LIMITING VELOCITY OF HIGH-DIMENSIONAL RANDOM WALK IN RANDOM ENVIRONMENT

BY NOAM BERGER

University of California, Los Angeles

We show that random walk in uniformly elliptic i.i.d. environment in dimension ≥ 5 has at most one non zero limiting velocity. In particular this proves a law of large numbers in the distributionally symmetric case and establishes connections between different conjectures.

1. Introduction. Let $d \ge 1$. A random walk in random environment (RWRE) on \mathbb{Z}^d is defined as follows: Let \mathcal{M}^d denote the space of all probability measures on $\{\pm e_i\}_{i=1}^d$ and let $\Omega = (\mathcal{M}^d)^{\mathbb{Z}^d}$. An *environment* is a point $\omega \in \Omega$. Let *P* be a probability measure on Ω . For the purposes of this paper, we assume that *P* is an i.i.d. measure, that is,

$$P = Q^{\mathbb{Z}^d}$$

for some distribution Q on \mathcal{M}^d and that P is *uniformly elliptic*, that is, there exists $\varepsilon > 0$ such that (s.t.) for every $e \in \{\pm e_i\}_{i=1}^d$,

$$Q(\{d: d(e) < \varepsilon\}) = 0.$$

For an environment $\omega \in \Omega$, the *random walk* on ω is a time-homogenous Markov chain with transition kernel

$$P_{\omega}(X_{n+1} = z + e | X_n = z) = \omega(z, e).$$

The *quenched law* P_{ω}^{z} is defined to be the law on $(\mathbb{Z}^{d})^{\mathbb{N}}$ induced by the kernel P_{ω} and $P_{\omega}^{z}(X_{0} = z) = 1$. We let $\mathbf{P} = P \otimes P_{\omega}^{0}$ be the joint law of the environment and the walk, and the *annealed* law is defined to be its marginal

$$\mathbb{P} = \int_{\Omega} P_{\omega}^0 dP(\omega).$$

We consider the limiting velocity

$$v = \lim_{n \to \infty} \frac{X_n}{n}.$$

Based on the work of Zerner [5] and Sznitman and Zerner [3], we know that v exists \mathbb{P} -a.s. Furthermore, there is a set A of size at most 2 such that almost surely $v \in A$.

Received October 2006; revised March 2007.

AMS 2000 subject classification. 60K37.

Key words and phrases. Random walk, random environment.

Zerner and Merkl [6] proved that in dimension 2 a 0-1 law holds and therefore the set *A* is of size 1, that is, a law of large numbers holds, in dimension 2 (see also [2] for a continuous version).

The main result of this paper is the following:

THEOREM 1.1. For $d \ge 5$, there is at most one nonzero limiting velocity; that is, if $A = \{v_1, v_2\}$ with $v_1 \ne v_2$ and $v_1 \ne 0$, then $v_2 = 0$.

Theorem 1.1 has the following immediate corollary:

COROLLARY 1.2. For $d \ge 5$, if Q is distributionally symmetric, then the limiting velocity is an almost sure constant.

REMARK ABOUT CONSTANTS. As is common in most of the RWRE literature, the value of the constant C may vary from line to line. In addition, C may implicitly depend on variables that are kept constant throughout the entire calculation, in particular the dimension d or the distribution Q.

2. Backward path—Construction. In this section we describe the backward path, the main object studied in this paper. The backward path is, roughly speaking, a path of the RWRE from $-\infty$ through the origin to $+\infty$. Below we define it. In Section 3 we prove some basic facts about it. Note that the backward path appears, though implicitly, in [1] and [4].

Throughout the paper we are assuming, for contradiction, that two different nonzero limiting velocities v_1 and v_2 exist. Assume without loss of generality that $\langle \ell, v_1 \rangle > 0$ for $\ell = e_1$. We let A_{ℓ} be the event that the walk is transient in the direction ℓ , that is,

$$A_{\ell} = \left\{ \lim_{n \to \infty} \langle X_n, \ell \rangle = \infty \right\}.$$

By our assumptions, Q is a distribution on \mathcal{M}^d s.t. both $\mathbf{P}(A_\ell)$ and $\mathbf{P}(A_{-\ell})$ are positive.

