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DYNAMICAL MODELS FOR CIRCLE COVERING: BROWNIAN
MOTION AND POISSON UPDATING

BY JOHAN JONASSON1 AND JEFFREY E. STEIF1,2

Chalmers University of Technology and Göteborg University

We consider two dynamical variants of Dvoretzky’s classical problem of
random interval coverings of the unit circle, the latter having been completely
solved by L. Shepp. In the first model, the centers of the intervals perform
independent Brownian motions and in the second model, the positions of the
intervals are updated according to independent Poisson processes where an
interval of length � is updated at rate �−α where α ≥ 0 is a parameter. For
the model with Brownian motions, a special case of our results is that if the
length of the nth interval is c/n, then there are times at which a fixed point
is not covered if and only if c < 2 and there are times at which the circle is
not fully covered if and only if c < 3. For the Poisson updating model, we
obtain analogous results with c < α and c < α + 1 instead. We also compute
the Hausdorff dimension of the set of exceptional times for some of these
questions.

1. Introduction.

1.1. The classical (static) circle covering model. Let C denote the circle with
circumference 1 and consider a decreasing sequence {�n}n≥1 of positive numbers
approaching 0. Let {Un}n≥1 be a sequence of independent random variables each
of which is uniformly distributed on C. Let In be the open arc of C with center
point Un and length �n. Let E := lim supn In and F := Ec. It follows immedi-
ately from the Borel–Cantelli lemma that for each x ∈ C, P(x ∈ E) = 1 if and
only if

∑∞
n=1 �n = ∞. Fubini’s theorem yields immediately that in this case F

has Lebesgue measure 0 a.s. In 1956, Dvoretzky (see [4]) raised the question of
whether in the

∑
n �n = ∞ case it was possible that F was nonempty and gave ex-

amples where this occurred. There were a number of various contributions to this
question with the final result proved by Shepp (see [16]). Note that Kolmogorov’s
0–1 law tells us that P(F = ∅) ∈ {0,1}.
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THEOREM 1.1 [16]. P(F = ∅) = 1 if and only if

∞∑
n=1

1

n2 e�1+···+�n = ∞.

In particular, if �n = c/n for all n, then P(F = ∅) = 1 if and only if c ≥ 1.

The special cases �n = c/n for a constant c were known earlier. The result for
c > 1 was proved by Kahane (see [10]) and that for c < 1 was proved by Billard
(see [3]). For the case c = 1, Billard also showed that F is at most countable while
Mandelbrot (see [13]) and independently Orey (unpublished) then showed that F

is a.s. empty in this case. The result that F is at most countable for c = 1 also
appeared in the first edition of Kahane’s book (see [11]) where some of the above
results were also presented. The second edition of this book also contains some
more history as well as other results such as the Hausdorff dimension of F and
a determination of which sets intersect F with positive probability, described in
terms of their Hausdorff dimension. We finally mention that in recent years, many
refinements of these results have been obtained; see [1, 5, 6]. We finally mention
that it is trivial to check that for any sequence {�n}n≥1, E is dense a.s.

1.2. The dynamical circle covering model. In this paper, we consider two dy-
namical variants of the above problem. In the first of these models, each of the
centers Un perform independent Brownian motions on C, each with variance 1. In
the second model, we associate independent Poisson processes with the different
intervals, where the Poisson process associated with the nth interval has intensity
�−α
n for some parameter α ≥ 0. At the times of the Poisson process associated to

the nth interval, In is given a new center, chosen uniformly on C, independent of
everything else.

We then ask for each of these two models if there are exceptional times at which
we see different “covering behavior” from that which is seen in the earlier static
model. We have potentially five (or even more) different types of exceptional times,
depending on the �n’s and which of the two models we are looking at:

(I) times when a fixed point is not covered even though
∑

n �n = ∞,
(II) times when the circle is not fully covered even though

∑
n e�1+�2+···+�n/n2 =

∞,
(III) times when a fixed point is covered i.o. even though

∑
n �n < ∞,

(IV) times when the circle is fully covered i.o. even though
∑

n e�1+�2+···+�n/n2 <

∞,
(V) times when E is not dense.

To state things more formally, consider the first dynamical model. Here we
let, for each i ≥ 1, {Ui,t }t≥0 be an independent standard Brownian motion on C

started uniformly. For the second dynamical model, let {{Ci,j }i,j≥1, {Yi,j }i,j≥1}
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be independent random variables with Ci,j being uniformly distributed on C and
with Yi,j being exponentially distributed with parameter �−α

i , α ≥ 0. For each

i ≥ 1, let Ti,0 := 0 and for j ≥ 1, let Ti,j := ∑j
k=1 Yi,k . In this way, (Ti,j )j≥1

is a Poisson process with rate �−α
i , independent for different i. Finally, we let

Ui,t = ∑∞
j=1 Ci,j 1[Ti,j−1,Ti,j )(t). Henceforth we refer to the first model as the

Brownian model and the second as the Poisson model with parameter α. In ei-
ther case, we let In,t be the open arc of C with center point Un,t and length �n. Let
Et := lim supn In,t and Ft := Ec

t .
Motivation. Dynamical versions of other probabilistic models have previously

been studied. Dynamical percolation was initiated in [9] where the edges in ordi-
nary percolation undergo “Poisson updating.” In [2], a dynamical version of the
Boolean model in continuum percolation was introduced where the centers of the
balls undergo independent Brownian motions. The notion of “exceptional times”
appears in many other contexts as well, such as the notion of fast and slow points
for Brownian motion.

Conventions. Our circle C is {(x, y) :x2 + y2 = 1/(2π)2}. When we sub-
tract two elements in C, we mean modular arithmetic so that (1/(2π),0) is
the identity. If x ∈ C, by |x| we mean arclength from the identity; in this way
|x| ∈ [0,1/2] and |x| = 0 only for (1/(2π),0). The real line projects onto C via
u → 1/(2π)(cos(2πu), sin(2πu)). We will assume without loss of generality that
�1 ≤ 1/2. Throughout much of the paper, we will also assume that

�n = �(1/n),(1)

that is, that there are constants 0 < M0 ≤ M1 < ∞ such that for every n, M0/n ≤
�n ≤ M1/n. Besides � notation, as usual O(1) will denote a quantity which is
bounded away from ∞. In addition, throughout the paper we also put

un :=
n∏

k=1

(1 − �k)

and

β0 = inf

{
β :

∞∑
n=1

e�1+···+�n

n1+β
< ∞

}
.

REMARK ON THE PARAMETRIZATION OF THE POISSON MODEL. One might
think that the most natural parameter would be α = 0. Interestingly, it turns out that
the behavior (and results) for the α = 2 case matches very well the behavior for the
Brownian model. This is due to the fact that the time it takes a Brownian motion to
move a distance �n is of order �2

n. We therefore thought it was natural to carry out
our analysis for general α ≥ 0. We only consider α ≥ 0, as α < 0 is easily handled
and does not lead to any interesting results.
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MEASURABILITY REMARK. Insuring the measurability of the events de-
scribed below can be handled in the same way as was done in [9] for dynamical
percolation. Also, the fact that all the events described below have probability 0
or 1 (once we know that they are measurable) follows immediately from Kol-
mogorov’s 0–1 law.

