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SPATIAL VARIATION OF TOTAL COLUMN OZONE ON
A GLOBAL SCALE

BY MICHAEL L. STEIN1

University of Chicago

The spatial dependence of total column ozone varies strongly with lat-
itude, so that homogeneous models (invariant to all rotations) are clearly
unsuitable. However, an assumption of axial symmetry, which means that
the process model is invariant to rotations about the Earth’s axis, is much
more plausible and considerably simplifies the modeling. Using TOMS (To-
tal Ozone Mapping Spectrometer) measurements of total column ozone over
a six-day period, this work investigates the modeling of axially symmetric
processes on the sphere using expansions in spherical harmonics. It turns out
that one can capture many of the large scale features of the spatial covariance
structure using a relatively small number of terms in such an expansion, but
the resulting fitted model provides a horrible fit to the data when evaluated
via its likelihood because of its inability to describe accurately the process’s
local behavior. Thus, there remains the challenge of developing computation-
ally tractable models that capture both the large and small scale structure of
these data.

1. Introduction. Random process models on the sphere go back at least to
Obukhov (1947) [20] (see [32], Vol. 2, page 133), who derived the general spec-
tral representation for a (weakly) homogeneous process on the sphere in terms
of spherical harmonics. By homogeneous (sometimes referred to as isotropic for
processes on the sphere), we mean that the first two moments of the process are
invariant under all rotations of the sphere. Homogeneous models have found exten-
sive applications in models for the geomagnetic potential [18, 19]. For atmospheric
processes, invariance to all rotations will generally be too strong an assumption
because of differences in how the process behaves at different latitudes. However,
invariance to rotations about the Earth’s axis may sometimes hold to a decent ap-
proximation, especially for processes in the stratosphere for which surface effects
may not matter much. Jones [13] called such processes axially symmetric and
showed how they could be represented in terms of spherical harmonics. This pa-
per applies Jones’ approach to satellite-based observations of total column ozone
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over a six-day period. The near global coverage and high spatial resolution of the
available satellite data provides a good testbed for examining the effectiveness of
this approach.

Section 2 describes the Level 2 (ungridded) TOMS ozone data used here and
briefly reviews past efforts to model statistically total column ozone on a global
scale. Section 3 gives some preliminary analyses, including the approach to re-
moving a mean function from the observations and various displays of empirical
variograms for the ozone residuals. These analyses show that there are major dif-
ferences in the spatial dependence as a function of latitude, so that homogeneity
is badly untrue, but that axial symmetry is fairly reasonable and, thus, an axi-
ally symmetric model appears to provide a good compromise between fidelity and
complexity. Section 4 explains how series expansions in spherical harmonics can
be used to represent axially symmetric processes in terms of the covariance matri-
ces of the random coefficients. Truncating this series expansion after a moderate
number of terms leads to major computational advantages in terms of calculating
kriging predictors and likelihoods. Section 5 estimates the parameters in such a
truncated expansion for six days of TOMS data. In order to obtain an estimated co-
variance structure that follows the large scale patterns in the empirical variogram,
a weighted least squares fit is found. The resulting fitted model provides good
visual agreement with the empirical variograms as a function of latitude. Unfortu-
nately, as demonstrated in Section 6, the weighted least squares fit has a horribly
low likelihood even compared to a model that assumes no spatial dependence, ap-
parently because of its inability to capture the local behavior of the data. Section 7
discusses how one might obtain a better compromise between computational fea-
sibility and fidelity to the data. In addition, it describes a new data product that
NASA might consider producing that would be intermediate between the Level 2
data used here and the Level 3 daily gridded data product it now produces. This
product would give values of ozone on a grid but retain the time of observation
information in the Level 2 data, giving multiple observations in a day for parts of
the Earth scanned more than once during the day. There is a considerable litera-
ture on mapping surface levels of biologically harmful ultraviolet-B radiation on
time scales as short as 15 minutes [1, 29], for which total column ozone levels are
a critical input, so an understanding of variations in total column ozone on time
scales shorter than a day is of obvious interest.

2. Data. The Nimbus-7 satellite carried a TOMS instrument that measured
total column ozone daily from November 1, 1978 to May 6, 1993. This satellite
followed a Sun-synchronous polar orbit with an orbital frequency of 13.825 orbits
a day (about 104 minutes). As the satellite orbited, a scanning mirror repeatedly
scanned across a track about 3000 km wide, each track yielding 35 total column
ozone measurements [16]. This version of the data is known as Level 2 and is pub-
licly available from http://disc.sci.gsfc.nasa.gov/data/datapool/TOMS/Level_2/.
This work focuses on data from six consecutive days, May 1–6, 1990, containing
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over one million observations. Because the instrument makes use of backscattered
sunlight, measurements are not available south of 73◦S during this week.

