Then Hn
H−→ ∅, but

�Hn

Cara−→ C \ [−1,1] �= C = �∅.

Suppose Hn
H−→ H , Kn

H−→ K and Kn ⊂ Hn for each n. Then H \Hn
Cara−→ H \

H , H\Kn
Cara−→ H\K and H\Hn ⊂ H\Kn for each n. Since (H\H) ∩ (H\K) =

H \ (H ∪ K) �= ∅, so H \ H ⊂ H \ K . Thus K ⊂ H . Let Ln = Hn/Kn for each n

and L = K/H . Then ϕ−1
Ln

= ϕKn ◦ ϕ−1
Hn

and ϕ−1
L = ϕK ◦ ϕ−1

H . Since ϕ−1
Hn

l.u.−→ ϕ−1
H

in H, and ϕKn

l.u.−→ ϕK in H \ K ⊃ H \ H = ϕH (H), so ϕ−1
Ln

l.u.−→ ϕ−1
L in H. Thus

Ln
H−→ L, that is, Hn/Kn

H−→ H/K .

LEMMA 5.4 (Compactness). H(H) and Hsq(H) are compact. Moreover, we
have:
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(i) Suppose (Kn) is a sequence in H(H), then it has a subsequence (Ln) that

converges to some K ∈ H(H) w.r.t. dH , and ϕ−1
Ln

l.u.−→ ϕ−1
K in C \ [cH , dH ], �Ln \

[aH ,bH ] Cara−→ �K \ [aH ,bH ], and ϕLn

l.u.−→ ϕK in �K \ [aH ,bH ].
(ii) Suppose (Kn) is a sequence in Hsq(H); then it has a subsequence (Ln)

that converges to some K ∈ Hsq(H) w.r.t. dH , and ϕ−1
Ln

l.u.−→ ϕ−1
K in C \ [cH , dH ],

�Ln \ [cH , dH ] Cara−→ �K \ [cH , dH ], and ϕLn

l.u.−→ ϕK in �K \ [cH , dH ].
PROOF. (i) Since {ϕ−1

Kn
(z) − z : n ∈ N} is uniformly bounded in C \ [cH , dH ],

so (Kn) has a subsequence (Ln) such that ϕ−1
Ln

(z) − z converges to some function
f locally uniformly in C \ [cH , dH ]. Then |f (z)| ≤ M for any z ∈ C \ [cH , dH ].
Let g(z) = f (z) + z for z ∈ C \ [cH , dH ]. Then ϕ−1

Ln

l.u.−→ g in C \ [cH , dH ].
There are z1, z2 ∈ C \ [cH , dH ] with |z1 − z2| > 2M . Then |g(z1) − g(z2)| ≥
|z1 − z2| − |g(z1) − z1| − |g(z2) − z2| > 2M − M − M = 0. So g is not con-
stant. From Lemma 5.1, g is a conformal map. Since for each n, H ⊃ ϕ−1

Ln
(H) =

H \ Ln ⊃ H \ H , so H ⊃ g(H) ⊃ H \ H . Let K = H \ g(H). Then K ∈ H(H),
and g maps H conformally onto H \ K . Since ϕ−1

Ln
(z) − z = O(1/z) as z → ∞,

so g(z) − z = O(1/z) as z → ∞. Thus g(z) = ϕ−1
K (z) for z ∈ C \ [cH , dH ]. So

ϕ−1
Ln

l.u.−→ ϕ−1
K in C \ [cH , dH ]. Especially, ϕ−1

Ln

l.u.−→ ϕ−1
K in H. So K is a subse-

quential limit of (Kn). Thus H(H) is compact.
For L ∈ H(H), let �1

L := �L\[aH ,bH ], �2
L := �L\[cH , dH ]. Then �2

L ⊂ �1
L,

and

�1
L = (H \ L) ∪ {z ∈ C : z ∈ H \ L} ∪ (−∞, aH ) ∪ (bH ,+∞),(5.2)

�2
L = (H \ L) ∪ {z ∈ C : z ∈ H \ L} ∪ (−∞, cH ) ∪ (dH ,+∞),(5.3)

because (C\�L)∩R ⊂ [aL, bL] ⊂ [aH ,bH ] ⊂ [cH , dH ]. So from H\Ln
Cara−→ H\

K , we have �
j
Ln

Cara−→ �
j
K for j = 1,2. From Lemma 5.1, ϕ−1

Ln
(C \ [cH , dH ]) Cara−→

ϕ−1
K (C \ [cH , dH ]) and ϕLn

l.u.−→ ϕK in ϕ−1
K (C \ [cH , dH ]). Note that ϕ−1

K (C \
[cH , dH ]) ⊃ �2

K , where the inclusion follows from Lemma 5.2. Thus ϕLn

l.u.−→ ϕK

in �2
K .

Since |ϕLn(z) − z| ≤ M for all n ∈ N and z ∈ �Ln , and �1
Ln

⊂ �Ln , so every
subsequence of (ϕLn) has a subsequence that converges to some analytic function

h locally uniformly in �1
K . Since ϕLn

l.u.−→ ϕK in �2
K ⊂ �1

K , so h agrees with
ϕK on �2

K . Since they are both analytic, so h agrees with ϕK on �1
K . Since all

subsequential limits of ϕLn in �1
K are the same function ϕK , so ϕLn

l.u.−→ ϕK in
�1

K = �K \ [aH ,bH ].
(ii) Suppose Kn = K2

n/K1
n with K1

n ⊂ K2
n ⊂ H . From (i), (Kn) has a subse-

quence (Ln = L2
n/L

1
n) such that L

j
n

H−→ Kj for some Kj ∈ H(H), j = 1,2.
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Since L1
n ⊂ L2

n for each n, so K1 ⊂ K2. Let K = K2/K1. Then K ∈ Hsq(H),

and Ln = L2
n/L

1
n

H−→ K2/K1 = K . So K is a subsequential limit of (Kn). Thus
Hsq(H) is compact.

Since {ϕ−1
Ln

(z) − z :n ∈ N} is uniformly bounded in C \ [cH , dH ], so every sub-

sequence of (ϕ−1
Ln

) has a subsequence which converges to some h locally uni-

formly in C \ [cH , dH ]. Then h agrees with ϕ−1
K on H. Since they are both analytic

in C \ [cH , dH ], so h agrees with ϕ−1
K on C \ [cH , dH ]. Thus (ϕ−1

Ln
)

l.u.−→ ϕ−1
K in

C \ [cH , dH ].
For L ∈ Hsq(H), we define �

j
L, j = 1,2, as in (i). Then (5.3) still holds

because [aL, bL] ⊂ [cL, dL] ⊂ [cH , dH ], but (5.2) does not because [aL, bL] ⊂
[aH ,bH ] may not be true. A similar argument gives that ϕLn

l.u.−→ ϕK in �2
K =

�K \ [cH , dH ]. �

5.3. Lipschitz conditions. Suppose ξ ∈ C([0, a]) for some a > 0, and K
ξ
a ∈

H(α). Then for each t ∈ [0, a], ϕ
ξ
t = ϕ

K
ξ
t
, and K

ξ
t ∈ H(α). For 0 ≤ t1 < t2 ≤ a,

let K
ξ
t1,t2

= K
ξ
t2
/K

ξ
t1

. Then K
ξ
t1,t2

∈ Hsq(α) and ϕ
K

ξ
t1,t2

= ϕ
ξ
t2

◦ (ϕ
ξ
t1
)−1, ϕ−1

K
ξ
t1,t2

=
ϕ

ξ
t1

◦ (ϕ
ξ
t2
)−1. Since ξ(t1) ∈ K

ξ
t1,t2

, so

ξ(t1) ∈ [a
K

ξ
t1,t2

, b
K

ξ
t1,t2

] ⊂ [c
K

ξ
t1,t2

, d
K

ξ
t1,t2

] ⊂ [cα, dα].
This holds for any t1 ∈ [0, a). Since ξ is continuous, so we also have ξ(a) ∈
[cα, dα].

LEMMA 5.5. Suppose α0 and α1 are crosscuts in H, and α0 is strictly enclosed
by α1. Then there are δ,C > 0 such that if ζ, η ∈ C([0, a]), ‖ζ − η‖a < δ, and
K

ζ
a ⊂ H(α0), then K

η
a ⊂ H(α1), and for any z ∈ H \ H(α1),

|ϕζ
a (z) − ϕη

a (z)| ≤ Ca‖ζ − η‖a.

PROOF. Suppose ζ, η ∈ C([0, a]) and K
ζ
a ⊂ H(α0). Choose a crosscut α0.5

in H that strictly encloses α0, and is strictly enclosed by α1. Then α0.5 and α1
are disjoint compact subsets of �α0 , which contains �K \ [aα0, bα0] for any K ∈
H(α0). From the compactness of H(α0), there is d > 0, such that the distance
between ϕK(α0.5) and ϕK(α1) is at least d for any K ∈ H(α0). For t ∈ [0, a], since
K

ζ
t ∈ H(α0), so the distance between ϕ

ζ
t (α0.5) and ϕ

ζ
t (α1) is at least d . Since

K
ζ
a is enclosed by α0.5, so K

ζ
t,a = ϕ

ζ
t (K

ζ
a \ K

ζ
t ) is enclosed by ϕ

ζ
t (α0.5), which

implies that ζ(t) ∈ K
ζ
t,a is enclosed by ϕ

ζ
t (α0.5). Thus the distance between ζ(t)

and ϕ
ζ
t (z) is at least d for any z ∈ H \ H(α1) and t ∈ [0, a]. Fix z ∈ H \ H(α1) and

δ ∈ (0, d/3]. Then |ϕζ
t (z) − ζ(t)| ≥ d for any t ∈ [0, a]. Suppose ‖ζ − η‖a < δ.
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Note that ϕ
ζ
0 (z) = z = ϕ

η
0 (z). Let [0, b) be the maximal subinterval of [0, a) on

which ϕ
η
t (z) is defined and |ϕζ

t (z) − ϕ
η
t (z)| ≤ d/3. Then for any t ∈ [0, b),

|ϕη
t (z) − η(t)| ≥ |ϕζ

t (z) − ζ(t)| − |ϕζ
t (z) − ϕ

η
t (z)| − |ζ(t) − η(t)| ≥ d/3.

Thus ϕ
η
b (z) is also defined. From the chordal Loewner equation, for t ∈ [0, b],

|ϕζ
t (z) − ϕ

η
t (z)| ≤

∫ t

0

∣∣∣∣ 2

ϕ
ζ
s (z) − ζ(s)

− 2

ϕ
η
s (z) − η(s)

∣∣∣∣ds

≤
∫ t

0

∣∣∣∣ 2(ζ(s) − η(s))

(ϕ
ζ
s (z) − ζ(s))(ϕ

η
s (z) − η(s))

∣∣∣∣ds

+
∫ t

0

∣∣∣∣ 2(ϕ
η
s (z) − ϕ

ζ
s (z))

(ϕ
ζ
s (z) − ζ(s))(ϕ

η
s (z) − η(s))

∣∣∣∣ds

≤ 6t

d2 ‖ζ − η‖a + 6

d2

∫ t

0
|ϕζ

s (z) − ϕη
s (z)|ds(5.4)

≤ 6δt

d2 + 6

d2

∫ t

0
|ϕζ

s (z) − ϕη
s (z)|ds.(5.5)

Solving inequality (5.5), we get

|ϕζ
b (z) − ϕ

η
b (z)| ≤ δ(e3b/d2 − 1) ≤ δ(e3a/d2 − 1).

Let h = hcap(H(α0)). Then a = hcap(K
ζ
a )/2 ≤ h/2. Choose δ = min{d/3,

d/6

e3h/d2−1
}. Then |ϕζ

b (z) − ϕ
η
b (z)| ≤ d/6. So we have b = a, which implies that

ϕ
η
t (z) is defined on [0, a], that is, z /∈ K

η
a . Since this is true for any z ∈ H \ H(α1),

so K
η
a ⊂ H(α1). Finally, let C = (exp(3h

d2 )−1)/(h/2). Solving inequality (5.4) for
t ∈ [0, a], we get

|ϕζ
a (z) − ϕη

a (z)| ≤ (e6a/d2 − 1)‖ζ − η‖a ≤ Ca‖ζ − η‖a

for any z ∈ H \ H(α1), where the second “≤” holds because a ≤ h/2. �

LEMMA 5.6. Suppose α and ρ are crosscuts in H, and [cα, dα] is strictly
enclosed by ρ. Then there are δ,C > 0 such that if ζ, η ∈ C([0, a]), ‖ζ − η‖a < δ,
and K

ζ
a ⊂ H(α), then K

η
a is enclosed by (ϕ

ζ
a )−1(ρ), and for any w ∈ H \ H(ρ),

|w − ϕη
a ◦ (ϕζ

a )−1(w)| ≤ Ca‖ζ − η‖a.

PROOF. Suppose ζ, η ∈ C([0, a]) and K
ζ
a ⊂ H(α). Choose ρ0 that strictly

encloses [cα, dα], and is strictly enclosed by ρ. Then for any t ∈ [0, a), ζ(t) ∈ K
ζ
t,a

is enclosed by ϕ−1
K

ζ
t,a

(ρ0). Note that K
ζ
t,a ∈ Hsq(α) and ϕ−1

K
ζ
t,a

= ϕ
ζ
t ◦ (ϕ

ζ
a )−1. From

the compactness of Hsq(α) and an argument that is similar to the first paragraph
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of the last proof, we see that there is d > 0 depending only on α and ρ such
that |ϕζ

t ◦ (ϕ
ζ
a )−1(w) − ζ(t)| ≥ d for any t ∈ [0, a] and w ∈ H \ H(ρ). Fix w ∈

H \ H(ρ). Applying the argument of the proof of the last lemma to z = (ϕ
ζ
a )−1(w),

we have δ,C > 0 depending only on α and ρ such that if ‖ζ −η‖a < δ, then ϕ
η
a (z)

is well defined, and

|w − ϕη
a ◦ (ϕζ

a )−1(w)| = |ϕζ
a (z) − ϕη

a (z)| ≤ Ca‖ζ − η‖a.

That ϕ
η
a (z) is well defined implies that (ϕ

ζ
a )−1(w) = z /∈ K

η
a . Since this holds for

any w ∈ H \ H(ρ), so K
η
a is enclosed by (ϕ

ζ
a )−1(ρ). �

Now suppose � is an almost H domain, and p ∈ �. Suppose α is a crosscut
in H such that H(α) ⊂ � \ {p}. From the compactness of H(α), there is h >

0 depending only on �,p,α, such that if K ∈ H(α), then dist(ϕK({p} ∪ ∂� \
R),R) ≥ h. Let ρ1 and ρ2 be crosscuts in H with height smaller than h/2 such that
ρ1 strictly encloses ρ2, and ρ2 strictly encloses [cα, dα]. Then for any K ∈ H(α),
H(ϕ−1

K (ρ)) ⊂ �K \ {ϕK(p)}.

LEMMA 5.7. There are δ,C > 0 such that if ζ, η ∈ C([0, a]), ‖ζ − η‖a < δ,
and K

ζ
a ⊂ H(α), then for any z ∈ ρ1,

|J ζ
a (z) − J η

a (z)| ≤ Ca‖ζ − η‖a.(5.6)

PROOF. Choose a crosscut α1 in H that strictly encloses α such that H(α1) ⊂
� \ {p}. Suppose ζ, η ∈ C([0, a]) and K

ζ
a ⊂ H(α). From Lemma 5.5, there is

δ0 > 0 depending only on α and α1 such that if ‖ζ − η‖a < δ0, then K
η
a ⊂ H(α1).

From Lemma 5.6, there are δ1,C1 > 0 depending only on α,ρ1, ρ2, such that if
‖ζ − η‖a < δ1, then K

η
a is enclosed by (ϕ

ζ
a )−1(ρ2), and for any z ∈ ρ1 ∪ ρ2,

|z − ϕη
a ◦ (ϕζ

a )−1(z)| ≤ C1a‖ζ − η‖a.(5.7)

Let F = {z ∈ H : dist(z,H(ρ1)) ≤ h/4}. From the compactness of H(α1), there
is D > 0 depending only on �,p,α1,F , such that if K

ξ
t ∈ H(α1), then for any

z ∈ F ,

|∇J
ξ
t (z)| ≤ D.(5.8)

Let h0 = hcap(H(α)). Then a = hcap(K
ζ
a )/2 ≤ h0/2. Let δ = min{δ0, δ1,

h/(2C1h0)}. Suppose ‖ζ − η‖a < δ. Then for any z ∈ ρ1 ∪ ρ2,

|z − ϕη
a ◦ (ϕζ

a )−1(z)| ≤ C1aδ ≤ C1h0δ/2 ≤ h/4,

which implies that [z,ϕη
a ◦ (ϕ

ζ
a )−1(z)] ⊂ F .



494 D. ZHAN

Define G
ξ
t = G(� \ K

ξ
t ,p; ·) if K

ξ
t ⊂ � \ {p}. For j = 1,2, let

Nj = sup
z∈ρj

{|J ζ
a (z) − J η

a (z)|} = sup
z∈ρj

{|Gζ
a ◦ (ϕζ

a )−1(z) − Gη
a ◦ (ϕη

a )−1(z)|};

N ′
j = sup

z∈(ϕ
ζ
a )−1(ρj )

{|Gζ
a(z) − Gη

a(z)|} = sup
z∈ρj

{|Gζ
a ◦ (ϕζ

a )−1(z) − Gη
a ◦ (ϕζ

a )−1(z)|}.

There is q ∈ (0,1) depending only on ρ1 and ρ2 such that for any z ∈ ρ2, the
probability that a plane Brownian motion started from z hits ρ1 before R is less
than q . Since both J

ζ
a and J

η
a are harmonic in H(ρ1), have continuations to H(ρ1),

and vanish on R, so J
ζ
a − J

η
a also has these properties. Since ρ2 ⊂ H(ρ1), so

N2 ≤ qN1.(5.9)

Since K
ζ
a and K

η
a are enclosed by (ϕ

ζ
a )−1(ρ2), so G

ζ
a and G

η
a are harmonic in

� \ {p} \ H((ϕ
ζ
a )−1(ρ2)). Since they both behave like − ln(z − p)/(2π) + O(1)

near p, so G
ζ
a − G

η
a has a harmonic extension in � \ H((ϕ

ζ
a )−1(ρ2)). Since

G
ζ
a −G

η
a vanishes at every boundary point of �\H((ϕ

ζ
a )−1(ρ2)) including ∞, ex-

cept on (ϕ
ζ
a )−1(ρ2), and (ϕ

ζ
a )−1(ρ1) ⊂ � \H((ϕ

ζ
a )−1(ρ2)), so from the maximum

principle for harmonic functions,

N ′
1 ≤ N ′

2.(5.10)

Fix j ∈ {1,2}. From [z,ϕη
a ◦ (ϕ

ζ
a )−1(z)] ⊂ F for z ∈ ρj , K

η
a ∈ H(α1), and (5.7)

and (5.8), we have

|Nj − N ′
j | ≤ sup

z∈ρj

{|Gη
a ◦ (ϕη

a )−1(z) − Gη
a ◦ (ϕζ

a )−1(z)|}

= sup
z∈ρj

{∣∣J η
a (z) − J η

a

(
ϕη

a ◦ (ϕζ
a )−1(z)

)∣∣}
≤ sup

w∈F

|∇J η
a (w)| sup

z∈ρj

{|z − ϕη
a ◦ (ϕζ

a )−1(z)|}

≤ DC1a‖ζ − η‖a.