For a fixed point x ∈ C, in the �n = �(1/n) case, it follows immediately from
the Borel–Cantelli lemma that P(x ∈ F) = 0 and hence for any of the dynamical
models, by Fubini’s theorem, {t :x ∈ Ft } has Lebesgue measure 0 a.s. The question
we address in the first two theorems is when there are exceptional times t at which
x is covered by only finitely many of the In,t ’s; that is, x ∈ Ft . See [11] for the
definition of Hausdorff dimension which we denote here by HD.

THEOREM 1.2. Assume that (1) holds. Consider the Brownian model and fix
x ∈ C.

(i) If lim infn n2un < ∞, then P(∃t ∈ [0,1] :x ∈ Ft) = 0. In particular, if �n =
c/n for all n, then this holds if c ≥ 2.

(ii) If
∑∞

n=1 e�1+�2+···+�n/n3 < ∞, then P(∃t ∈ [0,1] :x ∈ Ft) = 1. In partic-
ular, if �n = c/n for all n, then this holds if c < 2.

(iii) We have that

HD({t ∈ [0,1] :x ∈ Ft }) =
(

1 − β0

2

)
∧ 0 a.s.

In particular, in the case �n = c/n for all n with c ≤ 2, we have

HD({t ∈ [0,1] :x ∈ Ft }) = 1 − c

2
a.s.

REMARK. Unfortunately we have not been able to determine the behavior of
the Brownian model for the “intermediate” cases when the conditions in (i) and
(ii) both fail. An example of such a sequence would be �n = 2/n − 1/(n logn).
On the other hand, an example of a sequence which leads to exceptional times but
where the HD of these exceptional times is 0 is given by �n = 2/n− 1/(n

√
logn).

The Poisson model, however, turns out to be more amenable to our analysis and
we obtain an exact condition for having exceptional times of type (I).

THEOREM 1.3. Assume that (1) holds. Consider the Poisson model with pa-
rameter α > 0. Fix x ∈ C.

(i) Then P(∃t ∈ [0,1] :x ∈ Ft) = 1 if and only if
∞∑

n=1

e�1+�2+···+�n

n1+α
< ∞.

In particular, if �n = c/n for all n, then this holds if and only if c < α.
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(ii) We have that

HD({t ∈ [0,1] :x ∈ Ft }) =
(

1 − β0

α

)
∧ 0 a.s.

In particular, in the case �n = c/n for all n with c ≤ α, we have

HD({t ∈ [0,1] :x ∈ Ft }) = 1 − c

α
a.s.

REMARK. The case α = 0 is almost trivially covered by the Borel–Cantelli
lemma by noting that the probability that the nth interval covers x for the whole
time span [0,1] is then at least e−1�n. Hence there are no exceptional times of
type (I) for α = 0.

Our next two results deal with the question of exceptional times of type (II).

THEOREM 1.4. Assume that (1) holds and consider the Brownian model.

(i) If lim infn n3un < ∞, then

P(∃t ∈ [0,1] :Ft 
= ∅) = 0.

In particular, if �n = c/n for all n, then this holds if c ≥ 3.
(ii) If

∑∞
n=1 e�1+�2+···+�n/n4 < ∞, then

P(∃t ∈ [0,1] :Ft 
= ∅) = 1.

In particular, if �n = c/n for all n, then this holds if c < 3.
(iii) We have a.s.:

(a)

HD({(t, x) :x ∈ Ft }) =

⎧⎪⎪⎨
⎪⎪⎩

2 − β0

2
, if 0 ≤ β0 ≤ 2,

3 − β0, if 2 ≤ β0 ≤ 3,
0, if β0 ≥ 3,

(b)

HD({x :∃t :x ∈ Ft })
⎧⎨
⎩

= 1, if 0 ≤ β0 < 2,
≤ 3 − β0, if 2 ≤ β0 ≤ 3,
= 0, if β0 ≥ 3,

(c)

HD({t :Ft 
= ∅})
⎧⎪⎨
⎪⎩

= 1, if 0 ≤ β0 < 1,

≤ 3 − β0

2
, if 1 ≤ β0 ≤ 3,

= 0, if β0 ≥ 3.

In particular, in the case �n = c/n for all n and c < 3, then the dimension
bounds are simply obtained by plugging in c for β0.
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REMARK. The first equalities in (b) and (c) hold since the event in question
then occurs at a fixed time. Note the lack of smoothness in (a) at β0 = 2 which is of
course due to the fact that 2 is the critical value arising in Theorem 1.2. As for the
type (I) case, there are intermediate cases such as �n = 3/n − 1/(n logn) where
both (i) and (ii) fail and so we cannot determine if there are exceptional times. This
will also occur in the Poisson case.

THEOREM 1.5. Assume that (1) holds. Consider the Poisson model with pa-
rameter α > 0.

(i) If lim infn n1+αun < ∞, then

P(∃t ∈ [0,1] :Ft 
= ∅) = 0.

In particular, if �n = c/n for all n, then this holds if c ≥ 1 + α.
(ii) If

∞∑
n=1

e�1+�2+···+�n

n2+α
< ∞,

then P(∃t ∈ [0,1] :Ft 
= ∅) = 1. In particular, when �n = c/n for all n, then this
holds if c < 1 + α.

(iii) We have a.s.:

(a) (for α ≥ 1)

HD({(t, x) :x ∈ Ft }) =

⎧⎪⎪⎨
⎪⎪⎩

2 − β0

α
, if 0 ≤ β0 ≤ α,

1 + α − β0, if α ≤ β0 ≤ 1 + α,
0, if β0 ≥ 1 + α,

(a′) [for α ∈ (0,1)]

HD({(t, x) :x ∈ Ft }) =
⎧⎪⎨
⎪⎩

2 − β0, if 0 ≤ β0 ≤ 1,
1 + α − β0

α
, if 1 ≤ β0 ≤ 1 + α,

0, if β0 ≥ 1 + α,

(b)

HD({x :∃t :x ∈ Ft })
⎧⎨
⎩

= 1, if 0 ≤ β0 < α,
≤ 1 + α − β0, if α ≤ β0 ≤ 1 + α,
= 0, if β0 ≥ 1 + α,

(c)

HD({t :Ft 
= ∅})
⎧⎪⎨
⎪⎩

= 1, if 0 ≤ β0 < 1,

≤ 1 + α − β0

α
, if 1 ≤ β0 ≤ 1 + α,

= 0, if β0 ≥ 1 + α.
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In particular, in the case �n = c/n for all n and c < 1 + α, then the dimension
bounds are simply obtained by plugging in c for β0.

REMARK. The difference in the form of the Hausdorff dimension in (a) and
(a′) is due to the fact that as β0 decreases starting from ∞, when α > 1, we en-
counter exceptional points on the circle in the sense of Theorem 1.2 before we
encounter exceptional times in [0,1] in the sense of Theorem 1.1, while when
α < 1, we encounter these objects in the opposite order. As in Theorem 1.4, there
are intermediate cases such as �n = (α + 1)/n− 1/(n logn) where both (i) and (ii)
fail and so we cannot determine if there are exceptional times.