It is in fact more common to study the gridded Level 3 version of the TOMS
data, in which the Level 2 values are interpolated daily onto a grid of 1◦ latitude ×
1.25◦ longitude for latitudes between 50◦S and 50◦N (with fewer grid points per
latitude near the poles) [16]. For example, [5, 8, 12] and [26] consider statistical
models for the spatial–temporal variation of various subsets of the Level 3 data. To
a rough approximation, Level 3 observations can be treated as if they were taken at
local noon [5]. However, the specific times of observations are lost in the Level 3
data. Thus, with Level 3 data, it is not possible to distinguish small-scale spatial
(on the order of hundreds of kilometers) from small-scale temporal (on the order
of a few hours) variation. In contrast, Level 2 data does provide some information
for distinguishing between these sources of variation. In particular, for regions not
near the equator, there is considerable overlap between the observation domains
for consecutive orbits, so there are many pairs of measurements at nearly the same
spatial location that are about 104 minutes apart. The focus in this work is on the
purely spatial variation at a fixed time. We will study this variation by only con-
sidering dependence between observations on a common orbit, since observations
within an orbit, especially those that are geographically close, were taken within
minutes of each other and are effectively simultaneous.

Cressie and Johanneson [4] is the only other work of which I am aware that
considers statistical models for Level 2 TOMS data on a global scale. In addition,
as we do here, they use a series expansion for the spatial covariance function.
However, they do not distinguish between observations on different orbits within
the same day and they do not attempt to take advantage of axial symmetry in their
model.

3. Preliminary analyses. Figure 1 shows boxplots of all observed total col-
umn ozone levels by latitude bands for the period May 1–6, 1990. This figure
shows that ozone levels vary strongly with latitude and that variation within a lat-
itude is much lower near the equator than elsewhere. There is also some evidence
of positive skewness even on the logarithmic scale for the distributions of ozone
levels between the equator and 40◦N. As a general principle in analyzing space–
time data, I would argue that it is important to separate out purely spatial variation
(i.e., not varying with time) from temporally varying spatial patterns (see [28] for
an example of problems that can happen if this is not done). Here, we will use a
regression approach to remove at least some of this purely spatial variation. Obvi-
ously, the results then depend somewhat on the regressors chosen, but a somewhat
arbitrarily chosen mean function model seems preferable to making no attempt
to remove the purely spatial variation. This and all further analyzes here will be
done on the natural logarithms of total column ozone (in Dobson units), since the
process is more nearly Gaussian on this scale.
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FIG. 1. Total column ozone by latitude band, May 1–6, 1990.

The regressors used were selected spherical harmonics. Specifically, denot-
ing latitude by L (−1

2π ≤ L ≤ 1
2π ) and longitude by � (−π < � ≤ π ) and

writing P m
n for the Legendre polynomial of degree n and order m, the regres-

sors were P m
n (sinL) cos(m�) and P m

n (sinL) sin(m�) for n = 0,1, . . . ,12 and
m = 0, . . . ,min(3, n) for a total of 78 covariates. The restriction m ≤ n just re-
flects the fact that P m

n is identically 0 for m > n and the restriction m ≤ 3 was
imposed to allow more flexibility in variations across latitudes than across longi-
tudes within latitudes. The observations were averaged into bins of size 1◦ latitude
by 2◦ longitude and then the coefficients of the mean function were estimated by
ordinary least squares using the bin averages of ozone as the responses and the
spherical harmonics evaluated at the bin averages of latitudes and longitudes as
the regressors. The fitted model explains 88% of the variation in the original ozone
observations (even though the model was fitted to the bin averages). If one uses a
similar approach using only covariates that do not depend on longitude, the fraction
of variation explained is about 80%, so including some dependence on longitude in
the mean function seems justified. A boxplot of the residuals by latitude from the
model including longitudinal dependence (not shown) indicates that the latitudi-
nal trend has been effectively removed and the skewness much reduced, but these
residuals still show substantially more variation as one moves poleward. Separate
plots for the residuals on each of the six days are all quite similar, indicating that
the greater variation toward the poles is a stable pattern during this time period.

The spatial variation of these residuals clearly depends on latitude, which any
model for the spatial covariance structure will need to capture. However, one might
hope that the spatial dependence of residual ozone at two sites depends on the
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longitudes of these sites only through their difference, an invariance that, follow-
ing [13], we will call axial symmetry. Specifically, consider a random field Z on
the sphere with coordinates designated by (L, �). We will call Z (weakly) axially
symmetric if its mean depends only on latitude and there exists a function K on
[−1

2π, 1
2π]2 × (−π,π ] such that, for all (L, �) and (L′, �′),

cov{Z(L,�),Z(L′, �′)} = K(L,L′, � − �′).(1)

We will call such a K an axially symmetric covariance function.
For examining the local variation of a spatial process, it is often useful to con-

sider the variogram rather than the covariance function. For an axially symmetric
process, there exists a function γ on [−1

2π, 1
2π]2 ×(−π,π ] such that, for all (L, �)

and (L′, �′),
1
2 var{Z(L,�) − Z(L′, �′)} = γ (L,L′, � − �′).(2)

Since we have only required that the mean of Z be independent of longitude, we
do not necessarily have E{Z(L,�) − Z(L′, �′)}2 = var{Z(L,�) − Z(L′, �′)} as
we do for stationary processes. It is not clear whether one should define the vari-
ogram to be 1