From (5.9), (5.10) and the above inequality, we have

N1 ≤ N ′
1 + DC1a‖ζ − η‖a ≤ N ′

2 + DC1a‖ζ − η‖a

≤ N2 + 2DC1a‖ζ − η‖a ≤ qN1 + 2DC1a‖ζ − η‖a,

which implies that N1 ≤ Ca‖ζ − η‖a , where C = 2DC1/(1 − q). So we
get (5.6). �

LEMMA 5.8. There are δ,C > 0 such that if ζ, η ∈ C([0, a]), ‖ζ − η‖a < δ,
and K

ζ
a ⊂ H(α), then |Xζ

a − X
η
a | ≤ C‖ζ − η‖a .
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PROOF. Suppose ζ, η ∈ C([0, a]) and K
ζ
a ⊂ H(α). Choose a crosscut α1 in H

that strictly encloses α such that H(α1) ⊂ � \ {p}. Let ρ be a crosscut in H with
height smaller than h/2 that strictly encloses [cα, dα]. From Lemmas 5.5 and 5.7,
there are δ0,C0 > 0 depending only on �,p,α,α1, ρ, such that if ‖ζ − η‖a < δ0,
then K

η
a ⊂ H(α1) and for any z ∈ ρ, |J ζ

a (z) − J
η
a (z)| ≤ C0a‖ζ − η‖a . Let d0 =

dist([cα, dα], ρ)/2 > 0, and δ = δ0 ∧ d0.
Suppose ‖ζ − η‖a < δ. Then K

ζ
a ,K

η
a ⊂ H(α1). From the compactness of

H(α1), there are m,M1,M2,M3 > 0 depending only on �,p,α,α1, ρ, such that
for any x ∈ [cα − d0, dα + d0],

m ≤ ∂yJ
ζ
a (x), ∂yJ

η
a (x) ≤ M1 and |∂j−1

x ∂yJ
ζ
a (x)|, |∂j−1

x ∂yJ
η
a (x)| ≤ Mj,

for j = 2,3. Let C1 = M3/m + M2
2/m2. So for any x ∈ [cα − d0, dα + d0],

|∂x(∂x∂y/∂y)J
ζ
a (x)|

(5.11)
= ∣∣(∂2

x ∂y/∂y − (
(∂x∂y · ∂x∂y)/(∂y · ∂y)

))
J ζ

a (x)
∣∣ ≤ C1.

Since dist([cα − d0, dα + d0], ρ) ≥ d0, so for any x ∈ [cα − d0, dα + d0],
|∂j−1

x ∂y(J
ζ
a − J η

a )(x)| ≤ 2j !
d

j
0

sup
z∈ρ

|J ζ
a (z) − J η

a (z)| ≤ 2j !
d

j
0

C0a‖ζ − η‖a,

for j = 1,2, from which follows that

|(∂x∂y/∂y)J
ζ
a (x) − (∂x∂y/∂y)J

η
a (x)|

= |∂x∂yJ
ζ
a (x) ∂yJ

η
a (x) − ∂x∂yJ

η
a (x) ∂yJ

ζ
a (x)|/|∂yJ

ζ
a (x)∂yJ

η
a (x)|

≤ |∂x∂yJ
ζ
a (x) ∂yJ

η
a (x) − ∂x∂yJ

ζ
a (x) ∂yJ

ζ
a (x)|/m2

(5.12)
+ |∂x∂yJ

ζ
a (x) ∂yJ

ζ
a (x) − ∂x∂yJ

η
a (x) ∂yJ

ζ
a (x)|/m2

≤ M2|∂y(J
ζ
a − J η

a )(x)|/m2 + M1|∂x∂y(J
ζ
a − J η

a )(x)|/m2

≤ (2M2/d0 + 4M1/d
2
0 )C0a‖ζ − η‖a/m2 ≤ C2‖ζ − η‖a,

if we let C2 = (M2/d0 + 2M1/d
2
0 )C0 hcap(H(α))/m2.

Since K
ζ
a ∈ H(α), so ζ(a) ∈ [cα, dα]. From |η(a) − ζ(a)| ≤ δ ≤ d0, we have

η(a) ∈ [cα − d0, dα + d0]. Let C = C1 + C2. From (5.11) and (5.12), we have

|Xζ
a − Xη

a | = |(∂x∂y/∂y)J
ζ
a (ζ(a)) − (∂x∂y/∂y)J

η
a (η(a))|

≤ |(∂x∂y/∂y)J
ζ
a (ζ(a)) − (∂x∂y/∂y)J

ζ
a (η(a))|

+ |(∂x∂y/∂y)J
ζ
a (η(a)) − (∂x∂y/∂y)J

η
a (η(a))|

≤ C1|ζ(a) − η(a)| + C2‖ζ − η‖a ≤ C‖ζ − η‖a. �

PROOF OF THEOREM 3.1. Let ξ0(t) = A(0), t ∈ [0,∞). We may have a0 > 0
such that K

ξ0
a0 ⊂ �\{p}. Choose crosscuts α0 and α1 in H such that K

ξ0
a0 is enclosed
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by α0, α0 is strictly enclosed by α1, and H(α1) ⊂ � \ {p}. From Lemma 5.5, there
is δ1 > 0 such that for any t ∈ [0, a0], if η ∈ C([0, t]) satisfies ‖η − ξ0‖t < δ1, then
K

η
t ⊂ H(α1). Let δ2,C > 0 be the constants given by Lemma 5.8 with α = α1.

Let δ = δ1 ∧ (δ2/2). Then for any t ∈ (0, a0], if ηj ∈ C([0, t]) and ‖ηj − ξ0‖t < δ,
j = 1,2, then

|Xη1
t − X

η2
t | ≤ C‖η1 − η2‖t .(5.13)

Define a sequence of functions (ξn(t)) by induction:

ξn+1(t) = A(t) + λ

∫ t

0
Xξn

s ds,(5.14)

as long as X
ξn
s , 0 ≤ s ≤ t , are defined. From Lemma 6.3, we see that X

ξ
t is con-

tinuous, and so the integral makes sense. We may choose a ∈ (0, a0] such that
|λ|Ca < 1/2 and ‖ξ1 − ξ0‖a < δ/2. For n = 1, we have ‖ξn − ξ0‖a < (1 − 1/2n)δ

and ‖ξn − ξn−1‖a < δ/2n. Suppose this is true for some n ∈ N. Then from (5.13)
and (5.14), we have

|ξn+1(t) − ξn(t)| ≤ |λ|
∫ t

0
|Xξn

s − X
ξn−1
s |ds ≤ |λ|

∫ t

0
C‖ξn − ξn−1‖a ds

≤ |λ|Ca‖ξn − ξn−1‖a < ‖ξn − ξn−1‖a/2 < δ/2n+1,

for t ∈ [0, a]. Thus ‖ξn+1 − ξn‖a < δ/2n+1, and ‖ξn+1 − ξ0‖b < δ/2n+1 + ‖ξn −
ξ0‖b < (1 − 1/2n+1)δ. From induction, we have ‖ξn+1 − ξn‖a < δ/2n+1 for any
n ∈ N. Thus (ξn) restricted to [0, a] is a Cauchy sequence in C([0, a]). Let ξ∞ =
limn→∞ ξn|[0,a] ∈ C([0, a]). Let n → ∞ in (5.14); we see that ξ∞ solves (3.2) for
t ∈ [0, a].

Let S be the set of all couples (ξ, T ) such that T > 0 and ξ solves (3.2) for
t ∈ [0, T ]. We have proved that S is nonempty. We claim that if (ξ, T ) ∈ S, then
there is (ξe, Te) ∈ S such that Te > T and ξe(t) = ξ(t) for t ∈ [0, T ]. To prove

this claim, let �̆ = ϕ
ξ
T (� \ K

ξ
T ) and p̆ = ϕ

ξ
T (p). If K

ξ̆
t ⊂ �̆ \ {p̆}, let J̆

ξ̆
t = G(�̆ \

K
ξ̆
t , p̆; ·) ◦ (ϕ

ξ̆
t )−1, and X̆

ξ̆
t = (∂x∂y/∂y)J̆

ξ̆
t (ξ̆ (t)). From the first part of the proof,

the solution to

ξ̆ (t) = ξ(T ) + A(T + t) − A(T ) + λ

∫ t

0
X̆ξ̆

s ds(5.15)

exists on [0, ă] for some ă > 0. Let Te = T + ă > T . Define ξe(t) = ξ(t) for
t ∈ [0, T ] and ξe(t) = ξ̆ (t −T ) for t ∈ [T ,Te]. It is clear that ξe ∈ C([0, Te]). Since
ξe agrees with ξ on [0, T ], so ξe solves (3.2) for t ∈ [0, T ]. For t ∈ [0, Te − T ], we

have ϕ
ξe

T +t = ϕ
ξ̆
t ◦ ϕ

ξ
T and K

ξe

T +t = K
ξ
T ∪ (ϕ

ξ
T )−1(K

ξ̆
t ). Since ϕ

ξ
T maps p to p̆, and

� \ K
ξe

T +t onto �̆ \ K
ξ̆
t , so

J̆
ξ̆
t = G(�̆ \ K

ξ̆
t , p̆; ·) ◦ (ϕ

ξ̆
t )−1 = G(� \ K

ξe

T +t , p; ·) ◦ (ϕ
ξ
T )−1 ◦ (ϕ

ξ̆
t )−1

= G(� \ K
ξe

T +t , p; ·) ◦ (ϕ
ξe

T +t )
−1 = J

ξe

T +t .
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So X̆
ξ̆
t = X

ξe

T +t . Thus for t ∈ [0, Te − T ],

ξe(T + t) = ξ̆ (t) = ξ(T ) + A(T + t) − A(T ) + λ

∫ t

0
X̆ξ̆

s ds

= A(T + t) + λ

∫ T

0
Xξ

s ds + λ

∫ t

0
X

ξe

T +s ds

= A(T + t) + λ

∫ T +t

0
Xξe

s ds.

So ξe solves (3.2) for t ∈ [T ,Te]. Thus (ξe, Te) ∈ S. So the claim is justified.
Suppose (ξ1, T1), (ξ2, T2) ∈ S. For j = 1,2, since ξj (0) = A(0) = ξ0(0), so

there is Sj ∈ (0, Tj ∧ a0] such that ‖ξj − ξ0‖Sj
< δ. Choose S3 ∈ (0, S1 ∧ S2] such

that C|λ|S3 < 1. From (3.2) and (5.13), we have ‖ξ1 − ξ2‖S3 ≤ |λ|CS3‖ξ1 − ξ2‖S3 ,
so ‖ξ1 − ξ2‖S3 = 0, which means that ξ1(t) = ξ2(t) for 0 ≤ t ≤ S3.

Let T0 = T1 ∧ T2. We claim that ξ1(t) = ξ2(t) for t ∈ [0, T0]. Let T ∈ [0, T0] be
the maximum such that ξ1(t) = ξ2(t) for t ∈ [0, T ]. Suppose T < T0. Let ξ̆1(t) =
ξ1(T + t), ξ̆2(t) = ξ2(T + t) for t ∈ [0, T0 − T ]. Then ξ̆1 and ξ̆2 both solve (5.15)
for t ∈ [0, T0 − T ]. From the last paragraph, there is S3 ∈ (0, T0 − T ] such that
ξ̆1(t) = ξ̆2(t) for 0 ≤ t ≤ S3, which implies that ξ1(t) = ξ2(t) for 0 ≤ t ≤ T + S3.
This contradicts the maximum property of T . So T = T0, and ξ1(t) = ξ2(t) for
t ∈ [0, T0].

Let TA = sup{T : (ξ, T ) ∈ S}. Define ξA on [0, TA) as follows. For any t ∈
[0, TA), choose (ξ, T ) ∈ S such that t ≤ T , and let ξA(t) = ξ(t). From the last
paragraph, ξA is well defined, and solves (3.2) for t ∈ [0, TA). The uniqueness of
ξA also follows from the last paragraph. There is no solution to (3.2) defined on
[0, TA]. Otherwise, there exists some solution on [0, TA +ε] for some ε > 0, which
contradicts the definition of TA.

(i) Suppose A0 ∈ C([0,∞)), a ∈ (0,∞), and TA0 > a. Then K
ξA0
a ⊂ � \ {p}.

Choose a crosscut α in H such that K
ξA0
a ⊂ H(α) ⊂ � \ {p}. Let δ0,C0 > 0 be

the δ,C given by Lemma 5.8 with ζ = ξA0 . Let C = exp(C0|λ|a) and δ = δ0/C.
Suppose A ∈ C([0,∞)) and ‖A − A0‖a < δ. Then |ξA(0) − ξA0(0)| = |A(0) −
A0(0)| < δ ≤ δ0. Let b ∈ [0, a∧TA) be the maximal such that |ξA(t)−ξA0(t)| < δ0
for t ∈ [0, b). From the properties of δ0 and C0, for 0 ≤ t < b,

|XξA
t − X

ξA0
t | ≤ C0‖ξ − ξA0‖t .(5.16)

So X
ξA
t is bounded on [0, b). From (3.2), limt→b− ξA(t) exists. If TA = b, we define

ξA(T ) = limt→b− ξA(t), then ξA solves (3.2) for t ∈ [0, T ], which is a contradic-
tion. Thus TA > b. From (3.2) and (5.16), we have that for any 0 ≤ t < b,

|ξA(t) − ξA0(t)| ≤ ‖A − A0‖a + C0|λ|
∫ t

0
|ξA(s) − ξA0(s)|ds.
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Solving this inequality, we have that for any 0 ≤ t < b,

|ξA(t) − ξA0(t)| ≤ exp(C0|λ|t)‖A − A0‖a ≤ C‖A − A0‖a.

So |ξA(b) − ξA0(b)| ≤ C‖A − A0‖a < Cδ = δ0. From the definition of b, we have
b = a. Thus TA > a and ‖ξA − ξA0‖a ≤ C‖A − A0‖a if ‖A − A0‖a < δ. So {TA >

a} is open w.r.t. ‖ · ‖a , and A �→ ξA is (‖ · ‖a,‖ · ‖a) continuous on {TA > a}.
(ii) Suppose α is a crosscut in H such that

⋃
0≤t<T K

ξ
t ⊂ H(α) ⊂ �\ {p}. Then

T ≤ hcap(H(α))/2 < +∞. From the compactness of H(α), X
ξ
t is bounded on

[0, T ). So from (3.2), ξ(t) → x for some x ∈ R as t → T . Define ξ(T ) = x. Then
ξ ∈ C([0, T ]), K

ξ
T ⊂ H(α) ⊂ � \ {p}, and so J

ξ
t is defined for t ∈ [0, T ]. Then

ξ(t) solves (3.2) for 0 ≤ t ≤ T , which is a contradiction. �

6. Convergence of the driving functions. From now on, we begin proving
Theorem 4.2. We first study the case that the target is an interior point. In this
section, we will show that the driving functions for the discrete LERW converge
to those for the continuous LERW.

6.1. Some estimates. Suppose � is an almost H domain and p ∈ �. We now
use the notation in Sections 3 and 4 in the case that the target is an interior point.
Let α be a crosscut in H such that H(α) ⊂ � \ {p}; and let F be a compact subset
of � \ H(α). In the lemmas in this subsection, a uniform constant is a number
that depends only on �,p,α,F . From the compactness of H(α) (Lemma 5.4),
there is a uniform constant h > 0 such that if K

ξ
a ⊂ H(α), then for any t ∈ [0, a],

dist(ϕξ
t (∂� \ R) ∪ ϕ

ξ
t (F ),R) ∧ dist(ϕξ

t (F ),ϕ
ξ
t (∂� \ R)) ≥ h.

LEMMA 6.1. There are uniform constants C1,C2 > 0 such that if K
ξ
a ⊂

H(α), then for any t1 ≤ t2 ∈ [0, a] and z ∈ F ,

|ϕξ
t2
(z) − ϕ

ξ
t1
(z)| ≤ C1|t2 − t1|;∣∣∣∣ϕξ

t2
(z) − ϕ

ξ
t1
(z) − 2(t2 − t1)

ϕ
ξ
t1
(z) − ξ(t1)

∣∣∣∣
≤ C2|t2 − t1|

(
|t2 − t1| + sup

t∈[t1,t2]
{|ξ(t) − ξ(t1)|}

)
.

PROOF. Suppose K
ξ
a ⊂ H(α). Then |ϕξ

t (z) − ξ(t)| ≥ h for any t ∈ [0, a] and
z ∈ F . Since ϕ

ξ
t2
(z) − ϕ

ξ
t1
(z) = ∫ t2

t1
2

ϕ
ξ
t (z)−ξ(t)

dt , so |ϕξ
t2
(z) − ϕ

ξ
t1
(z)| ≤ C1|t2 − t1|

for any t1 ≤ t2 ∈ [0, a] and z ∈ F , where C1 = 2/h > 0. Thus for t1 ≤ t2 ∈ [0, a]
and z ∈ F ,∣∣∣∣ 2

ϕ
ξ
t2
(z) − ξ(t2)

− 2

ϕ
ξ
t1
(z) − ξ(t1)

∣∣∣∣ ≤ 2

h2

(|ϕξ
t2
(z) − ϕ

ξ
t1
(z)| + |ξ(t2) − ξ(t1)|)

≤ 2C1/h2|t2 − t1| + 2/h2|ξ(t2) − ξ(t1)|.
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Let C2 := 2(C1 ∨ 1)/h2 > 0. Then for t1 ≤ t2 ∈ [0, a] and z ∈ F ,∣∣∣∣ϕξ
t2
(z) − ϕ

ξ
t1
(z) − 2(t2 − t1)

ϕ
ξ
t1
(z) − ξ(t1)

∣∣∣∣
=

∣∣∣∣ ∫ t2

t1

(
2

ϕ
ξ
t (z) − ξ(t)

− 2

ϕ
ξ
t1
(z) − ξ(t1)

)
dt

∣∣∣∣
≤

∫ t2

t1

∣∣∣∣ 2

ϕ
ξ
t (z) − ξ(t)

− 2

ϕ
ξ
t1
(z) − ξ(t1)

∣∣∣∣dt

≤ C2|t2 − t1|
(
|t2 − t1| + sup

t∈[t1,t2]
{|ξ(t) − ξ(t1)|}

)
. �

LEMMA 6.2. For each n1 ∈ {0,1}, n2, n3 ∈ Z≥0, there is a uniform constant
C > 0 depending on n1, n2, n3, such that if K

ξ
a ⊂ H(α), then for any t ∈ [0, a],

x ∈ [cα, dα], and z ∈ F , we have

|∂n1
1 ∂

n2
2 ∂

n3
3,zP

ξ (t, x, ϕ
ξ
t (z))| ≤ C.

