LIMITING VELOCITY OF HIGH-DIMENSIONAL RANDOM WALK IN RANDOM ENVIRONMENT

By Noam Berger
University of California, Los Angeles

Abstract

We show that random walk in uniformly elliptic i.i.d. environment in dimension ≥ 5 has at most one non zero limiting velocity. In particular this proves a law of large numbers in the distributionally symmetric case and establishes connections between different conjectures.

1. Introduction. Let $d \geq 1$. A random walk in random environment (RWRE) on \mathbb{Z}^{d} is defined as follows: Let \mathcal{M}^{d} denote the space of all probability measures on $\left\{ \pm e_{i}\right\}_{i=1}^{d}$ and let $\Omega=\left(\mathcal{M}^{d}\right)^{\mathbb{Z}^{d}}$. An environment is a point $\omega \in \Omega$. Let P be a probability measure on Ω. For the purposes of this paper, we assume that P is an i.i.d. measure, that is,

$$
P=Q^{\mathbb{Z}^{d}}
$$

for some distribution Q on \mathcal{M}^{d} and that P is uniformly elliptic, that is, there exists $\varepsilon>0$ such that (s.t.) for every $e \in\left\{ \pm e_{i}\right\}_{i=1}^{d}$,

$$
Q(\{d: d(e)<\varepsilon\})=0 .
$$

For an environment $\omega \in \Omega$, the random walk on ω is a time-homogenous Markov chain with transition kernel

$$
P_{\omega}\left(X_{n+1}=z+e \mid X_{n}=z\right)=\omega(z, e)
$$

The quenched law P_{ω}^{z} is defined to be the law on $\left(\mathbb{Z}^{d}\right)^{\mathbb{N}}$ induced by the kernel P_{ω} and $P_{\omega}^{z}\left(X_{0}=z\right)=1$. We let $\mathbf{P}=P \otimes P_{\omega}^{0}$ be the joint law of the environment and the walk, and the annealed law is defined to be its marginal

$$
\mathbb{P}=\int_{\Omega} P_{\omega}^{0} d P(\omega)
$$

We consider the limiting velocity

$$
v=\lim _{n \rightarrow \infty} \frac{X_{n}}{n}
$$

Based on the work of Zerner [5] and Sznitman and Zerner [3], we know that v exists \mathbb{P}-a.s. Furthermore, there is a set A of size at most 2 such that almost surely $v \in A$.

[^0]Zerner and Merkl [6] proved that in dimension 2 a $0-1$ law holds and therefore the set A is of size 1 , that is, a law of large numbers holds, in dimension 2 (see also [2] for a continuous version).

The main result of this paper is the following:
THEOREM 1.1. For $d \geq 5$, there is at most one nonzero limiting velocity; that is, if $A=\left\{v_{1}, v_{2}\right\}$ with $v_{1} \neq v_{2}$ and $v_{1} \neq 0$, then $v_{2}=0$.

Theorem 1.1 has the following immediate corollary:
COROLLARY 1.2. For $d \geq 5$, if Q is distributionally symmetric, then the limiting velocity is an almost sure constant.

REMARK AbOUT CONSTANTS. As is common in most of the RWRE literature, the value of the constant C may vary from line to line. In addition, C may implicitly depend on variables that are kept constant throughout the entire calculation, in particular the dimension d or the distribution Q.
2. Backward path-Construction. In this section we describe the backward path, the main object studied in this paper. The backward path is, roughly speaking, a path of the RWRE from $-\infty$ through the origin to $+\infty$. Below we define it. In Section 3 we prove some basic facts about it. Note that the backward path appears, though implicitly, in [1] and [4].

Throughout the paper we are assuming, for contradiction, that two different nonzero limiting velocities v_{1} and v_{2} exist. Assume without loss of generality that $\left\langle\ell, v_{1}\right\rangle>0$ for $\ell=e_{1}$. We let A_{ℓ} be the event that the walk is transient in the direction ℓ, that is,

$$
A_{\ell}=\left\{\lim _{n \rightarrow \infty}\left\langle X_{n}, \ell\right\rangle=\infty\right\}
$$

By our assumptions, Q is a distribution on \mathcal{M}^{d} s.t. both $\mathbf{P}\left(A_{\ell}\right)$ and $\mathbf{P}\left(A_{-\ell)}\right.$ are positive.