2E{Z(L,�) − Z(L′, �′)}2 or 1
2 var{Z(L,�) − Z(L′, �′)} in this case,

but since we work with residuals here, the difference should not matter much.
Perhaps a more important issue is that, even if var{Z(L,�)} = K(L,L,0) is uni-
formly bounded in L, in contrast to the situation for stationary processes on R

d

(or homogeneous processes on the sphere), it does not follow that one can iden-
tify K up to an additive constant from γ . Specifically, it is possible to show that
two axially symmetric covariance functions K and K1 yield the same variogram
if and only if their difference, K(L,L′, �) − K1(L,L′, �), can be written in the
form a(L) + a(L′) for some function a. Consequently, one cannot compute or-
dinary kriging predictors (best linear unbiased predictors in which the mean is
assumed to be an unknown constant) just from γ . Despite this difficulty, the fact
that γ (L,L,0) = 0 for all L, whereas K(L,L,0) may vary with L, makes it eas-
ier to visualize differences in local variation as a function of latitude using the
variogram.

Figure 2 gives contour plots of an empirical version of γ (L,L′, �) for L = 40◦S,
0◦N, 20◦N, 40◦N and 60◦N, for |L − L′| < 9◦ and |�| < 20◦. These empirical var-
iograms use only pairs of observations from the same orbit, so these plots should
be nearly unaffected by temporal variations in Z. The Appendix gives further de-
tails on how the empirical variograms were computed. The plots show dramatic
variations in γ as the latitude of the first observation, L, varies. At longer lags,
there is generally much more variation for more poleward latitudes. Furthermore,
the patterns in the Northern and Southern hemispheres are quite different, as can
be seen by comparing the results at 40◦N and 40◦S. Another important feature
of these figures is the local anisotropies. For example, at 40◦S, the variogram in-
creases much more quickly as L′ moves northward rather than southward. The
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FIG. 2. Empirical (blue) and fitted (black) variograms of residual ozone with first observation at,
respectively, 40◦S, 0◦N, 20◦N, 40◦N and 60◦N. Actual values are 10−4 times the displayed contour
levels. The aspect ratios of the plots vary with latitude so that they roughly correspond to the local
relationship between a degree latitude and a degree longitude.
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FIG. 2. (Continued.)

approximately elliptical contours at 40◦N demonstrate a kind of local geomet-
ric anisotropy, indicating greater dependence in the southwest–northeast direction
than in the northwest–southeast direction. I will say a process is longitudinally re-
versible if K(L,L′, �) = K(L,L′,−�) for all L,L′ and �; it is apparent that the
residual ozone process does not possess this property.

For these plots to represent a sensible summary of the spatial variation,
var{Z(L,�, t) − Z(L′, �′, t)} should be, at least approximately, independent of t
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FIG. 3. Empirical variograms across longitudes for various latitudes, 40◦S (unlabeled), 0◦N,
20◦N, 40◦N and 60◦N (labeled 0, 2, 4 and 6, respectively) for orbits with first observation in the
Eastern hemisphere (black) and Western hemisphere (gray).

over this six-day period and depend on the longitudes � and �′ only through their
difference. Figure 3 gives pairs of spatial variograms along the east–west direction
at the same latitudes as in Figure 2, one using orbits in which the first observation
for the orbit was in the Western hemisphere and the other using orbits with first
observation in the Eastern hemisphere. The two variograms within a latitude band
do differ somewhat, although they are generally much more similar to each other
than they are to the variograms at different latitudes. Other variogram plots (not
shown) exhibit a similar consistency in results for the Western and Eastern hemi-
spheres and across the six days, suggesting that axial symmetry is a good if not
perfect assumption for these data.

One could get further information about spatial variation, especially about vari-
ation at larger differences in longitude, by considering pairs of observations from
different orbits. However, the observations would then not be so close together
in time. To investigate whether this time difference matters, for integer t , define
γ̂ (L,L′, �, t) as follows: set γ̂ (L,L′, �,0) = γ̂ (L,L′, �) as in the Appendix and,
for t �= 0, define γ̂ (L,L′, �, t) similarly, except that the average squared differ-
ence is taken over pairs of observations in which the second observation is t orbits
away from the first observation. Figure 4 plots γ̂ (L,L, �, t) for t = −1,0,1 and
L = 0◦N and 60◦N. At 60◦N, for all but the shortest positive longitudinal lags �,
γ̂ (L,L, �,1) < γ̂ (L,L, �,0) and the inequality is reversed for � < 0, which one
would expect if ozone tends to move eastward. At 0◦N, because orbits just barely
overlap, we only get to see “half” of the picture. Nevertheless, for the shorter lags,
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FIG. 4. Variograms within latitude band as a function of difference in longitudes (�1 − �2) at 0◦N
(black) and 60◦N (gray) for pairs of observations in the same orbit (solid curves), second observation
in orbit before first (◦) and second observation in orbit after first (+).

it now appears that the pattern has been reversed, indicative of westward move-
ment of ozone. Both the eastward movement at 60◦N and the westward movement
at the equator were also found in [5] by looking at Level 3 TOMS data on a daily
basis. It is interesting to find that these effects can be seen here looking at obser-
vations on consecutive orbits, which are only 104 minutes apart. It is not possible
to look for such effects on this shorter time scale using the Level 3 data.