As for type (I) exceptional times, the case α = 0 requires special treatment,
but unlike the type (I) situation, it is not trivial. Indeed there are situations with
α = 0 where the circle is fully covered i.o. in the static model, but where there are
exceptional times at which some point on the circle fails to be covered infinitely
often; the sufficient condition differs from Shepp’s condition for the static case by
a logarithmic factor.

THEOREM 1.6. Assume that (1) holds and consider the Poisson model with
α = 0.

(i) If lim infn n(logn)un < ∞, then P(∃t ∈ [0,1] :Ft 
= ∅) = 0.
(ii) If

∞∑
n=1

e�1+�2+···+�n

n2 logn
< ∞,

then P(∃t ∈ [0,1] :Ft 
= ∅) = 1.

REMARK. An example of a sequence where F = ∅ in the static model but for
which there are exceptional times from this is given by �n = 1/n − 1/(n logn).
Note that the case �n = 1/n is not covered by parts (i) or (ii) and so we cannot
determine if there are exceptional times in this case. We mention that one can also
prove, along the same lines as the other HD results, that HD({(t, x) :x ∈ Ft }) ≤ 1;
this bound is also strongly suggested by Theorem 1.5(iii)(a′).

We now move to results concerning the
∑∞

n=1 �n < ∞ case, which we feel are
less central than the

∑∞
n=1 �n = ∞ results. We start with type (III) exceptional

times.

THEOREM 1.7. Assume that
∑

n �n < ∞, fix x ∈ C and let T := {t ∈
[0,1] :x ∈ Et }.

(a) In the Brownian model, P(T 
= ∅) = 1.
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(b) In the Poisson model, if
∑

n �1−α
n < ∞, then P(T = ∅) = 1 while if∑

n �1−α
n = ∞, then P(T 
= ∅) = 1.

For type (IV) exceptional times, we have no results but finally for type (V), we
have the following.

THEOREM 1.8. Let T := {t ∈ [0,1] :Et is not dense}.
(a) For the Brownian model and any sequence {�n}n≥1, we have that P(T 
=

∅) = 0.
(b) In the Poisson model with α > 0, if �n ≥ 1/nc for all n and some c, then

P(T 
= ∅) = 0. For α = 0, we have that P(T 
= ∅) = 0 for all {�n}n≥1.
(c) In the Poisson model with α > 0, there exists a sequence {�n}n≥1 so that

P(T 
= ∅) = 1.

REMARK. For our results, in obtaining both existence of exceptional times
and lower bounds on Hausdorff dimension, the key step is to obtain bounds on
various correlations. For these parts of Theorems 1.2 and 1.3, once one has good
bounds on correlations, one could place things in the context of Proposition A.16
in [12] (or as is done in [15]). Similarly, Proposition A.13 in [12], on the other
hand, can be used, once certain bounds are obtained, to give upper bounds on
Hausdorff dimension (or nonexistence of certain exceptional times). Most of our
arguments, however, will not explicitly put things in that context, although we
will skip certain Hausdorff dimension arguments and simply state that they can
be put into this context. For Theorems 1.4, 1.5 and 1.6, we have, however, space–
time results which do not fit as well into the context of Proposition A.16 since the
latter is stated for “one-dimensional” situations. In our case, we also need to treat
the time and space coordinates differently. Nonetheless, one should think that the
ideas of these Propositions A.13 and A.16 are always lurking in the background.

The rest of the paper is organized as follows. In Section 2, we prove Theorems
1.2 and 1.3 and in Section 3, we prove Theorems 1.4, 1.5 and 1.6. These correspond
respectively to type (I) and type (II) results. The proofs of type (III) and type (V)
results are fairly easy and we therefore omit them. For example, for Theorem 1.8
it suffices to observe that at any fixed time and for any of the arcs, there will a.s.
be an arc contained in it, which in turn contains another arc, and so on. For more
details on this and on some of the other proofs, we refer to an extended version of
this article that can be found on either of the authors’ homepages.

2. Proofs of type (I) results. Recall our standing assumption (1). We begin
with three technical lemmas that will prove useful on several occasions.
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LEMMA 2.1. Assume that (1) holds. Let β > 0. Then for every b > 0∫ b

0
e

∑
n:�βn ≥t

�n
dt < ∞(2)

if and only if
∞∑

n=1

e�1+�2+···+�n

n1+β
< ∞.

PROOF. We will use Lemma 11.4.1 of [11] which states that for a convex de-
creasing function f (t) on (0, b),

∫ b
0 ef (t) dt < ∞ if and only if∫ b

0 ef (t) df ′(t)
f ′(t)2 < ∞.

To apply this result, put f (t) = ∑∞
n=1 �

1−β
n (�

β
n − t)+. Then f (t) is decreasing

and convex and∣∣∣∣∣f (t) − ∑
n : �

β
n≥t

�n

∣∣∣∣∣ = t
∑

n : �
β
n≥t

�1−β
n = O(1)t

(M1/t1/β)∑
k=1

kβ−1 = O(1).

Hence (2) is equivalent to
∫ b

0 ef (t) dt < ∞. We now use the above result. We have

f ′(t) = −
n∑

k=1

�
1−β
k , �

β
n+1 < t < �β

n,

and in particular that f ′(t) = −�(nβ), �
β
n+1 < t < �

β
n . Since f ′(t) jumps when

t = �
β
n and the size of the corresponding jump is �

1−β
n = �(nβ−1), we get that∫ b

0
e

∑
n : �

β
n≥t

�n
dt < ∞

if and only if
∞∑

n=1

ef (�
β
n )

n1+β
< ∞.

Finally

f (�β
n) = �1 + �2 + · · · + �n − �β

n

n∑
k=1

�
1−β
k = �1 + �2 + · · · + �n + O(1)

and the lemma follows. �

LEMMA 2.2.

sup
{
β : lim inf

n
nβun < ∞

}
≥ inf

{
β :

∞∑
n=1

e�1+�2+···+�n

n1+β
< ∞

}

= lim sup
n

�1 + �2 + · · · + �n

logn
.
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REMARK. The last expression comes up in Section 11.8 in [11] where the
HD of the set F is studied. If �n = �(1/n), then Steps 1 and 2 in the proof of
Theorem 1.2 tell us that the first inequality is an equality.

PROOF OF LEMMA 2.2. For the first inequality, it suffices to show that for any
ε > 0,

lim inf
n

nβun = ∞ implies that
∞∑

n=1

e�1+�2+···+�n

n1+β+ε
< ∞.

However, this follows from noting that e−x ≥ 1 − x implies that e�1+�2+···+�n ≤
1/un.

Let L denote the third expression. Fix ε > 0. Then �1 + �2 + · · · + �n ≤ (L +
ε/2) logn and hence e�1+�2+···+�n ≤ nL+ε/2 for all n large. It follows that

∞∑
n=1

e�1+�2+···+�n

n1+L+ε
< ∞

and hence the third term is at least the second term. For the other direction, we
may assume that L > 0 and we need to show that for all ε ∈ (0,L),

∞∑
n=1

e�1+�2+···+�n

n1+L−ε
= ∞.