We say that *t* is a regeneration time in the direction ℓ if:

1. $\langle X_s, \ell \rangle < \langle X_t, \ell \rangle$ for every s < t, and

2. $\langle X_s, \ell \rangle > \langle X_t, \ell \rangle$ for every s > t.

REMARK. Note that in the special case of ℓ being a coordinate vector this simple definition coincides with the more complex definition of a regeneration time from [3].

For every L > 0, let $\mathcal{K}_L = \{z | 0 \le \langle z, \ell \rangle < L\}$.

Let t_1 be the first regeneration time (if one exists), let t_2 be the second (if exists), and so on. If t_{n+1} exists, let $L_n = \langle X_{t_{n+1}}, \ell \rangle - \langle X_{t_n}, \ell \rangle$, let

$$W_n: \mathcal{K}_{L_n} \to \mathcal{M}^d$$

be

$$W_n(z) = \omega(z + X_{t_n}),$$

let $u_n = t_{n+1} - t_n$ and let $K_n : [0, u_n] \to \mathbb{Z}^d$ be $K_n(t) = X_{t_n+t} - X_{t_n}$. We let S_n , the *n*th regeneration slab, be the ensemble $S_n = \{L_n, W_n, u_n, K_n\}$.

In [3] Sznitman and Zerner proved that on the event A_{ℓ} , almost surely there are infinitely many regeneration times, and, furthermore, that the regeneration slabs $\{S_i\}_{i=1}^{\infty}$ form an i.i.d. process. Let $\lambda = \lambda_{\ell}$ be the distribution of S_1 conditioned on A_{ℓ} .

We now construct an environment and a doubly infinite path in that environment. Let $\{S_n\}_{n \in \mathbb{Z}}$ be i.i.d. regeneration slabs sampled according to λ .

We now want to glue the regeneration slabs to each other. Let $Y_0 = 0$, and define, inductively, $Y_{n+1} = Y_n + K_n(u_n)$ for $n \ge 0$ and $Y_{n-1} = Y_n - K_{n-1}(u_{n-1})$ for $n \le 0$. Almost surely \mathbb{Z}^d is the disjoint union of the sets $Y_n + \mathcal{K}_{L_n}$. For every $z \in \mathbb{Z}^d$ let n(z) be the unique *n* such that $z \in Y_n + \mathcal{K}_{L_n}$. Let ω be the environment

$$\omega(z) = W_{n(z)}(z - Y_{n(z)}).$$

Let $\mathcal{T} \subseteq \mathbb{Z}^d$ be

$$\mathcal{T} = \bigcup_{n=-\infty}^{\infty} (Y_n + K_n[0, u_n]).$$

Let μ be the joint distribution of ω and \mathcal{T} . \mathcal{T} is called the *backward path in direc*tion ℓ . We let $\tilde{\mu}$ be the marginal distribution of ω in μ .

3. Backward path—Basic properties. In this section we prove two simple properties of the measure μ .

PROPOSITION 3.1. There exists a coupling \tilde{P} on $\Omega \times \Omega \times \{0,1\}^{\mathbb{Z}^d}$ with the distribution of $\omega, \tilde{\omega}, \mathcal{T}$ satisfying:

- 1. ω is distributed according to P.
- 2. $(\tilde{\omega}, \mathcal{T})$ is distributed according to μ .
- 3. *P*-almost surely, $\omega(z) = \tilde{\omega}(z)$ for every $z \in \mathbb{Z}^d \setminus \mathcal{T}$.
- 4. ω and T are independent.

PROPOSITION 3.2. Let $\tilde{\omega}$ be an environment sampled according to $\tilde{\mu}$, and let $\{X_n\}$ be a random walk on that environment. Then almost surely $\{X_n\}$ is transient in the direction ℓ .