We say that t is a regeneration time in the direction ℓ if:

1. $\left\langle X_{s}, \ell\right\rangle<\left\langle X_{t}, \ell\right\rangle$ for every $s<t$, and
2. $\left\langle X_{s}, \ell\right\rangle>\left\langle X_{t}, \ell\right\rangle$ for every $s>t$.

REMARK. Note that in the special case of ℓ being a coordinate vector this simple definition coincides with the more complex definition of a regeneration time from [3].

For every $L>0$, let $\mathcal{K}_{L}=\{z \mid 0 \leq\langle z, \ell\rangle<L\}$.
Let t_{1} be the first regeneration time (if one exists), let t_{2} be the second (if exists), and so on. If t_{n+1} exists, let $L_{n}=\left\langle X_{t_{n+1}}, \ell\right\rangle-\left\langle X_{t_{n}}\right.$, $\left.\ell\right\rangle$, let

$$
W_{n}: \mathcal{K}_{L_{n}} \rightarrow \mathcal{M}^{d}
$$

be

$$
W_{n}(z)=\omega\left(z+X_{t_{n}}\right),
$$

let $u_{n}=t_{n+1}-t_{n}$ and let $K_{n}:\left[0, u_{n}\right] \rightarrow \mathbb{Z}^{d}$ be $K_{n}(t)=X_{t_{n}+t}-X_{t_{n}}$. We let S_{n}, the nth regeneration slab, be the ensemble $S_{n}=\left\{L_{n}, W_{n}, u_{n}, K_{n}\right\}$.

In [3] Sznitman and Zerner proved that on the event A_{ℓ}, almost surely there are infinitely many regeneration times, and, furthermore, that the regeneration slabs $\left\{S_{i}\right\}_{i=1}^{\infty}$ form an i.i.d. process. Let $\lambda=\lambda_{\ell}$ be the distribution of S_{1} conditioned on A_{ℓ}.

We now construct an environment and a doubly infinite path in that environment. Let $\left\{S_{n}\right\}_{n \in \mathbb{Z}}$ be i.i.d. regeneration slabs sampled according to λ.

We now want to glue the regeneration slabs to each other. Let $Y_{0}=0$, and define, inductively, $Y_{n+1}=Y_{n}+K_{n}\left(u_{n}\right)$ for $n \geq 0$ and $Y_{n-1}=Y_{n}-K_{n-1}\left(u_{n-1}\right)$ for $n \leq 0$. Almost surely \mathbb{Z}^{d} is the disjoint union of the sets $Y_{n}+\mathcal{K}_{L_{n}}$. For every $z \in \mathbb{Z}^{d}$ let $n(z)$ be the unique n such that $z \in Y_{n}+\mathcal{K}_{L_{n}}$. Let ω be the environment

$$
\omega(z)=W_{n(z)}\left(z-Y_{n(z)}\right) .
$$

Let $\mathcal{T} \subseteq \mathbb{Z}^{d}$ be

$$
\mathcal{T}=\bigcup_{n=-\infty}^{\infty}\left(Y_{n}+K_{n}\left[0, u_{n}\right]\right) .
$$

Let μ be the joint distribution of ω and $\mathcal{T} . \mathcal{T}$ is called the backward path in direction ℓ. We let $\tilde{\mu}$ be the marginal distribution of ω in μ.
3. Backward path-Basic properties. In this section we prove two simple properties of the measure μ.

Proposition 3.1. There exists a coupling \tilde{P} on $\Omega \times \Omega \times\{0,1\}^{\mathbb{Z}^{d}}$ with the distribution of $\omega, \tilde{\omega}, \mathcal{T}$ satisfying:

1. ω is distributed according to P.
2. ($\tilde{\omega}, \mathcal{T})$ is distributed according to μ.
3. \tilde{P}-almost surely, $\omega(z)=\tilde{\omega}(z)$ for every $z \in \mathbb{Z}^{d} \backslash \mathcal{T}$.
4. ω and \mathcal{T} are independent.