We have �1 + �2 + · · · + �n ≥ (L − ε) logn and hence e�1+�2+···+�n ≥ nL−ε i.o. It
is not hard to show that if e�1+�2+···+�n0 ≥ nL−ε

0 , then

2n0∑
k=n0

e�1+�2+···+�k

k1+L−ε
= 1

O(1)
,

the O(1) term being independent of n0. To do this, one simply bounds e�1+�2+···+�k

from below by nL−ε
0 for each k and computes. This clearly implies divergence of

the series. �

The last lemma is elementary and the proof is left to the reader.

LEMMA 2.3. There exists a constant C so that for all t, a ∈ [0,1] and b ∈
(−1/2,1/2), if Z∗ is a normal random variable with mean 0 and variance t , then∑

k∈Z

P
(
Z∗ ∈ (k + b − a, k + b + a)

) ≤ CP
(
Z∗ ∈ (b − a, b + a)

)
.

PROOF OF THEOREM 1.2. We begin with part (i). Let It = ⋃∞
n=1 In,t

and Jt = I c
t and note that it is elementary that P(∃t ∈ [0,1] :x ∈ Ft) = 1

if and only if P(∃t ∈ [0,1] :x ∈ Jt ) > 0. Let T = {t ∈ [0,1] :x ∈ Jt }. Now
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put Jn,t = (
⋃n

k=1 Ik,t )
c and note that

⋂
n Jn,t = Jt . We shall first show that if

lim infn n2un = 0, then

lim
n→∞P(∃t :x ∈ Jn,t ) = 0.(3)

Fix n ≥ 1. For i = 1,2, . . . , n2, let Ai be the event that there exists a t ∈ [(i −
1)/n2, i/n2] for which x ∈ Jn,t . (We suppress the dependence on n in the nota-
tion.) Then

P(∃t :x ∈ Jn,t ) = P

(
n2⋃
i=1

Ai

)
≤

n2∑
i=1

P(Ai) = n2P(A1).

For k ≤ n, let Bk be the event that the kth interval covers x for the whole time
interval [0,1/n2]. This event contains the event that [x − M,x + M] ⊆ Ik,0 where
M = maxt∈[0,1/n2] |Uk,t − Uk,0|. Letting B ′

k denote the latter event, we have

P(Bk) ≥ P(B ′
k) = E[P(B ′

k|M)] ≥ E[�k − 2M] = �k − 2EM ≥ �k − 4

n

where we have used the usual scaling property of Brownian motion. Since A1 ⊆⋂n
k=1 Bc

k , the Bk’s are independent and �1 ≤ 1/2, we get

P(A1) ≤
n∏

k=1

(
1 − �k + 4

n

)

≤
n∏

k=1

(1 − �k)

(
1 + 8

n

)
≤ O(un).

Hence

P(∃t :x ∈ Jn,t ) ≤ O(n2un).

Since the left-hand side is decreasing in n, (3) is established. The case
lim infn n2un ∈ (0,∞) requires one extra step. Let Nn be the number of i ∈
{1,2, . . . , n2} such that Ai occurs. Then the above arguments show that
lim infn ENn < ∞. It is easy to see that T ≤ lim infn Nn. Hence by Fatou’s lemma,
E|T | < ∞ and so |T | < ∞ a.s. Since our process is a reversible stationary Markov
process, we finally conclude that P(T 
= ∅) = 0 by combining Theorem 6.7 in [8]
and (2.9) in [7]. This finishes the proof of part (i).

For part (ii), letting Tn = {t ∈ [0,1] :x /∈ ⋃n
k=1 In,t }, we have that T = ⋂∞

n=1 Tn.
Next, since the intervals are taken to be open and Brownian motion has continuous
paths, it follows that the sets Tn are closed and therefore by compactness, T is
nonempty if and only if all the Tn’s are. Thus if it can be shown that P(Tn 
= ∅) is
bounded away from 0, then it follows that P(T 
= ∅) > 0 and (ii) then follows.

Let

Xn :=
∫ 1

0
I{t∈Tn} dt,
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which is the Lebesgue amount of time that x is not covered by the first n intervals.
Since the probability that x /∈ ⋃n

k=1 Ik,t at a fixed time t is
∏n

k=1(1 − �k) = un, it
follows from Fubini’s theorem that EXn = un. We will now establish that E[X2

n] ≤
O(u2

n) if (and in fact only if)
∑

n e�1+···+�n/n3 < ∞. Once this has been done it
then follows, under this condition, from the second moment method that

P(Tn 
= ∅) ≥ P(Xn > 0) ≥ (EXn)
2

E[X2
n]

is bounded away from 0, as desired. Now, by Fubini’s theorem

E[X2
n] =

∫ 1

0

∫ 1

0
P({s ∈ Tn} ∩ {t ∈ Tn}) ds dt.(4)

By stationarity, it is easy to see that (4) is at most

2
∫ 1

0
P({t ∈ Tn} ∩ {0 ∈ Tn}) dt

and at least

1/2
∫ 1/2

0
P({t ∈ Tn} ∩ {0 ∈ Tn}) dt.

Fix n. Put At = {t ∈ Tn} and Ak,t for the event that x is not covered by Ik at time
t and note that At = ⋂n

k=1 Ak,t . Clearly

P(At ∩ A0) =
n∏

k=1

P(Ak,t ∩ Ak,0).

The probability P(Ak,t ∩Ak,0) is the probability that Ik,0 ∩{x, x −Zt } = ∅, where
Zt := Uk,t −Uk,0, the increment of the kth interval during the time [0, t]. Note that
Zt is a normal random variable with zero mean and variance t projected onto C as
described in the Introduction. We have

P(Ak,t ∩ Ak,0) = E[P(Ak,t ∩ Ak,0|Zt)] = 1 − 2�k + E[(�k − |Zt |)+].(5)

Some elementary considerations (using again that �1 ≤ 1/2) allow us to write (5)
as

(1 − lk)
2eE[(�k−|Zt |)+](1 + rk),

where |rk| ≤ 5�2
k . We then have that

∏∞
n=1(1 + rn) < ∞ and so it follows that

E[X2
n] ≤ O(u2

n) if ∫ 1

0
e

∑∞
n=1 E[(�n−|Zt |)+] dt < ∞(6)

and only if ∫ 1/2

0
e

∑∞
n=1 E[(�n−|Zt |)+] dt < ∞.(7)
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Note that trivially

E[(�n − |Zt |)+] ≤ P(|Zt | ≤ �n)�n

and a standard bound on the normal distribution together with Lemma 2.3 gives

P(|Zt | ≤ �n) = O(1)
�n√

t
.(8)

These easily yield that (6) holds if and only if (7) does and so we concentrate only
on (6).

Next, we have

E[(�n − |Zt |)+] = P(|Zt | ≤ �n)(�n − E[|Zt | | 0 ≤ |Zt | ≤ �n]).
Since a nonnegative random variable conditioned on being smaller than some value
is stochastically dominated by the original random variable, we have that the ex-
pectation in the right-hand side is bounded above by �n ∧ √

t . Hence

E[(�n − |Zt |)+] ≥ P(|Zt | ≤ �n)
(
�n − √

t
)+

.