Both Proposition 3.1 and Proposition 3.2 follow from the fact that the $\tilde{\mu}$ -environment around zero is similar to the *P*-environment around the location of the walker at a large regeneration time. More precisely, let ω , $\{X_n\}$ be sampled according to **P** conditioned on the event $\forall_{n>0}(\langle X_n, \ell \rangle > 0) \cap A_\ell$, which is an event

730

of positive probability. Let t_1, t_2, \ldots be the regeneration times. (Note that we conditioned on transience in the ℓ direction, and therefore infinitely many regeneration times exist.) Let ω_i be the environment defined by $\omega_i(z) = \omega(z + X_{t_i})$ and let $\mathcal{T}_i \subseteq \mathbb{Z}^d$ be defined as $\mathcal{T}_i = \{X_t - X_{t_i} | t \ge 0\}$. For $X \in \mathbb{Z}^d$ let $\mathcal{H}(X)$ be the half-space

$$\mathcal{H}(X) = \{ z \mid \langle z, \ell \rangle \ge \langle X, \ell \rangle \}.$$

LEMMA 3.3. For every *i*, the distribution of

(1)
$$\left\{-X_{t_i}; \ \mathcal{T}_i \cap \mathcal{H}(-X_{t_i}); \ \omega_i|_{\mathcal{H}(-X_{t_i})}\right\}$$

is the same as the distribution of

(2)
$$\{Y_{-i}; \ \mathcal{T} \cap \mathcal{H}(Y_{-i}); \ \tilde{\omega}|_{\mathcal{H}(Y_{-i})}\}$$

PROOF. Let $\tilde{\mathbf{P}}$ be \mathbf{P} conditioned on the event $\forall_{n>0} (\langle X_n, \ell \rangle > 0) \cap A_{\ell}$. By Theorem 1.4 of [3], the distribution of

$$\left\{\omega|_{\mathcal{H}(0)}, \{X_t|t \ge 0\}\right\}$$

according to $\tilde{\mathbf{P}}$ is the same as the distribution of

$$\{\tilde{\omega}|_{\mathcal{H}(0)}, \mathcal{T} \cap \mathcal{H}(0)\}$$

according to μ . The lemma now follows since the sequence $\{S_n\}_{n\in\mathbb{Z}}$ is i.i.d.

We can now prove Propositions 3.1 and 3.2.

PROOF OF PROPOSITION 3.2. Let *B* be the event that the walk is transient in the direction of ℓ and never exits the half-space $\mathcal{H}(0)$, that is,

$$B = A_{\ell} \cap \{ \forall_t X_t \in \mathcal{H}(0) \}.$$

For a configuration ω and $z \in \mathbb{Z}^d$, let

$$R_{\omega}(z) = P_{\omega}^{z}(B).$$

Note that $R_{\omega}(z)$ depends only on $\omega|_{\mathcal{H}(0)}$, so by the Markov property

$$\mathbf{P}_{\omega}^{X_0}(B|X_1, X_2, \dots, X_t) = R_{\omega}(X_t) \cdot \mathbf{1}_{X_1, \dots, X_t \in \mathcal{H}(0)}.$$

In addition, $B \in \sigma(X_1, X_2, ...)$ and therefore almost surely

$$\lim_{t\to\infty}R_{\omega}(X_t)\geq \mathbf{1}_B.$$

In particular, $\tilde{\mathbf{P}}$ -almost surely,

$$\lim_{t\to\infty}R_{\omega}(X_t)=1,$$

 \Box

and for the subsequence of regeneration times we get that $\tilde{\mathbf{P}}$ -almost surely

(3)
$$\lim_{n\to\infty} R_{\omega}(X_{t_n}) = 1,$$

and using the bounded convergence theorem, for

$$R_n = \mathbf{E}_{\tilde{\mathbf{P}}}(R_{\omega}(X_{t_n}))$$

we get

(4) $\lim_{n \to \infty} R_n = 1.$

Let $\{\tilde{\omega}, \mathcal{T}, \{Y_n\}\}\$ be sampled according to μ and let X_n be a random walk on the environment $\tilde{\omega}$, which is independent of $\{\mathcal{T}, \{Y_n\}\}\$ conditioned on $\tilde{\omega}$. Let B_N be the event

$$\lim_{n \to \infty} \langle X_n, \ell \rangle = \infty \quad \text{and} \quad \forall_n \langle X_n, \ell \rangle \ge \langle Y_{-N}, \ell \rangle.$$

Then by Lemma 3.3

(5) $(\mu \otimes P^0_{\tilde{\omega}})(B_n) = R_n.$

Remembering that

$$A_{\ell} = \bigcup_{n=1}^{\infty} B_n$$

we get from (5) that

$$(\mu \otimes P^0_{\tilde{\omega}})(A_\ell) = \lim_{n \to \infty} R_n = 1,$$

as desired. \Box

PROOF OF PROPOSITION 3.1. We define the coupling on every regeneration slab. Let $\tilde{\lambda}$ be the distribution on $\tilde{S} = \{L, W, \tilde{W}, u, K\}$ so that $\{L, \tilde{W}, u, K\}$ is distributed according to λ and W is defined as follows:

$$W(z) = \begin{cases} \dot{W}(z), & \text{if } z \notin K([0, u]), \\ \psi(z), & \text{if } z \in K([0, u]), \end{cases}$$

(~~

where $\psi : \mathbb{Z}^d \to \mathcal{M}$ is sampled according to *P*, independently of $\{L, \tilde{W}, u, K\}$.

