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Abstract. In this paper, we give estimates of the minimal L
1 distance between the distribution of the normalized partial sum and

the limiting Gaussian distribution for stationary sequences satisfying projective criteria in the style of Gordin or weak dependence
conditions.

Résumé. Dans cet article, nous donnons des majorations de la distance minimale L
1 entre la loi de la somme normalisée et sa

loi limite gaussienne pour des suites stationnaires satisfaisant des critères projectifs à la Gordin ou des conditions de dépendance
faible.
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1. Introduction

Let X1,X2, . . . , be a sequence of real-valued random variables (r.v.) with mean zero and finite variance. Let Sn =
X1 + X2 + · · · + Xn. By Fn we denote the distribution function (d.f.) of n−1/2Sn. Let Φσ be the d.f. of the N (0, σ 2)-
distribution. For independent and identically distributed (i.i.d.) r.v.’s, according to the central limit theorem (CLT),
Fn(x) converges to Φσ (x) uniformly for x in R, where σ is the standard deviation of X1. Agnew [1] proved that
the convergence also holds in Lr(R) for r > 1/2. Agnew’s result is called mean CLT in the case r = 1. Let then
ρ

(r)
n = ‖Fn − Φσ ‖r . For r = 1 and r = 2 and i.i.d. random variables with finite absolute third moment, Esseen [11]

proved that n1/2ρ
(r)
n converges to some explicit constant Ar(F ) depending only on the distribution function F of X1

(Theorems 3.2 and 4.2 in [11]). In particular, Esseen’s results imply that

ρ(r)
n = O

(
n−1/2) as n → ∞. (1.1)

Next Zolotarev [29] obtained the upper bound A1(F ) ≤ E(|X1|3)/(2σ 2). The proofs of these results are based on the
method of characteristic functions (cf. [18] for more details).

The case r = 1 is of special interest, since ρ
(1)
n is exactly the minimal distance between n−1/2Sn and a r.v. with

distribution N (0, σ 2) in L
1 (cf. [10], Section 11.8, Problems 1 and 2). Now let

d1(X,Y ) = sup
f ∈Λ1(R)

E
(
f (X) − f (Y )

)
, (1.2)
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where Λ1(R) is the set of 1-Lipschitzian functions from R to R. Applying the Kantorovich–Rubinstein theorem we
also have that ρ

(1)
n = d1(n

−1/2Sn,σY ) if Y is a N (0,1)-distributed random variable.
In this paper we are interested in extensions of (1.1) for r = 1 to sequences of dependent random variables. This

subject was studied by Sunklodas [28] in the case of uniformly mixing (in the sense of Ibragimov) stationary sequences
of real-valued random variables. Using the Stein method, he reached the rate of convergence O(n−1/2(logn)2) in
(1.1) for geometrically mixing sequences of random variables with finite eight moments. A different approach to
get rates of convergence in the CLT is Bergström’s [2] inductive proof of the Berry–Esseen theorem, based on the
Lindeberg method. Starting from Bergström’s recursion argument, Bolthausen [4] obtained exact rates of uniform
convergence for martingale difference arrays. Rio [25] adapted Bergström’s method to weakly dependent sequences
and obtained the Berry–Esseen theorem for stationary and uniformly bounded sequences of real-valued r.v.’s satisfying
the condition

∑
k kϕ(k) < ∞, where (ϕ(k))k denotes the sequence of uniform mixing coefficients of the sequence

(Xi)i∈N, in the sense of Ibragimov (confer [18] for an exact definition of these coefficients). This result was extended
to the multivariate case by Jan [19], Theorem 9. Jan also weakened the notion of weak dependence involved in Rio’s
paper (cf. Theorem 1 in [20] for more details). However the dependence coefficients in [19] are too restrictive for the
applications to some dynamical systems, such as Sinai’s billiard. Pène [22] noticed that the inductive proof of Jan
[19] can be adapted to get the rate of convergence O(n−1/2) for the minimal L

1-distance in the multivariate CLT for
stationary sequences satisfying some dependence conditions. In particular her result applies to sums of bounded r.v.’s
defined from dynamical systems (such as Sinai’s billiard) or strongly mixing sequences in the sense of Rosenblatt.
For example, Pène’s result yields (1.1) (with r = 1) for stationary sequences of bounded random variables (Xi)i∈N

satisfying the condition
∑

k kα(k) < ∞, where (α(k))k denotes the sequence of strong mixing coefficients of (Xi)i∈Z

in the sense of Rosenblatt (confer [18] for a definition of these coefficients).
We now describe the contents of our paper. Our aim is to provide rates of convergence in the mean CLT for station-

ary sequences of real-valued r.v.’s satisfying either projective criteria in the style of Gordin [14] or weak dependence
conditions.

In Section 2, we give bounds in the stationary case involving L
p-norms of conditional expectations. Let (Xi)i∈Z be

a stationary sequence of real-valued random variables, Mk = σ(Xi : i ≤ k) and Ek denote the conditional expectation
with respect to Mk . In Section 2.1, we obtain in Theorem 2.1 the rate of convergence O(n−1/2 logn) in the mean CLT
for stationary and ergodic martingale differences sequences (Xi)i∈Z with finite absolute third moments satisfying the
projective conditions

sup
m>0

∥∥∥∥∥
m∑

k=1

E0
(
X2

k − σ 2)∥∥∥∥∥
1

< ∞ and sup
m>0

∥∥∥∥∥
m∑

k=1

X0E0
(
X2

k − σ 2)∥∥∥∥∥
1

< ∞, (1.3)

where σ 2 = VarX0. In Section 2.2, we generalize Theorem 2.1 to ergodic stationary sequences satisfying projec-
tive criteria. In Section 2.3 we give some applications to bounded sequences. For example, assuming that the series∑

k>0 E0(Xk) converges in L
1, Theorem 2.3 provides rates of convergence in the mean CLT as soon as E0(S

2
m/m)

converges to σ 2 in L
1. This condition appears in the conditional CLT of Dedecker and Merlevède [6] and is rather

mild. For example the rate of convergence O(n−1/2 logn) is obtained under the projective conditions

∑
m>0

∥∥∥∥∑
k≥m

E0(Xk)

∥∥∥∥
1
< ∞ and sup

m>0

∥∥E0
(
S2

m − mσ 2)∥∥
1 < ∞. (1.4)

Again the proofs are based on the Lindeberg method at order three.
In Section 3, we give projective conditions or weak dependence conditions implying (1.1) for r = 1. Conditions

(1.3) and (1.4) involve conditional second moments. It seems difficult to get the optimal rate of convergence O(n−1/2)

under second-order conditions (at least for the Berry–Esseen theorem: cf. [25] and [4], Theorem 4). Therefore our re-
sults hold under projective conditions on the monoms of degree three. For example, (1.1) holds for stationary bounded
martingale difference sequences under the projective conditions∑

k>0

∥∥E0
(
X2

k

) − σ 2
∥∥

1 < ∞ and
∑
k>0

sup
j≥k

∥∥E0
(
XkX

2
j

) − E
(
XkX

2
j

)∥∥
1 < ∞. (1.5)
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For stationary sequences, one needs to strengthen (1.5): we obtain (1.1) for stationary sequences of bounded r.v.’s
under the projective conditions∑

k>0

k sup
i≥j≥k

∥∥E0
(
XkX

α
j X

β
i

) − E
(
XkX

α
j X

β
i

)∥∥
1 < ∞, with (α,β) ∈ {0,1}2, (1.6)

which can also be deduced from Theorem 1.1 in [22]. It is worth noticing that the Berry–Esseen type Theorem 9 in
[19] requires L

∞-norms instead of L
1-norms in (1.6). The proofs of these results are based on the Lindeberg method

at order four. Therefore, in the unbounded case, the results hold for sequences of random variables with finite fourth
moments (cf. Theorems 3.1(a) and 3.2(a) for detailed conditions). For example, Theorem 3.1(a) applied to strongly
mixing and stationary sequences yields the rate of convergence O(n−1/2) in the mean CLT if there exists some p > 1
such that∑

k>0

k(p+1)/(p−1)α(k) < ∞ and E
(|X0|ap

)
< ∞, (1.7)

where a = 4. By contrast, the Berry–Esseen type theorem for functionals of stationary discrete Markov chains due to
Bolthausen [3] holds under condition (1.7) with a = 3. In order to improve Theorems 3.1(a) and 3.2(a) in the case of
strongly mixing sequences we adapt the truncation method in [24] to our context. We then get the rate O(n−1/2) in
the mean CLT under the strong mixing condition∑

k>0

kb

∫ α(k)

0
Q3|X0|(u)du < ∞, (1.8)

where Q|X0| denotes the quantile function of |X0| and b = 1. This condition is implied by (1.7) with a = 3, so that
our result holds under Bolthausen’s [3] condition. Moreover, for stationary strongly mixing martingale difference
sequences, we prove that (1.1) holds for p = 1 under condition (1.8) with b = 0. In Section 5 we give two classical
examples of non irreducible Markov chains to which our results apply.

2. Projective criteria for stationary sequences

Throughout the paper, Y is a N (0,1)-distributed random variable.
We shall use the following notations. Let (Ω,A,P) be a probability space, and T :Ω �→ Ω be a bijective bimea-

surable transformation preserving the probability P. An element A is said to be invariant if T (A) = A. We denote by
I the σ -algebra of all invariant sets. Let M0 be a sub-σ -algebra of A satisfying M0 ⊆ T −1(M0) and define the non-
decreasing filtration (Mi )i∈Z by Mi = T −i (M0). Let M∞ = ∨

i∈Z
Mi . Denote by Ei the conditional expectation

with respect to Mi .
Let X0 be a M0-measurable and centered random variable. Throughout the sequel, the sequence X = (Xi)i∈Z is

defined by Xi = X0 ◦ T i . From the definition the sequence (Xi)i∈Z is adapted to the filtration (Mi )i∈Z.

2.1. Martingale difference sequences

In this section we obtain rates of convergence of the order of n−1/2 logn in the mean CLT for stationary martingale
difference sequences. In order to obtain these rates of convergence, we will just need a projective condition on the
variables X2

l , as in [19]. We first recall Jan’s results concerning the rates of convergence for the uniform distance
between the distribution functions.

Assume that (Xi)i∈Z is a stationary martingale difference sequence in L
3 such that E(X2

0) = σ 2 and∑
l>0

∥∥E0
(
X2

l − σ 2)∥∥
3/2 < ∞. (2.1)

Then, by Theorem 6 in [19], if Y is N (0,1)-distributed,

sup
t∈R

∣∣P(
n−1/2Sn ≤ t

) − P(σY ≤ t)
∣∣ = O

(
n−1/4). (2.2)
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Under projective conditions related to (2.1), the rate of convergence in the mean central limit theorem is at least
O(n−1/2 logn) as shown in Theorem 2.1 below.

Theorem 2.1. Let (Xi)i∈Z be a stationary martingale difference sequence in L
3, such that E(X2

0|I) = E(X2
0) = σ 2

almost surely. Let Λ = σ−2
E|X0|3 and Um = E0(X

2
1 + · · · + X2

m) − mσ 2. Then

(a) d1(Sn, σ
√

nY) ≤ 13σ
6 + Λ

6 log(1 + 2n) + ∑[√2n]
m=1

‖X0Um‖1+2σ‖Um‖1
mσ 2 .

(b) If supm>0(‖X0Um‖1 + ‖Um‖1) < ∞, then d1(Sn, σY
√

n) = O(logn).

Remark 2.1. From the ergodic theorem, (Um/m) converges a.s. and in L
1 to 0 as m tends to ∞. Since X0 ∈ L

3, it
follows that the sequence (X0Um/m)m is uniformly integrable. Hence, under the assumptions of Theorem 2.1,

lim
m→∞m−1(‖X0Um‖1 + ‖Um‖1

) = 0.

Therefore Theorem 2.1(a) provides a rate of convergence in the mean CLT. For example, if ‖X0E0(X
2
l − σ 2)‖1 =

O(l−δ) and ‖E0(X
2
l − σ 2)‖1 = O(l−δ) for some δ in ]0,1[, then the rate of convergence in the mean CLT is of the

order of n−δ/2. If Jan’s condition (2.1) holds, then (b) yields the rate of convergence O(n−1/2 logn) in the mean CLT.
For bounded random variables (b) holds as soon as the series

∑
l>0 E0(X

2
l − σ 2) converges in L

1.

Proof of Theorem 2.1. We prove Theorem 2.1 in the case σ = 1. The general case follows by dividing the r.v.’s by σ .
Let (Yi)i∈N be a sequence of independent random variables with normal distribution N (0,1). Suppose furthermore

that the sequence (Yi)i∈N is independent of (Xi)i∈N. Let Y be a N (0,1)-distributed random variable, independent of
the above defined sequences. Let Tn = Y1 + Y2 + · · · + Yn. For any 1-Lipschitzian function f , let Δ(f ) = E(f (Sn) −
f (Tn)). From (1.2), we have to bound Δ(f ). Clearly

Δ(f ) = E
(
f (Sn) − f (Tn)

) ≤ E
(
f (Sn + Y) − f (Tn + Y)

) + 2E|Y |. (2.3)

In order to bound up the term on right-hand side, we apply the Lindeberg method.

Notation 2.1. Set fk(x) = E(f (x + Y + Tn − Tk)). Let S0 = 0, and, for k > 0, let Δk = fk(Sk−1 + Xk) −
fk(Sk−1 + Yk).