PROOF. For K ∈ H(α), x ∈ R and z ∈ �K , let P(K,x, z) be as in Section 4.
Since ∂�K is analytic, so P(K,x, ·) extends harmonically across ∂�K . For K ∈
H(α) and x, y ∈ R, let Qy(K,x, ·) be defined on �K \ {x} such that Qy(K,x, ·)
is harmonic in �K ; vanishes on R \ {x}; behaves like Im c

z−x
+ O(1) near x for

some c ∈ R; Qy(K,x, z) = −2 Re(∂3,zP (K,x, z) · 2
z−y

) for z ∈ ∂�K \ R and z =
ϕK(p). From the compactness of H(α), for any n2, n3 ∈ Z≥0, there is a uniform
constant C > 0 depending on n2, n3, such that for any K ∈ H(α), x, y ∈ [cα, dα],
and z ∈ F , we have

|∂n2
2 ∂

n3
3,zP (K,x,ϕK(z))|, |∂n2

2 ∂
n3
3,zQy(K,x,ϕK(z))| ≤ C.

Note P ξ (t, x, z) = P(K
ξ
t , x, z) and ∂1P

ξ (t, x, z) = Qξ(t)(K
ξ
t , x, z), so we are

done. �

LEMMA 6.3. There is a uniform constant C > 0 such that if K
ξ
a ⊂ H(α), then

for any t, t ′ ∈ [0, a], |Xξ
t | ≤ C and |Xξ

t − X
ξ

t ′ | ≤ C(|t − t ′| + |ξ(t) − ξ(t ′)|).

PROOF. Suppose K
ξ
a ⊂ H(α). Let J ξ (t, x) = J

ξ
t (x). Note that X

ξ
t =

(∂2
2,z/∂2,z)J

ξ (t, x). Since ξ(t) ∈ [cα, dα] for t ∈ [0, a], so it suffices to prove
that there is a uniform constant C > 0 such that for any t ∈ [0, a] and x ∈
[cα, dα], |∂n1

1 ∂
n2
2,z(∂

2
2,z/∂2,z)J

ξ (t, x)| ≤ C for n1, n2 ∈ {0,1}. We need to show
that |∂2,zJ

ξ (t, x)| is bounded from below by a positive uniform constant, and
|∂n1

1 ∂
n2+1
2,z J ξ (t, x)| is bounded from above by a positive uniform constant. The

proof is similar to that of the above lemma. �
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LEMMA 6.4. There is a uniform constant C > 0 such that if K
ξ
a ⊂ H(α), then

for any t1 ≤ t2 ∈ [0, a] and z ∈ F , we have

|∂1P
ξ (t2, ξ(t2), ϕ

ξ
t2
(z)) − ∂1P

ξ (t1, ξ(t1), ϕ
ξ
t1
(z))| ≤ C

(|t2 − t1| + |ξ(t2) − ξ(t1)|).
PROOF. This follows from Lemma 4.1, and the above three lemmas. �

LEMMA 6.5. There is a uniform constant d1 > 0 such that if K
ξ
a ⊂ H(α), then

for any t1 < t2 ∈ [0, a] that satisfy |t2 − t1| ≤ d1, and for any z ∈ F , we have

P ξ (t2, ξ(t2), ϕ
ξ
t2
(z)) − P ξ (t1, ξ(t1), ϕ

ξ
t1
(z))

= ∂2P
ξ (t1, ξ(t1), ϕ

ξ
t1
(z)) · [(

ξ(t2) − ξ(t1)
) − (t2 − t1)X

ξ
t1

]
+ 1/2∂2

2P ξ (t1, ξ(t1), ϕ
ξ
t1
(z)) · [(

ξ(t2) − ξ(t1)
)2 − 2(t2 − t1)

]
+ O(A2) + O(AB) + O(AB2) + O(B3),

where A := |t2 − t1|, B := sups,t∈[t1,t2]{|ξ(s) − ξ(t)|}, and O(X) is some number
whose absolute value is bounded by C|X| for some uniform constant C > 0.

PROOF. We may choose a compact subset F ′ of � \H(ρ) such that F is con-
tained in the interior of F ′. So from the compactness of H(α), there is a uniform
constant d0 > 0 such that for any K ∈ H(α), dist(ϕK(F ), ∂ϕK(F ′)) ≥ d0. Sup-
pose K

ξ
a ⊂ H(α). From Lemma 6.1, there is a uniform constant d1 > 0 such that

if s, t ∈ [0, a] satisfy |s − t | ≤ d1, then for any z ∈ F , [ϕξ
s (z), ϕ

ξ
t (z)] ⊂ ϕ

ξ
s (F ′).

Fix z ∈ F and t1 < t2 ∈ [0, a] with |t2 − t1| ≤ d1. Let P1 = P ξ (t2, ξ(t2), ϕ
ξ
t2
(z)),

P2 = P ξ (t1, ξ(t2), ϕ
ξ
t2
(z)), P3 = P ξ (t1, ξ(t1), ϕ

ξ
t2
(z)), P4 = P ξ (t1, ξ(t1), ϕ

ξ
t1
(z)).

Then

P ξ (t2, ξ(t2), ϕ
ξ
t2
(z)) − P ξ (t1, ξ(t1), ϕ

ξ
t1
(z)) = (P1 − P2) + (P2 − P3) + (P3 − P4).

Now P1 −P2 = ∫ t2
t1

∂1P
ξ (t, ξ(t2), ϕ

ξ
t2
(z)) dt . Fix any t ∈ [t1, t2]. Applying Lem-

mas 6.1 and 6.2 to F ′, since ξ(t), ξ(t2) ∈ [cα, dα] and [ϕξ
t (z), ϕ

ξ
t2
(z)] ⊂ ϕ

ξ
t (F ′), so

we have

∂1P
ξ (t, ξ(t2), ϕ

ξ
t2
(z)) − ∂1P

ξ (t, ξ(t), ϕ
ξ
t (z)) = O(A) + O(B).

Applying Lemma 6.4 to F , we have

∂1P
ξ (t, ξ(t), ϕ

ξ
t (z)) − ∂1P

ξ (t1, ξ(t1), ϕ
ξ
t1
(z)) = O(A) + O(B).

So we get

P1 − P2 = ∂1P
ξ (t1, ξ(t1), ϕ

ξ
t1
(z))(t2 − t1) + O(A2) + O(AB).
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Applying Lemma 6.2 to F ′, since ϕ
ξ
t2
(z) ∈ ϕ

ξ
t1
(F ′), so we have

P2 − P3 = ∂2P
ξ (t1, ξ(t1), ϕ

ξ
t2
(z))

(
ξ(t2) − ξ(t1)

)
+ 1/2∂2

2P ξ (t1, ξ(t1), ϕ
ξ
t2
(z))

(
ξ(t2) − ξ(t1)

)2 + O(B3).

Applying Lemmas 6.1 and 6.2 to F ′, since [ϕξ
t1
(z), ϕ

ξ
t2
(z)] ⊂ ϕ

ξ
t1
(F ′), so we have

∂
j
2 P ξ (t1, ξ(t1), ϕ

ξ
t2
(z)) − ∂

j
2 P ξ (t1, ξ(t1), ϕ

ξ
t1
(z)) = O(A),

for j = 1,2. Thus

P2 − P3 = ∂2P
ξ (t1, ξ(t1), ϕ

ξ
t1
(z))

(
ξ(t2) − ξ(t1)

)
+ 1/2∂2

2P ξ (t1, ξ(t1), ϕ
ξ
t1
(z))

(
ξ(t2) − ξ(t1)

)2

+ O(AB) + O(AB2) + O(B3).

Applying Lemmas 6.1 and 6.2 to F ′, since [ϕξ
t1
(z), ϕ

ξ
t2
(z)] ⊂ ϕ

ξ
t1
(F ′), so we have

P3 − P4 = 2 Re
(
∂3,zP

ξ (t1, ξ(t1), ϕ
ξ
t1
(z))

(
ϕ

ξ
t2
(z) − ϕ

ξ
t1
(z)

)) + O(A2)

= 2 Re(∂3,zP
ξ (t1, ξ(t1), ϕ

ξ
t1
(z))

2(t2 − t1)

ϕ
ξ
t1
(z) − ξ(t1)

) + O(AB) + O(A2).

The conclusion follows from Lemma 4.1 and the equalities for Pj − Pj+1, j =
1,2,3. �

6.2. Convergence. We use the notation in Section 4.2. We may choose cross-
cuts ρj , j = 0,1,2, in D such that H(ρ0) is a neighborhood of 0+ in D,
H(ρ0) ⊂ H(ρ1) ⊂ H(ρ2) ⊂ D \ {ze,∞}, and

d0 := min{dist(0, ρ0),dist(ρ0, ρ1),dist(ρ1, ρ2),dist(ρ2, ze)} > 0.

Now suppose δ < d0. Then wδ
e /∈ H(ρ2) as |wδ

e − ze| < δ, any edge of Dδ can
intersect at most one of ρj ’s, and (0, δ] ⊂ H(ρ0). Thus the LERW curve qδ must
cross all of these ρj ’s. Let FD be a compact subset of D \ {∞} \ H(ρ2) with
nonempty interior. Suppose f maps D conformally onto an almost H domain �

such that f (0+) = 0. Let p = f (ze), F� = f (FD) and αj = f (ρj ), j = 0,1,2.
Then F� is a compact subset of � with nonempty interior; αj ’s are crosscuts in
H; α0 strictly encloses 0; αj+1 strictly encloses αj ; and {p},F� ⊂ � \ H(α2).

In this subsection, a uniform constant is a number that depends only on D,
ze, ρ0, ρ1, ρ2, FD , f , and some other variables we will specify. We use O(X)

to denote a number whose absolute value is bounded by C|X| for some positive
uniform constant C. We use oδ(X) to denote a number whose absolute value is
bounded by C(δ)|X| for some positive uniform constant C(δ) depending on δ,
such that C(δ) → 0 as δ → 0.
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Let Lδ denote the set of finite simple lattice paths X = (X(−1),X(0), . . . ,

X(s)), s ∈ N, on Dδ , such that X(−1) = 0, X(0) = δ, X(k) ∈ D for 0 ≤ k ≤ s,
and

⋃s
k=0(X(k − 1),X(k)] ⊂ H(ρ1). Let Set(X) = {X(0), . . . ,X(s)}, Tip(X) =

X(s), DX = D \ ⋃s
k=0(X(k − 1),X(k)]; PX be the generalized Poisson kernel

in DX with the pole at Tip(X), normalized by PX(ze) = 1; and gX be defined
on V (Dδ) such that gX ≡ 0 on V∂(D

δ) ∪ Set(X) \ {Tip(X)}, �DδgX ≡ 0 on
VI (D

δ) \ Set(X), and gX(wδ
e) = 1.

LEMMA 6.6. Suppose G = (V ,E) is a connected locally finite graph. Sup-
pose A,B ⊂ V are such that B is finite and A ∪ B is reachable. Suppose h is
a nonnegative bounded function on V such that h vanishes on A, and is discrete
harmonic on V \ (A ∪ B). Then we have

∑
w∈A �Gh(w) = −∑

w∈B �Gh(w).

PROOF. For w0 ∈ B , let Hw0 be the bounded function on V , which is dis-
crete harmonic in V \ (A ∪ B), vanishes on A ∪ B \ {w0}, and equals 1 at w0.
Then the lemma holds if h = Hw0 . Since h(w) = ∑

w0∈B h(w0)Hw0(w), so we are
done. �

PROPOSITION 6.1. For any ε > 0, there is δ0 > 0 such that if 0 < δ < δ0, then
for any X ∈ Lδ , and any w ∈ V (Dδ)∩(D\H(ρ2)), we have |gX(w)−PX(w)| < ε.

SKETCH OF THE PROOF. Suppose the proposition is not true. Then we can
find ε0 > 0, a sequence of lattice paths Xn ∈ Lδn with δn → 0, and a sequence of
points wn ∈ V δn ∩ (D \H(ρ2)), such that |gXn(wn)−PXn(wn)| > ε0 for all n ∈ N.
For simplicity of notation, we write gn for gXn , Pn for PXn and Dn for DXn . Let
Kn = f (

⋃l(Xn)
j=0 (Xn(j − 1),Xn(j)]). Then Kn ∈ H(α1). Write ϕn for ϕKn and �n

for �Kn . Let xn = ϕn◦f (Tip(Xn)). Then xn ∈ [cα1, dα1]. Let Qn = Pn◦f −1◦ϕ−1
n .

Then Qn is the generalized Poisson kernel in �n with the pole at xn, normalized
by Qn(ϕn(p)) = 1. From the compactness of H(α1), by passing to a subsequence,

we may assume that Kn
H−→ K0 ∈ H(α1) and xn → x0 ∈ [cα1, dα1]. Write �0 for

�K0 and ϕ0 for ϕK0 . Let Q0 be the generalized Poisson kernel in �0 with the pole
at x0, normalized by Q0(ϕ0(p)) = 1. Let D0 = f −1(�\K0) and P0 = Q0 ◦ϕ0 ◦f .
Then P0 is the generalized Poisson kernel in D0 with the pole at f −1 ◦ ϕ−1

0 (x0),

normalized by P0(ze) = 1. Moreover, Dn
Cara−→ D0, and Pn

l.u.−→ P0 in D0.
We extend gn to CEngn that is defined on the union of lattice squares of δZ2

at whose four vertices gn is defined. Applying Harnack’s inequality to the positive
discrete harmonic function gn, we find that (CEngn) is locally uniformly contin-
uous in D0. By the Arzela–Ascoli theorem, there is a subsequence of (CEngn),
which converges locally uniformly to some g0 in D0 \ {∞}. We may assume that
the subsequence is (CEngn) itself. By applying Harnack’s inequality to the dis-
crete partial derivatives of gn, we may assume that the continuation of all discrete
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partial derivatives of gn also converge to the corresponding partial derivatives of
g0. Then we conclude that g0 is a positive harmonic function in D0 \ {∞}.

We may find a sequence of crosscuts (γ k) in D0 such that (H(γ k)) is a nesting
neighborhood basis of the prime end f −1 ◦ϕ−1

0 (x0) in D0, which is the pole of P0.
Fix k ∈ N, for each n ∈ N, we find a crosscut γ k

n in Dn that bounds a neighborhood
H(γ k

n ) of Tip(Xn), such that γ k
n converges to γ k in some sense as n → ∞. For

each k ≥ 2, we may construct some “hook” in the area of D0 between γ k−1 and
γ k+1 that holds the boundary of D0 and disconnects γ k+1 from γ k−1. We use these
hooks to prove that the values of gn outside H(γ k+1) are uniformly bounded, and
gn(w) → 0 as n → ∞ and w → ∂Dn in V (Dδn)∩ (Dn \H(γ k+1

n )) in the spherical
metric. Thus g0(z) → 0 as z → Ĉ \ D0 in D0 \ H(γ k+1) in the spherical metric.
Since (H(γ k)) is a neighborhood basis of f −1 ◦ϕ−1

0 (x0) in D0, so if ∞ /∈ D, then
g0 must be a generalized Poisson kernel in D0 with the pole at f −1 ◦ ϕ−1

0 (x0).
Since g0(ze) = limn CEngn(w

δ
e) = limgn(w

δ
e) = 1 = P0(ze), so g0 ≡ P0 in D0.

The sequence (wn) has a subsequence (wnk
) that converges to some w0 ∈ D or

tends to Ĉ \ D in the spherical metric. In both cases, we can get a contradiction.
If ∞ ∈ D, we only need to prove that g0 is also harmonic at ∞. From

Lemma 6.6, we have ∑
w∈Set(Xn)∪(V (Dδn)∩∂D)

�Dδn gn(w) = 0.

Choose a Jordan curve σ in D composed of line segments parallel to the x or y

axis, such that ∂D is enclosed by σ . Let U(σ) denote the intersection of D with
the domain bounded by J . Let Gn be a subgraph of Dδn spanned by edges in Dδn

that is incident to at least one vertex in U(σ). Let A = Set(Xn) ∪ (V (Dδn) ∩ ∂D),
and let B be the set of vertices of G in D \ U(σ). Then from Lemma 6.6, we have∑

(w,w′)∈P n
σ

(
gn(w) − gn(w

′)
) = − ∑

w∈Set(Xn)∪(V (Dδn)∩∂D)

�Dδn gn(w) = 0,

where P n
σ = {(w,w′) :w ∈ V (Dδn)∩U(σ),w′ ∈ VI (D

δn) \U(σ),w ∼ w′}. Since
the discrete partial derivative of gn converges to the continuous partial derivative
of g0, so as n → ∞,∑

(w,w′)∈P n
σ

(
gn(w) − gn(w

′)
) →

∫
σ

∂ng0(z) ds(z).

Thus
∫
σ ∂ng0(z) ds(z) = 0, so g0 is harmonic at ∞.

The reader may see Section 5 in [20] for the detailed proof of a similar proposi-
tion. �

Let the LERW curve qδ on [−1, χδ] be defined as in Section 4.2. For −1 ≤ t ≤
χδ , let vδ(t) = hcap(f ◦ qδ((0, t]))/2. Let Tδ = vδ(χδ) and uδ = v−1

δ . Let βδ(t) =
f (qδ(uδ(t))), 0 < t ≤ Tδ . Since f (0+) = 0, so βδ extends continuously to [0, Tδ]
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such that βδ(0) = 0. From Proposition 3.2, there is some ξδ ∈ C([0, Tδ]) such that
βδ((0, t]) = K

ξδ
t for 0 ≤ t ≤ Tδ . For n ∈ Z≥0, let Fn be the σ -algebra generated by

{n ≤ χδ} and qδ(j), 0 ≤ j ≤ n. Let n∞ be the first n such that (qδ(n − 1), qδ(n)]
intersects ρ0. Then n∞ is an Fn-stopping time and

⋃n∞
k=0(qδ(k − 1), qδ(kj )] is con-

tained in H(ρ1) because δ < dist(ρ0, ρ1). Let T δ
α0

= vδ(n∞). So K
ξδ

T δ
α0

⊂ H(α1).