CLAIM 3.4. Conditioned on L, the environment W is i.i.d. with marginal distribution Q, and independent of u and K.

We now sample the environments and the path as we did in Section 2: Let $\{\tilde{S}_n\}_{n=-\infty}^{\infty}$ be i.i.d. regeneration slabs sampled according to $\tilde{\lambda}$. Let $Y_0 = 0$ and define, inductively, $Y_{n+1} = Y_n + K_n(u_n)$ for $n \ge 0$ and $Y_{n-1} = Y_n - K_{n-1}(u_{n-1})$ for $n \le 0$. Almost surely \mathbb{Z}^d is the disjoint union of the sets $Y_n + \mathcal{K}_{L_n}$. For every

 $z \in \mathbb{Z}^d$ let n(z) be the unique *n* such that $z \in Y_n + \mathcal{K}_{L_n}$. We let ω be the environment

$$\omega(z) = W_{n(z)}(z - Y_{n(z)}),$$

we let $\tilde{\omega}$ be the environment

$$\tilde{\omega}(z) = \tilde{W}_{n(z)}(z - Y_{n(z)}),$$

and take $\mathcal{T} \subseteq \mathbb{Z}^d$ to be

$$\mathcal{T} = \bigcup_{n=-\infty}^{\infty} (Y_n + K_n[0, u_n]).$$

Clearly, $\{\tilde{\omega}, \mathcal{T}\}\$ is distributed according to μ and ω and $\tilde{\omega}$ agree on $\mathbb{Z}^d - \mathcal{T}$. Therefore all we need to show is that ω is distributed according to P and is independent of the path \mathcal{T} . This follows from Claim 3.4: conditioned on $\{u_n\}_{n=-\infty}^{\infty}$, W is P-distributed and independent of the path \mathcal{T} . Therefore it is P-distributed and independent of the path \mathcal{T} as we integrate over $\{u_n\}_{n=-\infty}^{\infty}$. \Box

PROOF OF CLAIM 3.4. It is sufficient to show that conditioned on *L*, for every finite set $J = \{x_i : i = 1, ..., k\}$ with $J \subseteq \mathcal{K}_L$, the distribution of $\{W(x_i)\}_{x_i \in J}$ is i.i.d. with marginal *Q* and independent of *u* and *K*. This will follow if we prove that for every finite set $J = \{x_i | i = 1, ..., k\}$ with $J \subseteq \mathcal{K}_L$, conditioned on *L*, on *K* and *u* and on the event $J \cap K[0, u] = \emptyset$, the distribution of $\{\tilde{W}(x_i)\}_{x_i \in J}$ is i.i.d. with marginal *Q*.

To this end, fix J and note that for every finite set U that is disjoint of J, the event $\{K[0, u] = U\}$ is independent of $\{\tilde{W}(x_i)\}_{x_i \in J}$. Therefore, conditioned on the event $\{K[0, u] = U\}$ (and thus implicitly conditioning on K and u), the distribution of $\{\tilde{W}(x_i)\}_{x_i \in J}$ is i.i.d. with marginal Q. By integrating with respect to U we get that $\{W(x_i)\}_{x_i \in J}$ is Q-distributed, and by the fact that it was Q-distributed conditioned on K and u we get the independence. \Box

4. Intersection of paths. In this section we will see some interaction between the backward path and the path of an independent random walk.