Since the sequence (Yi)i∈N is independent of the sequence (Xi)i∈N,

E
(
f (Sn + Y) − f (Tn + Y)

) =
n∑

k=1

E(Δk). (2.4)

Next the functions fk are C∞. Consequently, from the Taylor integral formula at orders three and four,

Δk = f ′
k(Sk−1)(Xk − Yk) + 1

2
f ′′

k (Sk−1)
(
X2

k − Y 2
k

) − 1

6
f

(3)
k (Sk−1)Y

3
k + Rk,

with

Rk ≤ 1

6

∥∥f
(3)
k

∥∥∞|Xk|3 + 1

24

∥∥f
(4)
k

∥∥∞Y 4
k . (2.5)

Consequently, for any 1-Lipschitzian function f ,

Δ(f ) ≤ 2E|Y | +
n∑

k=1

E(Rk) +
n∑

k=1

E

(
f ′

k(Sk−1)Xk + 1

2
f ′′

k (Sk−1)
(
X2

k − 1
))

. (2.6)

The terms E(f ′
k(Sk−1)Xk) vanish under the martingale assumption. To bound up the other terms appearing in (2.6),

we need to bound up the derivatives of fk . This will be done via the lemma below.
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Lemma 2.1. Let f be a 1-Lipschitzian function, Y be a standard normal and B be a real-valued random variable,
independent of Y . Then∣∣∣∣ di

dxi
Ef (x + tY + B)

∣∣∣∣ ≤ t1−i
∥∥φ(i−1)

∥∥
1 for any t > 0

and any positive integer i, where φ denotes the density of Y .

Proof of Lemma 2.1. Let φt be the density of tY . Then

Ef (x + tY + B) = E
(
f ∗ φt (x + B)

)
.

Since f is 1-Lipschitzian, the Stieltjes measure df of f is absolutely continuous with respect to the Lebesgue measure
λ and f ′ = df/dλ belongs to [−1,1]. Next (f ∗ φt )

(i) = f ′ ∗ φ
(i−1)
t , and consequently∣∣∣∣ di

dxi
Ef ∗ φt (x + B)

∣∣∣∣ ≤ ∥∥f ′∥∥∞
∥∥φ

(i−1)
t

∥∥
1.

Since φ
(i−1)
t (x) = t−iφ(i−1)(x/t), it implies Lemma 2.1. �

Noting that

∥∥φ′∥∥
1 =

√
2

π
≤ 4

5
,

∥∥φ′′∥∥
1 =

√
8

πe
≤ 1,

∥∥φ(3)
∥∥

1 =
√

2

π
+

√
32

πe3
≤ 8

5
, (2.7)

and applying Lemma 2.1 with t = √
n − k + 1, we infer from (2.5) that

E(Rk) ≤
(

Λ

6

)
(n − k + 1)−1 +

(
1

5

)
(n − k + 1)−3/2. (2.8)

Summing on k, we infer from (2.8) that

n∑
k=1

E(Rk) + 2E|Y | ≤ ρ(n) with ρ(n) = 13

6
+ Λ

6
log(1 + 2n). (2.9)

The control of the main term in (2.6) is derived from the lemma below.

Lemma 2.2. Let Z0 be an integrable random variable with zero mean. Set Zk = Z0 ◦T k and let Wm = ∑m
l=1 E0(Zl).

Then, for s = 2 or s = 3,

n∑
k=1

E
(
f

(s)
k (Sk−1)Zk

) ≤
[√2n]∑
m=1

2m1−s
(‖X0Wm‖1 + 2‖Wm‖1

)
.

Proof of Lemma 2.2. We first divide [1, n] into blocks of nonincreasing length.

Notation 2.2. Define the decreasing sequence of integers (ni)i≥0 by n0 = n and ni = max(0, ni−1 − i) for i > 0. Let
p be the first integer such that np = 0. Set mi = i for i < p and mp = np−1.

Next fix i in [1,p]. Let then k be any integer in ]ni, ni−1]. Writing

f
(s)
k (Sk−1) = f

(s)
ni+1(Sni

) +
k−1∑

j=ni+1

(
f

(s)
j+1(Sj ) − f

(s)
j (Sj−1)

)
, (2.10)
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we get that

ni−1∑
k=ni+1

E
(
f

(s)
k (Sk−1)Zk

) = Di +
ni−1−1∑
j=ni+1

Di,j , (2.11)

where

Di = E

(
f

(s)
ni+1(Sni

)

ni−1∑
k=ni+1

Eni
(Zk)

)

Di,j = E

((
f

(s)
j+1(Sj ) − f

(s)
j (Sj−1)

) ni−1∑
k=j+1

Ej(Zk)

)
.

By definition of the sequence (Zk)k , for any integer j and any positive m,

Ej(Zj+1 + Zj+2 + · · · + Zj+m) = Wm ◦ T j .

Hence, from Lemma 2.1 applied with t = (n − ni)
1/2 and B = 0, for any i < p,

Di ≤ (n − ni)
(1−s)/2‖Wi‖1. (2.12)

Moreover Dp = 0 from the centering assumption on the random variables Zk . Now, by definition, n−ni = i(i + 1)/2
for i < p. Hence, from (2.12),

p−1∑
i=1

Di ≤ 2
p−1∑
i=1

i1−s‖Wi‖1, where − 1 + √
2n < p < 1 + √

2n. (2.13)

Next we bound up Di,j . From the elementary equality

f
(s)
j+1(Sj ) − f

(s)
j (Sj−1) = Ej

(
f

(s)
j+1(Sj−1 + Xj) − f

(s)
j+1(Sj−1 + Yj )

)
we get that∣∣f (s)

j+1(Sj ) − f
(s)
j (Sj−1)

∣∣ ≤ ∥∥f
(s+1)
j+1

∥∥∞Ej |Xj − Yj | ≤ (n − j)−s/2(|Xj | + 1
)
,

whence

Di,j ≤ (n − j)−s/2
E

((|X0| + 1
)|Wni−1−j |

)
. (2.14)

Fix ni−1 − j = m. Then mi > m > 0 and 2(n − j) = i(i − 1) + 2m ≥ (i − 1/2)2. Hence, from the above inequality
(recall that mi = i for i < p)

p∑
i=1

ni−1−1∑
j=ni+1

Di,j ≤
p−1∑
m=1

(‖X0Wm‖1 + ‖Wm‖1
) p∑

i=m+1

2s/2
(

i − 1

2

)−s

.

Now, from the convexity of x−s on ]0,+∞[,
p∑

i=m+1

(
i − 1

2

)−s

≤
∫ p

m

x−s ds ≤ 1

s − 1
m1−s
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whence

p∑
i=1

ni−1−1∑
j=ni+1

Di,j ≤
p−1∑
m=1

2m1−s
(‖X0Wm‖1 + ‖Wm‖1

)
. (2.15)

From (2.11), (2.13) and (2.15), we get Lemma 2.2. �

Theorem 2.1(a) follows from both (2.6), (2.9) and Lemma 2.2 applied to Z0 = X2
0 − 1. Theorem 2.1(b) is a conse-

quence of (a). �

2.2. Projective criteria

In this section we give estimates of the rates of convergence in the mean CLT for stationary sequences satisfying
projective L

1-criteria in the style of Gordin [14]. Our main result is Theorem 2.2 below.

Theorem 2.2. Let (Xi)i∈Z be a stationary sequence of centered random variables in L
3 such that E(X0Xk|I) =

E(X0Xk) a.s. for any integer k. Suppose furthermore that the sequence X0E0(Sn) converges in L
1. Then the series

E(X2
0) + 2

∑∞
k=1 E(X0Xk) is convergent to some nonnegative real σ 2. Let

Z0 = X2
0 − σ 2 + 2 lim

n
X0E0(Sn), Zl = Z0 ◦ T l and Wm = E0(Z1 + Z2 + · · · + Zm).

Suppose that σ 2 > 0. Let Λ = σ−2
E|X0|3. Then

d1
(
Sn,σ

√
nY

) ≤ 13σ

6
+ Λ

6
log(1 + 2n) +

[√2n]∑
m=1

‖X0Wm‖1 + 2σ‖Wm‖1

mσ 2
+ D′,

where

D′ =
n∑

m=1

1

σ
√

m

∥∥∥∥∑
l≥m

X0E0(Xl)

∥∥∥∥
1
+

n∑
m=1

1

2m

∥∥(
1 + σ−2X2

0

)
E0(Sm)

∥∥
1.

Remark 2.2. By Theorem 1 in [8], the convergence in L
1 of X0E0(Sn) implies the convergence in distribution of

n−1/2Sn to a mixture of Gaussian random variables. From [6] it also implies that n−1/2E0(Sn) converges to 0 in L
1.

Consequently, if X2
0E0(Sn) converges in L

1 as n → ∞, then D′ = o(
√

n). Moreover, from the L
1-ergodic theorem,

(Wm/m) and (X0Wm/m) converge to 0 in L
1 under the above additional condition. In that case, Theorem 2.2 gives

a rate of convergence in the mean CLT.

Proof of Theorem 2.2. Dividing the random variables by σ , we may assume that σ = 1. From (2.6) and and (2.9),
for any 1-Lipschitzian function f ,

Δ(f ) ≤
n∑

k=1

E

(
f ′

k(Sk−1)Xk + 1

2
f ′′

k (Sk−1)
(
X2

k − 1
)) + ρ(n), (2.16)

where the functions fk are defined in Notation 2.1 of Section 2.1. In order to bound up the terms of first order, we write

f ′
k(Sk−1) = f ′

0(0) +
k−1∑
j=1

(
f ′

j+1(Sj ) − f ′
j (Sj−1)

)
.

Next

f ′
j+1(Sj ) − f ′

j (Sj−1) = (
f ′

j (Sj ) − f ′
j (Sj−1)

) − Ej

(
f ′

j+1(Sj + Y) − f ′
j+1(Sj )

)
= f ′′

j (Sj−1)Xj + R′
j , (2.17)
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where R′
j is some Mj -measurable random variable such that∣∣R′
j

∣∣ ≤ (2n − 2j)−1(X2
j + 1

)
. (2.18)

Set Uj,n = Ej(Sn − Sj ). From (2.17) and (2.18)

n∑
k=1

E
(
f ′

k(Sk−1)Xk

) ≤
n−1∑
j=1

(
E

(
f ′′

j (Sj−1)XjUj,n

) + (2n − 2j)−1
∥∥(

1 + X2
j

)
Uj,n

∥∥
1

)
.

Next

E
(
f ′′

j (Sj−1)XjUj,n

) ≤ E
(
f ′′

j (Sj−1)XjUj,∞
) + (n − j + 1)−1/2

∥∥∥∥∑
l>n

XjEj (Xl)

∥∥∥∥
1

with the convention XjUj,∞ = limn XjUj,n in L
1. From the stationarity, (2.16) and the above inequalities we get that

Δ(f ) ≤ ρ(n) + 1

2

n∑
j=1

E
(
f ′′

j (Sj−1)Zj

) + D′
1 + D′

2, (2.19)

where

D′
1 =

n∑
m=1

m−1/2
∥∥∥∥∑

l≥m

X0E0(Xl)

∥∥∥∥
1

and D′
2 =

n∑
m=1

1

2m

∥∥(
1 + X2

0

)
E0(Sm)

∥∥
1.

Theorem 2.2 follows then from (2.19) and Lemma 2.2 applied with s = 2. �

2.3. Applications to bounded random variables

Throughout this subsection we assume that X0 belongs to L
∞, and that E0(Sn) converges in L

1. Then the series
X0E0(Sn) converges in L

1 and consequently Theorem 2.2 applies. Set

J0 = lim
n→∞E0(Sn) and Jm = J0 ◦ T m. (2.20)

We first provide a rate which involves the quantities ‖E0(m
−1S2

m) − σ 2‖1 appearing in the conditional CLT of [6].

Theorem 2.3. Let (Xi)i∈Z be a stationary sequence of centered and bounded random variables such that
E(X0Xk|I) = E(X0Xk) a.s. for any integer k. Suppose furthermore that the sequence E0(Sn) converges in L

1 to
J0. Then the series E(X2

0) + 2
∑∞

k=1 E(X0Xk) is convergent to some nonnegative real σ 2 and n−1 VarSn converges
to σ 2. Suppose that σ 2 > 0 and let L = σ−1‖X0‖∞.

(a) If S = ∑
m≥0 ‖E0(Jm)‖1 < ∞, then

d1
(
Sn,σ

√
nY

) ≤ C log(1 + 2n) +
[√2n]∑
m=1

(
2 + L

mσ

)∥∥E0(S
2
m) − mσ 2

∥∥
1

for some constant C depending only on ‖X0‖∞, σ and S.
(b) If ‖E0(Jm)‖1 ≤ Mδm

−δ for some δ ∈]0,1[ and some constant Mδ , then

d1
(
Sn,σ

√
nY

) ≤ Cδn
(1−δ)/2 +

[√2n]∑
m=1

(
2 + L

mσ

)∥∥E0
(
S2

m

) − mσ 2
∥∥

1

for some constant Cδ depending on δ, Mδ , ‖X0‖∞ and σ .
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Remark 2.3. The assumptions made in this section ensure that

lim
n→∞

∥∥E0
(
m−1S2

m

) − σ 2
∥∥

1 = 0,

which is the condition appearing in the conditional CLT of [6]. Consequently Theorem 2.3 provides rates of conver-
gence in the mean CLT. For example, if (a) holds and supm>0 ‖E0(S

2
m)−mσ 2‖1 < ∞, then d1(Sn, σ

√
nY ) = O(logn).

If (b) holds and ‖E0(S
2
m) − mσ 2‖1 = O(m1−δ) as m → ∞, then d1(Sn, σ

√
nY) = O(n(1−δ)/2).

Proof of Theorem 2.3. We first bound up D′. Let M = supm>0 ‖E0(Sm)‖1. We have that

D′ ≤ L

n∑
m=1

m−1/2
∥∥∥∥∑

l≥m

E0(Xl)

∥∥∥∥
1
+ 1

2

(
1 + L2)M log(1 + 2n).