4. Model. There are a number of ways one might seek to model axially sym-
metric processes. One possibility would be to adapt an approach for modeling non-
stationary covariance functions and try to restrict it so that only axially symmetric
processes result. Sampson and Guttorp [23] describe a popular method for model-
ing and estimating the nonstationary covariance function of a process on the plane
by assuming the process is isotropic after some mapping of the plane to itself. One
could try to adapt this approach to obtaining axially symmetric models by starting
out with a homogeneous process on the sphere and then allowing deformations that
retain axial symmetry; for example, for homogeneous Z on the sphere, consider
Z(φ(L), � + θ(L)) for φ a smooth, increasing function from [−1

2π, 1
2π] to itself

and θ continuous. However, this approach does not appear to allow for the strong
variation across latitudes in γ (L,L, �) (i.e., the variation across longitudes within
a latitude) shown in Figure 2. Paciorek and Schervish [21] describe a method of
generating nonstationary spatial covariance functions that can be adapted to pro-
duce axially symmetric covariance functions (e.g., by letting �i in (5) of [21]
depend only on latitude). The approach of Jun and Stein [14] is specifically aimed
at producing axially symmetric (space–time) covariance functions for processes
on spheres. However, unlike the series approach used here, the approaches in [21]
and [14] can only produce some subset of the class of axially symmetric mod-
els. In particular, it is not clear they could capture the radically different variogram



200 M. L. STEIN

structure at longer spatial lags as latitude varies shown in Figure 2 at the same time
as preserving the fairly similar local (up to a few hundred kilometers) variogram
structure at different latitudes.

This work adopts the approach described by Jones [13] (Section 4) using ex-
pansions in terms of spherical harmonics. Jones [13] writes everything in terms of
real quantities, but, as is often the case, it is cleaner to use a complex representa-
tion, even when one is only interested in real processes, and we shall do so here.
Write P̄ m

n for the normalized version of P m
n (normalized so its squared integral on

[−1,1] is 1). Consider

Z(L,�) =
∞∑

n=0

n∑
m=−n

Ynmeim�P̄ m
n (sinL),(3)

where the Ynm’s are complex-valued random variables and the infinite sum is un-
derstood to converge in mean square. The integer m gives the longitudinal fre-
quency and is generally called the wavenumber in the geophysical literature. If
Ynm = Y ∗

n,−m (where ∗ indicates complex conjugate), then Z is real-valued and we
shall assume this holds hereafter.

One reason for using (3) is that the second-order structure of the Ynm’s is par-
ticularly simple if Z is homogeneous on the sphere. Define δab to be 1 if a = b

and 0 otherwise. For Z to be a real mean square continuous homogeneous process
on the sphere, it is necessary and sufficient that EYnm = µδn0δm0 for µ real and

cov(Ynm,Yn′m′) def= E{(Ynm − EYnm)(Yn′m′ − EYn′m′)∗} = c(n)δnn′δmm′ with all
cn’s nonnegative and

∑∞
n=0(n + 1)c(n) < ∞ [32].

To obtain axial symmetry, the restrictions on the covariance structure of the
Ynm’s are weaker: EYnm = δm0µn with

∑∞
n=0 µ2

n < ∞ and cov(Ynm,Yn′m′) =
cm(n,n′)δmm′ under suitable restrictions on the complex-valued covariances
cm(n,n′). Specifically, for 0 ≤ m ≤ N , write Cm(N) for the complex-valued (real-
valued when m = 0) covariance matrix of (Ymm, . . . , YNm)′. Then for all integers
0 ≤ m ≤ N , Cm(N) must be positive semidefinite. Unlike the homogeneous case,
it does not appear possible to give simple necessary and sufficient conditions that
guarantee convergence to a mean square continuous limit in (3). However, since
we will only use models here for which cm(n,n′) = 0 whenever max(n,n′) is
greater than some fixed integer N , the mean square convergence of (3) will not be
an issue.

The axially symmetric covariance function corresponding to (3) is given by

K(L,L′, �) =
∞∑

m=−∞

∞∑
n,n′=|m|

eim�P̄ m
n (sinL)P̄ m

n′ (sinL′)cm(n,n′),(4)

where c−m(n,n′) = cm(n,n′)∗. A desirable feature of using (4) to modeling axi-
ally symmetric processes is that, as [13] notes, all continuous axially symmetric
covariance functions can be represented in this form, which follows from the com-
pleteness of P̄ m

m (sinL), P̄ m
m+1(sinL), . . . in the interval [−1

2π, 1
2π] for every m.
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To gain some intuition into the interpretation of the cm(n,n′)’s, it is worth con-
sidering what restrictions on the properties of Z follow from various restrictions
on the cm(n,n′)’s. As we have already noted, if cm(n,n′) = c(n)δnn′ for all pos-
sible m,n,n′, then Z is homogeneous, which Figure 2 shows is badly untenable
for total column ozone. We can obtain a somewhat richer class of models by con-
sidering cm(n,n′) of the form cm(n)δnn′ . Models of this form can have different
levels of variation at different latitudes, but they are longitudinally reversible and
have a reflection symmetry about the equator, K(L,L′, �) = K(−L,−L′, �), nei-
ther of which are supported by Figure 2. A still weaker assumption is to take the
cm(n,n′)’s to be real. However, it easily follows from (4) that this restriction im-
plies longitudinal reversibility, so even this weaker assumption is not tenable.