Let Q be a uniformly elliptic distribution so that $0 < \mathbf{P}(A_{\ell}) < 1$ and let $(\omega, \tilde{\omega}, \mathcal{T})$ be as in Proposition 3.1. Let z_0 be an arbitrary point in \mathbb{Z}^d , and let $\{X_i\}_{i=1}^{\infty}$ be a random walk on the configuration ω starting at z_0 , such that:

- 1. $\{X_i\}$ is conditioned on the (positive probability) event that $\lim_{i\to\infty} \langle X_i, \ell \rangle = -\infty$.
- 2. Conditioned on ω , $\{X_i\}_{i=1}^{\infty}$ is independent of $\tilde{\omega}$ and \mathcal{T} .

The purpose of this section is the following easy lemma:

LEMMA 4.1. Under the conditions stated above, almost surely there exist infinitely many values of i such that $X_i \in \mathcal{T}$. We will prove that almost surely there exists one such value of i. The proof that infinitely many exist is very similar but requires a little more care, and for the purpose of proving the main theorem of this paper one such i is sufficient.

PROOF. We need to show that

(6)
$$(\tilde{P} \otimes P_{\omega}^{z_0}) \left(\lim_{i \to \infty} \langle X_i, \ell \rangle = -\infty \text{ and } \forall_i (X_i \notin \mathcal{T}) \right) = 0.$$

In order to establish (6), let $\{Y_i\}_{i=1}^{\infty}$ be a random walk on the environment $\tilde{\omega}$, coupled to the rest of the probability space as follows:

Let

$$i_0 = \inf\{i : \omega(X_i) \neq \tilde{\omega}(X_i)\} \ge \inf\{i : X_i \in \mathcal{T}\}$$

Now, for $i < i_0$, we define $Y_i = X_i$. For $i \ge i_0$, Y_i is determined based on Y_{i-1} according to $\tilde{\omega}(Y_{i-1})$ independently of X_i , ω and \mathcal{T} . Now, note that

$$\forall_i (X_i \notin \mathcal{T}) \implies i_0 = \infty \implies \forall_i (X_i = Y_i).$$

Therefore,

$$\left(\lim_{i \to \infty} \langle X_i, \ell \rangle = -\infty \text{ and } \forall_i (X_i \notin \mathcal{T})\right) \implies \lim_{i \to \infty} \langle Y_i, \ell \rangle = -\infty.$$

The proof is concluded if we remember that by Proposition 3.2,

$$(\tilde{P} \otimes P_{\tilde{\omega}}^{z_0}) \left(\lim_{i \to \infty} \langle Y_i, \ell \rangle = -\infty \right) = 0.$$

5. Proof of main theorem.

LEMMA 5.1. Let $d \ge 5$, and assume that the set A of speeds contains two nonzero elements. Then there exists z_0 such that

$$(\tilde{P} \otimes P_{\omega}^{z_0}) \left(\lim_{i \to \infty} \langle X_i, \ell \rangle = -\infty \text{ and } \forall_i (X_i \notin \mathcal{T}) \right) > 0.$$

PROOF. Let

$$\widetilde{\mathcal{T}} = \{X_i : i = 1, 2, \ldots\}.$$

We use the following claim whose proof is deferred:

CLAIM 5.2. Let \tilde{B} be the event that $\langle X_i, \ell \rangle < \langle X_0, \ell \rangle$ for all i > 0. Note that \tilde{B} has positive probability. Also, let $\mathcal{T}' = \mathcal{T} \cap \{z : \langle z, \ell \rangle \leq 0\}$. Then, if A contains two distinct nonzero elements then

(7)
$$\sum_{z \in \mathbb{Z}^d} \tilde{P}(z \in \mathcal{T}')^2 < \infty$$

and

(8)
$$\sum_{z\in\mathbb{Z}^d}\mathbb{P}^0(z\in\tilde{\mathcal{T}}|\tilde{B})^2<\infty.$$

By Proposition 3.1, \mathcal{T}' and $\tilde{\mathcal{T}}$ are independent random sets and therefore so are \mathcal{T}' and $\tilde{\mathcal{T}}|\tilde{B}$. Therefore,

$$\begin{split} (\tilde{E} \otimes E_{\omega}^{z_0})(|\mathcal{T}' \cap \tilde{\mathcal{T}}||\tilde{B}) &= \sum_{z \in \mathbb{Z}^d} \tilde{P}(z \in \mathcal{T}') \mathbb{P}^{z_0}(z \in \tilde{\mathcal{T}}|\tilde{B}) \\ &= \sum_{z \in \mathbb{Z}^d} \tilde{P}(z \in \mathcal{T}') \mathbb{P}^0(z - z_0 \in \tilde{\mathcal{T}}|\tilde{B}), \end{split}$$