Using that �n = �(1/n) we get ∑
n : �2

n≥t

√
t = O(1).

From (8), we get

∑
n : �2

n<t

�nP (|Zt | ≤ �n) <
1√
t

∑
n : �2

n<t

�2
n = O(1)

[where we again used that �n = �(1/n)]. Putting this together we have that
E[X2

n] ≤ O(u2
n) if and only if∫ 1

0
e

∑
n : �2

n≥t
�nP (|Zt |≤�n)

dt < ∞.

Since the probability that a standard normal random variable exceeds a value
y > 0 is bounded above by O(1)/y, we get that

∑
n : �2

n≥t �nP (|Zt | > �n) ≤∑
n : �2

n≥t

√
t = O(1) and so the above integral is finite if and only if

∫ 1

0
e

∑
n : �2

n≥t
�n

dt < ∞.

Plugging this into Lemma 2.1 yields E[X2
n] ≤ O(u2

n) if and only if

∞∑
n=1

e�1+�2+···+�n

n3 < ∞.

This finishes the proof of (ii).



752 J. JONASSON AND J. E. STEIF

For part (iii), the two key steps are:
Step 1. lim infn nβun < ∞ implies that HD(T ) ≤ 1 − β/2 a.s.
Step 2.

∑∞
n=1 e�1+�2+···+�n/n1+β < ∞ implies that P(HD(T ) ≥ 1 − β/2) > 0.

It is clear from Kolmogorov’s 0–1 law, the fact that a countable union of sets
each of which has HD at most d also has HD at most d and countable additivity
that the HD results follow from these two steps and Lemma 2.2.

These steps are really refinements of the arguments already presented. Step 1
follows, after a little work, from what has already been done together with Propo-
sition A.13 in [12] while step 2 follows, after a little work, from what has already
been done together with the proof of Proposition A.16 in [12]. We skip the details
other than mentioning that one thing which is needed is that Lemma 2.1 tells us
that

∑∞
n=1 e�1+�2+···+�n/n1+β < ∞ implies that

∫ 1

0
e

∑
n : �

β
n≥t

�n
dt < ∞

which, by an easy change of variables, is equivalent to

∫ 1

0
e

∑
n : �2

n≥t
�n

(
1

t

)1−β/2

dt < ∞.(9) �

In the above proof it was shown that the “Shepp-like” condition∑
n e�1+···+�n/n3 < ∞ is necessary and sufficient for the second moment argu-

ment to work. What we have not been able to determine is if failure of the second
moment argument necessarily implies that there are no exceptional times. The rea-
son is that it is difficult to control the conditional distribution of the positions of the
first n arcs at the first time when x is not covered by any of them. For the Poisson
model this problem vanishes.

PROOF OF THEOREM 1.3. We use exactly the same notation as in the proof
of Theorem 1.2. As in that proof, we have EXn = un and we will show that

E[X2
n] ≤ O(u2

n) if and only if
∞∑

n=1

e�1+···+�n/n1+α < ∞.(10)

However, we first show E[X2
n] ≤ O(u2

n) is necessary and sufficient for T to be
nonempty with positive probability. Note that, using the fact that (14) below is
decreasing in t , we have

E[Xn|0 ∈ Tn]un = �(1)E[X2
n].(11)

The sufficiency argument is identical to the proof of Theorem 1.2 except for
the small irritation that Tn is not a closed set. So infn P (Tn 
= ∅) > 0 does not
immediately allow us to conclude that P(T 
= ∅) > 0. This very minor issue arose
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in [9] (as well as in [15]) and was taken care of there by Lemma 3.2. The key
observation, left to the reader, is that⋂

n>0

Tn = T a.s.(12)

This claim takes care of the above problem allowing us to conclude that P(T 
=
∅) > 0 and will be needed for part (ii) as well.

For the necessity, observe that

P(Xn > 0) = EXn

E[Xn|Xn > 0] .(13)

Put Sn := min{t : t ∈ Tn} (the minimum exists since the Poisson processes are right
continuous). Now the crucial observation to make is that at the time Sn, the po-
sitions of the first n arcs are independent and uniform given that none of them
contains x. Hence, by conditioning on Sn, using translation invariance and the
strong Markov property,

E[Xn|Xn > 0] = �(1)E[Xn|0 ∈ Tn].
Using this, together with (11) and (13), necessity now follows.

We now show (10). The rest of the proof is very similar to the proof of The-
orem 1.2(ii). With n fixed, by conditioning on whether or not arc Ik has been
updated before time t we get

P(Ak,t ∩ Ak,0) = (1 − �k)
2(1 − e−t/�α

k ) + (1 − �k)e
−t/�α

k .(14)

Hence

P(At ∩ A0) = u2
n

n∏
k=1

(
1 − e−t/�α

k + e−t/�α
k

1 − �k

)

= u2
n

n∏
k=1

(
1 + �ke

−t/�α
k

1 − �k

)

= �(1)u2
n

n∏
k=1

(1 + �ke
−t/�α

k ),

where the �(1) term is bounded between 1 and
∏∞

k=1(1 + 2�2
k) < ∞. Therefore,

using (11), we have that E[X2
n] ≤ O(u2

n) if and only if∫ 1

0

∞∏
n=1

(1 + �ne
−t/�α

n ) dt < ∞.

Since x − x2 ≤ log(1 + x) ≤ x on [0,∞), this is equivalent to∫ 1

0
e

∑∞
n=1 �ne−t/�αn

dt < ∞.(15)
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Using �n ≤ M1/n it follows that

∑
n : �α

n≤t

�ne
−t/�α

n ≤ t1/α
∑

n : �α
n≤t

e−t/�α
n ≤ t1/α

∞∑
n=1

(e−M−α
1 t )n

α

= O(1)t1/α 1

(1 − e−M−α
1 t )1/α

= O(1)t1/α 1

t1/α
= O(1).

We also have that

∑
n : �α

n≥t

�n(1 − e−t/�α
n ) ≤ t

∑
n : �α

n≥t

�1−α
n = O(1)t

M1/t1/α∑
n=1

nα−1 = O(1).

Putting this together, (15) is equivalent to∫ 1

0
e

∑
n : �αn≥t �n dt < ∞.

Now Lemma 2.1 finishes the proof of (10).
We skip the proof of part (ii) and simply state that one follows the proof for the

Brownian model and that one replaces the β/2 term by β/α. �

3. Proofs of type (II) results. Recall our standing assumption (1). In this sec-
tion, the general approach will be to try to analyze the “space–time” random set
{(x, t) ∈ C × [0,1] :x ∈ Jt } rather than {t :Jt 
= ∅}.

PROOF OF THEOREM 1.4. The proof is similar to the proofs of the previous
section, but with the spatial component taken into account. Let It , Jt and Jn,t be
defined as in Theorem 1.2. As before, we have that P(∃t ∈ [0,1] :Ft 
= ∅) = 1 if
and only if P(∃t ∈ [0,1] :Jt 
= ∅) > 0. Next, let Tn := {t :

⋃n
k=1 Ik,t 
= C} and note

that Tn is closed. Also, it is an elementary topology exercise (using the fact that
the arcs are open and Brownian motion paths are continuous) left to the reader to
check that if t ∈ ⋂

n Tn, then Jt 
= ∅. Hence P(An) bounded away from 0 implies
that P(∃t ∈ [0,1] :Jt 
= ∅) > 0.