Proposition 3.2. Let $\tilde{\omega}$ be an environment sampled according to $\tilde{\mu}$, and let $\left\{X_{n}\right\}$ be a random walk on that environment. Then almost surely $\left\{X_{n}\right\}$ is transient in the direction ℓ.

Both Proposition 3.1 and Proposition 3.2 follow from the fact that the $\tilde{\mu}$-environment around zero is similar to the P-environment around the location of the walker at a large regeneration time. More precisely, let $\omega,\left\{X_{n}\right\}$ be sampled according to \mathbf{P} conditioned on the event $\forall_{n>0}\left(\left\langle X_{n}, \ell\right\rangle>0\right) \cap A_{\ell}$, which is an event
of positive probability. Let t_{1}, t_{2}, \ldots be the regeneration times. (Note that we conditioned on transience in the ℓ direction, and therefore infinitely many regeneration times exist.) Let ω_{i} be the environment defined by $\omega_{i}(z)=\omega\left(z+X_{t_{i}}\right)$ and let $\mathcal{T}_{i} \subseteq \mathbb{Z}^{d}$ be defined as $\mathcal{T}_{i}=\left\{X_{t}-X_{t_{i}} \mid t \geq 0\right\}$.

For $X \in \mathbb{Z}^{d}$ let $\mathscr{H}(X)$ be the half-space

$$
\mathscr{H}(X)=\{z \mid\langle z, \ell\rangle \geq\langle X, \ell\rangle\} .
$$

Lemma 3.3. For every i, the distribution of

$$
\begin{equation*}
\left\{-X_{t_{i}} ; \mathcal{T}_{i} \cap \mathscr{H}\left(-X_{t_{i}}\right) ;\left.\omega_{i}\right|_{\mathscr{H}\left(-X_{t_{i}}\right)}\right\} \tag{1}
\end{equation*}
$$

is the same as the distribution of

$$
\begin{equation*}
\left\{Y_{-i} ; \mathcal{T} \cap \mathscr{H}\left(Y_{-i}\right) ;\left.\tilde{\omega}\right|_{\mathscr{H}\left(Y_{-i}\right)}\right\} . \tag{2}
\end{equation*}
$$

Proof. Let $\tilde{\mathbf{P}}$ be \mathbf{P} conditioned on the event $\forall_{n>0}\left(\left\langle X_{n}, \ell\right\rangle>0\right) \cap A_{\ell}$. By Theorem 1.4 of [3], the distribution of

$$
\left\{\left.\omega\right|_{\mathcal{H}(0)},\left\{X_{t} \mid t \geq 0\right\}\right\}
$$

according to $\tilde{\mathbf{P}}$ is the same as the distribution of

$$
\left\{\left.\tilde{\omega}\right|_{\mathscr{H}(0)}, \mathcal{T} \cap \mathscr{H}(0)\right\}
$$

according to μ. The lemma now follows since the sequence $\left\{S_{n}\right\}_{n \in \mathbb{Z}}$ is i.i.d.

We can now prove Propositions 3.1 and 3.2.
Proof of Proposition 3.2. Let B be the event that the walk is transient in the direction of ℓ and never exits the half-space $\mathscr{H}(0)$, that is,

$$
B=A_{\ell} \cap\left\{\forall_{t} X_{t} \in \mathscr{H}(0)\right\} .
$$

For a configuration ω and $z \in \mathbb{Z}^{d}$, let

$$
R_{\omega}(z)=P_{\omega}^{z}(B)
$$

Note that $R_{\omega}(z)$ depends only on $\left.\omega\right|_{\mathscr{H}(0)}$, so by the Markov property

$$
\mathbf{P}_{\omega}^{X_{0}}\left(B \mid X_{1}, X_{2}, \ldots, X_{t}\right)=R_{\omega}\left(X_{t}\right) \cdot \mathbf{1}_{X_{1}, \ldots, X_{t} \in \mathscr{H}(0)}
$$

In addition, $B \in \sigma\left(X_{1}, X_{2}, \ldots\right)$ and therefore almost surely

$$
\lim _{t \rightarrow \infty} R_{\omega}\left(X_{t}\right) \geq \mathbf{1}_{B} .
$$