with the last equality following from translation invariance of the annealed measure. Let

$$M = \sum_{z \in \mathbb{Z}^d} \tilde{P}(z \in \mathcal{T}')^2$$

and

$$\tilde{M} = \sum_{z \in \mathbb{Z}^d} \mathbb{P}^0(z \in \tilde{\mathcal{T}} | \tilde{B})^2,$$

let λ be so small that $\lambda M + \lambda \tilde{M} + \lambda^2 < 1$, and let *R* be so large that

$$\sum_{\|z\|>R} \tilde{P}(z \in \mathcal{T}')^2 < \lambda \quad \text{and} \quad \sum_{\|z\|>R} \mathbb{P}^0(z \in \tilde{\mathcal{T}} | \tilde{B})^2 < \lambda.$$

Taking z_0 such that $||z_0|| > 2R$ and $\langle z_0, \ell \rangle < 0$ we get, using Cauchy–Schwarz, that

$$\begin{split} (\tilde{E} \otimes E_{\omega}^{z_{0}})(|\mathcal{T}' \cap \tilde{\mathcal{T}}||\tilde{B}) \\ &= \sum_{z \in \mathbb{Z}^{d}} \tilde{P}(z \in \mathcal{T}') \mathbb{P}^{0}(z - z_{0} \in \tilde{\mathcal{T}}|\tilde{B}) \\ &= \sum_{z \in B(0,R)} \tilde{P}(z \in \mathcal{T}') \mathbb{P}^{0}(z - z_{0} \in \tilde{\mathcal{T}}|\tilde{B}) \\ &+ \sum_{z \in B(z_{0},R)} \tilde{P}(z \in \mathcal{T}') \mathbb{P}^{0}(z - z_{0} \in \tilde{\mathcal{T}}|\tilde{B}) \\ &+ \sum_{z \in \mathbb{Z}^{d} - B(0,R) - B(z_{0},R)} \tilde{P}(z \in \mathcal{T}') \mathbb{P}^{0}(z - z_{0} \in \tilde{\mathcal{T}}|\tilde{B}) \\ &\leq \lambda M + \lambda \tilde{M} + \lambda^{2} < 1. \end{split}$$

Therefore $\tilde{P} \otimes P^{z_0}_{\omega}(\mathcal{T}' \cap \tilde{\mathcal{T}} = \emptyset | \tilde{B}) > 0$. $P^{z_0}_{\omega}(\tilde{B}) > 0$ and by the choice of z_0 , conditioned on \tilde{B} , $\mathcal{T}' \cap \tilde{\mathcal{T}} = \emptyset$ if and only if $\mathcal{T} \cap \tilde{\mathcal{T}} = \emptyset$. Therefore $\mathcal{T} \cap \tilde{\mathcal{T}}$ is empty with positive probability. \Box

PROOF OF CLAIM 5.2. We will prove (7). Equation (8) follows from the exact same reasoning. First we get an upper bound on $\mu(Y_{-n} = z)$. The sequence $\{O_n = Y_{-n} - Y_{-n-1}\}$ is an i.i.d. sequence. Furthermore, due to ellipticity there exist *d* linearly independent vectors v_1, \ldots, v_d and $\varepsilon > 0$ such that for every $k = 1, \ldots, d$, and every $\delta \in \{+1, -1\}$,

$$\mu(O_1 = 2v_1 + \delta v_k) > \varepsilon.$$

 $(v_1 \text{ is, approximately, in the direction of } \ell$, while the others are, approximately, orthogonal to ℓ .)

Let

$$A = \{2v_1 + \delta v_k \mid k = 1, \dots, d; \ \delta \in \{+1, -1\}\}$$

and let $p = \mu(O_1 \in A)$. Fix *n*, and let $E^{(n)}$ be the event that at least $\pi_n = \lceil \frac{1}{2}pn \rceil$ of the O_i 's, i = 1, ..., n, are in *A*. For every subset *H* of $\{1, ..., n\}$ of size π_n , let $E_H^{(n)}$ be the event that the elements of *H* are the smallest π_n numbers *i* such that $O_i \in A$. Then from heat kernel estimates for bounded i.i.d. random walks in Z^d we get that for every $z \in \mathbb{Z}^d$,