Then T δ
α0

≤ hcap(H(α1))/2, so T δ
α0

= O(1).
Fix any n ∈ Z[−1,n∞−1]. Then (qδ(n), qδ(n + 1)] can be disconnected from

ρ1 by an annulus A = {δ < |z − qδ(n)| < d0}. Let � be the set of all cross-
cuts γ in D \ ⋃n

k=0[qδ(k − 1), qδ(k)] that is contained in A, and disconnects
(qδ(n), qδ(n + 1)] from ρ1 in D \ ⋃n

k=0[qδ(k − 1), qδ(k)]. Then the extremal

length of � is at most 2π/ ln(d0/δ). If γ ∈ �, then ϕ
ξδ

vδ(n) ◦ f (γ ) is a crosscut

in H, which disconnects ϕ
ξδ

vδ(n) ◦ f ((qδ(n), qδ(n + 1)]) = ϕ
ξδ

vδ(n)(K
ξδ

vδ(n+1) \ K
ξδ

vδ(n))

from ϕ
ξδ

vδ(n)(α1) in H. Since K
ξδ

vδ(n) ⊂ H(α0), and α0 is strictly enclosed by α1, so

from the compactness of H(α0), the area of H(ϕ
ξδ

vδ(n)(α1)) is bounded from above
by a uniform constant C0 > 0. By the conformal invariance, the extremal length of
f (�) is at most 2π/ ln(d0/δ). So there is γ ∈ f (�) whose length is smaller than
l(δ) := 2(C0π/ ln(d0/δ))

1/2. Then l(δ) = oδ(1). Since ϕ
ξδ

vδ(n)(K
ξδ

vδ(n+1) \ K
ξδ

vδ(n)) is
enclosed by γ , so its diameter is not bigger than l(δ). Thus there is x0 ∈ R such
that ϕ

ξδ

vδ(n)(K
ξδ

vδ(n+1) \K
ξδ

vδ(n)) ⊂ {z ∈ H : |z−x0| ≤ l(δ)}. Thus vδ(n+ 1)−vδ(n) ≤
hcap({z ∈ H : |z − x0| ≤ l(δ)})/2 = l(δ)2/2 and ξδ(t) ∈ [x0 − 2l(δ), x0 + 2l(δ)]
for any t ∈ [vδ(n), vδ(n + 1)], which implies that |ξδ(s) − ξδ(t)| ≤ 4l(δ) for any
s, t ∈ [vδ(n), vδ(n + 1)].

Now fix a small d > 0. Define a nondecreasing sequence (nj )j≥0 inductively.
Let n0 = 0. Let nj+1 be the first n ≥ nj such that n = n∞, or vδ(n)− vδ(nj ) ≥ d2,
or |ξδ(n) − ξδ(nj )| ≥ d , whichever comes first. Then nj ’s are stopping times w.r.t.
{Fn}, and are all bounded by n∞. From the result of the last paragraph, we may let
δ > 0 be smaller than some positive uniform constant depending on d , such that
vδ(nj+1)−vδ(nj ) ≤ 2d2 and |ξδ(vδ(s))− ξδ(vδ(nj ))| ≤ 2d for any s ∈ [nj , nj+1],
0 ≤ j < ∞. Let F ′

j = Fnj
, 0 ≤ j < ∞. For 0 ≤ n ≤ n∞, let qn

δ be the subpath of

qδ up to time n; then qn
δ ∈ Lδ . Let (gn) be the (gn) in Proposition 2.1 for the

LERW qδ . Then gn = gqn
δ
, where gqn

δ
is as in Proposition 6.1. For simplicity, we

write Pn for Pqn
δ
.

From Proposition 2.1, for any w ∈ V (Dδ) ∩ FD , (gnj
(w))j≥0 is a martin-

gale w.r.t. {F ′
j }, so E[gnj+1(w)|F ′

j ] = gnj
(w) for any j ∈ Z≥0. From Propo-

sition 6.1, we have E[Pnj+1(w)|F ′
j ] = Pnj

(w) + oδ(1). From Harnack’s in-
equality, the absolute values of the gradients of Pnj

on FD are bounded by
a positive uniform constant. Since for any z ∈ FD , there is w ∈ V (Dδ) ∩
FD with |z − w| ≤ oδ(1), so for any z ∈ FD , E[Pnj+1(z)|F ′

j ] = Pnj
(z) +

oδ(1). Note that Pn ◦ f −1 = P ξδ (vδ(n), ξδ(vδ(n)), ϕ
ξδ

vδ(n)(·)). So for any z ∈
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F� = f (FD),

E
[
P ξδ

(
vδ(nj+1), ξδ(vδ(nj+1)), ϕ

ξδ

vδ(nj+1)
(z)

)|F ′
j

]
(6.1)

= P ξδ
(
vδ(nj ), ξδ(vδ(nj )), ϕ

ξδ

vδ(nj )(z)
) + oδ(1).

PROPOSITION 6.2. There are a uniform constant d2 > 0, and a uniform con-
stant δ(d) > 0 depending on d , such that if d < d2 and δ < δ(d), then for all
j ∈ Z≥0,

E
[(

ξδ(vδ(nj+1)) − ξδ(vδ(nj ))
) −

∫ vδ(nj+1)

vδ(nj )
X

ξδ
t dt

∣∣∣F ′
j

]
= O(d3);

E
[(

ξδ(vδ(nj+1)) − ξδ(vδ(nj ))
)2 − 2

(
vδ(nj+1) − vδ(nj )

)|F ′
j

] = O(d3).

PROOF. Note that K
ξ

T δ
α0

⊂ H(α1). Let d1 > 0 be the uniform constant given

by Lemma 6.5 with α = α1. Let d2 = (d1/2)1/2. Suppose d < d2. Fix j ∈ Z≥0. Let
a = vδ(nj ), b = vδ(nj+1). Then 0 ≤ b−a ≤ 2d2 ≤ 2d2

2 = d1, and |ξδ(s)−ξδ(t)| ≤
4d for any s, t ∈ [a, b]. Fix z ∈ F�. From Lemma 6.5, we have

P ξδ (b, ξδ(b), ϕ
ξδ

b (z)) − P ξδ (a, ξδ(a), ϕξδ
a (z))

= ∂2P
ξδ (a, ξδ(a), ϕξδ

a (z))
((

ξδ(b) − ξδ(a)
) − (b − a)Xξδ

a

)
+ 1

2∂2
2P ξδ (a, ξδ(a), ϕξδ

a (z))
((

ξδ(b) − ξδ(a)
)2 − 2(b − a)

) + O(d3).

Take the conditional expectation of this equality with respect to F ′
j . From (6.1),

we have

∂2P
ξδ (a, ξδ(a), ϕξδ

a (z))E
[(

ξδ(b) − ξδ(a)
) − (b − a)Xξδ

a |F ′
j

]
+ 1

2∂2
2P ξδ (a, ξδ(a), ϕξδ

a (z))E
[(

ξδ(b) − ξδ(a)
)2 − 2(b − a)|F ′

j

]
= O(d3) + oδ(1).

Since oδ(1) → 0 uniformly as δ → 0, so there is a positive uniform function δ(d)

depending only on d such that if δ < δ(d), then |oδ(1)| ≤ d3. From Lemma 6.3,
we have X

ξδ
t − X

ξδ
a = O(d) for any t ∈ [a, b]. Thus for δ < δ(d),

∂2P
ξδ (a, ξδ(a), ϕξδ

a (z))E
[(

ξδ(b) − ξδ(a)
) −

∫ b

a
X

ξδ
t dt

∣∣∣F ′
j

]
+ 1

2∂2
2P ξδ (a, ξδ(a), ϕξδ

a (z))E
[(

ξδ(b) − ξδ(a)
)2 − 2(b − a)|F ′

j

] = O(d3).

Note that this is true for any z ∈ F�. We may choose z1 �= z2 ∈ F� and solve
the linear equations to get the estimates of the two conditional expectations. We
already know that ∂

j
2 P ξδ (a, ξδ(a), ϕ

ξδ
a (z)) = O(1) for j = 1,2. So the proof will
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be completed if we prove that there is a uniform positive constant C0 such that
there are z1, z2 ∈ F� that satisfy

|∂2P
ξδ (a, ξδ(a), ϕξδ

a (z1)) · ∂2
2P ξδ (a, ξδ(a), ϕξδ

a (z2))

− ∂2P
ξδ (a, ξδ(a), ϕξδ

a (z2)) · ∂2
2P ξδ (a, ξδ(a), ϕξδ

a (z1))| ≥ C0.

This follows from the compactness of H(α1), and the fact that for every K ∈
H(α1) and x ∈ [cα1, dα1], there are z1, z2 ∈ F� such that

∂2P(K,x,ϕK(z1))∂
2
2P(K,x,ϕK(z2))

(6.2)
− ∂2P(K,x,ϕK(z2))∂

2
2P(K,x,ϕK(z1)) �= 0.

Here, if (6.2) does not hold for some K ∈ H(α1) and x ∈ [cα1, dα1], then there is
C = C(K,x,F�) such that ∂2

2P(K,x, z) = C∂2P(K,x, z) for z ∈ ϕK(F�). Since

ϕK(F�) contains an interior point, and ∂
j
2 P(K,x, ·), j = 1,2, are harmonic in

�K , so ∂2
2P(K,x, z) = C∂2P(K,x, z) for z ∈ �K , which cannot be true because

x is a pole of ∂
j
2 P(K,x, ·) of order j + 1 for j = 1,2. �

Let ηδ(t) = ξδ(t) − 2
∫ t

0 X
ξδ
s ds, 0 ≤ t ≤ T δ

α0
= vδ(n∞). From Lemma 6.3, we

have
∫ vδ(nj+1)

vδ(nj ) X
ξδ
s ds = O(d2) for 0 ≤ t ≤ T δ

α0
. Thus

E
[(

ηδ(vδ(nj+1)) − ηδ(vδ(nj ))
)|F ′

j

] = O(d3);
E

[(
ηδ(vδ(nj+1)) − ηδ(vδ(nj ))

)2 − 2
(
vδ(nj+1) − vδ(nj )

)|F ′
j

] = O(d3).

The following theorem can be deduced by using the Skorokhod embedding the-
orem. It is very similar to Theorem 3.7 in [10], so we omit the proof.

THEOREM 6.1. For every ε > 0, there is a uniform constant δ0 > 0 depending
on ε such that if δ < δ0, then there is a coupling of the processes ηδ(t) and a
Brownian motion B(t) such that

P
[
sup

{∣∣ηδ(t) − √
2B(t)

∣∣ : t ∈ [0, T δ
α0

]} < ε
]
> 1 − ε.

Note that for t ∈ [0, T δ
α0

], ξδ(t) solves the equation

ξδ(t) = ηδ(t) + 2
∫ t

0
Xξδ

s ds.(6.3)

Suppose B(t) is a Brownian motion, and ξ0(t), 0 ≤ t < T0, is the maximal solution
to

ξ0(t) = √
2B(t) + 2

∫ t

0
Xξ0

s ds.(6.4)
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Then there is a.s. a simple curve β0 such that β0(0) = 0, β0(t) ∈ H for 0 <

t < T0, and K
ξ0
t = β0((0, t]) for 0 ≤ t < T , and there is a continuous increas-

ing function u0 such that γ0(t) := f −1(β0(u
−1
0 (t))), 0 ≤ t < S0 = u0(T0), is an

LERW(D;0+ → ze) trace.
If α is a crosscut in H, and β defined on [0, T ) is a curve in H, let Tα(β)

be the first t such that β(t) ∈ α, if such t exists; otherwise let Tα(β) = T . Since
βδ([0, T δ

α0
]) intersects α0, so Tα0(βδ) ≤ T δ

α0
.

THEOREM 6.2. Suppose α is a crosscut in H that strictly encloses 0, and
H(α) ⊂ � \ {p}. If ∞ ∈ D, we also assume that f (∞) /∈ H(α). For every ε > 0,
there is δ0 > 0 such that if δ < δ0, then there is a coupling of the processes ξδ(t)

and ξ0(t) such that

P
[
sup{|ξδ(t) − ξ0(t)| : t ∈ [0, Tα(βδ) ∨ Tα(β0)]} < ε

]
> 1 − ε.(6.5)

If ξδ or ξ0 is not defined on [0, Tα(βδ) ∨ Tα(β0)], we set the value of sup to be
+∞.

PROOF. Let ρj and αj = f (ρj ) be as in the beginning of this subsection such
that α is strictly enclosed by α0. From Lemma 5.5, there is δ1 > 0 such that if
K

ζ
a ⊂ H(α) and ‖ζ − η‖a < δ1, then K

η
a is strictly enclosed by α0. Since K

ξδ

T δ
α0

intersects α0, so if ξδ and ξ0 are coupled, then on the event that |ξδ(t)− ξ0(t)| < δ1

for 0 ≤ t ≤ T δ
α0

, we have β0((0, T δ
α0

]) = K
ξ0
T δ

α0
�⊂ H(α), which implies that Tα(βδ)∨

Tα(β0) ≤ T δ
α0

. We may assume ε < δ1. Then we suffice to prove this theorem with
(6.5) replaced by

P
[
sup{|ξδ(t) − ξ0(t)| : t ∈ [0, T δ

α0
]} < ε

]
> 1 − ε.(6.6)

Since K
ξδ

T δ
α0

⊂ H(α1), so from Lemmas 5.5 and 5.8, there are δ2,C1 > 0 such

that for any t ∈ [0, T δ
α0

], if ‖ξ0 − ξδ‖t < δ2, then K
ξ0
t ⊂ H(α2), and

|Xξ0
t − X

ξδ
t | ≤ C1‖ξ0 − ξδ‖t .(6.7)

Let C2 = eC1h1/(2C1), where h1 = hcap(H(α1)). From Theorem 6.1, there is
δ0 > 0 such that if δ < δ0, then there is a coupling of ηδ with

√
2B such that

the probability that |ηδ(t) − √
2B(t)| < (ε ∧ δ2)/C2 for t ∈ [0, T δ

α0
] is greater than

1 − ε. Let E δ denote this event. Assume E δ occurs.
Now ξ0(0) = 0 = ξδ(0). Let [0, b) be maximal subinterval of [0, T δ

α0
) ∩ [0, T0),

on which |ξ0(t) − ξδ(t)| < ε ∧ δ2. Then from (6.3), (6.4) and (6.7), we have

‖ξ0 − ξδ‖t ≤ ∥∥ηδ − √
2B

∥∥
T δ

α0
+2C1

∫ t

0
‖ξ0 − ξδ‖s ds,
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for any t ∈ [0, b]. Solving this inequality, since b ≤ T δ
α0

≤ h1/2 and E δ occurs, so

‖ξ0 − ξδ‖b ≤ (e2C1b − 1)/(2C1)
∥∥ηδ − √

2B
∥∥
T δ

α0
≤ C2

∥∥ηδ − √
2B

∥∥
T δ

α0
< ε ∧ δ2.

Thus K
ξ0
t ⊂ H(α2) for 0 ≤ t < b. From Theorem 3.1(ii), we have b < T0. Since

‖ξ0 − ξδ‖b < ε ∧ δ2, so b = T δ
α0

. Thus ξ0(t) is defined on [0, T δ
α0

], and |ξδ(t) −
ξ0(t)| < ε for t ∈ [0, T δ

α0
] if E δ occurs. So we have (6.6). �

7. Convergence of the curves.

7.1. Local convergence. We use the notation in Section 4.2. First we introduce
a well-known lemma about random walks on δZ2.

LEMMA 7.1. Suppose w ∈ δZ2 and K ⊂ C is a connected set that satis-
fies diam(K) ≥ R [resp. diam#(K) ≥ R]. Then the probability that a random
walk on δZ2 started from w will exit B(w;R) [resp. B#(w;R)] before using
an edge of δZ2 that intersects K is at most C0((δ + dist(w,K))/R)C1 [resp.
C0((δ + dist#(w,K))/R)C1 ] for some absolute constants C0,C1 > 0.

For w ∈ V (Dδ), let Xw be a random walk on Dδ started from w, stopped when
it hits V∂(D

δ) ∪ {wδ
e}. Let Yw be Xw conditioned to hit wδ

e . Then qδ = LE(Yδ).
Lemma 7.1 will be applied because if w ∈ D, Xw is not different from a random
walk on δZ2 started from w stopped when it uses an edge that intersects ∂D or
hits wδ

e .

DEFINITION 7.1. Let z ∈ C, r, ε > 0. A (z, r, ε)-quasi-loop in a path ω is
a pair a, b ∈ ω such that a, b ∈ B(z; r), |a − b| ≤ ε, and the subarc of ω with
endpoints a and b is not contained in B(z;2r). Let Lδ(z, r, ε) denote the event
that qδ has a (z, r, ε)-quasi-loop.

LEMMA 7.2. Suppose r > 0 and B(z0;5r) ⊂ D. Then P[Lδ(z0, r, ε)] → 0,
as ε → 0, uniformly in δ.

PROOF. We will use the idea in the proof of Lemma 3.4 in [16]. However,
that proof does not apply here immediately, because we are dealing with the loop-
erasure of a conditional random walk, and Wilson’s algorithm does not apply to a
conditional UST.

We will argue on the reversal path. Let Xr
w be a random walk on Dδ started

from w, stopped when it hits ∂D. Let Y r
w be Xr

w conditioned to hit the boundary
vertex 〈δ,0〉. Let qr

δ = LE(Y r
wδ

e
). Then qr

δ has the same distribution as the reversal

of qδ . Let Lr
δ(z0, r, ε) denote the event that qr

δ has a (z0, r, ε)-quasi-loop. Then
P[Lr

δ(z0, r, ε)] = P[Lδ(z0, r, ε)]. It suffices to show that limε→0 P[Lr
δ(z0, r, ε)] =
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0, uniformly in δ ∈ (0, δ1] for some absolute constant δ1 > 0 because if δ > δ1,
then Lr

δ(z0, r, ε) does not happen when ε < δ1.
Let Bk = B(z0;kr), k = 1,2,3,4,5. Let t0 = 0 and j = 0. If tj is defined, then

define sj+1 to be the first time s > tj such that Y r
wδ

e
(s) ∈ B1, if such s exists;

otherwise, let M = j and stop here. If sj+1 is defined, then define tj+1 to be the
first time t > sj+1 such that Y r

wδ
e
(t) /∈ B2. Let j = j + 1 and iterate the definition.

Then we get a sequence s1 < t1 < · · · < sM < tM . Such M is a random number.
Finally, for each s ≥ 0, let (Y r

wδ
e
)s be the subpath of Y r

wδ
e

up to time s.