Part (i). We will first show that if lim infn n3un < ∞, then

lim
n→∞P(∃t ∈ [0,1] :Jn,t 
= ∅) = 0(16)

[or equivalently limn→∞ P(Tn 
= ∅) = 0]. Fix n. For i = 1,2, . . . , n2 and j =
1,2, . . . , n, put A(i, j) for the event that for some t ∈ [(i − 1)/n2, i/n2] and some
x ∈ [(j − 1)/n, j/n], x /∈ ⋃n

k=1 Ik,t . Then

P(∃t ∈ [0,1] :Jn,t 
= ∅) ≤ n3P(A(1,1)).

We have A(1,1) ⊂ ⋂n
k=1 Bc

k where Bk is the event that [0,1/n] ⊆ Ik,t for every
t ∈ [0,1/n2]. The event Bk in turn contains the event that Ik,0 ⊇ [−M,M + 1/n],
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where, as in the above proof, M = maxt∈[0,1/n2] |Uk,t − Uk,0|. Letting B ′
k denote

this last event, we have

P(Bk) ≥ P(B ′
k) = E[P(B ′

k|M)] ≥ E

[
�k − 2M − 1

n

]
≥ �k − 5

n

and consequently

P(∃t ∈ [0,1] :Jn,t 
= ∅) ≤ n3
n∏

k=1

(
1 − �k + 5

n

)

≤ n3
n∏

k=1

(1 − �k)

(
1 + 10

n

)
≤ O(n3un).

Since the left-hand side is decreasing in n, (16) is established. For the case
lim infn n3un < ∞, define Nn as the number of (i, j) for which A(i, j) occurs.
Then the above gives lim infn ENn < ∞. Letting

T̃ := {(x, t) ∈ C × [0,1] :x ∈ Jt },
we easily get T̃ ≤ lim infn Nn and so by Fatou’s lemma, we have that T̃ is a.s.
finite. In particular, the set {t ∈ [0,1] :Jt 
= ∅} is finite a.s. Again, Theorem 6.7 in
[8] and (2.9) in [7] allow us to conclude that the latter set is empty a.s.

Part (ii). Let T̃n := {(x, t) :x ∈ Jn,t }. Then the T̃n’s are closed and
⋂

n T̃n = T̃ ;
hence if all the T̃n’s are nonempty, then so is T̃ . Thus it suffices to show that
P(T̃n 
= ∅) is bounded away from 0. Let Xn be the two-dimensional Lebesgue
measure of T̃n. By Fubini’s theorem, EXn = un and so when E[X2

n] ≤ O(u2
n) an

application of the second moment method tells us that infn P (T̃n 
= ∅) > 0. We
will now show that E[X2

n] ≤ O(u2
n) if and only if

∑∞
n=1 e�1+···+�n/n4 < ∞.

Fix n. Let At,x be the event that (t, x) is in T̃n. Then, again by stationarity,
E[X2

n] is at most

2
∫
C

∫ 1

0
P(At,x ∩ A0,0) dt dx

and at least

1
2

∫
C

∫ 1/2

0
P(At,x ∩ A0,0) dt dx.

Independence yields

P(At,x ∩ A0,0) =
n∏

k=1

P(Ak,t,x ∩ Ak,0,0),

where Ak,t,x is the event that Ik,t does not contain x. Now Ak,t,x ∩ Ak,0,0 is the
event that Ik,0 ∩ {0, x − Zt } = ∅, where Zt = Uk,t − Uk,0 is the increment of Ik
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in the time interval [0, t], which is a normal random variable with mean 0 and
variance t projected onto C as described in the Introduction. Hence

P(Ak,t,x ∩ Ak,0,0) = E[P(Ak,t,x ∩ Ak,0,0|Zt)] = 1 − 2�k + E[(�k − |Zt − x|)+].
Inserting this into the product above gives, using the derivations in the proof of
Theorem 1.2,

P(At,x ∩ A0,0) = �(1)u2
ne

∑n
k=1 E[(�k−|Zt−x|)+].

Hence E[X2
n] ≤ O(u2

n) if∫
C

∫ 1

0
e

∑∞
n=1 E[(�n−|Zt−x|)+] dt dx < ∞(17)

and only if ∫
C

∫ 1/2

0
e

∑∞
n=1 E[(�n−|Zt−x|)+] dt dx < ∞.(18)

The terms in the exponent are obviously bounded above by �nP (|Zt − x| < �n).
For t ≥ 1/2, this is clearly O(1)�2

n and so (17) holds if and only if (18) does.
Note next that for all positive t and x ∈ C we have, using Lemma 2.3 and basic

facts of the normal distribution, that

∑
n : �2

n<t

�nP (|Zt − x| < �n) = O(1)
∑

n : �2
n<t

�2
n√
t

= O(1)

and ∑
n : �n<2|x|

�nP (|Zt − x| < �n) = O(1)
∑

n : �n<2|x|
�n

�n

|x| = O(1).

To see that P(|Zt − x| < �n) = O(1)�n/|x|, we use Lemma 2.3 together with the
fact that the probability that a standard normal random variable takes values in
[y, y + d] with y > 0 is bounded above by O(1)d/y and note that there is nothing
to prove unless �n ≤ |x|/2.

It follows that (17) is equivalent to∫
C

∫ 1

0
e

∑
n : �n≥2|x|∨√

t E[(�n−|Zt−x|)+]
dt dx < ∞.

A lower bound for the exponent is given by∑
n : �n≥2|x|∨√

t

E[(�n − |Zt − x|)+]

= ∑
n : �n≥2|x|∨√

t

E[(�n − |Zt − x|)+ | |Zt − x| < �n]P(|Zt − x| < �n)
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≥ ∑
n : �n≥2|x|∨√

t

(
�n − |x| − √

t
)
P(|Zt − x| < �n)

= ∑
n : �n≥2|x|∨√

t

�nP (|Zt − x| < �n) + O(1).

Thus our integral condition is equivalent to∫
C

∫ 1

0
e

∑
n : �n≥2|x|∨√

t �nP (|Zt−x|<�n)
dt dx < ∞.

However, when �n ≥ 2|x| ∨ √
t ,

P(|Zt − x| < �n) ≥ P

(
|Zt | ≤ �n

2

)
= 1 − O(1)

√
t

�n

.

Thus ∑
n : �n≥2|x|∨√

t

�nP (|Zt − x| ≥ �n) = O(1)
∑

n : �n≥√
t

√
t = O(1).

This shows that E[X2
n] ≤ O(u2

n) if and only if∫
C

∫ 1

0
e

∑
n : �n≥2|x|∨√

t �n dt dx < ∞.

This clearly holds if and only if∫ 1

0

∫ 1

0
e

∑
n : �n≥x∨√

t �n dt dx < ∞.