$$\mu\left(\sum_{i\in H}O_i=z\Big|E_H^{(n)}\right)$$

Conditioned on $E_H^{(n)}$,

$$\sum_{i \in H} O_i \quad \text{and} \quad \sum_{i \notin H} O_i$$

are independent, so remembering that $Y_{-n} = \sum_{i=1}^{n} O_i$, we get that

$$\mu(Y_{-n} = z | E_H^{(n)}) < C n^{-d/2}.$$

The events

$$\left\{E_H^{(n)}|H\subseteq[1,n]\right\}$$

are mutually exclusive and

$$\mu\left(\bigcup_{H} E_{H}^{(n)}\right) > 1 - e^{-Cn}.$$

Therefore, for every *n* and $z \in \mathbb{Z}^d$,

(9)
$$\mu(Y_{-n} = z) < Cn^{-d/2}$$

Now, for every *n* and $z \in \mathbb{Z}^d$, let Q(z, n) be the probability that *z* is visited during the *n*th regeneration, that is, between Y_{1-n} and Y_{-n} . The *n*th regeneration is independent of Y_{1-n} , so

$$Q(z, n | Y_{1-n}) = Q(z - Y_{1-n}, 0).$$

The fact that the speed of the walk in direction ℓ is positive yields

(10)
$$\sum_{z \in \mathbb{Z}^d} Q(z,0) \le E(\tau_2 - \tau_1) < \infty.$$

From (9) we get that

$$\sum_{z\in\mathbb{Z}^d} [\mu(Y_{-n}=z)]^2 \le Cn^{-d/2}.$$

Combined with (10) and remembering that Young's inequality for convolution says that $||f \star g||_2 \leq ||f||_2 ||g||_1$ for all f and g (and noting that the next regeneration slab is independent of Y_{1-n} , and thus the result is a convolution), we get

$$\sum_{z \in \mathbb{Z}^d} [Q(z, n)]^2 \le C n^{-d/2}$$

or

(11)
$$\sqrt{\sum_{z\in\mathbb{Z}^d} [Q(z,n)]^2} \le Cn^{-d/4}.$$

Noting that

$$\mu(z\in\mathcal{T}')=\sum_{n=1}^{\infty}Q(z,n),$$

(11) and the triangle inequality tell us that

$$\sqrt{\sum_{z \in \mathbb{Z}^d} [\mu(z \in \mathcal{T}')]^2} \le C \sum_{n=1}^\infty n^{-d/4}.$$

So for $d \ge 5$

$$\sum_{z \in \mathbb{Z}^d} [\mu(z \in \mathcal{T}')]^2 < \infty$$

as desired. \Box

PROOF OF THEOREM 1.1. The theorem follows immediately from Lemma 4.1 and Lemma 5.1. \Box

Acknowledgments. I thank G. Y. Amir, I. Benjamini, M. Biskup, N. Gantert, S. Sheffield and S. Starr for useful discussions. I thank O. Zeitouni for many important comments on a previous version of the paper. An anonymous referee is gratefully acknowledged for many important comments.

N. BERGER

REFERENCES

- BOLTHAUSEN, E. AND SZNITMAN, A.-S. (2002). On the static and dynamic points of view for certain random walks in random environment. *Methods Appl. Anal.* 9 345–375. MR2023130
- [2] GOERGEN, L. (2006). Limit velocity and zero-one laws for diffusions in random environment. Ann. Appl. Probab. 16 1086–1123. MR2260058
- [3] SZNITMAN, A.-S. AND ZERNER, M. (1999). A law of large numbers for random walks in random environment. Ann. Probab. 27 1851–1869. MR1742891
- [4] SRINIVASA VARADHAN, S. R. (2003). Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56 1222–1245. MR1989232
- [5] ZERNER, M. P. W. (2002). A non-ballistic law of large numbers for random walks in i.i.d. random environment. *Electron. Comm. Probab.* 7 191–197. MR1937904
- [6] ZERNER, M. P. W. AND MERKL, F. (2001). A zero-one law for planar random walks in random environment. Ann. Probab. 29 1716–1732. MR1880239

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA, LOS ANGELES, BOX 951555 LOS ANGELES, CALIFORNIA 90095-1555 USA E-MAIL: berger@math.ucla.edu