Since
∑

l≥m E0(Xl) = E0(
∑

l≥m Em−1(Xl)) = E0(Jm−1), we infer that

D′ ≤ L

n−1∑
m=0

(m + 1)−1/2
∥∥E0(Jm)

∥∥
1 + 1

2

(
1 + L2)M log(1 + 2n). (2.21)

Next we bound up the r.v.’s Wm + mσ 2 − E0(S
2
m) in L

1. By definition of Wm,

Wm + mσ 2 = E0
(
S2

m

) + 2
m∑

l=1

E0

(
Xl

∑
k>m

El(Xk)

)
.

Therefore

∥∥Wm + mσ 2 − E0
(
S2

m

)∥∥
1 ≤ 2

m∑
l=1

∥∥XlEl(Jm)
∥∥

1 ≤ 2‖X0‖∞
m∑

l=1

∥∥E0(Jm−l)
∥∥

1.

Hence

[√2n]∑
m=1

(
mσ 2)−1(‖X0Wm‖1 + σ‖Wm‖1

)

≤
[√2n]∑
m=1

(
2 + L

mσ

)(∥∥E0
(
S2

m

) − mσ 2
∥∥

1 + 2‖X0‖∞
m−1∑
l=0

∥∥E0(Jl)
∥∥

1

)
. (2.22)

Theorem 2.3 follows then easily from both Theorem 2.2, (2.21) and (2.22). �

We now give an application of Theorem 2.3 to sequences satisfying projective criteria in the style of [13,14]. The
proof, being elementary, is omitted.

Corollary 2.1. Let (Xi)i∈Z be a stationary sequence of centered and bounded random variables.

(a) If
∑∞

m=0
∑m

l=0 ‖E−m(X0Xl) − E(X0Xl)‖1 < ∞ and
∑

m>0 m‖E0(Xm)‖1 < ∞, then the series of covariances
converges to σ 2 and d1(Sn, σ

√
nY ) = O(logn) as n tends to ∞, provided that σ �= 0.

(b) If, for some δ ∈]0,1[, supl∈[0,m] ‖E−m(X0Xl)− E(X0Xl)‖1 = O(m−1−δ) and ‖E0(Xm)‖1 = O(m−1−δ), then the
series of covariances converges to σ 2 and d1(Sn, σ

√
nY ) = O(n(1−δ)/2) as n tends to ∞ provided that σ �= 0.

Remark 2.4. For example, if the strong mixing coefficients α2(k) of the sequence (Xi)i∈Z (see (3.1) for the definition)
satisfy α2(k) = O(k−1−δ) then Corollary 2.1(b) applies and provides the rate of convergence O(n−δ/2) in the mean
CLT.
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3. Optimal rates for stationary sequences

Throughout Section 3, the filtration (Mi )i∈Z and the stationary sequence (Xi)i∈Z are defined exactly as in Section 2.

3.1. Stationary sequences

For stationary sequences, we will give two different conditions under which the rate of convergence O(n−1/2) holds
in the mean CLT. We consider two types of dependence coefficients.

Definition 3.1. For any integers 0 ≤ i < j and p ≥ 0, let �i,j,p be the set of multiintegers (k1, . . . , kj ) such that
0 ≤ k1 ≤ · · · ≤ ki and ki + p ≤ ki+1 ≤ · · · ≤ kj . Set

θi,j (p) = sup
(k1,...,kj )∈�i,j,p

∥∥Xk1 · · ·Xki
Eki

(
Xki+1 · · ·Xkj

− E(Xki+1 · · ·Xkj
)
)∥∥

1.

Definition 3.2. For any random variable (ξ1, . . . , ξk) with values in R
k , and any σ -algebra M, define the function

gx,j (t) = 1t≤x − P(ξj ≤ x). Set

α
(
M, (ξ1, . . . , ξk)

) = sup
(x1,...,xk)∈Rk

∥∥∥∥∥E

(
k∏

j=1

gxj ,j (ξj )

∣∣∣M)
− E

(
k∏

j=1

gxj ,j (ξj )

)∥∥∥∥∥
1

.

For a sequence ξ = (ξi)i∈Z, where ξi = ξ0 ◦ T i and ξ0 is a M0-measurable and real-valued r.v., let

αk,ξ (n) = max
1≤l≤k

sup
il>···>i1≥n

α
(
M0, (ξi1 , . . . , ξil )

)
.

Remark 3.1. Let B1(R
k) be the set of functions f from R

k to R such that |f (x)−f (y)| ≤ 1 for any x, y in R
k . Recall

that the strong mixing coefficient of Rosenblatt may be defined as

α
(
M, σ (ξ1, . . . , ξk)

) = 1

2
sup

f ∈B1(R
k)

∥∥E
(
f (ξ1, . . . , ξk)|M

) − E
(
f (ξ1, . . . , ξk)

)∥∥
1.

For the sequence ξ , we define the strong mixing coefficients

αk(n) = sup
ik≥···≥i1≥n

α
(
M0, σ (ξi1, . . . , ξil )

)
and α(n) = sup

k>0
αk(n). (3.1)

By induction on k, it is easy to prove that g : (t1, . . . , tk) → ∏k
i=1 gxi ,i (ti ) belongs to B1(R

k). It follows that

α
(
M, (ξ1, . . . , ξk)

) ≤ 2α
(
M, σ (ξ1, . . . , ξk)

)
and αk,ξ (n) ≤ 2αk(n).

We emphasize that there exist sequences which are not strongly mixing in the sense of Rosenblatt, for which αk,ξ (n)

tends to 0 as n tends to infinity (see [7], Section 4 and the example of Section 5.1).

Definition 3.3. For any real-valued random variable X, let QX be the generalized inverse of the tail function x →
P(X > x).

Theorem 3.1. Let (Xi)i∈Z be a stationary sequence of centered random variables. Consider the two conditions

(a) E(X4
0) < ∞ and

∑∞
j=1 jθp,q(j) < ∞ for any 0 ≤ p < q ≤ (3 + p) ∧ 4.

(b) X0 = (f1 −f2)(ξ0) for some real-valued random variable ξ0 and nondecreasing functions f1, f2, such that f1(ξ0),
f2(ξ0) belong to L

3 and, for Q = max(Q|f1(ξ0)|,Q|f2(ξ0)|),
∞∑

j=1

j

∫ α3,ξ (j)

0
Q3(u)du < ∞. (3.2)
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If either (a) or (b) holds, then the series σ 2 = E(X2
0) + 2

∑∞
k=1 E(X0Xk) converges absolutely. Moreover, if σ > 0,

then d1(Sn,
√

nσY ) ≤ C for some constant C.

Remark 3.2. For bounded random variables, Theorem 3.1 under (a) is a consequence of Theorem 1.1 in [22].

Remark 3.3. For the strong mixing coefficients defined in (3.1), we infer from Theorem 3.1(b) that, if X0 = f (ξ0)

belongs to L
3 and if (1.8) holds with α3(k) instead of α(k) and b = 1, then the conclusion of Theorem 3.1 holds.

3.2. Martingale difference sequences

In this section we give conditions for stationary martingale difference sequences ensuring the optimal rate O(n−1/2)

in the mean CLT.

Theorem 3.2. Let (Xi)i∈Z be a stationary martingale difference sequence in L
3, with variance σ 2. Consider the two

conditions

(a) X0 belongs to L
4,

∑
k>0

(∥∥(
X2

0 ∨ 1
)(

E0
(
X2

k

) − σ 2)∥∥
1 + 1

k

k∑
i=1

∥∥X−iX0
(
E0

(
X2

k

) − σ 2)∥∥
1

)
< ∞,

and

∑
k>0

1

k

k∑
i=[k/2]

∥∥(|X0| ∨ 1
)(

E0
(
XiX

2
k

) − E
(
XiX

2
k

))∥∥
1 < ∞. (3.3)

(b) X0 and Q are defined as in Theorem 3.1(b), and

∞∑
j=1

∫ α3,ξ (j)

0
Q3(u)du < ∞. (3.4)

If either (a) or (b) holds, then d1(Sn,
√

nσY ) ≤ C for some positive constant C.

Remark 3.4. Note that the first condition in (3.3) implies that E(X2
0|I) = σ 2 almost surely. Assume that E(|X0|p) <

∞ for some p ≥ 4. Applying Hölder’s inequality, we see that (3.3) holds as soon as∑
k>0

∥∥E0
(
X2

k

) − σ 2
∥∥

p/(p−2)
< ∞ and

∑
k>0

sup
i≥k

∥∥E0
(
XkX

2
i

) − E
(
XkX

2
i

)∥∥
p/(p−1)

< ∞.

4. Proofs of Theorems 3.1 and 3.2

4.1. A first decomposition

The following proposition is the main step to prove Theorems 3.2 and 3.1. It is stated in the nonstationary case.

Proposition 4.1. Let (Xi)i≥1 be a sequence of centered random variables, each having a finite third moment, adapted
to the filtration (Mi )i . Let Z be a centered random variable with finite fourth moment independent of M∞, and let
E(Z2) = β2, E(Z3) = β3, E(Z4) = β4. Let S0 = 0 and Sn = X1 +· · ·+Xn. Let Xi,1 and Xi,2 be two Mi -measurable
random variables such that Xi = Xi,1 + Xi,2. For any four times continuously differentiable function f and any l

in [1, k[,
E

(
f (Sk−1 + Xk) − f (Sk−1 + Z)

) ≤ ζ1A1 + ζ2(A2 + A8) + ζ3(A3 + A9) + ζ4(A4 + · · · + A7),
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where the reals ζi = ζi(f ) are defined by ζi = ‖f (i)‖∞ and the numbers Ai = Ai(k, l) are defined by

A1 = ∥∥Ek−l−1(Xk)
∥∥

1, A2 = 1

2

∥∥∥∥∥β2 − Ek−l−1

(
Xk,1Xk + 2

l∑
j=1

Xk−j,1Xk

)∥∥∥∥∥
1

,

A3 = 1

6

∥∥∥∥∥β3 − Ek−l−1

(
XkX

2
k,1 + 3

l∑
j=1

(
Xk−j,1(Xk,1Xk − β2) + X2

k−j,1Xk

))

− 6Ek−l−1

(
l∑

j=1

j−1∑
p=1

Xk−j,1Xk−p,1Xk

)∥∥∥∥∥
1

,

A4 = 1

24

(
E

(∣∣XkX
3
k,1

∣∣) + β4
)
, A5 = 1

6

l∑
j=1

∥∥X3
k−j,1Ek−j (Xk)

∥∥
1,

A6 = 1

4

l∑
j=1

∥∥∥∥∥X2
k−j,1

(
β2 − Ek−j

(
XkXk,1 + 2

j−1∑
p=1

Xk−p,1Xk

))∥∥∥∥∥
1

,

A7 = 1

6

l∑
j=1

∥∥∥∥∥Xk−j

(
β3 − Ek−j

(
X2

k,1Xk + 3
j−1∑
p=1

X2
k−p,1Xk

+ 3
j−1∑
p=1

Xk−p,1(Xk,1Xk − β2) + 6
j−1∑
p=1

p−1∑
q=1

Xk−p,1Xk−q,1Xk

))∥∥∥∥∥
1

,

A8 = 1

2

(
‖Xk,2Xk‖1 + 2

l∑
j=1

∥∥∥∥∥Xk−j,2Ek−j (Xk)

∥∥∥∥∥
1

)
,

A9 = 1

2

l∑
j=1

∥∥∥∥∥Xk−j,2

(
β2 − Ek−j

(
XkXk,1 + 2

j−1∑
p=1

Xk−p,1Xk

))∥∥∥∥∥
1

.

Proof. We start from the equality

f (Sk−1 + Xk) − f (Sk−1) = Xk

∫ 1

0

(
f ′(Sk−1 + tXk,1) − f ′(Sk−1)

)
dt + Xkf

′(Sk−1) + r1(k),

with r1(k) ≤ (ζ2/2)|XkXk,2|. Consequently

f (Sk−1 + Xk) = f (Sk−1) + f ′(Sk−1)Xk + XkXk,1

2
f ′′(Sk−1)

+ XkX
2
k,1

6
f ′′′(Sk−1) + R1(k) + r1(k),

with |R1(k)| ≤ (ζ4/4!)|XkX
3
k,1|. Hence

E
(
f (Sk−1 + Xk) − f (Sk−1 + Z)

) = E
(
f ′(Sk−1)Xk

) + 1

2
E

(
f ′′(Sk−1)(XkXk,1 − β2)

)
+ 1

6
E

(
f ′′′(Sk−1)

(
XkX

2
k,1 − β3

)) + R2(k) + E
(
r1(k)

)
,
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with R2(k) ≤ ζ4A4. Consider first the third-order terms. Clearly

1

6
f ′′′(Sk−1)

(
XkX

2
k,1 − β3

) = 1

6
f ′′′(Sk−l−1)

(
XkX

2
k,1 − β3

)
+ 1

6

l∑
j=1

(∫ 1

0
f (4)(Sk−j−1 + tXk−j )dt

)
Xk−j

(
XkX

2
k,1 − β3

)
. (4.1)

Let g1(Sk−j ,Xk−j,1) = f ′′(Sk−j ) − f ′′(Sk−j−1 + Xk−j,1). For the second-order terms, we have first

1

2
f ′′(Sk−1)(XkXk,1 − β2) = 1

2
(XkXk,1 − β2)

(
f ′′(Sk−l−1) +

l∑
j=1

g1(Sk−j ,Xk−j,1) +
l∑

j=1

f ′′′(Sk−j−1)Xk−j,1

+
l∑

j=1

(∫ 1

0
(1 − t)f (4)(Sk−j−1 + tXk−j,1)dt

)
X2

k−j,1

)
,

and next

1

2
f ′′(Sk−1)(XkXk,1 − β2) = 1

2
(XkXk,1 − β2)