Now∫ 1

0

∫ 1

0
e

∑
n : �n≥x∨√

t �n dt dx

=
∫ 1

0

∫ x2

0
e

∑
n : �n≥x �n dt dx +

∫ 1

0

∫ √
t

0
e

∑
n : �n≥√

t �n dx dt

=
∫ 1

0
x2e

∑
n : �n≥x �n dx +

∫ 1

0

√
te

∑
n : �n≥√

t �n dt = 3
∫ 1

0
x2e

∑
n : �n≥x �n dx

where the last equality follows from the substitution x = √
t . Via the substitution

u = x3 the last expression becomes∫ 1

0
e

∑
n : �n≥u1/3 �n du

and Lemma 2.1 now proves part (ii).
Part (iii)(a). We will more or less follow steps 1 and 2 in the previous HD argu-

ments.
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We first show that lim infn nβun < ∞ implies

HD(T̃ ) ≤ min
{

3 − β,
4 − β

2

}
.

Once this is done, the fact that 3 − x > 2 − x
2 on (0,2) and the reverse holds on

(2,3) and using Lemma 2.2, the upper bounds will be obtained. Consider now the
union of the set of rectangles of the form [(i − 1)/n2, i/n2] × [(j − 1)/n, j/n]
which contain a point (t, x) with x /∈ ⋃n

k=1 Ik,t . This is a covering of T̃ with Nn

elements and from what we have seen in the proof of part (i) we can conclude that
E[Nn] = O(1)n3un. Since the elements of the covering have diameter of order
1/n, we can conclude, as earlier, that HD(T̃ ) ≤ 3 − β . If we instead cover by
1/n2 × 1/n2 boxes, we get a covering T̃ with N ′

n elements of diameter of order
1/n2 with E[N ′

n] = O(1)n4un and we can conclude that HD(T̃ ) ≤ (4 − β)/2 as
well.

For the lower bound, assume first that β0 ∈ (0,2). Then Theorem 1.2(iii) says
that for each x ∈ C, HD({t ∈ [0,1] :x ∈ Ft }) = 1 − β0/2 a.s. By Fubini’s theorem,
we conclude that {

x : HD({t ∈ [0,1] :x ∈ Ft }) = 1 − β0

2

}

has Lebesgue measure 1 a.s. Now, Theorem 7.7 in [14] (with f there taken to be the
projection onto [0,1]) allows us to conclude that HD({(t, x) :x ∈ Ft }) ≥ 2 −β0/2.
(Theorem 7.7. says vaguely that any set in the square almost all of whose “slices”
have HD 1 − β0/2 > 0 must have HD at least 2 − β0/2.)

For β0 ∈ [2,3), we argue differently. One follows the HD lower bound argu-
ment (suitably modified to a space–time situation) of Proposition A.16 of [12]
mentioned earlier. In this case, one places a random measure on T̃n and obtains a
uniform upper bound on the expected 3 − β0 − ε-energy. (Given a measure m on
[0,1]2 and γ > 0, the γ -energy of m is∫

[0,1]2

∫
[0,1]2

|t − s|−γ dm(t) dm(s).

)

The random measure is of course Lebesgue measure restricted to T̃n and normal-
ized by un. Using what was derived in part (ii), obtaining a uniform upper bound
on the expected energy reduces to verifying the finiteness of∫ 1

0

∫ 1

0
e

∑
n : �n≥x∨√

t �n

(
1

x2 + t2

)(3−β)/2

dt dx

under the assumption
∑∞

n=1 e�1+�2+···+�n/n1+β < ∞. Breaking up the double in-
tegral as in the first part of the proof and checking that∫ x2

0

(
1

x2 + t2

)(3−β)/2

dt = �(1)xβ−1
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and ∫ t1/2

0
(

1

x2 + t2 )(3−β)/2 dx = �(1)t(β−2)/2,

it reduces to the finiteness of ∫ 1

0
uβ−1e

∑
n : �n≥u �n du.

Another change of variables (w = uβ ) together with Lemma 2.1 shows that finite-
ness of this integral is equivalent to the convergence of the given series.

Part (iii)(b): The 0 ≤ β0 < 2 case follows from Theorem 1.2. The other cases
follow from part (iii)(a) together with the fact that projections do not increase
HD; see, for example, Theorem 7.5 in [14]. Alternatively, one can use a covering
argument.

Part (iii)(c): The 0 ≤ β0 < 1 case follows from Theorem 1.1. For the other cases,
break the time interval into intervals of length 1/n2 and consider those intervals
which contain a t such that

⋃n
k=1 Ik,t 
= C. If Nn is the number of such intervals,

we have from what was derived in part (i) that E(Nn) = O(1)n3un. This as before
leads to the upper bound (3 − β0)/2 for the HD, as desired. �

As for the type (I) case, the reason that we do not know if failure of the second
moment method implies nonexistence of exceptional times is due to the fact that
we cannot control the positions of the first n arcs at the first time that the circle
fails to be covered by them.

PROOF OF THEOREM 1.5. Part (i): Fix n and partition [0,1] × C into boxes
of size 1/nα × 1/n. For the given block [0,1/nα] × [0,1/n], we have, using ar-
guments similar to those given earlier,

P

(
∃(t, x) ∈ B :x /∈

n⋃
k=1

Ik,t

)
≤

n∏
k=1

P
(∃(t, x) ∈ B :x /∈ Ik,t

)

≤
n∏

k=1

(
1 −

(
�k − 1

n

)
e−1/(n�k)

α
)
.

As before, one can show this is O(1)un. Since the number of blocks is of order
n1+α , we get P(∃t ∈ [0,1] :Ft 
= ∅) = 0 if lim infn n1+αun = 0 and proceed as
earlier if lim infn n1+αun ∈ (0,∞).

Part (ii): We use the same notation as in Theorem 1.4. Using that argument (to-
gether with the analogous small modification given in Theorem 1.3 that dealt with
the fact that certain time sets were not closed), proving the existence of exceptional
times comes down to showing that E[X2

n] ≤ O(u2
n). We now show that this holds

if and only if the sum in the statement of the theorem is convergent.



760 J. JONASSON AND J. E. STEIF

By conditioning on whether arc Ik has been updated by time t or not we get

P(Ak,t,x ∩ Ak,0,0) = (1 − e−t/�α
k )(1 − �k)

2 + e−t/�α
k
(
1 − 2�k + (�k − |x|)+)

.

Hence

P(At,x ∩ A0,0) = u2
n

n∏
k=1

(
1 − e−t/�α

k + e−t/�α
k (1 − 2�k + (�k − |x|)+)

(1 − �k)2

)

= �(1) u2
n

n∏
k=1

(
1 + e−t/�α

k (�k − |x|)+
(1 − �k)2

)

= �(1) u2
n

n∏
k=1

(
1 + e−t/�α

k (�k − |x|)+)

= �(1) u2
ne

∑n
k=1 e

−t/�α
k (�k−|x|)+ .

Thus E[X2
n] ≤ O(u2

n) if and only if∫
C

∫ 1

0
e

∑∞
n=1 e−t/�αn (�n−|x|)+ dt dx < ∞

which clearly holds if and only if∫ 1

0

∫ 1

0
e

∑∞
n=1 e−t/�αn (�n−x)+ dt dx < ∞.