Thus, it is not apparent how we might simplify the structure of the cm(n,n′)’s
and still provide an adequate description of the covariance structure for this
process. Fitting the infinite sum (4) to data obviously requires some further re-
striction. Here, we will consider the simple choice of setting cm(n,n′) = 0 for
max(n,n′) > N for some positive integer N , or

K(L,L′, �) =
N∑

m=−N

N∑
n,n′=|m|

eim�P̄ m
n (sinL)P̄ m

n′ (sinL′)cm(n,n′).(5)

Since, for m > 0, the complex-valued positive semidefinite matrix Cm(N) is of
dimension (N −m+ 1)× (N −m+ 1), it requires (N −m+ 1)2 independent real
parameters to specify, which, together with the 1

2(N + 1)(N + 2) real parameters
needed to specify C0(N), yields a total of 12 + · · · + N2 + 1

2(N + 1)(N + 2) =
1
3(N + 1)(N2 + 2N + 3) real parameters. This rapid growth with N makes it dif-
ficult to take N even moderately large and here we just consider N = 6 and 7.

To enforce the restriction that Cm(N) is positive definite for each possible m,
we will parameterize Cm(N) using its Cholesky decomposition. For m = 0, this
gives the familiar decomposition of the form AAT , where A is a real lower trian-
gular matrix with nonnegative diagonal entries, and for m > 0, one gets a similar
decomposition of the form AA∗ (the ∗ indicates conjugate transpose), where A is
complex and lower triangular with (real) nonnegative diagonal entries. As in the
real case, every positive semidefinite matrix has such a decomposition and the de-
composition is unique if Cm(N) is positive definite ([10], page 114). Denote by
Am the lower triangular part of the Cholesky decomposition of Cm(N), keeping in
mind that A0 is real-valued. Finally, we will include a nugget effect in our model,
for a total of 120 parameters for the covariance function when N = 6 and 177
when N = 7.

5. Data analysis. To demonstrate that the model (5) with N = 7 can produce
a fitted covariance function that matches many of the features of the empirical
variograms in Figure 2, we will minimize a weighted least squares criterion to
estimate the parameters of the model, despite my reservations about estimating



202 M. L. STEIN

covariance functions based on fits to empirical variograms ([25], Section 6.9). Al-
though weighted least squares avoids any matrix inversions, if one uses fairly tight
bins, the computations are still formidable due to the fact that here the variogram
depends on two latitudes and a difference of longitudes. To reduce computations,
not all pairs of points within an orbit were used; the first point in each pair was
restricted to be in the latitude range [10p,10p + 1] for p = −7,−6, . . . ,8 and the
second point was restricted to be within 9◦ latitude and 20◦ longitude of the first.
Details of the binning, the weights and the computations are given in the Appendix.

It is not possible to estimate all 177 parameters of the covariance function from
the variogram. Specifically, since P̄ 0

0 is the constant function, changing varY00
and cov(Y00, Y0n) for n = 1, . . . ,7 changes K(L,L′, �) by a function of the form
a(L) + a(L′), which, as noted in the previous section, means the corresponding
variogram γ (L,L′, �) is unaffected. Thus, we will only be estimating 169 para-
meters in this model, not 177.

The R function nlm was used to minimize the weighted sum of squares criterion
as a function of the Am’s and the nugget variance. It turns out that allowing the di-
agonal elements of the Cm(N)’s to be negative so that there are no constraints on
the parameters speeds convergence considerably, although at the cost of a trivial
lack of identifiability in the parameters [any column of any Cm(N) can be mul-
tiplied by −1 without changing the model]. Even with this improvement, conver-
gence is still very slow and this algorithm cannot be used routinely for a problem
of this type. There is a substantial literature on least squares problems subject to
a positive-semidefinite constraint [11, 15, 31] and it is likely possible to do better,
but I will not pursue this issue further. In terms of fitting the qualitative features
of the empirical variogram, the estimated model does fairly well. Figure 2 shows
the contours for the fitted model and the empirical variogram at selected values
for the first latitude. In many respects, the fit is quite good, capturing the lower
levels of variation near the equator, the asymmetries between the Northern and
Southern hemispheres and the differing levels of departure from longitudinal re-
versibility at different latitudes. Clearly, there is some misfit as well. In particular,
at all latitudes, the very local variation is overestimated, a problem which should
be resolvable by putting greater weight on shorter lags in the criterion function.
The model also has trouble capturing the extended contours as one heads south-
ward when L = 40◦S. All in all, though, the agreement is quite remarkable given
the modest value for N . Furthermore, when N = 6, the fit is almost as good with
an increase in the weighted least squares criterion of under 4%.