(
f ′′(Sk−l−1) +

l∑
j=1

g1(Sk−j ,Xk−j,1) +
l∑

j=1

f ′′′(Sk−l−1)Xk−j,1

+
l∑

j=1

l∑
p=j+1

(∫ 1

0
f (4)(Sk−p−1 + tXk−p)dt

)
Xk−pXk−j,1

+
l∑

j=1

(∫ 1

0
(1 − t)f (4)(Sk−j−1 + tXk−j,1)dt

)
X2

k−j,1

)
. (4.2)

Let g2(Sk−j ,Xk−j,1) = f ′(Sk−j ) − f ′(Sk−j−1 + Xk−j,1). For the first-order terms, we have first

f ′(Sk−1)Xk = f ′(Sk−l−1)Xk +
l∑

j=1

g2(Sk−j ,Xk−j,1)Xk

+
l∑

j=1

(
f ′(Sk−j−1 + Xk−j,1) − f ′(Sk−j−1)

)
Xk,

so that

f ′(Sk−1)Xk = f ′(Sk−l−1)Xk +
l∑

j=1

g2(Sk−j ,Xk−j,1)Xk

+
l∑

j=1

f ′′(Sk−j−1)Xk−j,1Xk + 1

2

l∑
j=1

f ′′′(Sk−j−1)X
2
k−j,1Xk

+
l∑

j=1

(∫ 1

0

(1 − t)2

2
f (4)(Sk−j−1 + tXk−j,1)dt

)
X3

k−j,1Xk.
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Next

f ′(Sk−1)Xk = Xk

(
f ′(Sk−l−1) +

l∑
j=1

g2(Sk−j ,Xk−j,1) +
l∑

j=1

f ′′(Sk−l−1)Xk−j,1

+ 1

2

l∑
j=1

f ′′′(Sk−j−1)X
2
k−j,1 +

l∑
j=1

l∑
p=j+1

f ′′′(Sk−p−1)Xk−p,1Xk−j,1

+
l∑

j=1

l∑
p=j+1

Xk−j,1g1(Sk−p,Xk−p,1)

+
l∑

j=1

l∑
p=j+1

(∫ 1

0
(1 − t)f (4)(Sk−p−1 + tXk−p,1)dt

)
X2

k−p,1Xk−j,1

+
l∑

j=1

(∫ 1

0

(1 − t)2

2
f (4)(Sk−j−1 + tXk−j,1)dt

)
X3

k−j,1

)
,

whence

f ′(Sk−1)Xk = Xk

(
f ′(Sk−l−1) +

l∑
j=1

g2(Sk−j ,Xk−j,1) +
l∑

j=1

f ′′(Sk−l−1)Xk−j,1

+ 1

2

l∑
j=1

f ′′′(Sk−l−1)X
2
k−j,1 +

l∑
j=1

l∑
p=j+1

f ′′′(Sk−l−1)Xk−p,1Xk−j,1

+
l∑

j=1

l∑
p=j+1

Xk−j,1g1(Sk−p,Xk−p,1)

+ 1

2

l∑
j=1

l∑
p=j+1

(∫ 1

0
f (4)(Sk−p−1 + tXk−p)dt

)
Xk−pX2

k−j,1

+
l∑

j=1

l∑
p=j+1

l∑
q=p+1

(∫ 1

0
f (4)(Sk−q−1 + tXk−q)dt

)
Xk−qXk−p,1Xk−j,1

+
l∑

j=1

l∑
p=j+1

(∫ 1

0
(1 − t)f (4)(Sk−p−1 + tXk−p,1)dt

)
X2

k−p,1Xk−j,1

+
l∑

j=1

(∫ 1

0

(1 − t)2

2
f (4)(Sk−j−1 + tXk−j,1)dt

)
X3

k−j,1

)
. (4.3)

Let us look carefully at the decompositions (4.1), (4.2) and (4.3). In front of f ′(Sk−l−1) there is Xk , which leads
to the term ζ1A1 by taking the conditional expectation with respect to Mk−l−1. In front of f ′′(Sk−l−1)/2 there is
XkXk,1 − β2 + 2

∑l
j=1 Xk−j,1Xk , which leads to the term ζ2A2 by taking the conditional expectation with respect to

Mk−l−1. In front of f ′′′(Sk−l−1)/6 there is

XkX
2
k,1 − β3 + 3

l∑
j=1

(
Xk−j,1(XkXk,1 − β2) + X2

k−j,1Xk

) + 6
l∑

p=1

p−1∑
j=1

Xk−p,1Xk−j,1Xk,
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which leads to the term ζ3A3 by taking the conditional expectation with respect to Mk−l−1. Taking the conditional
expectation with respect to Mk−j and the supremum of |f (4)| in the last term of (4.3), we obtain ζ4A5. Gathering the
last term in (4.2) and the last but one in (4.3), we obtain

l∑
j=1

(∫ 1

0
(1 − t)f (4)(Sk−j−1 + tXk−j,1)dt

)
X2

k−j,1

(
1

2
(Xk,1Xk − β2) +

j−1∑
p=1

Xk−p,1Xk

)
,

which leads to the term ζ4A6. Gathering the remainder terms in (4.1), (4.2) and (4.3) (except the terms involving the
functions g1, g2), we obtain

l∑
j=1

(∫ 1

0
f (4)(Sk−j−1 + tXk−j )dt

)
Xk−j

(
1

6

(
XkX

2
k,1 − β3

) + 1

2

j−1∑
p=1

X2
k−p,1Xk

+ 1

2

j−1∑
p=1

Xk−p,1(Xk,1Xk − β2) +
j−1∑
p=1

p−1∑
q=1

Xk−p,1Xk−q,1Xk

)
,

which leads to the term ζ4A7. The term ζ2A8 is obtained by gathering ‖r1(k)‖1 and the terms involving the function g2,
and by noting that |g2(Sk−j ,Xk−j,1)| ≤ ζ2|Xk−j,2|. The term ζ3A9 is obtained by gathering the terms involving the
function g1, and by noting that |g1(Sk−j ,Xk−j,1)| ≤ ζ3|Xk−j,2|. �

4.2. Upper bounds for the Ai ’s

Let Xi,1 and Xi,2 be two Mi -measurable random variables such that Xi = Xi,1 + Xi,2. Define b(l) by

b(l) = E
(
X2

0,1X0
) + 3

l∑
i=1

E
(
X0,1Xi,1Xi + X2

0,1Xi

) + 6
l∑

i=1

i−1∑
j=1

E(X0,1Xj,1Xi). (4.4)

Assume that the series

σ 2 = E
(
X2

0

) + 2
∞∑

k=1

E(X0Xk) and σ 2
1 = E(X0,1X0) + 2

∞∑
k=1

E(X0,1Xk)

converge absolutely. Let Ai be the terms of Proposition 4.1 with β2 = σ 2, and β3 = b(l), and let Ai,1 be the terms of
Proposition 4.1 with β2 = σ 2

1 , and β3 = b(l). We now give upper bounds for A2,1,A3,1,A6,1,A7,1 and A9,1. First,

A2,1 ≤ 1

2

∥∥Ek−l−1
(
Xk,1Xk − E(Xk,1Xk)

)∥∥
1 +

l∑
j=[l/2]+1

∥∥Xk−j,1Ek−j (Xk)
∥∥

1

+
∞∑

j=[l/2]+1

∣∣E(X0,1Xj)
∣∣ +

[l/2]∑
j=1

∥∥Ek−l−1
(
Xk−j,1Xk − E(Xk−j,1Xk)

)∥∥
1,

2A6,1 ≤
l∑

j=1

(
1

2

∥∥X2
k−j,1Ek−j

(
Xk,1Xk − E(Xk,1Xk)

)∥∥
1 +

j∑
p=[j/2]+1

∥∥X2
k−j,1Xk−p,1Ek−p(Xk)

∥∥
1

+ E
(
X2

0,1

) ∞∑
p=[j/2]+1

∣∣E(X0,1Xp)
∣∣ +

[j/2]∑
p=1

∥∥X2
k−j,1Ek−j

(
Xk−p,1Xk − E(Xk−p,1Xk)

)∥∥
1

)
,
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A9,1 ≤
l∑

j=1

(
1

2

∥∥Xk−j,2Ek−j

(
Xk,1Xk − E(Xk,1Xk)

)∥∥
1 +

j∑
p=[j/2]+1

∥∥Xk−j,2Xk−p,1Ek−p(Xk)
∥∥

1

+ ‖X0,2‖1

∞∑
p=[j/2]+1

∣∣E(X0,1Xp)
∣∣ +

[j/2]∑
p=1

∥∥Xk−j,2Ek−j

(
Xk−p,1Xk − E(Xk−p,1Xk)

)∥∥
1

)
.

Next, we have that A3,1 ≤ C1 + C2 + C3, where

C1 = 1

6

(∥∥Ek−l−1
(
X2

k,1Xk − E
(
X2

k,1Xk

))∥∥
1 + 3

l∑
j=[l/2]+1

∥∥X2
k−j,1Ek−j (Xk)

∥∥
1

+ 3
[l/2]∑
j=1

∥∥Ek−l−1
(
X2

k−j,1Xk − E
(
X2

k−j,1Xk

))∥∥
1 + 3

l∑
j=[l/2]+1

∥∥Xk−j,1Ek−j

(
Xk,1Xk − E(Xk,1Xk)

)∥∥
1

+ 3
[l/2]∑
j=1

∥∥Ek−l−1
(
Xk−j,1Xk,1Xk − E(Xk−j,1Xk,1Xk)

)∥∥
1

)
,

C2 =
[l/2]∑
j=1

j−1∑
p=1

∥∥Ek−l−1
(
Xk−j,1Xk−p,1Xk − E(Xk−j,1Xk−p,1Xk)

)∥∥
1

+
l∑

j=[l/2]+1

[j/2]∑
p=1

∥∥Xk−j,1Ek−j

(
Xk−p,1Xk − E(Xk−p,1Xk)

)∥∥
1

+
l∑

j=[l/2]+1

j−1∑
p=[j/2]+1

∥∥Xk−j,1Xk−p,1Ek−p(Xk)
∥∥

1,

C3 =
l∑

j=[l/2]+1

j−1∑
p=1

∣∣E(X0,1Xp,1Xj)
∣∣ + 1

2

l∑
j=[l/2]+1

∣∣E(
X2

0,1Xj

)∣∣
+ 1

2

[l/2]∑
j=1

∥∥Ek−l−1(Xk−j,1)
∥∥

1

(∣∣E(X0,1X0)
∣∣ + 2

∞∑
p=1

∣∣E(X0,1Xp)
∣∣)

+ 1

2

l∑
j=[l/2]+1

∣∣E(X0,1Xj,1Xj)
∣∣ +

l∑
j=[l/2]+1

∞∑
p=[j/2]+1

‖X0,1‖1
∣∣E(X0,1Xp)

∣∣.
In the same way, A7,1 ≤ D1 + D2 + D3, where

D1 = 1

6

l∑
j=1

(∥∥Xk−jEk−j

(
X2

k,1Xk − E
(
X2

k,1Xk

))∥∥
1

+ 3
j−1∑

p=[j/2]+1

∥∥Xk−jX
2
k−p,1Ek−p(Xk)

∥∥
1

+ 3
[j/2]∑
p=1

∥∥Xk−jEk−j

(
X2

k−p,1Xk − E
(
X2

k−p,1Xk

))∥∥
1
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+ 3
j−1∑

p=[j/2]+1

∥∥Xk−jXk−p,1Ek−p

(
Xk,1Xk − E(Xk,1Xk)

)∥∥
1

+ 3
[j/2]∑
p=1

∥∥Xk−jEk−j

(
Xk−p,1Xk,1Xk − E(Xk−p,1Xk,1Xk)

)∥∥
1

)
,

D2 =
l∑

j=1

(
j−1∑

p=[j/2]+1

p−1∑
q=[p/2]+1

∥∥Xk−jXk−p,1Xk−q,1Ek−q(Xk)
∥∥

1

+
[j/2]∑
p=1

p−1∑
q=1

∥∥Xk−jEk−j

(
Xk−p,1Xk−q,1Xk − E(Xk−p,1Xk−q,1Xk)

)∥∥
1

+
j−1∑

p=[j/2]+1

[p/2]∑
q=1

∥∥Xk−jXk−p,1Ek−p

(
Xk−q,1Xk − E(Xk−q,1Xk)

)∥∥
1

)
,

D3 =
l∑

j=1

(
2

l∑
p=[j/2]+1

p−1∑
q=1

‖X0‖1
∣∣E(X0,1Xq,1Xp)

∣∣
+

[j/2]∑
p=1

∥∥Xk−jEk−j (Xk−p,1)
∥∥

1

(∣∣E(X0X0,1)
∣∣ + 2

∞∑
p=1

∣∣E(X0,1Xp)
∣∣)

+
l∑

p=[j/2]+1

‖X0‖1
∣∣E(

X2
0,1Xp

)∣∣ +
l∑

p=[j/2]+1

‖X0‖1
∣∣E(X0,1Xp,1Xp)

∣∣
+ 2

l∑
p=[j/2]+1

∞∑
q=[p/2]+1

‖X0‖2‖X0,1‖2
∣∣E(X0,1Xq)

∣∣).