By a series of considerations analogous to what has been done in the earlier proofs
we get

∞∑
n=1

e−t/�α
n (�n − x)+ = ∑

n : �α
n≥t

e−t/�α
n (�n − x)+ + O(1)

= ∑
n : �α

n≥t

(�n − x)+ + O(1) = ∑
n : �α

n≥xα∨t

�n + O(1).

Hence the given integral is finite if and only if∫ 1

0

∫ 1

0
e

∑
n : �αn≥xα∨t �n dt dx < ∞.

Copying the final parts of the proof of Theorem 1.4, we get∫ 1

0

∫ 1

0
e

∑
n : �αn≥xα∨t �n dt dx =

∫ 1

0
e

∑
n : �

α+1
n ≥u

�n
du.

Now apply Lemma 2.1.
Part (iii): For the Hausdorff dimension upper bounds, we only sketch these.

First, we have seen that P(T̃n ∩ [0,1/nα] × [0,1/n] 
= ∅) ≤ O(un). Con-
sider (a) and (a′). For α ≥ 1, we break up either into (n−α × n−1)-boxes or
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(n−α × n−α)-boxes depending on whether β0 is ≥ or ≤ α and for α < 1, we break
up either into (n−α × n−1)-boxes or (n−1 × n−1)-boxes depending on whether β0
is ≥ or ≤ 1. This yields the upper bounds.

For (b), partition space into intervals of length 1/n and proceed in the same
way. For (c), partition time into intervals of length 1/nα and proceed in the same
way.

For the lower bounds, we follow the same arguments as in Theorem 1.4. First
assume that α ≥ 1. If β0 ∈ (0, α), we argue exactly as in the case β0 ∈ (0,2) in
Theorem 1.4 with 2 replaced by α throughout. If β0 ∈ [α,α + 1), we argue exactly
as in the case β0 ∈ [2,3) in Theorem 1.4 where now things come down to verifying
the finiteness of ∫ 1

0

∫ 1

0
e

∑
n : �αn≥xα∨t �n

(
1

x2 + t2

)(1+α−β)/2

dt dx

under the assumption
∑∞

n=1 e�1+�2+···+�n/n1+β < ∞. Now assume that α < 1. If
β0 ∈ (0,1), we argue analogously but a theorem of Kahane replaces our use of
Theorem 1.2(iii). Theorem 4 in Section 11.8 of [11] together with Lemma 2.2
tells us that for each t ∈ C, HD({x ∈ C :x ∈ Ft }) = 1 − β0 a.s. An application
of Fubini’s theorem and Theorem 7.7 in [14] exactly as in the case β0 ∈ (0,2) in
Theorem 1.4 allows us to conclude HD({(t, x) :x ∈ Ft }) ≥ 2 − β0, as desired. For
β0 ∈ [1,1 + α), we argue as in the case β0 ∈ [2,3) in Theorem 1.4 where now
things come down to verifying the finiteness of∫ 1

0

∫ 1

0
e

∑
n : �αn≥xα∨t �n

(
1

x2 + t2

)(1+α−β)/(2α)

dt dx

under the assumption
∑∞

n=1 e�1+�2+···+�n/n1+β < ∞. This is done in more or less
the same way with a few easy needed modifications. �

PROOF OF THEOREM 1.6. Part (i): Fix n and partition [0,1]×C into boxes of
size 1/ logn × 1/n. For the given block B , we have, by using the same arguments
as in Theorem 1.5,

P

(
∃(t, x) ∈ B :x /∈

n⋃
k=1

Ik,t

)
≤

n∏
k=1

P
(∃(t, x) ∈ B :x /∈ Ik,t

)

≤
n∏

k=1

(
1 −

(
�k − 1

n

)
e−1/logn

)
.

One can again show this is O(1)un. Since the number of blocks is of order n logn,
we get P(∃t ∈ [0,1] :Ft 
= ∅) = 0 if lim infn n(logn)un = 0 and proceed as earlier
if lim infn n(logn)un ∈ (0,∞).

Part (ii): The difference between the situation here and that of the previous proof
is that Lemma 2.1 does not work for β = 0. Therefore the analysis will be slightly
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different even though the ideas are the same. By repeating the beginning of the
previous proof, it follows that existence of exceptional times is implied by∫ 1

0

∫ 1

0
ee−t ∑∞

n=1(�n−x)+ dt dx < ∞
which in turn is, of course, equivalent to∫ b

0

∫ b

0
ee−t ∑∞

n=1(�n−x)+ dt dx < ∞
for any b > 0. The rest of the proof will consist of showing analytically that this is
equivalent to the convergence of the series in the statement of the theorem. Since
1 − t < e−t < 1 − t/2 [for t ∈ (0,1)], it suffices to show that for any κ ∈ [1/2,1],∫ b

0

∫ b

0
e(1−κt)

∑∞
n=1(�n−x)+ dt dx < ∞

is equivalent to convergence of the series. Let g(x) := ∑∞
n=1(�n − x)+ and choose

b so that g(x) ≥ 2 on [0, b]. Now
∫ b

0
e(1−κt)

∑∞
n=1(�n−x)+ dt = eg(x)

[
−e−κtg(x)

κg(x)

]b

0
= eg(x) 1 − e−bκg(x)

κg(x)
.

The last expression is �(1)eg(x)/(g(x)). Thus
∫ b

0

∫ b

0
e(1−κt)

∑
n : �n≥x �n dt dx = �(1)

∫ b

0

eg(x)

g(x)
dx = �(1)

∫ b

0
ef (x) dx,

where f (x) := g(x) − logg(x). We again use Lemma 11.4.1 of [11] which was
stated in the proof of Lemma 2.1. We have that

f ′(x) = g′(x)

(
1 − 1

g(x)

)
= −n

(
1 − 1

�1 + �2 + · · · + �n

)
, �n+1 < x < �n.

By choice of b, f ′ is negative and increasing. Hence f is convex and decreasing
and we may apply the lemma. Since f ′(x) = �(n), �n+1 < x < �n, f ′ makes
jumps of size 1 + o(1) when x = �n and

f (�n) = �1 + �2 + · · · + �n − n�n − log(�1 + �2 + · · · + �n − n�n)

= �1 + �2 + · · · + �n − log logn + O(1),

the lemma gives us that

∫ b

0
ef (x) dx =

∞∑
n=1

e�1+�2+···+�n

n2 logn
,

as desired. �
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4. Further questions. In this section, we list a number of questions and prob-
lems that remain:

1. When �n = 1/n and α = 0, are there exceptional times in the Poisson model?
2. Show that the inequalities in Theorem 1.4(iii) are equalities.
3. If c < 1 and �n = c/n, then we know that P(F = ∅) = 0. Is it also the case

that

P(∃t ∈ [0,1] :Ft = ∅) = 0?

Does this depend on the value of c?
This is analogous to the dynamical percolation question of whether, when we do

percolate for ordinary percolation, there are exceptional times at which percolation
does not occur. For dynamical percolation, this question is much less understood
than the reverse question where one does not percolate for ordinary percolation but
asks if there are exceptional times at which percolation does occur.

4. Given subsets of the time interval, determine when they contain exceptional
times of various types.
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