Despite this good agreement with some of the global features of the vari-
ogram, there are some serious problems with this fitted model that are not read-
ily apparent in Figure 2. In particular, 28 out of 36 of the diagonal entries of
the estimated Am’s are effectively 0 in the sense that setting all 28 of these to
exactly 0 increases the weighted least squares criterion function by less than 1
part in a million. Defining Vjm = E(|Yjm − EYjm|2 | Ymm, . . . , Yj−1,m), a zero
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in the (j − m + 1)th diagonal element of Am corresponds to Vjm = 0. De-
noting by am(i, j) the (i, j)th element of Am, the nonzero diagonal elements
of the Am’s are a0(2,2), a0(3,3), a0(4,4), a1(1,1), a2(1,1), a2(2,2), a3(1,1) and
a4(1,1), which correspond to positive values for V10,V20,V30,V11,V22,V32,V33
and V44. Thus, Yjm’s with m = 5,6,7 do not contribute at all to the fitted model
and for m = 1,3,4, Cm(N) has rank one, which is in stark contrast to what hap-
pens for homogeneous models, in which case Cm(N) is proportional to the identity
matrix. It turns out that if am(i, i) = 0, then there is no loss in generality in the re-
sulting class of covariance matrices in taking am(j, i) = 0 for j > i. The actual
fitted model then arguably has only 65 “active” parameters: the nugget, 8 nonzero
Vjm’s, the real values of a0(j, k) for k = 2,3,4 and j = k + 1, . . . ,7 and the real
and imaginary parts of a1(j,1) for j = 2, . . . ,7, a2(j,1) for j = 2, . . . ,6, a2(j,2)

for j = 3, . . . ,6, a3(j,1) for j = 2, . . . ,5 and a4(j,1) for j = 2,3,4. Further-
more, setting a2(2,2) = 0 increases the criterion function by only 0.002%, so one
can remove another 9 parameters with hardly any impact on the least squares fit.
For N = 6, the resulting fit only has 25 active parameters and, as already noted,
this fit is only modestly worse than for N = 7. Thus, the series expansion approach
provides a quite parsimonious description of the larger scale features of the empir-
ical variograms. However, the fitted model for Z(L,�, t) (at a given t) is a nugget
effect plus a function of rank 13 (i.e., the continuous part of Z is determined by the
real-valued Y10, Y20 and Y30 and the complex-valued Y11, Y22, Y32, Y33 and Y44),
which is highly implausible. Thus, despite the respectable fit to the empirical var-
iogram in Figure 2, the resulting fitted model is in some regards seriously wrong.
We will explore this issue further in Section 6.

If one does not require Cm(N) to be positive semidefinite, then because γ is
linear in the elements of the Cm(N), the weighted least squares problem is linear
and, hence, trivially solvable in closed form. For the present model with N = 7,
removing the positive definite constraint allows one to find estimates that reduce
the weighted sum of squares by 68%, but, of course, the resulting model is not
positive definite and is, in fact, “badly” so in the sense that the Cm(N)’s have
many large negative eigenvalues. Thus, it is not surprising that the weighted least
squares solution with the positive definite constraint should have some parameter
estimates on the boundary of the parameter space. That so many of the parameter
estimates should end up on the boundary was unexpected.

6. Likelihood fits. To carry out a likelihood analysis on the full dataset under
a Gaussian model, one would need to model the space–time covariance structure
of all of the observations. We can avoid modeling the temporal behavior by just
considering the first orbit and acting as if all observations in that orbit were taken
simultaneously. Even so, the number of observations, s, in this orbit is 13,216,
so that a brute force calculation of the likelihood function at a given parameter
value would require an O(s3) calculation and O(s2) memory, which would be
very taxing computationally. However, for the model (5), it is possible to calculate
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the likelihood function at a given parameter value exactly using only a matrix de-
composition on a (real-valued) matrix of rank (N + 1)2, as well as some matrix
operations requiring O(s(N + 1)4) operations that can be done once independent
of the parameter values. The point is that our (real-valued) covariance matrices
are of the form of a multiple of the identity matrix (from the nugget effect) plus
a matrix of rank at most (N + 1)2, independent of the number of observations,
which follows from the series representation for K in (4). Cressie and Johanes-
son [4] exploited this fact to calculate kriging predictors based on the roughly
170,000 total column ozone measurements available in a day (in effect, ignoring
the differences in time for observations from different orbits). Using the Sherman–
Morrison–Woodbury identity [9] and a similar result for the determinant of matri-
ces with this structure, we can then calculate the inverse and determinant of the
covariance matrix needed for the Gaussian likelihood from the Cholesky decom-
position of an (N + 1)2 × (N + 1)2 matrix, requiring roughly 1

3(N + 1)6 floating
point operations.

To be more specific, we will assume the residual ozone process is a mean 0
Gaussian process. To evaluate the likelihood of the fitted model from the previous
section, we need to specify values for a0(j,1) for j = 1, . . . ,8 and we set them
equal to 0 for simplicity. If we instead fit a pure nugget effect to the observations
(i.e., treat them as Gaussian white noise) and maximize the likelihood with re-
spect to the nugget variance, the loglikelihood is increased by over 21,000, or over
1.6 loglikelihood units per observation greater. Of course, since these data clearly
show spatial dependence, the white noise model is itself terrible, so the weighted
least squares fit is a truly awful description of the data, at least in terms of like-
lihood. Although part of the problem with the weighted least squares estimates
may be due to setting a0(j,1) = 0 for j = 1, . . . ,8, the white noise model has no
parameters for spatial dependence, so it cannot be the whole problem. Thus, we
have a truly stunning example of the potential problems of using agreement with
empirical variograms as a way of fitting spatial covariance functions.