4.3. Control of the Ai ’s for stationary sequences

In this section, we give bounds for the quantities Ai for i �= 4. The control of A4 is carried out in Section 4.5. The
bounds are given in terms of the coefficients θ , and in terms of αξ in the case where X0 = (f1 −f2)(ξ0), the functions
f1, f2 being nondecreasing. For αξ , let

Xi,1 = Xi(a) = (ga ◦ f1 − ga ◦ f2)(ξi) − E
(
(ga ◦ f1 − ga ◦ f2)(ξi)

)
,

where ga(x) = (x ∧a)∨ (−a) for any a > 0. For θ , let Xi,1 = Xi(∞) = Xi , in which case Ai,1 = Ai and A8(f, k, l) =
A9(f, k, l) = 0. Denote by b(l, a) the quantity b(l) defined in (4.4) with Xi,1 = Xi(a). Note that b(l,∞) converges
to a limit b(∞,∞) as soon as both

∑
kθ1,3(k) and

∑
kθ2,3(k) are finite. In the same way, since ga ◦ f1 and ga ◦ f2

are nondecreasing, we can use Corollary A.1 given in the Appendix: it follows easily that b(l, a) converges to a limit
b(∞, a) as soon as (3.2) holds.

Notation 4.1. In the following, the notation a � b means that a ≤ Cb for some numerical constant C.

To control the Ai ’s with the help of the coefficients αξ , the main tool is the second inequality given in Corollary A.1

of the Appendix. Let X
(a)
k = Xk,2 = Xk − Xk(a). Then σ 2 − σ 2

1 = E(X0X
(a)
0 ) + 2

∑∞
k=1 E(X

(a)
0 Xk). Note that

X
(a)
k = (ha ◦ f1 − ha ◦ f2)(ξk) − E

(
(ha ◦ f1 − ha ◦ f2)(ξk)

)
,
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where ha(x) = x − ga(x). The functions ha ◦ f1 and ha ◦ f2 are nondecreasing and

max(Q|ga◦f1(Y0)|,Q|ga◦f2(Y0)|,Q|ha◦f1(Y0)|,Q|ha◦f2(Y0)|) ≤ Q.

Hence Corollary A.1 applies and yields |σ 2 − σ 2
1 | � M(Q,a) where

M(Q,a) =
∞∑
i=0

∫ α1,ξ (i)

0
Q21Q>a dλ,

λ being the Lebesgue measure. Taking into account this upper bound, we get that

|A2 − A2,1| � M(Q,a),

|A3 − A3,1| � l
∥∥X0(a)

∥∥
1M(Q,a),

|A6 − A6,1| � l
∥∥X0(a)

∥∥2
2M(Q,a),

|A7 − A7,1| � l2‖X0‖2
2M(Q,a),

|A9 − A9,1| � l
∥∥X

(a)
0

∥∥
1M(Q,a). (4.5)

We now give some upper bounds for the Ai ’s. Clearly

A1 ≤ θ0,1(l + 1) and A1 �
∫ α1,ξ (l)

0
Qdλ. (4.6)

In the same way, since max(Q|ga◦f1(Y0)|,Q|ga◦f2(Y0)|) ≤ (Q ∧ a),

A5 �
l∑

j=1

θ3,4(j) and A5 �
l∑

j=1

∫ α1,ξ (j)

0
Q(Q ∧ a)3 dλ. (4.7)

Let A = sign{Ek−l−1(Xk(a)Xk − E(Xk(a)Xk)}. Recall that α(ξ1, . . . , ξk) is defined in Proposition A.1. Since
α(A, ξk, ξk) ≤ α(A, ξk) ≤ α1,ξ (l + 1), we infer from Corollary A.1 that

∥∥Ek−l−1
(
Xk(a)Xk − E

(
Xk(a)Xk

))∥∥
1 = ∣∣E((

A − E(A)
)
Xk(a)Xk

)∣∣ �
∫ α1,ξ (l+1)

0
Q2 dλ.

Using this inequality to control A2,1, we obtain the bounds

A2 � θ0,2(l + 1) +
∞∑

j=[l/2]
θ0,2(j) +

∞∑
j=[l/2]

θ1,2(j), (4.8)

A2,1 �
∫ α1,ξ (l+1)

0
Q2 dλ +

∞∑
j=[l/2]

∫ α2,ξ (j)

0
Q2 dλ. (4.9)

In the same way,

A6 �
∞∑

j=1

jθ2,4(j) +
∞∑

p=1

pθ3,4(p) + E(X2
0)

∞∑
p=1

pθ1,2(p), (4.10)

A6,1 �
l∑

j=1

∫ α1,ξ (j)

0
Q(Q ∧ a)3 dλ +

l∑
p=1

p

∫ α2,ξ (p)

0
Q(Q ∧ a)3 dλ

+ E
(
X2

0(a)
) ∞∑

p=1

p

∫ α1,ξ (p)

0
Q(Q ∧ a)dλ. (4.11)
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The term A9,1 can be handled similarly:

A9,1 � a

l∑
j=1

∫ α1,ξ (j)

0
Q21Q>a dλ + a

l∑
p=1

p

∫ α2,ξ (p)

0
Q21Q>a dλ

+ ∥∥X
(a)
0

∥∥
1

∞∑
p=1

p

∫ α1,ξ (p)

0
Q(Q ∧ a)dλ. (4.12)

In the previous section, we have defined quantities C1,C2,C3 such that A3,1 ≤ C1 + C2 + C3. If Xk,1 = Xk(a)

we shall use the notation Ci = Ci(a), and if Xk,1 = Xk(∞) = Xk the notation Ci = Ci(∞). Thus A3,1 ≤ C1(a) +
C2(a) + C3(a) and A3 ≤ C1(∞) + C2(∞) + C3(∞). To control Ci(a), we use Corollary A.1 and the fact that, for
any M0-measurable r.v. B ,

α(B, ξk, ξk, ξk) ≤ α1,ξ (k) and α(B, ξk, ξk, ξl) ≤ α2,ξ

(
min(k, l)

)
.

Therefrom

C1(∞) �
l+1∑

j=[l/2]
θ2,3(j) + 2

l∑
j=[l/2]

θ0,3(j) +
l∑

j=[l/2]
θ1,3(j), (4.13)

C1(a) �
∫ α1,ξ (l+1)

0
Q(Q ∧ a)2 dλ +

l∑
j=[l/2]

∫ α2,ξ (j)

0
Q(Q ∧ a)2 dλ, (4.14)

C2(∞) � l

(
l∑

j=[l/2]
θ0,3(j) +

l∑
j=[l/4]

θ1,3(j) +
l∑

j=[l/4]
θ2,3(j)

)
, (4.15)

C2(a) � l

l∑
j=[l/4]

∫ α3,ξ (j)

0
Q(Q ∧ a)2 dλ. (4.16)

Finally

C3(∞) � l

l∑
j=[l/4]

(
θ1,3(j) + θ2,3(j)

) +
∞∑

j=[l/2]

(
θ1,3(j) + θ2,3(j)

)

+
(

l∑
j=[l/2]

θ0,1(j)

)(
E

(
X2

0

) + 2
∞∑

p=1

∣∣E(X0Xp)
∣∣) + l‖X0‖1

∞∑
j=[l/4]

θ1,2(j) (4.17)

and

C3(a) � l

l∑
j=[l/4]

∫ α2,ξ (j)

0
Q(Q ∧ a)2 dλ +

∞∑
j=[l/2]

∫ α1,ξ (j)

0
Q(Q ∧ a)2 dλ

+
(

l∑
j=[l/2]

∫ α1,ξ (j)

0
Qdλ

)(∣∣E(
X0X0(a)

)∣∣ + 2
∞∑

p=1

∣∣E(
X0(a)Xp

)∣∣)

+ l
∥∥X0(a)

∥∥
1

∞∑
j=[l/4]

∫ α1,ξ (j)

0
Q(Q ∧ a)dλ. (4.18)
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In the previous section, we have defined quantities D1,D2,D3 such that A7,1 ≤ D1 + D2 + D3. If Xk,1 = Xk(a)

we shall use the notation Di = Di(a), and if Xk,1 = Xk(∞) = Xk the notation Di = Di(∞). Thus A7,1 ≤ D1(a) +
D2(a) + D3(a) and A7 ≤ D1(∞) + D2(∞) + D3(∞). Furthermore

D1(∞) �
l∑

j=1

θ1,4(j) +
l∑

j=1

j
(
θ3,4(j) + θ1,4(j) + θ2,4(j)

)
, (4.19)

D1(a) �
l∑

j=1

∫ α1,ξ (j)

0
Q2(Q ∧ a)2 dλ +

l∑
j=1

j

∫ α2,ξ (j)

0
Q2(Q ∧ a)2 dλ, (4.20)

D2(∞) �
l∑

j=1

(l ∧ 2j)2θ1,4(j) +
l∑

j=1

(l ∧ 2j)2(θ2,4(j) + θ3,4(j)
)
, (4.21)

D2(a) �
l∑

j=1

(l ∧ 2j)2
∫ α3,ξ (j)

0
Q2(Q ∧ a)2 dλ. (4.22)

Finally

D3(∞) � ‖X0‖1

l∑
j=1

(l ∧ 2j)2(θ1,3(j) + θ2,3(j)
) + ‖X0‖2

2

∞∑
j=1

(l ∧ 2j)2θ1,2(j)

+
(

l∑
j=1

jθ1,2(j)

)(
E

(
X2

0

) + 2
∞∑

p=1

∣∣E(X0Xp)
∣∣) (4.23)

and

D3(a) � ‖X0‖1

(
l∑

j=1

(l ∧ 2j)2
∫ α2,ξ (j)

0
Q(Q ∧ a)2 dλ +

∞∑
j=1

j

∫ α1,ξ (j)

0
Q(Q ∧ a)2 dλ

)

+
(

l∑
j=1

j

∫ α1,ξ (j)

0
Q2 dλ

)(∣∣E(
X0X0(a)

)∣∣ + 2
∞∑

p=1

∣∣E(
X0(a)Xp

)∣∣)

+ ‖X0‖2
∥∥X0(a)

∥∥
2

∞∑
j=1

(l ∧ 2j)2
∫ α1,ξ (j)

0
Q(Q ∧ a)dλ. (4.24)

It remains to bound up A8. Clearly

A8 �
l∑

j=0

∫ α1,ξ (j)

0
Q21Q>a dλ. (4.25)

4.4. Control of the Ai ’s for martingales

For stationary martingale difference sequences, the control of the eight terms Ai is much easier, since the terms
A1,A5,C2,D2 are equal to 0. If moreover Xk,1 = Xk(∞) = Xk , then A8 and A9 are equal to 0. We start from the
control of the previous section. For each term Ai , we shall first give an upper bound when Xk,1 = Xk(∞) = Xk in
terms of sums of conditional expectations, and next an upper bound involving the mixing coefficients αξ . Clearly,

A2 ≤ 1

2

∥∥E0
(
X2

l

) − σ 2
∥∥

1 and A2,1 �
∫ α1,ξ (l+1)

0
Q2 dλ.
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In the same way

A6 ≤ 1

4

l∑
j=1

∥∥X2
0

(
E0

(
X2

j

) − σ 2)∥∥
1, A6,1 �

l∑
j=1

∫ α2,ξ (j)

0
Q(Q ∧ a)3 dλ

and

A9,1 � a

l∑
j=1

∫ α2,ξ (j)

0
Q21Q>a dλ.

Starting from the control A3,1 ≤ C1 + C2 + C3, and noting that C2 = 0 for martingale difference sequences, we infer
that

A3 � ∥∥E0
(
X3

l

) − E
(
X3

l

)∥∥
1 +

l∑
j=[l/2]

∥∥X0
(
E0

(
X2

j

) − σ 2)∥∥
1 +

l−1∑
j=[l/2]

∥∥E0
(
XjX

2
l

) − E
(
XjX

2
l

)∥∥
1,

A3,1 �
∫ α1,ξ (l+1)

0
Q(Q ∧ a)2 dλ +

l∑
j=[l/2]

∫ α2,ξ (j)

0
Q(Q ∧ a)2 dλ + ∣∣E(

X0X0(a)
)∣∣ l∑

j=[l/2]

∫ α1,ξ (j)

0
Qdλ.

Starting from the control A7,1 ≤ D1(∞) + D2(∞) + D3(∞), and noting that D2(∞) = 0 for martingale difference
sequences, we infer that

A7 �
l∑

j=1

(∥∥X0
(
E0

(
X3

j

) − E
(
X3

j

))∥∥
1 + j‖X0‖1

∥∥X0
(
E0

(
X2

j

) − σ 2)∥∥
1

+
j∑

p=1

∥∥X−pX0
(
E0

(
X2

j

) − σ 2)∥∥
1 +

j−1∑
p=[j/2]

∥∥X0
(
E0

(
XpX2

j

) − E
(
XpX2

j

))∥∥
1

)
,

A7,1 �
l∑

j=1

∫ α1,ξ (j)

0
Q2(Q ∧ a)2 dλ +

l∑
j=1

j

∫ α2,ξ (j)

0
Q2(Q ∧ a)2 dλ

+ ‖X0‖1

l∑
j=1

j

∫ α1,ξ (j)

0
Q(Q ∧ a)2 dλ + ∣∣E(

X0X0(a)
)∣∣ l∑

j=1

j

∫ α1,ξ (j)

0
Q2 dλ.

Finally, we have the simple bound A8 � ∫ 1
0 Q21Q>a dλ.

4.5. End of the proof of Theorems 3.1 and 3.2

We start with two preliminary results.

Proposition 4.2. Let (Xi)i∈Z be a stationary sequence of centered random variables in L
3. Assume that the series

σ 2 = E(X2
0)+2

∑∞
k=1 E(X0Xk) converges absolutely and that σ > 0. Consider the assumption H: there exist positive

constants K and M and a double array (Yk,n)1≤k≤n of independent and centered r.v.’s with common variance σ 2, such
that, setting Tn = Y1,n + · · · + Yn,n,

d1(Sn, Tn) ≤ M and max
1≤k≤n

E
(∣∣Y 3

n,k

∣∣) ≤ K3.