For j ∈ N, let Yj be the event that j ≤ M and LE((Y r
wδ

e
)tj ) has a (z0, r, ε)-quasi-

loop. Then Y1 is empty, and it is clear that for any m ∈ N,

Lr
δ(z0, r, ε) ⊂

∞⋃
j=1

Yj ⊂ {M ≥ m + 1} ∪
m⋃

j=1

Yj .(7.1)

We first estimate P[M ≥ j + 1|(Y r
wδ

e
)tj ]. For w ∈ V (Dδ), let Q(w) or Qδ(w)

be the probability that Xr
w leaves D through [δ,0]; let Q1(w) or Qδ

1(w) be the
probability that Xr

w avoids B1 and leaves D through [δ,0]. Then the probability
that Y r

w does not hit B1 is equal to Q1(w)/Q(w). From the Markov property of Y ,
we have

P[M ≥ j + 1|(Y r
wδ

e
)tj ] = 1 − Q1(Y

r
wδ

e
(tj ))/Q(Y r

wδ
e
(tj )).

Let F = {2r ≤ |z − z0| ≤ 3r}. Then F is a compact subset of D \ B1, and if
δ < r , then Y r

wδ
e
(tj ) ∈ F . We claim that there are absolute constants δ0 ∈ (0, r)

and C2 > 0 such that Q1(w)/Q(w) ≥ C2 for any w ∈ V (Dδ) ∩ F , if δ < δ0.
If the claim is not true, then we can find δn → 0, wn ∈ V (Dδn) ∩ F , and
wn → w0 ∈ F , such that Q

δn

1 (wn)/Q
δn(wn) → 0. Let I δn = Qδn(·)/Qδn(wn) and

J δn = (Qδn(·) − Q
δn

1 (·))/Qδn(wn). Let P be the generalized Poisson kernels in
D with the pole at 0+, normalized by P(w0) = 1. Then I δn converges to P lo-
cally uniformly in D. Since J δn vanishes on the boundary vertices of Dδ includ-
ing 0, agrees with I δn on the vertices in B1, and is discrete harmonic in D \ B1,
so J δ

n converges to a continuous function H locally uniformly in D \ B1, where
H vanishes on ∂D, agrees with P on ∂B1, and is harmonic in D \ B1. Then
H ≤ P in D \ B1. From J δn(wn) → 1, we have H(w0) = 1 = P(w0). From the
maximum principle of harmonic functions, we have P(w) − H(w) = 0 for any
w ∈ D \ B1, which is impossible. So the claim is justified. Suppose δ < δ0. Then
P[M ≥ j + 1|(Y r

wδ
e
)tj ] ≤ 1 − C2. By induction, we find that

P[M ≥ m + 1] ≤ (1 − C2)
m.(7.2)

We now estimate P[Yj+1|¬Yj , (Y
r
wδ

e
)tj ]. Let Qj be the set of components of

intersection of B2 with LE((Y r
wδ

e
)sj+1) that do not contain Y r

wδ
e
(sj+1). Observe that
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if Yj does not occur, then for Yj+1 to occur, there must be a K ∈ Qj such that Y r
wδ

e

comes at some time t ∈ [sj+1, tj+1] within distance ε of K ∩ B1 but Y r
wδ

e
(t) /∈ K

for all t ∈ [sj+1, tj+1]. But if Y r
wδ

e
(t) is close to K for some t ∈ [sj+1, tj+1], then

Lemma 7.1 can be applied, to estimate the probability that Y r
wδ

e
(t) will not hit K

before time tj+1.
Suppose δ < δ1 := δ0 ∧ dist(0,B5); then δ /∈ B5, so Q is discrete harmonic

inside B5, and Q(w) > 0 for any w ∈ V (Dδ)∩ B5. Applying Harnack’s inequality
to Q, we get an absolute constant C1 ≥ 1 such that Q(w1) ≤ C1Q(w2) for any
w1,w2 ∈ V (Dδ) ∩ B4. Let T3 be the first time that a path leaves B3 or hits K .
Then for any w ∈ V (Dδ) ∩ B3, Xr

w(t) and Y r
w(t), t = 0,1, . . . , T3, are contained

in B4 because δ < δ0 < r . Note that for any path (w0,w1, . . . ,wn) on Dδ that is
contained in B4,

P[Y r
w0

(j) = wj ,1 ≤ j ≤ n]/P[Xr
w0

(j) = wj ,1 ≤ j ≤ n] = Q(wn)/Q(w0) ≤ C1.

Therefore, conditioned on Y r
wδ

e
(sj+1), for each given K ∈ Qj , the probability

that Y r
wδ

e
([sj+1, tj+1]) gets to within distance ε of K but does not hit K is at most

C3((δ + ε)/r)C4 for some absolute constant C3,C4 > 0. Note that if δ > ε, then
the above event cannot happen, so the probability is at most C3(2ε/r)C4 . Observe
that |Qj |, the cardinality of Qj , is at most j . Let C5 = C3(2/r)C4 . Then

P[Yj+1|¬Yj ] ≤ jC5ε
C4 .

This gives

P

[
m⋃

j=1

Yj

]
=

m−1∑
j=1

P[Yj+1 ∩ ¬Yj ] ≤
m−1∑
j=1

P[Yj+1|¬Yj ]

≤
m−1∑
j=1

jC5ε
C4 ≤ m2C5ε

C4 .

Combining this with (7.1) and (7.2), we find that

P[Lr
δ(z0, r, ε)] ≤ (1 − C2)

m + m2C5ε
C4 .

Since C2 > 0, the lemma follows by taking m = �ε−C4/3�, say. �

DEFINITION 7.2. Let F ⊂ C, and r, ε > 0. An (F, r, ε)-quasi-loop in a path ω

is a pair a, b ∈ ω such that a ∈ F , |a − b| < ε, and the subarc of ω with endpoints
a and b is not contained in B(a; r).

COROLLARY 7.1. Suppose F is a compact subset of D \ {∞}, and r > 0.
Then the probability that qδ contains an (F, r, ε)-quasi-loop tends to 0 as ε → 0,
uniformly in δ.
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PROOF. Let Lδ(F, r, ε) denote this event. We may find r0 ∈ (0, r/3) and fi-
nitely many points z1, . . . , zn ∈ F , such that B(zj ;5r0) ⊂ D for each j ∈ Z[1,n],
and F ⊂ ⋃n

j=1 B(zj ; r0/2). It is easy to check that if ε < r0/2, then Lδ(F, r, ε) ⊂⋃n
j=1 Lδ(zj , r0, ε). The conclusion follows from Lemma 7.2. �

COROLLARY 7.2. Suppose F is a compact subset of � \ {f (∞)}, and r > 0.
Then the probability that βδ contains an (F, r, ε)-quasi-loop tends to 0 as ε → 0,
uniformly in δ.

PROOF. This follows from the last corollary, and the facts that f maps D con-
formally onto �, f (resp. f −1) is uniformly continuous on each compact subset
of D \ {∞} (resp. � \ {f (∞)}), and that βδ is a time-change of f ◦ qδ . �

For a domain E and ε > 0, let ∂#
ε E := {z ∈ E : dist#(z, Ĉ \ E) < ε}. For any

ε > 0 there are ε1, ε2 > 0 such that f (∂#
ε1

D) ⊂ ∂#
ε � and f −1(∂#

ε2
�) ⊂ ∂#

ε D. In the
following lemmas, let FD (resp. F�) be a compact subset of D \ {ze,∞} [resp.
� \ {p,f (∞)}].

LEMMA 7.3. The probability that Yδ or qδ visits ∂#
ε D after visiting FD tends

to 0 as ε, δ → 0.

PROOF. Since qδ is the loop-erasure of Yδ , so we only need to consider Yδ .
By the Markov property of Y , we need to prove that the probability that Yw visits
∂#
ε D tends to 0 as ε, δ → 0, uniformly in w ∈ FD . For w ∈ V (Dδ), let Q(w) be

the probability that Xw visits wδ
e . Let Pε(w) be the probability that Yw hits ∂#

ε D.
Then Q(w)Pε(w) equals the probability that Xw first hits ∂#

ε D and then wδ
e , which

is not bigger than sup{Q(w) : w ∈ ∂#
ε D}.

Choose z0 ∈ FD . Let wδ
0 be the vertex of Dδ closest to z0. As δ → 0,

Q(·)/Q(wδ
0) converges to G(D,ze; ·)/G(D,ze; z0) uniformly on any subset of

D bounded away from ze. Thus sup{Q(w) :w ∈ ∂#
ε (D)}/ inf{Q(w) :w ∈ FD} → 0

as δ, ε → 0. So Pε(w) → 0 as ε, δ → 0, uniform on w ∈ FD . �

COROLLARY 7.3. The probability that βδ visits ∂#
ε � after F� tends to 0 as

ε, δ → 0.

LEMMA 7.4. For any ε > 0, there are M,δ0 > 0 such that if δ < δ0, then with
probability greater than 1 − ε, qδ stays in B(0;M) after visiting FD .

PROOF. This follows from Lemma 7.1 and the idea in the proof of
Lemma 7.3. �

LEMMA 7.5. Let T δ
F�

be the first time that βδ visits F�. For any ε > 0, there
are ε0, δ0 > 0 such that for δ < δ0, with probability greater than 1 − ε, βδ satisfies
that if |βδ(t1) − βδ(t2)| < ε0 for some t1, t2 ≥ T δ

F�
, then diam(βδ([t1, t2])) < ε.
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PROOF. From Lemma 7.4, there are M,δ1 > 0 such that if δ < δ1, then with
probability greater than 1 − ε/3, qδ stays in B(0;M) after visiting f −1(F�), so
βδ stays in f (D ∩ B(0;M)) after T δ

F�
. Let E δ

1 denote this event. From Corol-
lary 7.3, there are δ2, ε1 > 0 such that if δ < δ2, then with probability greater
than 1 − ε/3, βδ(t) ∈ F := � \ ∂#

ε1
� for t ≥ a. Let E δ

2 denote this event. Let
F0 = F \ f (D ∩ {|z| > M}). Then F0 is a compact subset of � \ {f (∞)}, so
from Corollary 7.2, there is ε0 > 0 such that with probability greater than 1 − ε/3,
βδ does not contain an (F0, ε/3, ε0)-quasi-loop. Let E δ

3 denote this event. Let
δ0 = δ1 ∧ δ2 and E δ = E δ

1 ∩ E δ
2 ∩ E δ

3 . Suppose δ < δ0. Then P[E δ] > 1 − ε. As-
sume E δ occurs. Suppose t1, t2 ≥ T δ

F�
and |βδ(t1) − βδ(t2)| < ε0. Since E δ

1 and E δ
2

occur, so βδ(t1) ∈ F0. Since E δ
3 occurs, so βδ does not contain an (F0, ε/3, ε0)-

quasi-loop. Thus βδ([t1, t2]) ⊂ B(βδ(t1); ε/3), whose diameter is less than ε. �

THEOREM 7.1. Let α be a crosscut in H that strictly encloses 0, such that
H(α) ⊂ � \ {p,f (∞)}. For every ε > 0, there is δ0 > 0 depending on α and ε,
such that if δ < δ0, then there is a coupling of the processes βδ(t) and β0(t) such
that

P
[
sup{|βδ(t) − β0(t)| : t ∈ [0, Tα(βδ) ∨ Tα(β0)]} < ε

]
> 1 − ε.(7.3)

PROOF. Let α0 be a crosscut in H that strictly encloses α such that H(α0) ⊂
� \ {p,f (∞)}. Let d0 = dist(α,α0) > 0. Since β0((0, Tα0(β0)]) intersects α0, so
if βδ and β0 are coupled, then on the event that |βδ(t) − β0(t)| < d0 for 0 ≤ t ≤
Tα0(β0), we have βδ((0, Tα0(β0)]) /∈ H(α), which implies that Tα(βδ) ∨ Tα(β0) ≤
Tα0(β0). We may assume ε < d0. Then we suffice to prove this theorem with (7.3)
replaced by

P
[
sup{|βδ(t) − β0(t)| : t ∈ [0, Tα0(β0)]} < ε

]
> 1 − ε.(7.4)

Choose a crosscut α1 in H that strictly encloses α0, such that H(α1) ⊂ � \
{p,f (∞)}. Suppose the theorem is not true; then there exist ε0 > 0 and a sequence
δn → 0, such that for each δn, there is no coupling of βδn with β0 such that (7.4)
holds with δ = δn. From Theorem 6.2, and by passing to a subsequence, we may
assume that for each n, there is a coupling of ξδn and ξ0 such that

P
[
sup{|ξδn(t) − ξ0(t)| : t ∈ [0, Tα1(β0)]} ≥ 1/2n]

< 1/2n.(7.5)

We may assume that all ξδn and ξ0 are defined in the same probability space, and
(7.5) is satisfied. By discarding a null event, we have

‖ξδn − ξ0(t)‖Tα1 (β0) → 0.(7.6)

Fix any t ∈ [0, Tα1(β0)]. Suppose F is any compact subset of H \ β0((0, t]).
From ‖ξδn − ξ0(t)‖t → 0, we see that ϕ

ξδn
t → ϕ

ξ0
t uniformly on F , and F ⊂ H \

βδn((0, t]) for all but finitely many n. Thus (H \βδn((0, t]))∩ (H \β0((0, t])) Cara−→
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H\β0((0, t]). From Lemma 5.1, (ϕ
ξδn
t )−1 l.u.−→ (ϕ

ξ0
t )−1 in H = ϕ

ξ0
t (H\β0((0, t])).

Thus we have H \ βδn((0, t]) Cara−→ H \ β0((0, t]) for any t ∈ [0, Tα1(β0)].
We may assume that B(0; ε0) ∩ H ⊂ H(α0). Since β0 is a continuous curve

started from 0, so there is b > 0 such that with probability greater than 1 − ε0/5,
β0 is defined on [0, b], and β0([0, b]) ⊂ B(0; ε0/4). Let E0

1 denote this event. If E0
1

occurs, then b < Tα1(β0). For each n ∈ N, let En
1 denote the event that βn is defined

on [0, b] and βn([0, b]) ⊂ B(0; ε0/3). From (7.6) and Lemma 5.5, we have E0
1 ⊂

lim infEn
1 . So there is N1 ∈ N such that P[En

1 ] > 1 − ε0/5 if n > N1.
Let a = b/2. If E0

1 occurs, then β0((0, a]) ⊂ H(α1) ⊂ � \ {p,f (∞)}. So there
is a nonempty compact subset F1 of � \ {p,f (∞)} such that P[E0

2 ] > 1 − ε0/5,
where E0

2 is the subevent of E0
1 on which β0((0, a]) ∩ F1 �= ∅. Choose another

compact subset F2 of �\{p,f (∞)} such that F1 is contained in the interior of F2.
Let En

2 denote the event that βδn is defined on [0, a], and βδn((0, a]) ∩ F2 �= ∅.

If E0
2 occurs, then a ≤ Tα1(β0), so H \ βδn((0, a]) Cara−→ H \ β0((0, a]), and so

dist(z0, βδn((0, a])) → 0 for any z0 ∈ β0((0, a]). Thus E0
2 ⊂ lim infEn

2 . So there
is N2 ∈ N such that P[En

2 ] > 1 − ε0/5 if n > N2. Note that if En
2 occurs, then

a ≥ T
δn

F2
, where T

δn

F2
is the first time that βδn visits F2.

From Theorem 6.2 and Lemma 7.5, there are ε1 ∈ (0, ε0) and N3 ∈ N such that if
n ≥ N3, then with probability at least 1 − ε0/5, ξδn is defined on [0, Tα1(β0)], and
if |βδn(t2) − βδn(t1)| < ε1 for some t1, t2 ≥ T

δn

F2
, then diam(βδn([t1, t2])) < ε0/3.

Let En
3 denote this event.

Since β0 is continuous on [a,Tα1(β0)], dist(β0([a,Tα1(β0)]),R) > 0 and
Tα0(β0) < Tα1(β0), so there is �,h > 0 such that with probability at least 1−ε0/5,
the followings hold: Tα1(β0)−Tα0(β0) > �, Imβ0(t) ≥ h for any t ∈ [a,Tα1(β0)],
and if t1, t2 ∈ [a,Tα1(β0)] and |t1 − t2| ≤ �, then |β0(t1) − β0(t2)| < ε1/3. Let E4
denote this event.

Let A = hcap(H(α1))/2. Then Tα1(β0) ≤ A. Choose N ∈ N such that A/N <

(� ∧ b)/2, and define tk = a + (Tα1(β0) − a)k/N , k = 0,1, . . . ,N . Then t0 = a,
tN = Tα1(β0) and t1 ≤ b, tN−1 ≥ Tα0(β0). Fix k ∈ Z[1,N]. Since β0(tk) ∈ H \
β0((0, tk−1]) and H \βδn((0, tk−1]) Cara−→ H \β0((0, tk−1]), so there is M1

k ∈ N such
that β0(tk) /∈ βδn((0, tk−1]) when n > M1

k . Since β0(tk) is a boundary point of

H \ β0((0, tk]) and H \ βδn((0, tk]) Cara−→ H \ β0((0, tk]), so there is M2
k ∈ N such

that when n > M2
k , there is zn ∈ ∂(H\βδn((0, tk])) with |zn −β0(tk)| < (ε1/3)∧h.

If event E4 occurs, and n > M1
k ∨ M2

k , then zn /∈ R and zn /∈ β((0, tk−1]), which
implies that zn = βδn(sk) for some sk ∈ (tk−1, tk]. Thus if E4 occurs and n >

M := ∨N
k=1(M

1
k ∨ M2

k ), then we have sk ∈ (tk−1, tk], k = 1,2, . . . ,N , such that
|βδn(sk) − β0(tk)| < ε1/3.

Let L = ∨3
j=1 Nj ∨ M and En = ⋂3

j=1 En
j ∩ E0

1 ∩ E4. Suppose n > L. Then
P[En] > 1 − ε0. Assume En occurs. Fix t ∈ [0, Tα0(β0)]. If t ≤ b, then βδn(t),



514 D. ZHAN

β0(t) ∈ B(0; ε0/3) because E0
1 and En

1 both occur and n > N1, so |βδn(t)−β0(t)| <
ε0. Now suppose t ≥ b. Then t ∈ [b,Tα0(β0)] ⊂ [t1, tN−1] ⊂ [s1, sN ]. Thus t ∈
[sk, sk+1] for some k ∈ Z[1,N−1]. Since n > M , tk, tk+1 ∈ [a,Tα1(β0)], |tk − tk+1| <
�, and E4 occurs, so

|βδn(sk) − βδn(sk+1)| ≤ |βδn(sk) − β0(tk)| + |β0(tk) − β0(tk+1)|
+ |β0(tk+1) − βδn(sk+1)|

< ε1/3 + ε1/3 + ε1/3 = ε1.

Since n > N2 and En
2 occurs, so sk, sk+1 ≥ a ≥ T

δn

F2
. Since n > N3, En

3 occurs, and
t ∈ [sk, sk+1], so |βδn(t) − βδn(sk)| < ε0/3. Since t ∈ [sk, sk+1] ⊂ [tk−1, tk+1], so
|t − tk| < �. Since E4 occurs, so |β0(t) − β0(tk)| < ε1/3. Thus

|βδn(t) − β0(t)| ≤ |βδn(t) − βδn(sk)| + |βδn(sk) − β0(tk)| + |β0(tk) − β0(t)|
≤ ε0/3 + ε1/3 + ε1/3 < ε0/3 + ε0/3 + ε0/3 = ε0.