In particular, $\tilde{\mathbf{P}}$-almost surely,

$$
\lim _{t \rightarrow \infty} R_{\omega}\left(X_{t}\right)=1
$$

and for the subsequence of regeneration times we get that $\tilde{\mathbf{P}}$-almost surely

$$
\begin{equation*}
\lim _{n \rightarrow \infty} R_{\omega}\left(X_{t_{n}}\right)=1, \tag{3}
\end{equation*}
$$

and using the bounded convergence theorem, for

$$
R_{n}=\mathbf{E}_{\tilde{\mathbf{P}}}\left(R_{\omega}\left(X_{t_{n}}\right)\right)
$$

we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} R_{n}=1 \tag{4}
\end{equation*}
$$

Let $\left\{\tilde{\omega}, \mathcal{T},\left\{Y_{n}\right\}\right\}$ be sampled according to μ and let X_{n} be a random walk on the environment $\tilde{\omega}$, which is independent of $\left\{\mathcal{T},\left\{Y_{n}\right\}\right\}$ conditioned on $\tilde{\omega}$. Let B_{N} be the event

$$
\lim _{n \rightarrow \infty}\left\langle X_{n}, \ell\right\rangle=\infty \quad \text { and } \quad \forall_{n}\left\langle X_{n}, \ell\right\rangle \geq\left\langle Y_{-N}, \ell\right\rangle
$$

Then by Lemma 3.3

$$
\begin{equation*}
\left(\mu \otimes P_{\tilde{\omega}}^{0}\right)\left(B_{n}\right)=R_{n} \tag{5}
\end{equation*}
$$

Remembering that

$$
A_{\ell}=\bigcup_{n=1}^{\infty} B_{n}
$$

we get from (5) that

$$
\left(\mu \otimes P_{\tilde{\omega}}^{0}\right)\left(A_{\ell}\right)=\lim _{n \rightarrow \infty} R_{n}=1,
$$

as desired.
Proof of Proposition 3.1. We define the coupling on every regeneration slab. Let $\tilde{\lambda}$ be the distribution on $\tilde{S}=\{L, W, \tilde{W}, u, K\}$ so that $\{L, \tilde{W}, u, K\}$ is distributed according to λ and W is defined as follows:

$$
W(z)= \begin{cases}\tilde{W}(z), & \text { if } z \notin K([0, u]), \\ \psi(z), & \text { if } z \in K([0, u]),\end{cases}
$$

where $\psi: \mathbb{Z}^{d} \rightarrow \mathcal{M}$ is sampled according to P, independently of $\{L, \tilde{W}, u, K\}$.
Claim 3.4. Conditioned on L, the environment W is i.i.d. with marginal distribution Q, and independent of u and K.

We now sample the environments and the path as we did in Section 2: Let $\left\{\tilde{S}_{n}\right\}_{n=-\infty}^{\infty}$ be i.i.d. regeneration slabs sampled according to $\tilde{\lambda}$. Let $Y_{0}=0$ and define, inductively, $Y_{n+1}=Y_{n}+K_{n}\left(u_{n}\right)$ for $n \geq 0$ and $Y_{n-1}=Y_{n}-K_{n-1}\left(u_{n-1}\right)$ for $n \leq 0$. Almost surely \mathbb{Z}^{d} is the disjoint union of the sets $Y_{n}+\mathcal{K}_{L_{n}}$. For every
$z \in \mathbb{Z}^{d}$ let $n(z)$ be the unique n such that $z \in Y_{n}+\mathcal{K}_{L_{n}}$. We let ω be the environment

$$
\omega(z)=W_{n(z)}\left(z-Y_{n(z)}\right)
$$

we let $\tilde{\omega}$ be the environment

$$
\tilde{\omega}(z)=\tilde{W}_{n(z)}\left(z-Y_{n(z)}\right),
$$

and take $\mathcal{T} \subseteq \mathbb{Z}^{d}$ to be

$$
\mathcal{T}=\bigcup_{n=-\infty}^{\infty}\left(Y_{n}+K_{n}\left[0, u_{n}\right]\right)
$$

Clearly, $\{\tilde{\omega}, \mathcal{T}\}$ is distributed according to μ and ω and $\tilde{\omega}$ agree on $\mathbb{Z}^{d}-\mathcal{T}$. Therefore all we need to show is that ω is distributed according to P and is independent of the path \mathcal{T}. This follows from Claim 3.4: conditioned on $\left\{u_{n}\right\}_{n=-\infty}^{\infty}$, W is P-distributed and independent of the path \mathcal{T}. Therefore it is P-distributed and independent of the path \mathcal{T} as we integrate over $\left\{u_{n}\right\}_{n=-\infty}^{\infty}$.