If H holds, then d1(Sn,
√

nσY ) ≤ C for some constant C depending only on M , σ and K .
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Proof. Assume that H holds. Applying Theorem 5.17 in [23] we infer that there exists a constant A such that, for
any x,

∣∣P(
Tn ≤ x

√
nσ

) − P(Y ≤ x)
∣∣ ≤ A

(
K

σ

)3

n−1/2(1 + |x|)−3
.

Hence, integrating on the real line, d1(Tn,
√

nσY ) ≤ AK3σ−2. The result follows by taking C = M + Aσ−2K3. �

We also need the following lemma, whose proof is elementary.

Lemma 4.1. Let β2 > 0 and β3 be two fixed real numbers, and define

m =
β3 +

√
β2

3 + β3
2/2

β2
, m′ = −β2

2m
and t = β3

2

2β3
2 + 4β3(β3 +

√
β2

3 + β3
2/2)

.

Let Zβ2 and Bβ2,β3 be two independent r.v.’s such that Zβ2 has the distribution N (0, β2/2) and Bβ2,β3 is such that
P(Bβ2,β3 = m) = t and P(Bβ2,β3 = m′) = 1 − t . Let Gβ2,β3 = Zβ2 +Bβ2,β3 . Then E(Gβ2,β3) = 0, E(G2

β2,β3
) = β2 and

E(G3
β2,β3

) = β3.

To prove Theorems 3.1 or 3.2, it is enough to see that under the assumptions of Theorems 3.1 or 3.2, the con-
dition H of Proposition 4.2 holds. Without loss of generality, we assume that σ 2 = E(X2

0) + 2
∑∞

k=1 E(X0Xk) = 1
(the general case follows by dividing the random variables by σ ). Denote by b(l, a) the quantity b(l) defined in
(4.4) with Xk,1 = Xk(a) (see Section 4.3 for the definition of Xk(a)), and denote by b(l,∞) the quantity b(l) with
Xk,1 = Xk(∞) = Xk . Let Y1,n, . . . , Yn,n be n independent random variables, independent of (Xk)k∈Z, such that Yk,n

has the law of G1,b(l(n,k),a(n,k)), where Gβ2,β3 is defined in Lemma 4.1. Let Y be a N (0,1)-distributed random vari-
able, independent of (Xi, Yj,n)i∈Z,1≤j≤n, and let Tn = Y1,n + · · · + Yn,n. Starting from (2.3), and keeping the same
notations as in Notation 2.1, we have, as in Section 4.2,

E
(
f (Sn) − f (Tn)

) ≤ 2E|Y | +
n∑

k=1

E(Δk). (4.26)

By Lemma 2.1 applied with B = B1,b(l(n,k+1),a(n,k+1)) + · · · + B1,b(l(n,n),a(n,n)) we get that∥∥f
(i)
k

∥∥∞ ≤ Di(n − k + 1)(1−i)/2.

Define α−1(u) = ∑
i≥0 1u<α3,ξ (i), and R(u) = α−1(u)Q(u). Let xk = R−1(

√
k) and choose the truncation level

a(n, k) = ∞ for Theorems 3.1(a), 3.2(a) and a(n, k) = Q(xn−k+1) for Theorems 3.1(b), 3.2(b). Let Bn be the set
of positive integers k such that k − 1 ≤ √

n − k + 1 for Theorems 3.1(a) and 3.2(a), and Bn be the set of positive
integers k such that k − 1 ≤ 4α−1(xn−k+1) for Theorems 3.1(b), 3.2(b). If k belongs to Bn, take l(n, k) = k − 1.
If k does not belong to Bn, take l(n, k) = [√n − k + 1] for Theorems 3.1(a), 3.2(a) and l(n, k) = 4α−1(xn−k+1)

for Theorems 3.1(b) and 3.2(b). Let g(n) = supBn. Applying Proposition 4.1, with Z = Yk,n, β2 = σ 2 = 1, β3 =
b(l(n, k), a(n, k)) and β4 = E(Y 4

k,n), we obtain that

n∑
k=g(n)

E(Δk) �
n∑

k=g(n)

9∑
i=1

κi,n−kAi

(
k, l(n, k)

)
and

g(n)−1∑
k=1

E(Δk) �
g(n)−1∑

k=1

9∑
i=1

κi,n−kAi(k, k − 1),
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where the numbers κi,m are defined by κi,m = m−i/2 for i = 1,2,3,4, κ8,m = κ2,m, κ9,m = κ3,m and κi,m = κ4,m for
i = 5,6,7. We only control the first term, the second one being easier to handle, since in that case l(n, k) = k − 1 ≤√

n − k + 1 for Theorems 3.1(a), 3.2(a) and l(n, k) = k − 1 ≤ 4α−1(xn−k+1) for Theorems 3.1(b), 3.2(b). To prove
that condition H of Proposition 4.2 holds, it is enough to prove that for any i in [1,9],

sup
n>0

n∑
k=g(n)

κi,n−kAi

(
k, l(n, k)

)
< ∞. (4.27)

The proof of (4.27) will be done using the upper bounds given in Section 4.3. We first prove Theorem 3.1 under
condition (a) and next Theorem 3.1 under (b).

Proof of Theorem 3.1 under condition (a). In that case a(n, k) = ∞ and l(n, k) = [√n − k + 1]. Consequently
A8(k, l(n, k)) = A9(k, l(n, k)) = 0, so that we have to prove that (4.27) holds for i in [1,7].

By definition of l(n, k), (4.27) holds for i = 1 as soon as
∑∞

k=1 θ0,1([
√

k]) < ∞, which is equivalent to condition (a)
with (p, q) = (0,1).

From (4.8), (4.27) holds for i = 2 as soon as,

for (p, q) = (0,2) or (1,2),

∞∑
k=1

1√
k

∞∑
j=[√k/2]

θp,q(j) < ∞. (4.28)

Again these conditions are implied by condition (a) with q = 2 and p = 0,1.
From (4.13), (4.27) holds for i = 3 as soon as

for p = 0,1,2 and q = 3,

∞∑
k=1

1√
k

∞∑
j=[√k/4]

θp,q(j) < ∞, (4.29)

which holds true under condition (a) with q = 3 and p = 0,1,2.
From (4.7), (4.10), (4.19), (4.21) and (4.22) we infer that (4.27) holds for i = 5,6,7 as soon as,

for q = 4 and 1 ≤ p ≤ 3,

∞∑
k=1

1

k3/2

∞∑
j=1

(
2j ∧ √

k
)2

θp,q(j) < ∞. (4.30)

Clearly (4.30) holds as soon as

∞∑
k=1

1

k3/2

[√k/2]∑
j=1

j2θp,q(j) < ∞ and
∞∑

k=1

1√
k

∞∑
j=[√k/2]

θp,q(j) < ∞. (4.31)

Interchanging the sums, we see that (4.31) holds under condition (a) with q = 4 and 1 ≤ p ≤ 3.
It remains to prove that (4.27) holds for i = 4. Since

∑
i κi,4 ≤ π2/6, we infer that (4.27) holds for i = 4 as soon as

sup
{
E

(
Y 4

k,n

)
: 1 ≤ k ≤ n < ∞}

< ∞. (4.32)

Now Yk,n and Z1 + B1,b(l(n,k),a(n,k)) have the same distribution, and consequently

E
(
Y 4

k,n

) ≤ 16
(
E

(
Z4

1

) + ‖B1,b(l(n,k),a(n,k))‖4∞
)
. (4.33)

Note that ‖B1,b(l(n,k),a(n,k))‖∞ = m ∨ |m′|, where m and m′ have been defined in Lemma 4.1 with β2 = σ 2 = 1 and
β3 = b(l(n, k), a(n, k)). Next b(l(n, k), a(n, k)) ≤ b3 < ∞ with

b3 = θ0,3(0) + 6
∞∑

k=1

θ1,3(k) + 6
∞∑

k=1

kθ1,3(k) + 6
∞∑

k=1

kθ2,3(k). (4.34)
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Now b3 is finite under condition (a). Hence, from Lemma 4.1

‖B1,b(l(n,k),a(n,k))‖∞ ≤ b3 +
√

b2
3 + 1

2
, (4.35)

which completes the proof of (4.27) for i = 4. �

Proof of Theorem 3.1 under condition (b). In that case we choose a(n, k) = Q(xn−k+1) and l(n, k) =
4α−1(xn−k+1). Note that, for any nonnegative measurable function h and any positive p,

∞∑
i=0

ip−1
∫ α3,ξ (i)

0
hdλ < ∞ if and only if

∫ 1

0
(α−1)phdλ < ∞. (4.36)

Hence (4.27) holds for i = 1 as soon as,

∞∑
k=1

∫ 1

0
1k≤R2Qdλ < ∞,

which holds under (b).
Now recall that, for i = 2,3,6,7,9, the terms Ai(k, l(n, k)) are decomposed into a sum of two terms:

Ai(k, l(n, k)) = Ai,1(k, l(n, k)) + Ai,2(k, l(n, k)). Consequently, in order to prove that (4.27) holds for these val-
ues of i, we will prove that, for j = 1 and j = 2,

sup
n>0

n∑
k=g(n)

κi,n−kAi,j

(
k, l(n, k)

)
< ∞. (4.37)

For i = 2, from (4.5), (4.37) holds for i = 2 and j = 2 as soon as∫ 1

0
α−1Q2

∞∑
k=1

1√
k
1k≤R2 dλ < ∞, (4.38)

which follows from (b). From (4.8) and (4.9), (4.37) holds for i = 2 and j = 1 as soon as (4.38) holds. Hence (4.27)
holds for i = 2.

For i = 3 and i = 9, from (4.5), (4.37) holds for j = 2 as soon as

‖X0‖1

∞∑
k=1

1√
kQ(xk)

∞∑
j=1

∫ α3,ξ (j)

0
Q21k≤R2 dλ < ∞,

which can be handled as (4.38) by noting that
√

kQ(xk) ≥ √
kQ(x1). From (4.18) and (4.12), (4.37) holds for i = 3,9

and j = 1 as soon as

∞∑
k=1

R(xk)

k

∞∑
j=1

∫ α3,ξ (j)

0
Q21k≤R2 dλ < ∞. (4.39)

Since R(xk) ≤ √
k, (4.39) can be handled as (4.38). Hence (4.27) holds for i = 3 and i = 9.

For i = 6,7 and from (4.5), (4.37) holds for j = 2 as soon as

‖X0‖2
2

∞∑
k=1

1√
kQ2(xk)

∞∑
j=1

∫ α3,ξ (j)

0
Q21k≤R2 dλ < ∞,
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which can be handled as (4.38) by noting that
√

kQ2(xk) ≥ √
kQ2(x1). From (4.10), (4.20), (4.22) and (4.24), (4.37)

holds for i = 6,7 and j = 1 as soon as,

∞∑
k=1

1

k3/2

∞∑
j=1

j21xk≤α3,ξ (j/4)

∫ α3,ξ (j)

0
Q2(Q ∧ Q(xk)

)2
dλ < ∞. (4.40)

Interchanging the sums and the integral, (4.40) holds as soon as∫ 1

0
Q2

( ∞∑
k=1

(Q(xk))
2

k3/2
1k≤R2

∞∑
j=1

j21xk≤α3,ξ (j/4)

)
dλ < ∞, (4.41)

∫ 1

0

(
α−1)3

Q4

( ∞∑
k=1

1

k3/2
1k>R2

)
dλ < ∞. (4.42)

Now (4.41) is equivalent to (4.38), and by definition of R, (4.42) follows from condition (b). Hence (4.27) holds for
i = 6 and i = 7. In a similar way, for i = 5, (4.27) can be derived from inequality (4.7).

We now prove (4.27) for i = 4. First note that

∞∑
k=1

1

k3/2

∣∣E(
X0X

3
0

(
Q(xk)

))∣∣ ≤
∫ 1

0
Q2

∞∑
k=1

Q2(xk)

k3/2
1k≤R2 dλ +

∫ 1

0
Q4

∑
k>R2

1

k3/2
dλ

and these sums can be handled as in (4.41), (4.42). Since
∑

i κi,4 < π2/6, (4.27) holds for i = 4 as soon as (4.32)
holds. Now as in the proof of (4.27) for i = 4 under condition (a), (4.33) holds and

b
(
l(n, k), a(n, k)

) ≤
∞∑

k=1

8k

∫ α3,ξ (k)

0
Q3 dλ < ∞ (4.43)

under condition (b). Hence, from Lemma 4.1, (4.32) holds, which completes the proof of (4.27) holds for i = 4.
From (4.25), (4.27) holds for A8 as soon as (4.38) holds. Hence Theorem 3.1 holds under (b). �

Proof of Theorem 3.2. Since the proof of Theorem 3.2(b) is similar to that of Theorem 3.1(b), we shall only give
some hints at the end of this section.