Thus with probability greater than 1−ε0, |βδn(t)−β0(t)| < ε0 for 0 ≤ t ≤ Tα0(β0),
which contradicts the choice of (δn). �

7.2. Global convergence. We restrict βδ to [0, Tδ). Then limt→Tδ βδ(t) =
f (wδ

e). Recall that β0 is defined on [0, T0), where [0, T0) is the maximal in-
terval on which the solution to (6.4) exists. Let B denote the set of continu-
ous curves β : [0, T (β)) → � ∪ R, for some T (β) ∈ (0,∞], with β(0) = 0 and
β(t) ∈ � for t ∈ (0, T (β)). So T is a function taking values in (0,∞] on B that
describes the length of lifetime. Then β0 and βδ are B-valued random variables,
and T (βδ) = Tδ , T (β0) = T0.

Let A denote the set of crosscuts α in H that strictly enclose 0, and such that
H(α) ⊂ � \ {p,f (∞)}. For α1, α2 ∈ A, we write α1 ≺ α2 or α2 � α1 if α1 is
strictly enclosed by α2. For any β ∈ B and α ∈ A, let Tα(β) be the biggest T ∈
(0, T (β)] such that β(t) /∈ α for 0 ≤ t < T . It is clear that Tα1 ≤ Tα2 if α1 ≺ α2.
Define T +

α = ∧
α′�α Tα′ . If β does not leave H(α) immediately after hitting α,

then Tα(β) < T +
α (β).

Suppose α ∈ A. For β1, β2 ∈ B, let �(β1, β) be 0 if β1 = β2 and 1 otherwise,
where β1 = β2 means that T (β1) = T (β2) and β1(t) = β2(t) for 0 ≤ t < T (β1),
and define

d∨
α (β1, β2) = �(β1, β2) ∧ sup{|β1(t) − β2(t)| : t ∈ [0, Tα(β1) ∨ Tα(β2)]},

where the value of the sup is set to be ∞ if either β1(t) or β2(t) is not defined at
some t in the interval of the formula. Then 0 ≤ d∨

α ≤ 1. Now define

dα(β1, β2)

= inf

{
n∑

k=1

d∨
α (γk−1, γk) :γ0 = β1, γn = β2, γk ∈ B, k ∈ Z[1,n−1], n ∈ N

}
.
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Then dα is a pseudo-metric on B, and dα ≤ d∨
α . For α ∈ A, β1 ∈ B and r > 0, let

Bα(β1; r) = {β ∈ B :dα(β,β1) < r}. Let Tα denote the topology generated by dα .
It is clear that if α1 ≺ α2 , then d∨

α1
≤ d∨

α2
, so dα1 ≤ dα2 , from which follows that

Tα1 ⊂ Tα2 . Let T +
α = ⋂

α′�α Tα′ .

LEMMA 7.6. Suppose α1 ≺ α2 ∈ A and d0 = 1 ∧ dist(α1, α2) > 0. Suppose
β1, β2 ∈ B, and dα2(β1, β2) < d0. Then d∨

α1
(β1, β2) ≤ dα2(β1, β2).

PROOF. Choose d1 ∈ (dα2(β1, β2), d0). Then there are γ0, γ1, . . . , γn ∈ B
such that γ0 = β1, γn = β2 and

∑n
j=1 d∨

α2
(γj−1, γj ) < d1. For each j ∈ Z[1,n],

since d∨(γj−1, γj ) < d1 < 1, so

d∨
α2

(γj−1, γj ) = sup{|γj−1(t) − γj (t)| : 0 ≤ t ≤ Tα2(γj−1) ∨ Tα2(γj )}.
Let t0 = Tα1(β1) ∨ Tα1(β2). Assume, for example, that t0 = Tα1(β1) = Tα1(γ0).

We claim that t0 ≤ Tα2(γj ) for any 0 ≤ j ≤ n. Since t0 = Tα1(γ0) < Tα2(γ0), if
the claim is not true, then there is k ∈ Z[1,n] such that t0 > Tα2(γk) and t0 ≤ Tα2(γj )

for 0 ≤ j ≤ k − 1. Let t1 = Tα2(γk). So t1 ∈ [0, Tα2(γj )], 0 ≤ j ≤ k. Then we have

d0 > d1 >

k∑
j=1

d∨
α2

(γj−1, γj ) ≥
k∑

j=1

1 ∧ |γj−1(t1) − γj (t1)| ≥ 1 ∧ |γ0(t1) − γk(t1)|.

Since t0 is the first t such that β1(t) ∈ α1, and t1 < t0, so γ0(t1) = β1(t1) is enclosed
by α1. Since γk(t1) ∈ α2 and α1 ≺ α2, so |γ0(t1) − γk(t1)| ≥ dist(α1, α2). This
implies that 1 ∧ |γ0(t1) − γk(t1)| ≥ d0, which is a contradiction. So the claim is
justified.

Thus for any t ∈ [0, t0], we have t ∈ [0, Tα2(γj )] for any 0 ≤ j ≤ n, so

|β1(t) − β2(t)| ≤
n∑

j=1

|γj−1(t) − γj (t)| ≤
n∑

j=1

d∨
α2

(γj−1, γj ) < d1.

Since this is true for any t ∈ [0, t0] = [0, Tα1(β1) ∨ Tα1(β2)] and d1 ∈ (dα2(β1,

β2), d0), so d∨
α1

(β1, β2) ≤ dα2(β1, β2). �

LEMMA 7.7. {T +
α1

< Tα2} ∈ T +
α1

for any α1, α2 ∈ A.

PROOF. Fix any α′′
1 ∈ A such that α′′

1 � α1. There is α′
1 ∈ A with α′′

1 � α′
1 �

α1. Suppose β1 ∈ {T +
α1

< Tα2}. Then there is a > 0 such that a < Tα′
1
(β1) ∧

Tα2(β1) and β1(a) /∈ H(α1). Let d0 = 1 ∧ dist(β1(a),H(α1)) ∧ dist(α′
1, α

′′
1 ) ∧

dist(β1([0, a]), α2) > 0. Suppose β2 ∈ Bα′′
1
(β1;d0). From Lemma 7.6,

d∨
α′

1
(β2, β1) < d0. Since d0 ≤ 1, so |β2(t) − β1(t)| < d0 for 0 ≤ t ≤ Tα′

1
(β1). Since

a < Tα′
1
(β1), so |β2(t) − β1(t)| < d0 for any t ∈ [0, a]. Since β1([0, a]) is strictly

enclosed by α2, and d0 ≤ dist(β1([0, a]), α2), so β2([0, a]) is also strictly en-
closed by α2, which implies that a < Tα2(β2). Since |β2(a) − β1(a)| < d0 and
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d0 ≤ dist(β1(a),H(α1)), so β2(a) /∈ H(α1), which implies that T +
α1

(β2) < a. Thus
T +

α1
(β2) < Tα2(β2), that is, β2 ∈ {T +

α1
< Tα2}. So Bα′′

1
(β1;d0) ⊂ {T +

α1
< Tα2}. Thus

{T +
α1

< Tα2} ∈ Tα′′
1
. Since α′′

1 � α1 is chosen arbitrarily, so {T +
α1

< Tα2} ∈ T +
α1

. �

LEMMA 7.8. Suppose α1, α2 ∈ A and B ∈ T +
α1

. Then B ∩ {T +
α1

< Tα2} ∈ Tα2 .

PROOF. Fix β1 ∈ B ∩ {T +
α1

< Tα2}. Then there is a > 0 such that a < Tα2(β1)

and β1(a) /∈ H(α1). We may choose α′
1 � α and α′

2 ≺ α2 such that β1(a) /∈ H(α′
1)

and β1([0, a]) is strictly enclosed by α′
2. Since B ∈ T +

α1
⊂ Tα′

1
, so there is d0 > 0

such that Bα′
1
(β1;d0) ⊂ B . Let d1 = 1 ∧ d0 ∧ dist(β1(a),H(α′

1)) ∧ dist(α′
2, α2).

Suppose β2 ∈ Bα2(β1;d1). From Lemma 7.6, d∨
α′

2
(β2, β1) < d1. Since d1 ≤ 1,

so |β2(t) − β1(t)| < d1 for 0 ≤ t ≤ Tα′
2
(β1). Since a < Tα′

2
(β1), so |β2(t) −

β1(t)| < d1 for 0 ≤ t ≤ a. Since d1 ≤ dist(β1(a),H(α′
1)), so β2(a) /∈ H(α′

1). Thus
Tα′

1
(β2) ∨ Tα′

1
(β1) < a. So we have

dα′
1
(β2, β1) ≤ d∨

α′
1
(β2, β1) ≤ sup{|β2(t) − β1(t)| : 0 ≤ t ≤ a} < d1 ≤ d0.

Thus β2 ∈ Bα′
1
(β1;d0) ⊂ B . Since β1([0, a]) is strictly enclosed by α′

2, α′
2 ≺ α2,

and |β2(t) − β1(t)| < d1 ≤ dist(α′
2, α2) for 0 ≤ t ≤ a, so β2([0, a]) is strictly en-

closed by α2. Thus T +
α1

(β2) ≤ Tα′
1
(β2) < a < Tα2(β2), that is, β2 ∈ {T +

α1
< Tα2}. So

Bα2(β1;d1) ⊂ B ∩ {T +
α1

< Tα2}. Thus B ∩ {T +
α1

< Tα2} ∈ Tα2 . �

COROLLARY 7.4. {T +
α1

< Tα2} ∈ Tα2 for any α1, α2 ∈ A.

Let μδ and μ0 be the distribution of βδ and β0, respectively. From Theorem 7.1,
for any α ∈ A, μδ → μ0 weakly w.r.t. dα , as δ → 0. Suppose A is a nonempty
finite subset of A. Let dA = ∨

α∈A dα and TA be the topology generated by dA. So
TA = ∨

α∈A TA. For β1 ∈ B and r > 0, let BA(β1; r) := {β ∈ B :dA(β,β1) < r} =⋂
α∈A B(β1; r). Let B+

A := {∨α∈A T +
α < T }, that is, the set of β ∈ B that are not

contained in
⋃

α∈A H(α).

LEMMA 7.9. (B+
A ,dA) is separable.

PROOF. For r ∈ Q>0, let Cr denote the set of continuous curves γ : [0, r] →
� ∪ R with γ (0) = 0 and γ (t) ∈ � for t ∈ (0, r]. Then Cr is a subset of
C([0, r],C). Let dr be the restriction of ‖ · ‖r to Cr , that is, dr(γ1, γ2) =
sup{|γ1(t)−γ2(t)| : 0 ≤ t ≤ r}. Then (Cr , dr) is a subspace of (C([0, r],C),‖·‖r ),
so is separable. Let {γr,n : n ∈ N} be dense in (Cr , dr). For each r ∈ Q>0 and n ∈ N,
we choose βr,n ∈ B such that T (βr,n) > r and βr,n(t) = γr,n(t) for 0 ≤ t ≤ r . Then
{βr,n : r ∈ Q>0, n ∈ N} is countable.

Suppose β1 ∈ B+
A , and d0 > 0. There is r0 ∈ Q>0 such that

∨
α∈A T +

α (β1) <

r0 < T (β1). For each α ∈ A, there is tα ∈ (0, r0) such that β1(tα) /∈ H(α). Let
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d1 = ∧
α∈A dist(β1(tα),H(α)) ∧ d0 > 0. From the denseness of {γr0,n : n ∈ N} in

(Cr0, dr0), we have n0 ∈ N such that |βr0,n0(t) − β1(t)| = |γr0,n0(t) − β1(t)| < d1
for 0 ≤ t ≤ r0. Fix α ∈ A. Since |βr0,n0(tα) − β1(tα)| < d1 ≤ dist(β1(tα),H(α)),
so βr0,n0(tα) /∈ H(α). Thus Tα(βr0,n0) < r0 < T (βr0,n0). Since this is true for any
α ∈ A, so βr0,n0 ∈ B+

A . Since

dα(βr0,n0, β1) ≤ d∨
α (βr0,n0, β1) ≤ sup{|βr0,n0(t) − β1(t)| : 0 ≤ t ≤ r0} < d1 ≤ d0

for any α ∈ A, so dA(βr0,n0, β1) < d0. Thus {βr,n}∩B+
A is dense in (B+

A ,dA). �

THEOREM 7.2. μδ → μ0 weakly w.r.t. dA, as δ → 0.

PROOF. Suppose A = {α1, . . . , αn}. The case n = 1 follows from The-
orem 7.1. Now suppose n ≥ 2. We suffice to show that for any G ∈ TA,
lim infδ→0 μδ(G) ≥ μ0(G).

We may find polygonal paths α0
j ∈ A, 1 ≤ j ≤ n, such that α0

j � αj for each

j , and such that for j �= k, any line segment on α0
j is not parallel to any line

segment on α0
k . Fix j ∈ Z[1,n]. List the vertices on α0

j in the counterclockwise

order as z0
0, z

0
1, . . . , z

0
m. We may find z1

0 > 0 > z1
m, and z1

k ∈ �, 1 ≤ k ≤ m − 1,
and let α1

j = ⋃m−1
k=1 (z1

k−1, z
1
k] ∪ (z1

m−1, z
1
m), such that A � α1

j � α0
j , [z1

k−1, z
1
k]

is parallel to [z0
k−1, z

0
k] for 1 ≤ k ≤ m, and [z0

l , z
1
l ] ∩ [z0

k, z
1
k] = ∅ for 1 ≤ l <

k ≤ m. For r ∈ [0,1], let zk(r) = z0
k + r(z1

k − z0
k), 0 ≤ k ≤ m, and let αj (r) =⋃m−1

k=1 (zk−1(r), zk(r)] ∪ (zm−1(r), zm(r)). Then αj (r) ∈ A for all r ∈ [0,1], and
αj (s) ≺ αj (r) if 0 ≤ s < r ≤ 1. And for any s ∈ [0,1), if αj (s) ≺ α ∈ A, then there
is r ∈ (s,1) such that αj (r) ≺ α. Thus for any β ∈ B, we have that r �→ Tαj (r)(β)

is increasing on [0,1], and for any s ∈ [0,1), T +
αj (s) = limr↓s Tαj (r), so there are

at most countably many r ∈ [0,1] such that T +
αj (r)(β) > Tαj (r)(β). So there is

rj ∈ (0,1) such that μ0({T +
αj (rj ) > Tαj (rj )}) = 0. For j = 1, . . . , k, let α2

j = αj (rj ),

then αj ≺ α2
j , and μ0({T +

α2
j

> Tα2
j
}) = 0.

Suppose j �= k ∈ Z[1,n]. Since any line segment on α2
j is not parallel to any

line segment on α2
k , so Sj,k := α2

j ∩ α2
k is a finite set. If for some j �= k and

β ∈ B, Tα2
j
(β) = Tα2

k
(β) < T (β), then β must pass through Sj,k . From The-

orem 3.1(ii), we have Tα2
j
(β0), Tα2

k
(β0) < T (β0). Thus {Tα2

j
(β0) = Tα2

k
(β0)} ⊂

{β0 passes through Sj,k}. From the property of chordal SLE2, for any z0 ∈ �, the
probability that β0 passes through z0 is 0, which implies P[β0 passes through Sj,k] =
0, so μ0({Tα2

j
= Tα2

k
}) = 0.

For j ∈ Z[1,n], let Ij = Z[1,n] \ {j} and Bj = {∨k∈Ij
T +

α2
k

< Tα2
j
} = ⋂

k∈Ij
{T +

α2
k

<

Tα2
j
}, which belongs to Tα2

j
from Corollary 7.4. Then B1, . . . ,Bn are mutually
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disjoint. Let N = B \ ⋃m
j=1 Bj . Then

N ⊂ ⋃
1≤j≤n

{T +
α2

j

> Tα2
j
} ∪ ⋃

1≤j<k≤n

{Tα2
j
= Tα2

k
}.

Thus μ0(N) = 0. Fix j ∈ Z[1,n]. If B ∈ Tαj
, then B ∈ Tα2

j
, so B ∩Bj ∈ Tα2

j
. If B ∈

Tαk
for some k ∈ Ij , then B ∈ T +

α2
k

. From Lemma 7.8, we have B ∩ {T +
α2

k

< Tα2
j
} ∈

Tα2
j
. Thus B ∩ Bj = B ∩ {T +

α2
k

< Tα2
j
} ∩ Bj ∈ Tα2

j
. Let Tj denote the collection of

sets B ⊂ B such that B ∩ Bj ∈ Tα2
j
. Then Tj is a topology. We have proved that

Tαk
⊂ Tj for any k ∈ Z[1,n]. Thus TA = ∨n

k=1 Tαj
⊂ Tj .

Suppose G ∈ TA. Let Gj = G ∩ Bj , 1 ≤ j ≤ n. For each j ∈ Z[1,n], since G ∈
TA ⊂ Tj , so Gj = G∩Bj ∈ Tα2

j
. Since μδ → μ0 w.r.t. dα2

j
, so lim infδ↓0 μδ(Gj ) ≥

μ0(Gj ). Since G is the disjoint union of G ∩ N and Gj , 1 ≤ j ≤ n, and μ0(G ∩
N) = 0, so

lim inf
δ→0

μδ(G) ≥
n∑

j=1

lim inf
δ→0

μδ(Gj ) ≥
n∑

j=1

μ0(Gj ) = μ0(G).

Since this is true for any G ∈ TA, so we have μδ → μ0 weakly w.r.t. dA,
as δ → 0. �

We may find a sequence {ᾰn :n ∈ N} in A such that for any α ∈ A, there is
n ∈ N such that ᾰn � α. For n ∈ N, let Tn = ∨n

j=1 Tᾰj
. Then for any β ∈ B,∨∞

n=1 Tn(β) = ∨
α∈A Tα(β). If β0 does not visit f (∞), then

∨∞
n=1 Tn(β0) =

T (β0) = T0. From the property of chordal SLE2, β0 does not visit f (∞) a.s.,
so

∨∞
n=1 Tn(β0) = T0 a.s.

THEOREM 7.3. For any n ∈ N and ε > 0, there is δ0 > 0 such that if δ < δ0,
then there is a coupling of βδ and β0 such that with probability greater than 1 − ε,
|βδ(t) − β0(t)| < ε for t ∈ [0, Tn(β0)].