Proof of Claim 3.4. It is sufficient to show that conditioned on L, for every finite set $J=\left\{x_{i}: i=1, \ldots, k\right\}$ with $J \subseteq \mathcal{K}_{L}$, the distribution of $\left\{W\left(x_{i}\right)\right\}_{x_{i} \in J}$ is i.i.d. with marginal Q and independent of u and K. This will follow if we prove that for every finite set $J=\left\{x_{i} \mid i=1, \ldots, k\right\}$ with $J \subseteq \mathcal{K}_{L}$, conditioned on L, on K and u and on the event $J \cap K[0, u]=\varnothing$, the distribution of $\left\{\tilde{W}\left(x_{i}\right)\right\}_{x_{i} \in J}$ is i.i.d. with marginal Q.

To this end, fix J and note that for every finite set U that is disjoint of J, the event $\{K[0, u]=U\}$ is independent of $\left\{\tilde{W}\left(x_{i}\right)\right\}_{x_{i} \in J}$. Therefore, conditioned on the event $\{K[0, u]=U\}$ (and thus implicitly conditioning on K and u), the distribution of $\left\{\tilde{W}\left(x_{i}\right)\right\}_{x_{i} \in J}$ is i.i.d. with marginal Q. By integrating with respect to U we get that $\left\{W\left(x_{i}\right)\right\}_{x_{i} \in J}$ is Q-distributed, and by the fact that it was Q-distributed conditioned on K and u we get the independence.
4. Intersection of paths. In this section we will see some interaction between the backward path and the path of an independent random walk.

Let Q be a uniformly elliptic distribution so that $0<\mathbf{P}\left(A_{\ell}\right)<1$ and let $(\omega, \tilde{\omega}, \mathcal{T})$ be as in Proposition 3.1. Let z_{0} be an arbitrary point in \mathbb{Z}^{d}, and let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a random walk on the configuration ω starting at z_{0}, such that:

1. $\left\{X_{i}\right\}$ is conditioned on the (positive probability) event that $\lim _{i \rightarrow \infty}\left\langle X_{i}, \ell\right\rangle=$ $-\infty$.
2. Conditioned on $\omega,\left\{X_{i}\right\}_{i=1}^{\infty}$ is independent of $\tilde{\omega}$ and \mathcal{T}.

The purpose of this section is the following easy lemma:
Lemma 4.1. Under the conditions stated above, almost surely there exist infinitely many values of i such that $X_{i} \in \mathcal{T}$.

We will prove that almost surely there exists one such value of i. The proof that infinitely many exist is very similar but requires a little more care, and for the purpose of proving the main theorem of this paper one such i is sufficient.

Proof. We need to show that

$$
\begin{equation*}
\left(\tilde{P} \otimes P_{\omega}^{z_{0}}\right)\left(\lim _{i \rightarrow \infty}\left\langle X_{i}, \ell\right\rangle=-\infty \text { and } \forall_{i}\left(X_{i} \notin \mathcal{T}\right)\right)=0 \tag{6}
\end{equation*}
$$

In order to establish (6), let $\left\{Y_{i}\right\}_{i=1}^{\infty}$ be a random walk on the environment $\tilde{\omega}$, coupled to the rest of the probability space as follows:

Let

$$
i_{0}=\inf \left\{i: \omega\left(X_{i}\right) \neq \tilde{\omega}\left(X_{i}\right)\right\} \geq \inf \left\{i: X_{i} \in \mathcal{T}\right\}
$$