To prove Theorem 3.2(a), we use the control of the Ai ’s given in Section 4.4. Recall that, in that case, A1,A5,A8
and A9 are equal to zero. For i = 2, (4.27) holds as soon as

∞∑
k=1

1√
k

∥∥E0
(
X2

[√k]
) − 1

∥∥
1 < ∞,

which follows from the first condition in (3.3). For i = 6, (4.27) holds as soon as

∞∑
k=1

1

k
√

k

√
k∑

j=1

∥∥X2
0

(
E0

(
X2

j

) − 1
)∥∥

1 < ∞,

which follows from the first condition in (3.3) by interchanging the sums. For i = 3, (4.27) holds as soon as

∞∑
k=1

1

k

[√k]∑
j=[√k/2]

∥∥X0
(
E0

(
X2

j

) − 1
)∥∥

1 < ∞, (4.44)

∞∑
k=1

1

k

[√k]∑
j=[√k/2]

∥∥E0
(
XjX

2
[√k]

) − E
(
XjX

2
[√k]

)∥∥
1 < ∞. (4.45)
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Equation (4.44) follows from (3.3) by interchanging the sums. Equation (4.45) is equivalent to

∞∑
k=1

1

k

k∑
j=[k/2]

∥∥E0
(
XjX

2
k

) − E
(
XjX

2
k

)∥∥
1 < ∞,

which follows from the second condition in (3.3). For i = 7, (4.27) holds as soon as

∞∑
k=1

‖X0‖1

k3/2

[√k]∑
j=1

j
∥∥X0

(
E0

(
X2

j

) − 1
)∥∥

1 < ∞, (4.46)

∞∑
k=1

1

k3/2

[√k]∑
j=1

j∑
p=[j/2]

∥∥X0
(
E0

(
XpX2

j

) − E
(
XpX2

j

))∥∥
1 < ∞, (4.47)

∞∑
k=1

1

k3/2

[√k]∑
j=1

j∑
p=1

∥∥X−p

(
E0

(
X2

j

) − 1
)∥∥

1 < ∞. (4.48)

Interchanging the sums, we see that (4.46) and (4.48) follow from the first condition in (3.3), and (4.47) follows from
the second condition in (3.3). For i = 4, we proceed as in Theorem 3.1. We have the upper bound b(l(n, k),∞) ≤ d3

with,

d3 = E
(|X0|3

) + 3
∞∑

k=1

∥∥X0
(
E0

(
X2

k

) − 1
)∥∥

1.

Hence (4.35) holds with a(n, k) = ∞, and the proof of H under (a) is complete.
The proof of Theorem 3.2(b) is similar to that of Theorem 3.1(b). For 1 ≤ i ≤ 9, (4.27) holds as soon as

∞∑
k=1

1√
k

∫ 1

0
Q21k≤R2 dλ < ∞,

∞∑
k=1

Q(xk)

k

∞∑
j=1

1xk≤α(j/4)

∫ 1

0
Q21k≤R2 dλ < ∞

and

∞∑
k=1

1

k3/2

∞∑
j=1

j1xk≤α(j/4)

∫ α(j)

0
Q2(Q ∧ Q(xk)

)2
dλ < ∞.

Arguing as in the proof of Theorem 3.1(b), these inequalities follow from (3.4). �

5. Examples

5.1. Aperiodic Harris recurrent Markov chains

Throughout this section, K is a positive Harris recurrent Markov kernel on some separable state space (E,E), i.e. there
exists a unique probability measure π with πK = π , and K is π -recurrent. As in [5], K is assumed to be aperiodic,
which ensures that the stationary chain (ξi)i∈Z with kernel K is strongly mixing in the sense of Rosenblatt. Moreover,
in the case of discrete Markov chains or chains with an atom, the rates of strong mixing and the integrability properties
of the recurrence times are strongly linked, as proved by Theorem 2 in [3]: for any r > −1,

∑
k>0 krα(k) < ∞ if and

only if E(τ r+2) < ∞, where τ is the recurrence time (starting from the atom). From [26] the above series is convergent
if and only if α−1(u) = ∑

i≥0 1u<α(i) belongs to Lr+1([0,1]).
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For any measurable function f , let Sn(f ) = f (ξ1) + f (ξ2) + · · · + f (ξn). From Bolthausen’s results ([3], Corol-
lary 3 and [5], Theorem 1), the convergence rates in the Berry–Esseen theorem are O(n−1/2) as soon as

π
(|f |3p

)
< ∞ and

∑
k>0

k(p+1)/(p−1)α(k) < ∞, (5.1)

for any p in ]1,∞], provided that

σ 2 = π
(
f 2) + 2

∑
n>0

π
(
f Knf

)
> 0. (5.2)

From Theorem 3.1(b) above, we obtain the bound

d1
(
n−1/2Sn(f ), σY

) ≤ Cn−1/2 (5.3)

as soon as f satisfies (5.2) and (1.8), with X0 = f (ξ0) and b = 0. From (4.36), the latter condition is equivalent to∫ 1

0

[
α−1(u)

]2
Q3

|f (ξ0)|(u)du < ∞. (5.4)

From the Hölder inequality applied with s = p/(p − 1) and t = p, we see that (5.4) holds as soon as (5.1) holds.

Martingale difference sequences
If K(f ) = 0 almost everywhere, the sequence Xi = f (ξi) is a martingale difference sequence. Consequently Theo-
rems 3.2 and 2.1 apply with σ 2 = π(f 2). From Theorem 3.2(b), (5.3) holds as soon as the strong mixing coefficients
satisfy (1.8) with b = 0. Under the weaker condition∫ α(k)

0
Q3

|f (ξ0)|(u)du = O
(
k−δ

)
, (5.5)

Theorem 2.1(a) provides the rate

d1
(
n−1/2Sn(f ), σY

) = O
(
n−δ/2). (5.6)

When f is a bounded function with K(f ) = 0 almost everywhere, (5.3) holds under the summability condition∑
k α(k) < ∞, which is related to the ergodicity of degree 2 (cf. [21], Section 6.4). From (5.5), the rate (5.6) holds

under the weaker condition α(k) = O(k−δ).

5.2. The transformation Θ(x) = 2x − [2x]
Let λ be the Lebesgue measure on [0,1] and consider the map Θ from [0,1] to [0,1]: Θ(x) = 2x − [2x]. On the
probability space ([0,1], λ), the sequence (Θi)i>0 is strictly stationary. Note also that (Θ,Θ2, . . . ,Θn) is distributed
as (ξn, . . . , ξ1), where (ξi)i∈Z is a Markov chain with invariant distribution λ and transition kernel

Kf (x) = 1

2

(
f

(
x

2

)
+ f

(
x + 1

2

))
.

Hence, we can obtain information on the distribution of Sn(f ) = f ◦ Θ + · · · + f ◦ Θn by studying that of f (ξ1) +
· · ·+f (ξn). For instance, we can apply the criterion of Dedecker and Rio [8] for the central limit theorem: if λ(f ) = 0,

λ
(
f 2) < ∞ and

∑
k>0

λ
(∣∣f Kk(f )

∣∣) < ∞, (5.7)

then σ 2 = λ(f 2)+2
∑∞

k=1 λ(f ·f ◦Θk) converges absolutely, and n−1/2Sn(f ) converges in distribution to a Gaussian
random variable with mean 0 and variance σ 2. Now it is easy to see that (5.7) holds as soon as, for some p ∈ [2,∞],

f ∈ L
p(λ) and

∫ 1

0

1

t
wp/(p−1)(t)dt < ∞, (5.8)
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where wq(f, t) is the L
q([0,1], λ)-modulus of continuity of f in L

q([0,1], λ). For p = 2, the criterion (5.8) has been
obtained by Ibragimov [16]. For p = ∞, the criterion (5.8) follows from the L

1-criterion of Gordin [14] applied to
sequences of bounded variables.

In the same way, applying Theorems 2.2, 3.2 and 3.1, we obtain the following result:

Theorem 5.1. Let f be a measurable function from [0,1] to R such that λ(f ) = 0.

(a) Assume that, for some p ∈ [3,∞],

f ∈ L
p(λ) and

∫ 1

0

| log t |
t

wp/(p−2)(f, t)dt < ∞. (5.9)

If σ > 0, there exists a constant C such that, d1(Sn(f ),
√

nσY ) ≤ C logn.
(b) Assume that, for some p ∈ [4,∞],

f ∈ L
p(λ) and

∫ 1

0

| log t |
t

wp/(p−3)(f, t)dt < ∞. (5.10)

If σ > 0, then there exists a constant C such that,

d1
(
Sn(f ),

√
nσY

) ≤ C. (5.11)

(c) Assume that f (x + (1/2)) = −f (x) for almost every x ∈ [0,1/2]. Then the sequence (f (ξn))n∈Z is a stationary
martingale difference sequence, so that σ 2(f ) = λ(f 2). If moreover, for some p ∈ [4,∞],

λ
(|f |p)

< ∞ and
∫ 1

0

1

t
wp/(p−3)(f, t)dt < ∞,

then (5.11) holds.
(d) Assume that f = f1 − f2, where f1 and f2 are nondecreasing functions. Assume moreover that∫ 1

0

(
log

(
t − t2))2∣∣f1(t)

∣∣3 dt < ∞ and
∫ 1

0

(
log

(
t − t2))2∣∣f2(t)

∣∣3 dt < ∞.

If σ > 0, then (5.11) holds.

Remark 5.1. If f belongs to L
3(λ), Ibragimov [17] obtained the Berry–Esseen type estimate

sup
x∈R

∣∣P(
Sn(f ) ≤ x

√
nσ

) − P(Y ≤ x)
∣∣ ≤ C

(
logn

n

)1/2

, (5.12)

under the condition w3(f, t) ≤ Ctα for some α > 0. This condition is slightly stronger than our condition (5.9) with
p = 3. Applying Theorem 9 in [19], one can obtain the bound Cn−1/2 in (5.12) as soon as

f ∈ L
∞(λ) and

∫ 1

0

| log t |
t

w∞(f, t)dt < ∞,

where w∞(f, t) is the modulus of continuity of f .

Remark 5.2. If f ∈ L
∞(λ) and if K(f ) = 0 almost everywhere, then (5.11) holds under the criterion (5.8) applied to

p = ∞.

Remark 5.3. Applying the Hausdorff–Young inequality (cf. [15], p. 202), Ibragimov [16,17] proved that (5.8) holds
for p = 2 as soon as the Fourier coefficients of f satisfy |f̂ (n)| ≤ Mn−1/2(log(n))−3/2−ε for some positive M

and ε, and that (5.12) holds as soon as |f̂ (n)| ≤ Mn−2/3−ε . Using the same arguments, one can prove that
(5.9) holds for p = 3 as soon as |f̂ (n)| ≤ Mn−2/3(log(n))−8/3−ε , and that (5.10) holds for p = 4 as soon as
|f̂ (n)| ≤ Mn−3/4(log(n))−11/4−ε .
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Proof of Theorem 5.1. Point (a) follows from Theorem 2.2 and point (b) follows from Theorem 3.1(a). The proofs
being similar, we shall only prove point (b). Let us just see how to control the coefficient θ1,4(l), the other one being
easier to handle. The sequence (ξi)i∈Z being a stationary Markov chain with invariant distribution λ and transition
kernel K , the coefficient θ1,4(l) is equal to

sup
k≥l,i≥0,j≥0

∫ 1

0

∣∣∣∣f (x)

(
Kk

(
f Ki

(
f Kj (f )

))
(x) −

∫ 1

0

(
f Ki

(
f Kj (f )

))
(x)dx

)∣∣∣∣dx.

From Theorem 1 in [12], we infer that, for any h in L
q([0,1], λ),∥∥∥∥∫ ∣∣Kk(h)(x) − λ(h)

∣∣q dx

∥∥∥∥
q,λ

≤ 2wq

(
h,2−k

)
.

Hence, applying Hölder’s inequality, we obtain that

θ1,4(l) ≤ sup
i≥0,j≥0

2‖f ‖p,λwp/(p−1)

(
f Ki

(
f Kj (f )

)
,2−l

)
.

We now use the elementary facts that, for p ≥ q and r ≥ q ,

wq(fg, t) ≤ ‖f ‖p,λwpq/(p−q)(g, t) + ‖g‖r,λwrq/(r−q)(f, t),

and that wq(K(f ), t) ≤ wq(f, t). It follows that

θ1,4(l) ≤ sup
j≥0

2‖f ‖2
p,λ

(
wp/(p−2)

(
f Kj (f ),2−l

) + ‖f ‖p,λwp/(p−3)

(
f,2−l

))
≤ 6‖f ‖3

p,λwp/(p−3)

(
f,2−l

)
.

Hence, if f belongs to L
p([0,1], λ) for some p ≥ 4,

∑
l>0 lθ1,4(l) is finite as soon as

∑
l>0 l wp/(p−3)(f,2−l ) is

finite, which is equivalent to the condition of (b).
To prove (c), note that, if f (x + (1/2)) = −f (x) for almost every x ∈ [0,1/2], then (f (ξi))i∈Z is a sequence of

martingale differences, so that Theorem 3.2(a) applies. To conclude, use the control of θi,j (l) given above.
It remains to prove (d). Let BVa be the space of left continuous bounded variation functions f on [0,1] such that

‖df ‖v ≤ a (here ‖ · ‖v is the variation norm). Let f (0) = f − λ(f ) and M0 = σ(Yi, i ≤ 0). Arguing as in Lemma 1
of [7], one can see that, for any il > · · · > i1 > n,

α
(
M0, (ξi1 , . . . , ξil )

) = sup
f1,...,fl∈BV1

∥∥∥∥∥E

(
l∏

j=1

f
(0)
j (ξij )

∣∣∣M0

)
− E

(
l∏

j=1

f
(0)
j (ξij )

)∥∥∥∥∥
1

.

Since K maps BV1 to BV1/2, we infer that f (0) · (Ki(g))(0) belongs to BV1 for any i > 0 and any f,g in BV1. It
follows that, for any il > · · · > i1 ≥ n,

α
(
M0, (ξi1 , . . . , ξil )

) ≤ α(M0, ξi1) ≤ 2−n,

so that α3,ξ (n) ≤ 2−n. Applying Theorem 3.1(a), d1(Sn(f ),
√

nσY ) ≤ C as soon as∫ 1

0
(log t)2Q3|f1|(t)dt < ∞ and

∫ 1

0
(log t)2Q3|f2|(t)dt < ∞,

where Qf is the generalized inverse of t → λ(f > t). Let f + = f ∨ 0 and f − = −(f ∧ 0). By Lemma 2.1 in [26],∫ 1

0
(log t)2Q3|f1|(t)dt ≤

∫ 1

0
(log t)2Q3

f +
1

(t)dt +
∫ 1

0
(log t)2Q3

f −
1

(t)dt.