PROOF. For each 1 ≤ j ≤ n, choose αj � ᾰj . Let A = {α1, . . . , αn}. From
Theorem 3.1(ii), we have β0 ∈ B+

A . As δ → 0, wδ
e → ze, so f (wδ

e) → p /∈⋃
α∈A H(α). There is δ1 > 0, such that if δ < δ1, then f (wδ

e) /∈ ⋃
α∈A H(α), so

βδ ∈ B+
A . Thus μ0 and μδ are supported by B+

A when δ < δ1. From Theorem 7.2,
μδ → μ0 weakly as δ → 0, w.r.t. dA. From Lemma 7.9, (B+

A ,dA) is separable. So
from the coupling theorem in [3], there is δ0 ∈ (0, δ1) such that if δ < δ0, there is a
coupling of βδ and β0 such that

P

[
dA(βδ,β0) <

n∧
j=1

dist(αj , ᾰj ) ∧ 1 ∧ ε

]
> 1 − ε.(7.7)
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Assume dA(βδ,β0) <
∧n

j=1 dist(αj , ᾰj ) ∧ 1 ∧ ε. Then for each j ∈ {1, . . . , n},
we have dαj

(βδ, β0) < dist(αj , ᾰj ) ∧ 1 ∧ ε, which implies d∨
ᾰj

(βδ, β0) < 1 ∧ ε

from Lemma 7.6, so |βδ(t) − β0(t)| < 1 ∧ ε for 0 ≤ t ≤ Tᾰj
(βδ) ∨ Tᾰj

(β0). Since
Tn(β0) = ∨n

j=1 Tᾰj
(β0), so |βδ(t) − β0(t)| < ε for t ∈ [0, Tn(β0)]. �

THEOREM 7.4. (i) For any α ∈ A, n ∈ N and ε > 0, there is δ0 > 0 such that
if δ < δ0, then there is a coupling of βδ and β0 such that with probability greater
than 1 − ε, |f −1(βδ(t)) − f −1(β0(t))| < ε for t ∈ [Tα(β0), Tn(β0)].

(ii) Suppose 0+ is degenerate. Then for any n ∈ N and ε > 0, there is δ0 > 0
such that if δ < δ0, then there is a coupling of βδ and β0 such that with probability
greater than 1 − ε, |f −1(βδ(t)) − f −1(β0(t))| < ε for t ∈ (0, Tn(β0)].

PROOF. (i) Since β0([Tα(β0), Tn(β0)]) is a compact subset of � \ {f (∞)},
on which f −1 is continuous in Euclidean metric, so there is ε0 > 0 such that
P[E1] > 1 − ε/2, where E1 is the event that |f −1(z2) − f −1(z1)| < ε for any
z1 ∈ β0([Tα(β0), Tn(β0)]) and z2 ∈ � with |z2 − z1| < ε0. From Theorem 7.3
there is δ0 > 0 such that if δ < δ0, then βδ and β0 can be coupled such that
with probability greater than 1 − ε/2, |βδ(t) − β0(t)| < ε0 for t ∈ [0, Tn(β0)].
Let E δ

2 denote this event. Let E δ = E1 ∩ E δ
2 . Suppose δ < δ0. Then P[E δ] >

1 − ε. Assume E δ occurs. Then for t ∈ [Tα(β0), Tn(β0)], |βδ(t) − β0(t)| < ε0,
so |f −1(βδ(t)) − f −1(β0(t))| < ε.

(ii) Suppose 0+ is degenerate. From [13], f −1 extends continuously to �∪ {0}.
Since β0([0, Tn(β0)]) is a compact subset of (� \ {f (∞)}) ∪ {0}, so the above
argument still works here. �

Let γ̄0 = f −1 ◦ β0 and γ̄δ = f −1 ◦ βδ . Then γ̄0 is a time-change of γ0, and γ̄δ is
a time-change of qδ .

THEOREM 7.5. limt→S0 γ0(t) = limt→T0 γ̄0(t) = ze almost surely.

PROOF. Let L be the set of spherical subsequential limits of γ̄0(t) as t → T0.
We first claim that L ∩ ∂#D = ∅ a.s. If the claim is not true, then there is ε0 > 0
such that P[L ∩ ∂#D �= ∅] > ε0. Since γ̄0([T1(β0), T2(β0)]) ⊂ D \ {ze,∞}, so for
every ε > 0 there is a compact subset F1 of D\{ze,∞} such that P[E0] > 1−ε0/3,
where E0 is the event that γ̄0([T1(β0), T2(β0)]) intersects F1. Let F2 be a com-
pact subset of D \ {ze,∞} such that F1 is contained in the interior of F2. Let
d0 = dist(F1, ∂F2) > 0. From Lemma 7.3, there are ε1, δ1 > 0 such that if δ < δ1,
then the probability that γ̄δ visits ∂#

ε1
D after F2 is smaller than ε0/3. Since

P[γ̄0([T2(β0), T0)) ∩ ∂#
ε1/2D �= ∅] > ε0 and T0 = ∨∞

n=1 Tn(β0) a.s., so there is
n0 ∈ N such that P[E1] > ε0, where E1 is the event that γ̄0([T2(β0), Tn0(β0)]) ∩
∂#
ε1/2D �= ∅. Note that T1 = Tᾰ1 . From Theorem 7.4(i), there are δ2 < δ1 and

a coupling of γ̄δ2 with γ̄0 such that with probability greater than 1 − ε0/3,
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|γ̄δ2(t) − γ̄0(t)| < (ε1/4) ∧ d0 for t ∈ [T1(β0), Tn0(β0)]. Let E2 denote this event.
Since δ2 < δ1, so the probability that γ̄δ2 does not visit ∂#

ε1
D after F2 is greater

than 1 − ε0/3. Let E3 denote this event. Let E = ⋂3
j=0 Ej . Then P[E ] > 0. So E

is nonempty. Assume E occurs. Since E0 occurs, so there is t0 ∈ [T1(β0), T2(β0)]
such that γ̄0(t0) ∈ F1. Since E2 occurs, so |γ̄δ2(t0) − γ̄0(t0)| < d0, which implies
that γ̄δ2(t0) ∈ F2. Since E1 occurs, there is t1 ∈ [T2(β0), Tn0(β0)] such that γ̄0(t1) ∈
∂#
ε1/2D. Since E2 occurs, so dist#(γ̄δ2(t1), γ̄0(t1)) ≤ 2 dist(γ̄δ2(t1)− γ̄0(t1)) < ε1/2,

which implies that γ̄δ2(t1) ∈ ∂#
ε1

D. Since t0 ≤ T2(β0) ≤ t1, so γ̄δ2 visits ∂#
ε1

D

after F2, which means that E3 cannot occur. So we get a contradiction. Thus
L ∩ ∂#D = ∅ a.s.

Second, we claim that diam#(L) = 0 a.s. If the claim is not true, then from
the last paragraph we have P[diam#(L) > 0,L ⊂ D] > 0. Then there are z0 ∈
D \ {∞} and r0, ε0 > 0 such that B(z0;4r0) ⊂ D and the probability that L ∩
B(z0; r0/2) �= ∅ and L \ B(z0;4r0) �= ∅ is greater than ε0. Let E0 denote this
event. From Corollary 7.1, there is ε1 > 0 such that with probability greater
than 1 − ε0/2, γ̄δ does not contain a (B(z0; r0), r0, ε1)-quasi-loop. For n ∈ N,
let En

0 denote the event that there are t1 < t0 < t2 < Tn(β0) with γ̄0(t1), γ̄0(t2) ∈
B(z0; r0/2), |γ̄0(t1) − γ̄0(t2)| < ε1/3, and γ̄0(t0) /∈ B(z0;3r0). If E0 occurs, then
since T0 = ∨∞

n=1 Tn(β0) a.s., and β0(t) has subsequential limits, as t → T0, inside
B(z0; r0/2) and outside B(z0;4r0), so some En

0 , n ∈ N, must occur. Thus E0 ⊂⋃∞
n=1 En

0 . Since P[E0] > ε0, and (E0
n) is increasing, so there is n0 ∈ N such that

P[En0
0 ] > ε0. Choose α ∈ A such that f −1(H(α)) ∩ B(z0;4r0) = ∅. From Theo-

rem 7.4, there are δ0 > 0 and a coupling of γ̄δ0 and γ̄0 such that with probability
greater than 1 − ε0/2, |γ̄δ0(t) − γ̄0(t)| < (r0/2) ∧ (ε1/3) for t ∈ [Tα(β0), Tn0(β0)].
Let E1 denote this event. Let E2 denote the event that γ̄δ0 does not contain a
(B(z0; r0), r0, ε1)-quasi-loop. Then P[E2] > 1 − ε0/2 from the choice of ε1. Let
E = En0

0 ∩ E1 ∩ E2. Then P[E ] > 0. So E is nonempty. Assume E occurs. Since
En0

0 occurs, so there are t1 < t0 < t2 < Tn0(β0) with γ̄0(t1), γ̄0(t2) ∈ B(z0; r0/2),
|γ̄0(t1) − γ̄0(t2)| < ε1/3, and γ̄0(t0) /∈ B(z0;3r0). For j = 1,2, since γ̄0(tj ) ∈
B(z0; r0/2), so β0(tj ) �⊂ H(α), which implies that tj ≥ Tα(β0). Since E1 occurs,
so |γ̄δ0(tj )− γ̄0(tj )| < (r0/2)∧ (ε1/3), j = 1,2, and |γ̄δ0(t0)− γ̄0(t0)| < r0, which
implies that γ̄δ0(t1) ∈ B(z0; r0), |γ̄δ0(t1)− γ̄δ0(t2)| < ε1 and γ̄δ0(t0) /∈ B(z0;2r0), so
|γ̄δ0(t0) − γ̄δ0(t1)| ≥ r0. So we find a (B(z0; r0), r0, ε1)-quasi-loop on γ̄δ0 , which
contradicts E2. So P[diam#(L) > 0] = 0.

Thus almost surely L is a single point in D, which means that limt→T0 γ̄0(t)

exists in the spherical metric and lies in D. Now we claim that limt→T0 γ̄0(t) /∈
γ̄0([0, T0)) a.s. If the claim is not true, then there exist z0 ∈ D and r0 > 0 such
that with a positive probability, we have limt→T0 γ̄0(t) ∈ γ̄0([0, T0)) ∩ B(z0; r0/2)

and γ̄0([0, T0))) �⊂ B(z0;4r0), so we can use an argument that is similar to the last
paragraph to find a contradiction. Note that almost surely γ̄0 does not visit ∞.
Thus almost surely we may extend γ̄0 to be a simple continuous curve defined
on [0, T0] such that γ̄0(T0) ∈ D \ {∞}. If P[γ̄0(T0) �= ze] > 0, then there is n0 ∈ N
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such that the probability that γ̄0([0, T0]) is enclosed by f −1(ᾰn0) is positive, which
contradicts Theorem 3.1(ii). Thus P[γ̄0(T0) = ze] = 1. Since γ0 is a time-change
of γ̄0, so limt→S0 γ0(t) = limt→T0 γ̄0(t) = ze a.s. �

PROOF OF THEOREM 4.2. (i) Choose r > 0 such that B := B(ze; r) ⊂ D.
From Corollary 7.1, there is ε0 ∈ (0, ε) such that the probability that γ̄δ does not
contain a (B, ε/6, ε0)-quasi-loop is greater than 1 − ε/3. Let E δ

0 denote this event.
There is δ1 such that if δ < δ1, then |wδ

e − ze| < r ∧ (ε0/3). From Theorem 7.5,
we have limt→T0 γ̄0(t) = ze a.s. Since T0 = ∨∞

n=1 Tn(β0) a.s., so there is n0 ∈ N
such that with probability greater than 1 − ε/3, the diameter of γ̄0([Tn0(β0), T0))

is less than ε0/3. Let E1 denote this event. Choose α ∈ A such that f −1(H(α)) ⊂
U . Then Tα(β0) ≤ TU(γ̄0). From Theorem 7.4(i), there is δ0 < δ1 such that if
δ < δ0, then there is a coupling of γ̄δ and γ̄0 such that with probability greater
than 1 − ε/3, |γ̄δ2(t) − γ̄0(t)| < ε0/3 for t ∈ [TU(γ̄0), Tn0(β0)]. Let E2 denote this
event. Let E δ = E δ

0 ∩ E1 ∩ E2. Suppose δ < δ0. Then P[E δ] > 1 − ε. Assume E δ

occurs. Let Te = Tn0(β0). Then |γ̄δ(t) − γ̄0(t)| < ε0/3 < ε/3 for TU(γ̄0) ≤ t ≤ Te.
And |γ̄δ(Te) − wδ

e | ≤ |γ̄δ(Te) − γ̄0(Te)| + |γ̄0(Te) − ze| + |ze − wδ
e | < ε0. Since

γ̄δ(Tδ) = wδ
e ∈ B and γ̄δ does not contain a (B, ε/6, ε0)-quasi-loop, so the diameter

of γ̄δ([Te, Tδ)) is less than ε/3. Choose u that maps [TU(γ̄0), Tδ) onto [TU(γ̄0), T0)

such that u(t) = t for TU(γ̄0) ≤ t ≤ Te; then |γ̄δ(u
−1(t))− γ̄0(t)| < ε for TU(γ̄0) ≤

t < T0. Since γ̄δ and γ̄0 are time-changes of qδ and γ0, respectively, so the proof
of (i) is finished.

(ii) If 0+ is degenerate, then we use Theorem 7.4(ii) in the above proof. �

8. Other kinds of targets.

8.1. When the target is a prime end. Now we consider the case that the target
is a prime end. We use the notation and boundary conditions given in Section 4.2
for the discrete LERW aimed at a prime end we. Suppose f maps D conformally
onto an almost H domain � such that f (0+) = 0.

We will go through the propositions in Sections 6 and 7, and explain how they
can be modified to prove Theorem 4.2 in this case. We only consider Dδ for δ ∈ M,
so the words “δ < ∗” should be replaced by “δ ∈ M and δ < ∗,” and the words
“δ → 0” should be replaced by “δ → 0 along M.”

Let X
ξ
t and P ξ (t, x, ·) be notation in the case that the target is a prime end

defined in Sections 3.4 and 4.1. Then all lemmas in Section 6.1 still hold. For
Proposition 6.1, redefine PX to be the generalized Poisson kernel in DX with the
pole at Tip(X), normalized by ∂nPX(we) = 1; let hX be defined on V (Dδ) that
satisfies hX ≡ 0 on V∂(D

δ)∪ Set(X) \ {Tip(X)}, �DδhX ≡ 0 on VI (D
δ) \ Set(X),

and �DδhX(we) = 1. Proposition 6.1 should be restated as Proposition 8.1 below,
which together with Proposition 2.1 implies Proposition 6.2, and then all theorems
in Section 6.2.
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PROPOSITION 8.1. For any ε > 0, there is δ0 > 0 such that if δ ∈ M and
δ < δ0, then for any X ∈ Lδ , and any w ∈ V (Dδ) ∩ (D \ H(ρ2)), we have |δ ·
hX(w) − PX(w)| < ε.

PROOF. Fix z0 ∈ D \ H(ρ2) and let wδ
0 be a vertex on Dδ that is closest to

z0. For δ ∈ M and X ∈ Lδ , let g0
X(w) = hX(w)/hX(wδ

0). Then from Proposi-
tion 6.1, g0

X converges to the generalized Poisson kernel P 0
X in DX with the pole

at Tip(X), normalized by P 0
X(z0) = 1, uniformly on D \ H(ρ3) for any crosscut

ρ3 in D such that H(ρ1) ⊂ H(ρ3) and ρ1 ∩ ρ3 = ∅. Since ∂D is flat near we,
and g0

X vanishes on ∂D near we, so g0
X can be naturally extended to be a discrete

harmonic function on δZ2 ∩ B(we; r0) for some r0 > 0. We may also extend P 0
X

to be a harmonic function defined in B(we; r0) by the Schwarz reflection prin-
ciple. Then we can prove that the discrete partial derivatives of g0

X approximate
the corresponding partial derivatives of P 0

X locally uniformly in B(we; r0). Espe-
cially, we have (g0

X(wδ
e) − g0

X(we))/δ → ∂nP 0
X(we) as δ → 0, because wδ

e is the
unique adjacent vertex of we in Dδ . Note that �Dδg0

X(we) = g0
X(wδ

e) − g0
X(we).

From the definition of g0
X , we have �DδhX(we)/(δ · hX(wδ

0)) → ∂nP 0
X(we) as

δ → 0. Since �DδhX(we) = 1, so 1/(δ · hX(wδ
0)) → ∂nP 0

X(we) as δ → 0. Thus
δ · hX(w) = gX(w) · δ · hX(wδ

0) converges to P 0
X(w)/∂nP 0

X(we) = PX(w) uni-
formly on D \ H(ρ2). �

In Section 7, redefine Xw to be a random walk on Dδ started from w, stopped
when it hits V∂(D

δ), and Yw to be that Xw conditioned to hit V∂(D
δ) at we. Then

qδ is the loop-erasure of Yδ . Lemma 7.2 still holds. For the proof, we argue on
Yw instead of the reversal path. Then Corollary 7.1 and Corollary 7.2 immediately
follow. Let FD (resp. F�) be a compact subset of D \ {∞} [resp. � \ {f (∞)}].
Lemma 7.4 still holds. Lemma 7.3, Corollary 7.3 and Lemma 7.5 should be re-
stated as Lemma 8.1, Corollary 8.1 and Lemma 8.2, respectively, whose proofs
are similar. Then we have Theorem 7.1.

LEMMA 8.1. Suppose Ue is a neighborhood of we in D. Then the probability
that Yδ or qδ visits (D \Ue)∩∂#

ε D after visiting FD tends to 0 as ε → 0 and δ → 0
along M.

COROLLARY 8.1. Suppose Ue is a neighborhood of f (we) in �. Then the
probability that βδ visits (� \ Ue) ∩ ∂#

ε � after visiting F� tends to 0 as ε → 0 and
δ → 0 along M.

LEMMA 8.2. Suppose Ue is a neighborhood of f (we) in �. Let T δ
F�

(resp. T δ
e )

be the first time βδ hits F� (resp. Ue). For any ε > 0, there are ε0, δ0 > 0 such that
for δ < δ0, with probability greater than 1−ε, βδ satisfies that if |βδ(t1)−βδ(t2)| <
ε0 for some t1, t2 ∈ [T δ

F�
,T δ

e ], then diam(βδ([t1, t2])) < ε.
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In Section 7.2, keep B unchanged, but redefine A to be the set of crosscuts α in
H such that α strictly encloses 0, H(α) ⊂ �\ {f (∞)}, and H(α) is bounded away
from f (we). Then Theorems 7.2, 7.3 and 7.4 still hold. Using Lemma 8.3 below,
we can prove Theorem 7.5 with ze replaced by we, and finally Theorem 4.2.

LEMMA 8.3. For r > 0, the probability that qδ visits D \ B(we; r) after D ∩
B(we; ε) tends to 0 as ε → 0 and δ → 0 along M.