Now, for $i<i_{0}$, we define $Y_{i}=X_{i}$. For $i \geq i_{0}, Y_{i}$ is determined based on Y_{i-1} according to $\tilde{\omega}\left(Y_{i-1}\right)$ independently of X_{i}, ω and \mathcal{T}. Now, note that

$$
\forall_{i}\left(X_{i} \notin \mathcal{T}\right) \quad \Longrightarrow \quad i_{0}=\infty \quad \Longrightarrow \quad \forall_{i}\left(X_{i}=Y_{i}\right)
$$

Therefore,

$$
\left(\lim _{i \rightarrow \infty}\left\langle X_{i}, \ell\right\rangle=-\infty \text { and } \forall_{i}\left(X_{i} \notin \mathcal{T}\right)\right) \Longrightarrow \quad \lim _{i \rightarrow \infty}\left\langle Y_{i}, \ell\right\rangle=-\infty
$$

The proof is concluded if we remember that by Proposition 3.2,

$$
\left(\tilde{P} \otimes P_{\tilde{\omega}}^{z 0}\right)\left(\lim _{i \rightarrow \infty}\left\langle Y_{i}, \ell\right\rangle=-\infty\right)=0
$$

5. Proof of main theorem.

Lemma 5.1. Let $d \geq 5$, and assume that the set A of speeds contains two nonzero elements. Then there exists z_{0} such that

$$
\left(\tilde{P} \otimes P_{\omega}^{z_{0}}\right)\left(\lim _{i \rightarrow \infty}\left\langle X_{i}, \ell\right\rangle=-\infty \text { and } \forall_{i}\left(X_{i} \notin \mathcal{T}\right)\right)>0 .
$$

Proof. Let

$$
\tilde{\mathcal{T}}=\left\{X_{i}: i=1,2, \ldots\right\} .
$$

We use the following claim whose proof is deferred:
Claim 5.2. Let \tilde{B} be the event that $\left\langle X_{i}, \ell\right\rangle<\left\langle X_{0}, \ell\right\rangle$ for all $i>0$. Note that \tilde{B} has positive probability. Also, let $\mathcal{T}^{\prime}=\mathcal{T} \cap\{z:\langle z, \ell\rangle \leq 0\}$. Then, if A contains two distinct nonzero elements then

$$
\begin{equation*}
\sum_{z \in \mathbb{Z}^{d}} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right)^{2}<\infty \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{z \in \mathbb{Z}^{d}} \mathbb{P}^{0}(z \in \tilde{\mathcal{T}} \mid \tilde{B})^{2}<\infty \tag{8}
\end{equation*}
$$

By Proposition 3.1, \mathcal{T}^{\prime} and $\tilde{\mathcal{T}}$ are independent random sets and therefore so are \mathcal{T}^{\prime} and $\tilde{\mathcal{T}} \mid \tilde{B}$. Therefore,

$$
\begin{aligned}
\left(\tilde{E} \otimes E_{\omega}^{z_{0}}\right)\left(\left|\mathcal{T}^{\prime} \cap \tilde{\mathcal{T}}\right| \mid \tilde{B}\right) & =\sum_{z \in \mathbb{Z}^{d}} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right) \mathbb{P}^{z_{0}}(z \in \tilde{\mathcal{T}} \mid \tilde{B}) \\
& =\sum_{z \in \mathbb{Z}^{d}} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right) \mathbb{P}^{0}\left(z-z_{0} \in \tilde{\mathcal{T}} \mid \tilde{B}\right)
\end{aligned}
$$

with the last equality following from translation invariance of the annealed measure. Let

$$
M=\sum_{z \in \mathbb{Z}^{d}} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right)^{2}
$$

and

$$
\tilde{M}=\sum_{z \in \mathbb{Z}^{d}} \mathbb{P}^{0}(z \in \tilde{\mathcal{T}} \mid \tilde{B})^{2}
$$

let λ be so small that $\lambda M+\lambda \tilde{M}+\lambda^{2}<1$, and let R be so large that

$$
\sum_{\|z\|>R} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right)^{2}<\lambda \quad \text { and } \quad \sum_{\|z\|>R} \mathbb{P}^{0}(z \in \tilde{\mathcal{T}} \mid \tilde{B})^{2}<\lambda
$$