Clearly Qf +
1

(t) = f +
1 (1 − t) almost everywhere and Qf −

1 (t) = f −
1 (t) almost everywhere. Of course the same is true

with f2 and the result follows. �
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5.3. Symmetric random walk on the circle

Let K be the Markov kernel defined by Kf (x) = (f (x +a)+f (x −a))/2 on T = R/Z, with a irrational in [0,1]. The
Lebesgue–Haar measure m is invariant under K . Furthermore K is a symmetric operator on L

2(m), and consequently
the Kipnis–Varadhan or the Gordin–Lifshitz central limit theorems apply. Let (ξi)i∈Z be the stationary Markov chain
with transition kernel K . For f in L

2(m) with m(f ) = 0, set

Sn(f ) = f (ξ1) + f (ξ2) + · · · + f (ξn). (5.13)

Then the central limit theorem holds for n−1/2Sn(f ) as soon as the series of covariances

σ 2 =
∫

T

f 2 dm + 2
∑
n>0

∫
T

f Knf dm (5.14)

is convergent and the limiting distribution is N (0, σ 2) (cf. [9], Section 2). Our aim in this section is to give conditions
on f and on the properties of the irrational number a ensuring optimal rates of convergence in the central limit
theorem.

Definition 5.1. a is said to be badly approximable by rationals if for any positive ε, the inequality d(ka,Z) < |k|−1−ε

has only finitely many solutions for k ∈ Z.

From Roth’s theorem the algebraic numbers are badly approximable (cf. [27]). Note also that the set of badly
approximable numbers in [0,1] has Lebesgue measure 1. We will now give results for the symmetric random walk on
the circle in the case of badly approximable numbers a.

Theorem 5.2. Suppose that a is badly approximable by rationals. Let f be a function in L
2(m) with m(f ) = 0 and

m(f 2) > 0.

(a) If the Fourier coefficients f̂ (k) of f satisfy supk �=0 |k|1+ε|f̂ (k)| < ∞ for some positive ε, then n−1/2Sn(f ) con-

verges in distribution to a nondegenerate Gaussian distribution N (0, σ 2).
(b) If the Fourier coefficients f̂ (k) of f satisfy supk �=0 |k|4+ε|f̂ (k)| < ∞ for some positive ε, then

sup
x∈R

∣∣P(
Sn ≤ xσ

√
n
) − P(Y ≤ x)

∣∣ = O
(
n−1/2), (5.15)

d1
(
n−1/2Sn,σY

) = O
(
n−1/2). (5.16)

Remark 5.4. The assumption f̂ (k) = O(|k|−1−ε) in Theorem 5.2(a) implies that f is ε-Hölderian, and therefore
uniformly continuous. Conversely, if f is C1+ε then f satisfies (a). In the same way the condition f̂ (k) = O(|k|−4−ε)

in (b) implies that f is C3+ε and conversely any C4+ε function f satisfies (b).

Proof of Theorem 5.2. Since∫
T

f Knf dm =
∑
k∈Z∗

cosn(2πka)
∣∣f̂ (k)

∣∣2
,

the series in (5.14) is convergent if
∑

k∈Z∗ cot2(πka)|f̂ (k)|2 < ∞. Moreover, interverting the sums, we get that
σ 2 = ∑

k∈Z∗ cot2(πka)|f̂ (k)|2. Since cot2(πka) > 0 for any k in Z
∗, it ensures that σ 2 > 0.

When {ka} = d(ka,Z) tends to 0, cot2(πka) ∼ π−2{ka}−2, so that the convergence of the series in (5.14) is
equivalent to∑

k∈Z∗
{ka}−2

∣∣f̂ (k)
∣∣2

< ∞, (5.17)
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as shown in [9].
In order to complete the proof of Theorem 5.2(a), we will need the elementary fact below.

Lemma 5.1. Let a be a badly approximable irrational number. Then, for any positive η, there exists some positive
constant C such that, for any nonnegative integer N and any p ≥ 2,

∑
k∈[2N ,2N+1[{ka}−p ≤ 2Cp2p(N+2)(1+η).

Proof. Let k and l be integers in IN = [2N,2N+1[ with k �= l. From the equality |{ka}− {la}| = min({(l − k)a}, {(l +
k)a}) and Definition 5.1, we get that |{ka}−{la}| ≥ C−1|k− l|−1−η ≥ C−12−(N+2)(1+η) for some positive constant C.
Now, denoting by xN

1 , . . . , xN
2N the order statistic of ({ka})k∈IN

,

xN
m ≥ xN

1 + (m − 1)C−12−N(2+η) ≥ mC−12−(2+N)(1+η).

Hence

2N+1−1∑
k=2N

{ka}−p =
2N∑

m=1

(
xN
m

)−p ≤ Cp2p(N+2)(1+η)

2N∑
m=1

m−p,

which implies Lemma 5.1. �

Now, applying Lemma 5.1 with p = 2 and η = ε/2, we get that∑
k∈IN

{ka}−2(∣∣f̂ (k)
∣∣2 + ∣∣f̂ (−k)

∣∣2) ≤ 4C22N(2+ε) max
k∈IN

∣∣f̂ (k)
∣∣2 ≤ C′2−Nε

under the assumptions of Theorem 5.2(a), which implies the convergence of the series in (5.17). Therefore Theo-
rem 5.2(a) holds.

We now prove Theorem 5.2(b). Equation (5.15) is a byproduct of Jan’s theorem ([19], Theorem 9, page 61 or [20],
Theorem 1) and (5.16) is a corollary of our estimates of the minimal L

1-distance. The main tool is Lemma 5.2.

Notation 5.1. For s > 0, let Fs be the class of 1-periodic functions g such that ĝ(0) = 0 and |ĝ(k)| ≤ |k|−s for any k

in Z
∗.

Lemma 5.2. Let a be a badly approximable irrational number. Then, for any ε in ]0,1]∑
n>0

n sup
g∈F4+4ε

∥∥Kng
∥∥∞ < ∞.

Proof. For g in L
2(m) with m(g) = 0,

Kng(x) =
∑
k∈Z∗

cosn(2πka)ĝ(k) exp(2iπkx).

Therefore

sup
g∈F4+4ε

∥∥Kng
∥∥∞ ≤

∑
k∈Z∗

∣∣cosn(2πka)
∣∣|k|−4(1+ε),

which ensures that∑
n>0

n sup
g∈F4+4ε

∥∥Kng
∥∥∞ ≤

∑
k∈Z∗

(
1 − ∣∣cos(2πka)

∣∣)−2|k|−4(1+ε) ≤
∑
k∈Z∗

(|k|1+ε{2ka})−4
.
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Next, applying Lemma 5.1 with η = ε/2 and p = 4, we get that∑
k∈Z∗

(|k|1+ε{2ka})−4 ≤ 4C4
∑
N≥0

2(4+2ε)(N+2) max
k∈IN

k−4(1+ε) < ∞,

which implies Lemma 5.2. �

We now complete the proof of Theorem 5.2(b). Set Xp = f (ξp). In view of the Berry–Esseen type Theorem 9 in
[19] and Theorem 3.1 we have to bound up the coefficients

ψn = sup
{∥∥E0(Xp1 · · ·Xpj

) − E(Xp1 · · ·Xpj
)
∥∥∞: j ≤ 3, n ≤ p1 ≤ · · · ≤ pj

}
in such a way that

∑
n nψn < ∞.

We proceed as in [19]. Set p0 = n. Then (in the case j = 3)

E0(Xp1 · · ·Xpj
) = E0

(
Ep0

(
Xp1

(
Ep1

(
Xp2Ep2(Xp3)

))))
.

Hence, setting qi = pi − pi−1, we get E0(Xp1 · · ·Xpj
) = Kn(Kq1(f Kq2(f Kq3f ))). Starting from this equality, we

now prove that, for s > 1 there exists some constant Cs (depending only on s) such that, for any f ∈ Fs ,

ψn ≤ Cs sup
g∈Fs

∥∥Kng
∥∥∞. (5.18)

To prove (5.18) one can prove that, for f in Fs and g = Kq1(f Kq2(f · · ·Kqj f ) · · ·),∣∣ĝ(k)
∣∣ ≤ Cs |k|−s for any k ∈ Z

∗, (5.19)

any j ≤ 3 and all natural integers q1, . . . , qj . This is derived from Lemma 5.3.

Lemma 5.3. Let s > 1. For any g in Fs and any natural p, Kp g lies in Fs . For any g and h in Fs and any k �= 0,
|ĝh(k)| ≤ (s − 1)−122s+1|k|−s .

The proof of Lemma 5.3, being elementary, is omitted. Now, from (5.18) and Lemma 5.2,
∑

n nψn < ∞ under the
assumptions of Theorem 5.2(b). Since the function f is uniformly bounded, it implies (5.15) via Theorem 9 in [19]
and (5.16) via Theorem 3.1. �

Appendix

In this section, we give an upper bound for the expectation of the product of k centered random variables
∏k

i=1(Xi −
E(Xi)). This upper bound is given in term of a dependence coefficients α(X1, . . . ,Xk), which is a generalization of
the coefficient introduced in [26], Eq. (1.8a), for k = 2 (note that, for k = 2, our definition differs from that of Rio by
a factor 2).

Proposition A.1. Let X = (X1, . . . ,Xk) be a random variable with values in R
k and define the number

α = α(X1, . . . ,Xk) = sup
(x1,...,xk)∈Rk

∣∣∣∣∣E
(

k∏
i=1

1Xi>xi
− P(Xi > xi)

)∣∣∣∣∣. (A.1)

Let Fi be the distribution function of Xi , let F−1
i be the generalized inverse of Fi and let Di(u) = (F−1

i (1 − u) −
F−1

i (u))+. We have the inequality∣∣∣∣∣E
(

k∏
i=1

Xi − E(Xi)

)∣∣∣∣∣ ≤ 2
∫ α/2

0

(
k∏

i=1

Di(u)

)
du. (A.2)
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In particular, if X1 is M-measurable, we have α ≤ α(M, (X2, . . . ,Xk)). Hence∣∣∣∣∣E
(

k∏
i=1

Xi − E(Xi)

)∣∣∣∣∣ ≤ 2
∫ α(M,(X2,...,Xk))/2

0

(
k∏

i=1

Di(u)

)
du. (A.3)

Proof. We have that

E

(
k∏

i=1

Xi − E(Xi)

)
=

∫
E

(
k∏

i=1

1Xi>xi
− P(Xi > xi)

)
dx1 · · · dxk. (A.4)

Now A = |E(
∏k

i=1(1Xi>xi
− P(Xi > xi)))| is such that A ≤ α, and for any 1 ≤ i ≤ k,

A ≤ 2P(Xi > xi)P(Xi ≤ xi) ∧ α ≤ 2

{
P(Xi > xi) ∧ P(Xi ≤ xi) ∧ α

2

}
. (A.5)

Consequently, we obtain from (A.4) and (A.5) that∣∣∣∣∣E
(

k∏
i=1

Xi − E(Xi)

)∣∣∣∣∣ ≤ 2
∫ α/2

0

(
k∏

i=1

∫
1u<P(Xi>xi)1u≤P(Xi≤xi ) dxi

)
du

≤ 2
∫ α/2

0

(
k∏

i=1

∫
1

F−1
i (u)≤xi<F−1

i (1−u)
dxi

)
du

and (A.2) follows. �

Lemma A.1. Let X+ = max(0,X) and X− = −min(0,X). For almost every u < 1/2, we have the inequalities
0 ≤ DX(u) ≤ QX+(u) + QX−(u) ≤ 2Q|X|(u). Furthermore the second inequality is an equality if 0 is a median
for X.

Proof. First, we have F−1
X (1 − u) = QX(u) ≤ QX+(u). Next, by definition of F−1

X , we have −F−1
X (u) =

sup{x: P(−X ≥ x) ≥ u}. By definition Q−X(u) = inf{x: P(−X > x) ≥ u}, so that −F−1
X (u) = Q−X(u) for every

continuity point u of Q−X and hence almost everywhere. To obtain the desired inequality, note that Q−X(u) ≤
QX−(u). �

Corollary A.1. Let X = (X1, . . . ,Xk) be a random variable with values in R
k and let α be defined by (A.1). Let

(fi)1≤i≤k be k functions from R to R, such that fi = f
(1)
i −f

(2)
i where f

(1)
i and f

(2)
i are nondecreasing. For 1 ≤ i ≤ k

and j ∈ {1,2}, let Q
(j)
i = Q|f (j)

i (Xi)|. We have the inequality∣∣∣∣∣E
(

k∏
i=1

fi(Xi) − E
(
fi(Xi)

))∣∣∣∣∣ ≤ 2k+1
2∑

j1=1

· · ·
2∑

jk=1

∫ α/2

0
Q

(j1)

1 (u) · · ·Q(jk)
k (u)du.

In particular, if X1 is M-measurable,∣∣∣∣∣E
(

k∏
i=1

fi(Xi) − E
(
fi(Xi)

))∣∣∣∣∣ ≤ 2k+1
2∑

j2=1

· · ·
2∑

jk=1

∫ α(M,(X2,...,Xk))/2

0
Q|f1(X1)|(u)

(
k∏

i=2

Q
(ji)
i (u)

)
du.

Proof. Clearly∣∣∣∣E
(

k∏
i=1

fi(Xi) − E
(
fi(Xi)

))∣∣∣∣∣ ≤
2∑

j1=1

· · ·
2∑

jk=1

∣∣∣∣∣E
(

k∏
i=1

f
(ji )
i (Xi) − E

(
f

(ji )
i (Xi)

))∣∣∣∣∣. (A.6)
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Since f
(ji )
i is nondecreasing, α(f

(j1)

1 (X1), . . . , f
(jk)
k (Xk)) ≤ α(X1, . . . ,Xk). To obtain the result, apply (A.2) and

Lemma A.1 to each term of the sum in (A.6). �
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