The estimated nugget variance is 5.36 × 10−3 under the white noise model,
an order of magnitude larger than the estimated nugget under the weighted least
squares criterion. As noted in the previous section, even the value 5.33 × 10−4

from the weighted least squares fit appears to be too large based on what is shown
in the empirical variograms, which suggest a nugget variance of no more than 1.7×
10−4 at all nonpolar latitudes (for latitudes between 50◦N and 50◦S, the smallest
binned variogram value is between 1.2 × 10−4 and 1.7 × 10−4). And, indeed,
a model that provided a good description of the local variation of the data should
yield an estimated nugget of around this size. The white noise model ignores the
spatial dependence and uses the empirical variance (uncentered, since we have
assumed the process has mean 0) of all of the observations to estimate its lone
parameter. If we attempt to fit the model from the previous section to the data
from the first orbit via maximum likelihood, we get an increase in loglikelihood
of 7372 units over the white noise model. This model has a nugget of 1.69 ×
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10−3, which is still radically higher than what the empirical variograms show.
This huge discrepancy between the MLE (maximum likelihood estimate) and the
empirical variogram can only be explained by the inappropriateness of the chosen
model. The fact that the MLE of the nugget is far too large indicates the source
of the problem is that the very smooth spherical harmonics of degree and order at
most 7 cannot accurately describe the smaller-scale dependencies of the process.
How much larger N would need to be to provide a decent description of the data
in terms of likelihood is unclear, but as the number of operations needed to do
the necessary matrix calculations for a single likelihood evaluation grows like N6

and the number of parameters like N3, we cannot take N all that large before
computations requiring optimizing or integrating over the exact likelihood become
overwhelming.

To get a better idea of how the truncated series expansion model compares to a
more sensible model than white noise, it is helpful to look at a small enough sub-
set of the data so that exact likelihood calculations can be done for other Gaussian
models. Specifically, let us consider the 839 observations taken during the first or-
bit on May 1, 1990 between the latitudes of 65◦S and 55◦S. The process looks
reasonably isotropic in this latitude range (not shown, but similar to the variogram
at 60◦N), so, in addition to evaluating the likelihood of the previous weighted least
squares fit and the MLE of the white noise model for these 839 observations, we
also find the MLE under a three-parameter model for the covariance structure in-
cluding a nugget variance and a term of the form θ1 exp(−d/θ2) with d the chordal
distance between observations. The maximized loglikelihood of the white noise
model is 204 greater than the weighted least squares fit from the previous section
with N = 7 and the loglikelihood of the nugget plus exponential model is 1403
greater than the white noise model. The maximized loglikelihood under (5) with
N = 7 (and 177 parameters) is 364 less than under the exponential model. Many
of the parameter estimates for (5) are unstable, as might be expected for a model
meant for a global scale with 177 parameters when there are only 839 observations
in a fairly small region. However, the estimated nugget does appear to be numer-
ically stable and, while it is much smaller than the MLE under the white noise
model (around 1.1 × 10−3 rather than 1.3 × 10−2), it is still much larger than the
apparent nugget shown in the empirical variogram. In the nugget plus exponential
model, the estimated nugget is 1.95 × 10−4, which is only moderately larger than
the empirical nugget effect.

7. Discussion. Given that total column ozone levels can change substantially
on the time scale of a few hours, the loss of within day temporal information in the
Level 3 TOMS could be important in some applications, for example, setting initial
conditions in numerical models for ozone [17] and, as noted in the Introduction,
for mapping surface ultraviolet radiation. Thus, it might be helpful if a gridded
version of the TOMS data were available in which the times of observations were
preserved. For grid cells covered by more than one orbit in a given day, there would
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FIG. 5. Predicted ozone levels (Dobson units) on grid May 1, 1990. Predictions for third orbit in
black, for fourth in gray, latitudes for two orbits slightly offset to avoid overlaps.

then be more than one observation reported on that day, each with its own time.
A plausible name for such a product would be Level 2.5 TOMS. Yet a further
embellishment would be to make a multiple imputation version of such a data set,
which would then allow users to account for the uncertainty in these interpolated
values. Such multiply imputed products have in fact been called for recently in the
meteorological literature [24].

Figure 5 displays a simple example of such a gridded data set for May 1, 1990
for latitudes between 62.5◦S and 57.5◦S based on the third and fourth orbits on that
day (the second orbit had missing observations). For example, the black numbers
in Figure 5 were obtained as follows: using observations from the third orbit in
latitude range 65◦S to 55◦S and the covariance function for the exponential model
with parameter estimates from the previous section (i.e., estimated from the first
orbit on that day), kriged values of the residual field were computed on a 1◦ latitude
by 5◦ longitude grid, the mean field added back and the result exponentiated to
obtain ozone values for a range of longitudes covered by the orbit. These predicted
values should be considered predicted medians rather than means, for which one
would want to take into account the nonlinear transformation (see [3], page 135).
The gray numbers in Figure 5 were obtained similarly using the fourth orbit. We
see that, in this case, there are modest differences in the predictions for the two
orbits where they overlap, but in other cases, the differences can be substantially
larger.