Taking z_{0} such that $\left\|z_{0}\right\|>2 R$ and $\left\langle z_{0}, \ell\right\rangle<0$ we get, using Cauchy-Schwarz, that

$$
\begin{aligned}
& \left(\tilde{E} \otimes E_{\omega}^{z_{0}}\right)\left(\mid \mathcal{T}^{\prime} \cap \tilde{\mathcal{T}} \| \tilde{B}\right) \\
& \quad=\sum_{z \in \mathbb{Z}^{d}} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right) \mathbb{P}^{0}\left(z-z_{0} \in \tilde{\mathcal{T}} \mid \tilde{B}\right) \\
& = \\
& \quad \sum_{z \in B(0, R)} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right) \mathbb{P}^{0}\left(z-z_{0} \in \tilde{\mathcal{T}} \mid \tilde{B}\right) \\
& \quad \quad+\sum_{z \in B\left(z_{0}, R\right)} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right) \mathbb{P}^{0}\left(z-z_{0} \in \tilde{\mathcal{T}} \mid \tilde{B}\right) \\
& \quad \quad+\sum_{z \in \mathbb{Z}^{d}-B(0, R)-B\left(z_{0}, R\right)} \tilde{P}\left(z \in \mathcal{T}^{\prime}\right) \mathbb{P}^{0}\left(z-z_{0} \in \tilde{\mathcal{T}} \mid \tilde{B}\right) \\
& \leq \lambda M+\lambda \tilde{M}+\lambda^{2}<1 .
\end{aligned}
$$

Therefore $\tilde{P} \otimes P_{\omega}^{z_{0}}\left(\mathcal{T}^{\prime} \cap \tilde{\mathcal{T}}=\varnothing \mid \tilde{B}\right)>0 . P_{\omega}^{z_{0}}(\tilde{B})>0$ and by the choice of z_{0}, conditioned on $\tilde{B}, \mathcal{J}^{\prime} \cap \tilde{\mathcal{T}}=\varnothing$ if and only if $\mathcal{T} \cap \tilde{\mathcal{T}}=\varnothing$. Therefore $\mathcal{T} \cap \tilde{\mathcal{T}}$ is empty with positive probability.

Proof of Claim 5.2. We will prove (7). Equation (8) follows from the exact same reasoning. First we get an upper bound on $\mu\left(Y_{-n}=z\right)$. The sequence $\left\{O_{n}=\right.$ $\left.Y_{-n}-Y_{-n-1}\right\}$ is an i.i.d. sequence. Furthermore, due to ellipticity there exist d linearly independent vectors v_{1}, \ldots, v_{d} and $\varepsilon>0$ such that for every $k=1, \ldots, d$, and every $\delta \in\{+1,-1\}$,

$$
\mu\left(O_{1}=2 v_{1}+\delta v_{k}\right)>\varepsilon
$$

(v_{1} is, approximately, in the direction of ℓ, while the others are, approximately, orthogonal to ℓ.)

Let

$$
A=\left\{2 v_{1}+\delta v_{k} \mid k=1, \ldots, d ; \delta \in\{+1,-1\}\right\}
$$

and let $p=\mu\left(O_{1} \in A\right)$. Fix n, and let $E^{(n)}$ be the event that at least $\pi_{n}=\left\lceil\frac{1}{2} p n\right\rceil$ of the O_{i} 's, $i=1, \ldots, n$, are in A. For every subset H of $\{1, \ldots, n\}$ of size π_{n}, let $E_{H}^{(n)}$ be the event that the elements of H are the smallest π_{n} numbers i such that $O_{i} \in A$. Then from heat kernel estimates for bounded i.i.d. random walks in Z^{d} we get that for every $z \in \mathbb{Z}^{d}$,

$$
\mu\left(\sum_{i \in H} O_{i}=z \mid E_{H}^{(n)}\right)<C n^{-d / 2}
$$

Conditioned on $E_{H}^{(n)}$,

$$
\sum_{i \in H} O_{i} \quad \text { and } \quad \sum_{i \notin H} O_{i}
$$

are independent, so remembering that $Y_{-n}=\sum_{i=1}^{n} O_{i}$, we get that

$$
\mu\left(Y_{-n}=z \mid E_{H}^{(n)}\right)<C n^{-d / 2} .
$$

The events

$$
\left\{E_{H}^{(n)} \mid H \subseteq[1, n]\right\}
$$

are mutually exclusive and

$$
\mu\left(\bigcup_{H} E_{H}^{(n)}\right)>1-e^{-C n} .
$$

Therefore, for every n and $z \in \mathbb{Z}^{d}$,

$$
\begin{equation*}
\mu\left(Y_{-n}=z\right)<C n^{-d / 2} . \tag{9}
\end{equation*}
$$