PROOF. Let Y r
w be that Xw conditioned to leave D through [δ,0]. Let qr

δ =
LE(Y r

wδ
e
). Then qr

δ has the same distribution as the reversal of qδ . Let PY be the

probability that Y r
wδ

e
visits D ∩ B(we; ε) after D \ B(we; r). We suffice to prove

that PY tends to 0 as ε → 0 and δ → 0 along M.
We may assume that ε < r < re/2, where re > 0 satisfies B(we; re) ∩ D =

(we + aH) ∩ B(we; re) for some a ∈ {±1,±i}. Let Q(w) be the probabil-
ity that Xw leaves D through [δ,0]. Let PX be the probability that Xwδ

e
vis-

its D ∩ B(we; ε) after D \ B(we; r), and leaves D through [δ,0]. Then PY =
PX/Q(wδ

e). Let Qr(w) be the probability that Xw reaches D \ B(we; r). Then
PX ≤ Qr(w

δ
e) sup{Q(w) :w ∈ B(we; ε) ∩ D}. Choose z0 ∈ D and r0 > 0 such that

B := B(z0; r0) ⊂ D. Let QB(w) be the probability that Xw visits B before ∂D.
Then Q(wδ

e) ≥ QB(wδ
e) inf{Q(w) :w ∈ B}. Thus

PY ≤ Qr(w
δ
e)

QB(wδ
e)

· sup{Q(w) :w ∈ B(we; ε) ∩ D}
inf{Q(w) :w ∈ B} .(8.1)

Let wδ
0 be a vertex of Dδ closest to z0. As δ → 0 along M, Q(·)/Q(wδ

0) con-
verges to the generalized Poisson kernel P in D with the pole at 0+, normalized
by P(z0) = 1, uniformly on any subset of D that is bounded away from 0+. Thus

sup{Q(w) :w ∈ B(we; ε) ∩ D}/ inf{Q(w) :w ∈ B} → 0(8.2)

as ε → 0 and δ → 0 along M.
As δ → 0 along M, QB converges to H(D \ B,∂B; ·) in D \ B . Let U =

D ∩ B(we; r) and ρ = {|z − we| = r} ∩ D. As δ → 0 along M, Qr converges to
H(U,ρ; ·) in U . Since ∂D is flat near we, so Qr and QB extend to be a discrete
harmonic function on δZ2 ∩ (D ∪ B(we; r)). So the discrete partial derivatives of
QB and Qr converge to the continuous partial derivatives of H(D \ B,∂B; ·) and
H(U,ρ; ·), respectively, in D∪B(we; r). Thus QB(wδ

e)/δ → ∂nH(D\B,∂B;we)

and Qr(w
δ
e)/δ → ∂nH(U,ρ;we) as δ → 0 along M. So we have

Qr(w
δ
e)/QB(wδ

e) → ∂nH(U,ρ;we)/∂nH(D \ B,∂B;we)(8.3)

as δ → 0 along M. The conclusion follows from (8.1), (8.2) and (8.3). �

In the proof of Lemma 8.3, we consider the LERW curve qr
δ , which has the same

distribution as the reversal of qδ . If ∂D is flat near 0, then we have the convergence
of qr

δ to a continuous LERW(D;we → 0+) trace. From the conformal invariance
of continuous LERW, we have the reversibility of continuous LERW.
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COROLLARY 8.2. Suppose w1 �= w2 are two prime ends of D. For j = 1,2,
suppose γj (t), 0 < t < Sj , is an LERW(D;wj → w3−j ) trace. Then there is a
random continuous decreasing function ur that maps (0, S1) onto (0, S2) such that
(γ1 ◦ u−1

r (t),0 < t < S2) has the same distribution as (γ2(t),0 < t < S2).

8.2. When the target is a side arc. Now we consider the case that the target
is a side arc. We use the notation and boundary conditions given in Section 4.2
for the discrete LERW aimed at a side arc Ie. Let f map D conformally onto an
almost H domain � such that f (0+) = 0.

We will modify the propositions in Sections 6 and 7 to prove Theorem 4.2 in
this case. Recall that if Ie is not a whole side, then we only consider Dδ for δ ∈ M,
so the words “δ < ∗” should be replaced by “δ ∈ M and δ < ∗,” and the words
“δ → 0” should be replaced by “δ → 0 along M.” If Ie is a whole side, we may
consider Dδ for any small δ. For consistency, let M = (0,∞) in this case.

Let X
ξ
t and P ξ (t, x, ·) be notation in the case that the target is a side arc defined

in Sections 3.4 and 4.1. Then all lemmas in Section 6.1 still hold. For Proposi-
tion 6.1, redefine PX to be the generalized Poisson kernel in DX with the pole at
Tip(X), normalized by

∫
Ie

∂nPX(z) ds(z) = 1; let hX be defined on V (Dδ) that
satisfies hX ≡ 0 on V∂(D

δ)∪ Set(X) \ {Tip(X)}, �DδhX ≡ 0 on VI (D
δ) \ Set(X),

and
∑

w∈I δ
e
�DδhX(w) = 1. Then Proposition 6.1 should be restated as Proposi-

tion 8.2, which together with Proposition 2.1 implies Proposition 6.2, and then all
theorems in Section 6.2.

PROPOSITION 8.2. For any ε > 0, there is δ0 > 0 such that if δ ∈ M and
δ < δ0, then for any X ∈ Lδ , and any w ∈ V (Dδ)∩(D\H(ρ2)), we have |hX(w)−
PX(w)| < ε.

PROOF. Let z0, wδ
0, h0

X and P 0
X be as in the proof of Proposition 8.1.

Then we have the convergence of h0
X to P 0

X . Now we suffice to prove that∑
w∈I δ

e
�Dδh0

X(w) → ∫
Ie

∂nP 0
X(z) ds(z) as δ → 0 along M.

We first consider the case that Ie is a whole side. Then we may choose a polyg-
onal Jordan curve σ in D that disconnects Ie from other sides of D, such that σ is
disjoint from ρ2, and every line segment on σ is parallel to either the x or y axis.
Let U(σ) denote the doubly connected domain bounded by Ie and σ . Since P 0

X is
bounded and harmonic in U(σ), so we have∫

Ie

∂nP 0
X(z) ds(z) = −

∫
σ

∂nP 0
X(z) ds(z),(8.4)

where n is the inward unit normal vector on the boundary of U(σ).
Suppose δ is smaller than the Euclidean distance from σ to ρ2 and any side of

D. Let G be the subgraph of Dδ spanned by the set of edges in Dδ that is incident
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to at least one vertex in U(σ). Let A be the set of vertices of G on Ie, and let B be
the set of vertices of G in D \ U(σ). From Lemma 6.6, we have∑

w∈I δ
e

�Dδh0
X(w) = − ∑

(w,w′)∈Pσ

(
h0

X(w) − h0
X(w′)

)
,(8.5)

where Pσ = {(w,w′) :w ∈ V (Dδ) ∩ U(σ),w′ ∈ VI (D
δ) \ U(σ),w ∼ w′}.

Since the discrete partial derivatives of h0
X converge to the corresponding partial

derivatives of P 0
X uniformly on σ , so as δ → 0, we have∑
(w,w′)∈Pσ

(
h0

X(w) − h0
X(w′)

) →
∫
σ

∂nP 0
X(z) ds(z).

This together with (8.4) and (8.5) finishes the proof of the first case.
The second case is that Ie is not a whole side. We assume that ∂D is flat near the

two ends z1
e and z2

e of I . We may choose a polygonal crosscut σ in D composed
of line segments parallel to x or y axis, such that its two ends approach to z1

e

and z2
e , respectively, and σ disconnects Ie from ∂D \ Ie. Since P 0

X is bounded
and harmonic in H(σ), so

∫
Ie

∂nP 0
X(z) ds(z) = − ∫

σ ∂nP 0
X(z) ds(z), where n is the

inward unit normal vector on the boundary of H(σ). An argument similar to the
last paragraph gives∑

w∈I δ
e

�Dδh0
X(w) = − ∑

(w,w′)∈Pσ

(
h0

X(w) − h0
X(w′)

)
,

where Pσ = {(w,w′) :w ∈ V (Dδ) ∩ H(σ),w′ ∈ VI (D
δ) \ H(σ),w ∼ w′}. So we

suffice to show that∑
(w,w′)∈Pσ

(
h0

X(w) − h0
X(w′)

) →
∫
σ

∂nP 0
X(z) ds(z)(8.6)

as δ → 0 along M. To prove this, we use the flat boundary conditions at w1
e and w2

e

to extend h0
X and P 0

X harmonically across ∂D near w1
e and w2

e . Since σ is compact
in the extended domain: D unions two balls centered at w1

e and w2
e , respectively,

so we get the uniform convergence of the discrete partial derivatives of h0
X to the

corresponding partial derivatives of P 0
X on σ . Then we are done. �

In Section 7, redefine Xw to be a random walk on Dδ started from w, stopped
when it hits V∂(D

δ), and Yw to be that Xw conditioned to hit V∂(D
δ) at I δ

e . Then
qδ is the loop-erasure of Yδ . Lemma 7.2 still holds, and Corollaries 7.1 and 7.2
immediately follow from this lemma. Let FD (resp. F�) be a compact subset of D\
{∞} [resp. �\{f (∞)}]. Lemma 7.4 still holds, and Lemma 8.1, Corollary 8.1, and
Lemma 8.2 hold with we replaced by Ie. Using this, we can obtain Theorem 7.1.

In Section 7.2, keep B unchanged, but redefine A to be the set of crosscuts α

in H that strictly encloses 0, such that H(α) ⊂ � \ {f (∞)} and H(α) is bounded
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away from f (Ie). Then we have Theorems 7.2, 7.3 and 7.4. Let γ̄δ = f −1 ◦βδ and
γ̄0 = f −1 ◦ β0. Using Lemma 8.4 and Theorem 8.1 below, we can prove Theo-
rem 4.2 in this case.

LEMMA 8.4. Let T δ
FD

be the first time that γ̄δ visits FD . For a > 0, let ∂aD =
{z ∈ D : dist(z, ∂D) < a}. For any ε ∈ (0,1), there are ε0, δ0 > 0 such that if δ ∈ M
and δ < δ0, then with probability greater than 1 − ε, if γ̄δ(t0) ∈ ∂ε0D for some
t0 ≥ T δ

FD
, then γ̄δ(t) ∈ B(γ̄δ(t0), ε) for t ≥ t0.

PROOF. Since γ̄δ is a time-change of qδ , which is the loop-erasure of Yδ , so we
suffice to prove this lemma with Yδ replacing γ̄δ . We first consider the case that Ie is
not a whole side. Choose r > 0 such that D∩B(w

j
e ,3r) = (w

j
e +ajH)∩B(w

j
e ,3r)

for j = 1,2, where a1, a2 ∈ {±1,±i}, and B(w1
e ;3r) is disjoint from B(w2

e ;3r).

Let Bj = B(w
j
e ; r) and σ j = D ∩ ∂Bj , j = 1,2. Let Q(w) be the probability that

Xw hits ∂D at I δ
e . Let Qr(w) be the probability that Xw visits B1 ∪ B2 before

leaving D. Then Q and Qr converge to H(D, Ie; ·) and H(D \ (B1 ∪ B2), σ 1 ∪
σ 2; ·), respectively, uniformly on FD . Thus Qr(w)/Q(w) → 0 as r → 0 and δ →
0 along M, uniformly in w ∈ FD . Note that Qr(w)/Q(w) is the probability that
Yw visits B1 ∪ B2. From the Markov property of Y , the probability that Yδ visits
B1 ∪ B2 after FD tends to 0 as r → 0 and δ → 0 along M. So we may choose
r, δe > 0 such that P[E δ

e ] < ε/3 if δ ∈ M and δ < δe, where E δ
e is the event that Yδ

visits B1 ∪ B2 after FD .
For j = 1,2, every point on [wj

e −2aj r,w
j
e +2aj r] corresponds to a prime end

of D. Since w1
e and w2

e are end points of Ie, so Ie ∩ [wj
e − 2aj r,w

j
e + 2aj r] =

[wj
e ,w

j
e + 2cjaj r] for some cj ∈ {±1}, j = 1,2. For j = 1,2, let zj = w

j
e −

cjaj r ; then zj is the end point of σ j that does not lie on Ie. For j = 1,2, choose
θ

j
1 �= θ

j
2 ∈ σ j such that θ

j
1 is closer to zj than θ

j
2 , and let ρ

j
k denote the open arc

on σ j bounded by zj and θ
j
k , k = 1,2. We may find two closed simple curves ρ0

1

and ρ0
2 in D such that for k = 1,2, θ1

k and θ2
k are end points of ρ0

k , ρ0
k ∩σj = {θj

k },
j = 1,2; ρ0

1 ∩ ρ0
2 = ∅; and ρ1 := ρ0

1 ∪ ρ1
1 ∪ ρ2

1 disconnects Ie from any side of D

that does not contain Ie, and so ρ1 is a crosscut in D, and H(ρ1) is a neighborhood
of Ie. Let ρ2 = ρ0

2 ∪ρ1
2 ∪ρ2

2 . Then ρ2 is also a crosscut in D, and H(ρ2) ⊂ H(ρ1).

For j = 1,2, let ρ
j
3 = σ j \ρ

j
2 . Let ρ3 = ρ0

2 ∪ρ1
3 ∪ρ2

3 and ρ1.5 = ρ0
1 ∪ (w1

e , θ
1
1 ]∪

(w2
e , θ

2
1 ]. Then ρ3 and ρ1.5 are also crosscuts in D, H(ρ3) ⊂ H(ρ1.5), and d1 :=

dist(ρ3, ρ1.5) > 0. From Lemma 7.1, there are δ1, ε1 > 0 such that if δ ∈ M, δ < δ1,
and w ∈ ∂ε1D, then the probability that Xw leaves B(w; (d1/2)∧(ε/3)) is less than
ε/6. For w ∈ H(ρ3), if Xw hits V∂(D

δ) \ I δ
e , then Xw must intersect both ρ3 and

ρ1.5, so Xw must leave B(w;d1/2) before it hits ∂D. Thus if δ ∈ M, δ < δ1 and
w ∈ H(ρ3)∩∂ε1D, then Q(w) ≥ 1−ε/6 ≥ 1/2. Since Yw is Xw conditioned to hit
I δ
e , so the probability that Yw leaves B(w; ε/3) before it hits ∂D is at most 2 times

the probability that Xw leaves B(w; ε/3) before it hits ∂D, and so is less than ε/3



SCALING LIMITS OF PLANAR LERW 527

when δ < δ1. From the Markov property of Yw , if δ ∈ M and δ < δ1, then with
probability greater than 1 − ε/3, Yδ satisfies that if Yδ(t1) ∈ H(ρ3) ∩ ∂ε1D, then
Yδ(t) ∈ B(Yδ(t1); ε) for t ≥ t1. Let E δ

1 denote this event.
Let Ue = H(ρ2) \ ρ2. Then Ue is a neighborhood of Ie in D. From Lemma 8.1,

there are δ2, ε2 > 0 such that if δ ∈ M and δ < δ2, then with probability greater
than 1 − ε/3, Yδ does not visit ∂ε2D \ Ue after T δ

FD
. Let E δ

2 denote this event.
Let δ0 = δe ∧ δ1 ∧ δ2, ε0 = ε1 ∧ ε2, and E δ = E δ

1 ∩ E δ
2 \ E δ

e . Suppose δ ∈ M and
δ < δ0. Then P[E δ] > 1 − ε. Assume E δ occurs. Suppose Yδ(t0) ∈ ∂ε0D for some
t0 ≥ T δ

FD
. Since δ < δ2 and E δ

2 occurs, so Yδ(t0) ∈ Ue. Since δ < δe and E δ
e does

not occur, so Yδ(t0) ∈ H(ρ2) \ (B1 ∪ B2) ⊂ H(ρ3). Since δ < δ1 and E δ
1 occurs,

and Yδ(t0) ∈ H(ρ3) ∩ ∂ε3D, so Yδ(t) ∈ B(Y δ
δ (t0); ε) for t ≥ t0.

The case that Ie is a whole side is easier. We may choose a Jordan curve ρ in D

that disconnects Ie from other sides of D. Let Ue denote the domain bounded by Ie

and ρ. From the argument used in the first part of the proof, we have δ1, ε1 > 0 such
that if δ ∈ M and δ < δ1, then with probability greater than 1 − ε/3, Yδ satisfies
that if Yδ(t1) ∈ Ue, then Yδ(t) ∈ B(Yδ(t1); ε) for t ≥ t1. Let E δ

1 denote this event.
From Lemma 8.1, there are δ2, ε2 > 0 such that if δ ∈ M and δ < δ2, then with
probability greater than 1 − ε/3, Yδ does not visit ∂ε2D \ Ue after T δ

FD
. Let E δ

2

denote this event. Let δ0 = δ1 ∧ δ2, ε0 = ε1 ∧ ε2 and E δ = E δ
1 ∩E δ

2 . Assume δ ∈ M
and δ < δ0, then P[E δ] > 1 − ε. If E δ occurs and Yδ(t0) ∈ ∂ε0D for some t0 ≥ T δ

FD
,

then Yδ(t) ∈ B(Yδ(t0), ε) for t ≥ t0. �

THEOREM 8.1. Almost surely limt→S0 γ0(t) = limt→T0 γ̄0(t) exists and lies
on ∂D.

PROOF. Let L be the set of subsequential limits of γ̄0(t) as t → T0, in the
spherical metric. From Lemma 7.4, Theorem 7.4, and the idea in the first para-
graph of the proof of Theorem 7.5, we have ∞ /∈ L a.s. So L is the set of subse-
quential limits of γ̄0(t) as t → T0, in the Euclidean metric. From Theorem 3.1(ii),
we have L ∩ ∂D �= ∅ a.s. From Theorem 7.4, Lemma 8.4, and the idea in the sec-
ond paragraph of the proof of Theorem 7.5, we have diam(L) = 0 a.s. So we are
done. �

From the property of discrete LERW and the conformal invariance of continu-
ous LERW, we then have the following corollary.

COROLLARY 8.3. Suppose γ (t), 0 ≤ t < S, is an LERW(D;w0 → Ie) trace;
then almost surely l̂imt→Sγ (t), the limit of γ (t) in D̂, as t → S, exists and lies on
Ie, and the distribution of l̂imt→Sγ (t) is the same as the distribution of the limit
point in D̂ of the Brownian excursion in D started from w0 conditioned to hit Ie.
And if Je is a subarc of Ie, then after a time-change, γ (t) conditioned on the event
that l̂imt→Sγ (t) ∈ Je has the same distribution as an LERW(D;w0 → Je) trace.
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QUESTION. Can we prove Theorem 7.5, Corollary 8.2 and Corollary 8.3 di-
rectly from the definition of continuous LERW?
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