The computational advantages of representing the covariance structure as a di-
agonal matrix plus a matrix of fixed rank (i.e., independent of the size of the data
set) are very substantial, both for computing kriging predictors and for calculating
likelihoods. Thus, it is worth considering how this approach might be modified to
retain at least some of the computational gains but at the same time provide a bet-
ter representation of the small-scale behavior of the total column ozone process.
Here are three possibilities that could be worth exploring. First, increase the value
of N , the maximum value for n, but do not include every m such that |m| ≤ n

in (3), so that some higher frequency terms can be included without increasing
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the rank of the continuous part of the process too dramatically. Second, replace
the basis functions by less smooth functions, which is what Cressie and Johan-
neson [4] do. However, their models are not axially symmetric and, in any finite
expansion, replacing the sines and cosines with other functions of longitude loses
the axial symmetry. Thus, using less smooth functions of longitude would require
sacrificing exact axial symmetry. Replacing the Legendre polynomials by, say, a
wavelet expansion, may help to get more realistic high frequency variations across
latitudes, though. A third possibility is to recognize that we can replace the di-
agonal part of the covariance matrix by any matrix M for which linear systems
Mx = y can be solved quickly and still gain a computational advantage using the
Sherman–Morrison–Woodbury identity. Thus, we might replace the nugget effect
by a covariance function that is identically 0 for points more than a modest dis-
tance apart, yielding covariance matrices for which linear systems can be solved
quickly using sparse matrix methods [7].

Another possible solution to the computational problems posed by large spatial
data sets is to abandon calculating likelihoods and kriging predictors exactly, us-
ing, for example, approximate likelihood methods described in [2, 6] and [27]. Of
course, even if the computational problems can be handled, we are still faced with
the challenge of finding a model that captures both the large and small scale fea-
tures of the process. Thus, one could take the further step of abandoning the search
for a single global model and develop separate models for different latitude bands,
which would simplify both the modeling and computational challenges. However,
the large-scale features may be of particular scientific interest, for example, one
may want to predict the time evolution of the Ynm’s for relatively small values of
n and m.

Modeling covariance functions using truncated series expansions can be viewed
as an example of the “subset of regressors” approach to reducing the computa-
tion in nonparametric function estimation [22]. Although [30] and [22] have noted
problems with this approach for functions with fine features, the analysis here per-
haps highlights how wrong things can go using such models, especially in terms
of their likelihoods.

Given how hard it is just to model the purely spatial variation in total column
ozone residuals, what are the prospects for developing space–time models on a
global spatial scale and daily time scale? As noted by Jones [13], the model (3)
can be readily extended to the space–time setting by letting each Ynm be a stochas-
tic process in time. If one was only interested in the large-scale features of this
process, then such a model with only a limited number of terms might be fairly
useful. However, if we wish to describe small-scale spatial features accurately, we
may want to abandon the series approach and try something along the lines of
[14]. As already noted, the Level 3 gridded data are not sufficient for distinguish-
ing small-scale spatial and temporal variations. However, direct use of the Level 2
data in a comprehensive space–time model would certainly lead to tremendous
computational challenges, so that a Level 2.5 data set might be a better starting
point for such a study.
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APPENDIX

This appendix describes some of the computational details behind the work
in this paper. To compute the Legendre polynomials P m

n for 0 ≤ |m| ≤ n ≤ 7, the
method described in Section 4.4.4 of [33] was used to calculate and store P m

n (sin θ)

for every θ between −90◦ and 90◦ by increments of 0.25◦. Results for intermediate
angles were obtained and stored using a cubic spline interpolator through these
exact values.

To obtain the binned variogram at a given nominal latitude L0, the following
procedure was used (all angles are measured in degrees here). For integer pairs
(j, k) with −9 ≤ j < 9 and −20 ≤ k < 20, let (Li, �i) and (L′

i , �
′
i), i = 1, . . . , qjk ,

be the pairs of observations in a common orbit satisfying L0 ≤ Li < L0 + 1, j ≤
Li − L′

i < j + 1 and k ≤ �i − �′
i < k + 1. Define L̄ = q−1

jk

∑qjk

i=1(Li − L′
i ), �̄ =

q−1
jk

∑qjk

i=1(�i − �′
i ) and

γ̂

(
L0 + 1

2
,L0 + 1

2
+ L̄, �̄

)
= 1

2qjk

qjk∑
i=1

{Z(Li, �i) − Z(L′
i , �

′
i)}2.(6)

Note that we have not assigned this average to the “center” of the bin, that is,
(L0 + 1

2 ,L0 +j +1, k+ 1
2). Given the nature of the observation pattern for TOMS,

there are sometimes substantial differences between (L0 + 1
2 ,L0 + 1

2 + L̄, �̄) and
the bin center; the right-hand side of (6) should generally be more nearly unbiased
for γ (L0 + 1

2 ,L0 + 1
2 + L̄, �̄) than for γ (L0 + 1

2 ,L0 + j + 1, k + 1
2).

The weights in the weighted least squares procedure were set to the number of
pairs of observations contributing to each bin divided by the angle between the bin
centers plus 1◦. This weighting is obviously somewhat arbitrary; dividing by angle
plus 1◦ gives more weight to shorter arc distances, although as noted in Section 5,
perhaps even greater weight should have been given to shorter lags.
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