Now, for every n and $z \in \mathbb{Z}^{d}$, let $Q(z, n)$ be the probability that z is visited during the nth regeneration, that is, between Y_{1-n} and Y_{-n}. The nth regeneration is independent of Y_{1-n}, so

$$
Q\left(z, n \mid Y_{1-n}\right)=Q\left(z-Y_{1-n}, 0\right)
$$

The fact that the speed of the walk in direction ℓ is positive yields

$$
\begin{equation*}
\sum_{z \in \mathbb{Z}^{d}} Q(z, 0) \leq E\left(\tau_{2}-\tau_{1}\right)<\infty \tag{10}
\end{equation*}
$$

From (9) we get that

$$
\sum_{z \in \mathbb{Z}^{d}}\left[\mu\left(Y_{-n}=z\right)\right]^{2} \leq C n^{-d / 2}
$$

Combined with (10) and remembering that Young's inequality for convolution says that $\|f \star g\|_{2} \leq\|f\|_{2}\|g\|_{1}$ for all f and g (and noting that the next regeneration slab is independent of Y_{1-n}, and thus the result is a convolution), we get

$$
\sum_{z \in \mathbb{Z}^{d}}[Q(z, n)]^{2} \leq C n^{-d / 2}
$$

or

$$
\begin{equation*}
\sqrt{\sum_{z \in \mathbb{Z}^{d}}[Q(z, n)]^{2}} \leq C n^{-d / 4} \tag{11}
\end{equation*}
$$

Noting that

$$
\mu\left(z \in \mathcal{T}^{\prime}\right)=\sum_{n=1}^{\infty} Q(z, n)
$$

(11) and the triangle inequality tell us that

$$
\sqrt{\sum_{z \in \mathbb{Z}^{d}}\left[\mu\left(z \in \mathcal{T}^{\prime}\right)\right]^{2}} \leq C \sum_{n=1}^{\infty} n^{-d / 4}
$$

So for $d \geq 5$

$$
\sum_{z \in \mathbb{Z}^{d}}\left[\mu\left(z \in \mathcal{T}^{\prime}\right)\right]^{2}<\infty
$$

as desired.
Proof of Theorem 1.1. The theorem follows immediately from Lemma 4.1 and Lemma 5.1.

Acknowledgments. I thank G. Y. Amir, I. Benjamini, M. Biskup, N. Gantert, S. Sheffield and S. Starr for useful discussions. I thank O. Zeitouni for many important comments on a previous version of the paper. An anonymous referee is gratefully acknowledged for many important comments.

REFERENCES

[1] Bolthausen, E. and Sznitman, A.-S. (2002). On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. 9 345-375. MR2023130
[2] Goergen, L. (2006). Limit velocity and zero-one laws for diffusions in random environment. Ann. Appl. Probab. 16 1086-1123. MR2260058
[3] SZnitman, A.-S. AND ZERNER, M. (1999). A law of large numbers for random walks in random environment. Ann. Probab. 27 1851-1869. MR1742891
[4] SRinivasa Varadhan, S. R. (2003). Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56 1222-1245. MR1989232
[5] Zerner, M. P. W. (2002). A non-ballistic law of large numbers for random walks in i.i.d. random environment. Electron. Comm. Probab. 7 191-197. MR1937904
[6] Zerner, M. P. W. and Merkl, F. (2001). A zero-one law for planar random walks in random environment. Ann. Probab. 29 1716-1732. MR1880239

Department of Mathematics
University of California, Los Angeles, BoX 951555
Los Angeles, California 90095-1555
USA
E-MAIL: berger@math.ucla.edu

[^0]: Received October 2006; revised March 2007.
 AMS 2000 subject classification. 60K37.
 Key words and phrases. Random walk, random environment.

